Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Expression and regulation of the Pseudomonas aeruginosa hibernation promoting factor
    (2018-10) Akiyama, Tatsuya; Williamson, Kerry S.; Franklin, Michael J.
    Bacterial biofilms contain subpopulations of cells that are dormant and highly tolerant to antibiotics. While dormant, the bacteria must maintain the integrity of macromolecules required for resuscitation. Previously, we showed that hibernation promoting factor (HPF) is essential for protecting Pseudomonas aeruginosa from ribosomal loss during dormancy. In this study, we mapped the genetic components required for hpf expression. Using 5ʹ‐RACE and fluorescent protein reporter fusions, we show that hpf is expressed as part of the rpoN operon, but that hpf also has a second promoter (Phpf) within the rpoN gene. Phpf is active when the cells enter stationary phase, and expression from Phpf is modulated, but not eliminated, in mutant strains impaired in stationary phase transition (ΔdksA2, ΔrpoS and ΔrelA/ΔspoT mutants). The results of reporter gene studies and mRNA folding predictions indicated that the 5ʹ end of the hpf mRNA may also influence hpf expression. Mutations that opened or that stabilized the mRNA hairpin loop structures strongly influenced the amount of HPF produced. The results demonstrate that hpf is expressed independently of rpoN, and that hpf regulation includes both transcriptional and post‐transcriptional processes, allowing the cells to produce sufficient HPF during stationary phase to maintain viability while dormant.
  • Thumbnail Image
    Item
    Localized gene expression in Pseudomonas aeruginosa biofilms
    (2008-05) Lenz, Ailyn P.; Williamson, Kerry S.; Pitts, Betsey; Stewart, Philip S.; Franklin, Michael J.
    Gene expression in biofilms is dependent on bacterial responses to the local environmental conditions. Most techniques for studying bacterial gene expression in biofilms characterize average values over the entire population. Here, we describe the use of laser capture microdissection microscopy (LCMM) combined with multiplex quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) to isolate and quantify RNA transcripts from small groups of cells at spatially resolved sites within biofilms. The approach was first tested and analytical parameters determined for Pseudomonas aeruginosa containing an IPTG-inducible gene for the green fluorescent protein (gfp). The results show that amounts of gfp mRNA were greatest in the top zones of the biofilms, and that gfp mRNA levels correlated with the zone of active GFP-fluorescence. The method was then used to quantify transcripts from wild-type P. aeruginosa biofilms for a housekeeping gene, acpP; the 16S rRNA; and two genes regulated by quorum-sensing, phzA1 and aprA. The results demonstrated that the amount of acpP mRNA was greatest in the top 30 microm of the biofilm, with little or no mRNA for this gene at the base of the biofilms. In contrast, 16S rRNA amounts were relatively uniform throughout biofilm strata. Using this strategy, the RNA amounts of individual genes are determined, and therefore results are dependent on both gene expression and the half-life of transcripts. Therefore, the uniform amount of rRNA throughout the biofilms is likely due to the stability of the rRNA within ribosomes. Levels of aprA mRNA showed stratification, with the greatest amounts in the upper 30 microm zone of these biofilms. The results demonstrate that mRNA levels for individual genes are not uniformly distributed throughout biofilms, but may vary by orders of magnitude over small distances. The LCMM/qRT-PCR technique can be used to resolve and quantify this RNA variability at high spatial resolution.
  • Thumbnail Image
    Item
    Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation
    (2017-03) Akiyama, Tatsuya; Williamson, Kerry S.; Schaefer, Robert; Pratt, Shawna; Chang, Connie B.; Franklin, Michael J.
    Pseudomonas aeruginosa biofilm infections are difficult to treat with antibiotic therapy in part because the biofilms contain subpopulations of dormant antibiotic-tolerant cells. The dormant cells can repopulate the biofilms following alleviation of antibiotic treatments. While dormant, the bacteria must maintain cellular integrity, including ribosome abundance, to reinitiate the de novo protein synthesis required for resuscitation. Here, we demonstrate that the P. aeruginosa gene PA4463 [hibernation promoting factor (HPF)], but not the ribosome modulation factor (PA3049), is required for ribosomal NA preservation during prolonged nutrient starvation conditions. Single-cell–level studies using fluorescence in situ hybridization (FISH) and growth in microfluidic drops demonstrate that, in the absence of hpf, the rRNA abundances of starved cells decrease to levels that cause them to lose their ability to resuscitate from starvation, leaving intact nondividing cells. P. aeruginosa defective in the stringent response also had reduced ability to resuscitate from dormancy. However, FISH analysis of the starved stringent response mutant showed a bimodal response where the individual cells contained either abundant or low ribosome content, compared with the wild-type strain. The results indicate that ribosome maintenance is key for maintaining the ability of P. aeruginosa to resuscitate from starvation-induced dormancy and that HPF is the major factor associated with P. aeruginosa ribosome preservation.
  • Thumbnail Image
    Item
    Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection
    (2010-03) Perez-Osorio, Ailyn C.; Williamson, Kerry S.; Franklin, Michael J.
    The local environmental conditions in biofilms are dependent on the impinging aqueous solution, chemical diffusion, and the metabolic activities of cells within the biofilms. Chemical gradients established in biofilms lead to physiological heterogeneities of bacterial gene expression. Previously, we used laser capture microdissection (LCM) and quantitative RT-PCR to target defined biofilm subpopulations for gene expression studies. Here, we combined that approach with quantitative PCR of bacterial DNA to normalize gene expression per cell. By comparing the ratio of 16S rRNA to 16S rDNA, we demonstrate that cells at the top of thick Pseudomonas aeruginosa biofilms have 16S rRNA/genome ratios similar to cells in a transition between exponential and stationary phase. Cells in the middle and bottom layers of these biofilms have ratios that are not significantly different from stationary phase planktonic cultures. Since much of the biofilm appeared to be in a stationary phase-like state, we analyzed local amounts of the stationary phase sigma factor, rpoS, and a quorum sensing regulator, rhlR, per cell. Surprisingly, the amount of rpoS mRNA was greatest at the top of these biofilms at the air-biofilm interface. Less than one rpoS mRNA transcript per cell was observed in the middle or base of the biofilms. The rhlR mRNA content was also greatest at the top of these biofilms, with little detectable rhlR expression at the middle or bottom of the biofilms. While cell density is slightly greater at the bottom of the biofilms, expression of this quorum sensing regulator occurs primarily at the top of the biofilms, where cell metabolic activity is greatest, as indicated by the local expression of the housekeeping gene, acpP and by expression from a constitutive Ptrc promoter. The results indicate that in thick P. aeruginosa biofilms, cells in the 30 µm adjacent to the air-biofilm interface actively express genes associated with stationary phase, while cells in the interior portions do not express these genes, and therefore are in a late stationary phase-like state and are possibly dormant.
  • Thumbnail Image
    Item
    Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population
    (2012-02) Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.; Franklin, Michael J.
    Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.
  • Thumbnail Image
    Item
    The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP
    (2016-01) Guragain, Manita; Kinga, Michelle M.; Williamson, Kerry S.; Akiyama, Tatsuya; Khanam, Sharmily; Perez-Osorio, Ailyn C.; Patrauchan, Marianna A.; Franklin, Michael J.
    Pseudomonas aeruginosa is an opportunistic human pathogen that causes severe, life threatening infections in patients with cystic fibrosis (CF), endocarditis, wounds, or with artificial implants. During CF pulmonary infections, P. aeruginosa often encounters environments where the levels of calcium (Ca2+) are elevated. Previously, we showed that P. aeruginosa responds to externally added Ca2+ through enhanced biofilm formation, increased production of several secreted virulence factors, and by developing a transient increase in the intracellular Ca2+ followed by its removal to the basal sub-micromolar level. However, the molecular mechanisms responsible for regulating Ca2+-induced virulence factor production and Ca2+ homeostasis are not known. Here, we characterized the genome-wide transcriptional response of P. aeruginosa to elevated [Ca2+] in both planktonic cultures and in biofilms. Among the genes induced by CaCl2 in strain PAO1 was an operon containing the two-component regulator PA2656-PA2657 (here called carS and carR), while the closely related two-component regulators, phoPQ and pmrAB, were repressed by CaCl2 addition. To identify the regulatory targets of CarSR, we constructed a deletion mutant of carR, and performed transcriptome analysis of the mutant strain at low and high [Ca2+]. Among the genes regulated by CarSR in response to CaCl2 are the predicted periplasmic OB-fold protein, PA0320 (here called carO) and the inner membrane-anchored five-bladed β-propeller protein, PA0327 (here called carP). Mutations in both carO and carP affected Ca2+ homeostasis, reducing the ability of P. aeruginosa to export excess Ca2+. In addition, a mutation in carP had a pleotropic effect in a Ca2+-dependent manner, altering swarming motility, pyocyanin production, and tobramycin sensitivity. Overall, the results indicate that the two-component system CarSR is responsible for sensing high levels of external Ca2+, and responding through its regulatory targets that modulate Ca2+ homeostasis, surface-associated motility, and production of the virulence factor, pyocyanin. IMPORTANCE During infectious disease, Pseudomonas aeruginosa encounters environments with high calcium (Ca2+) concentration, yet the cells maintain intracellular Ca2+ at levels that are orders of magnitude less than the external environment. In addition, Ca2+ signals P. aeruginosa to induce production of several virulence factors. Compared to eukaryotes, little is known about how bacteria maintain Ca2+ homeostasis, or how Ca2+ acts as a signal. In this study, we identified a two-component regulatory system in P. aeruginosa PAO1, termed CarRS, that is induced at elevated Ca2+. CarRS modulates Ca2+ signaling and Ca2+ homeostasis through its regulatory targets, CarO and CarP. The results demonstrate that P. aeruginosa uses a two-component regulatory system to sense external Ca2+, and relays that information for Ca2+-dependent cellular processes.
  • Thumbnail Image
    Item
    Bile Salts Affect Expression of Escherichia coli O157:H7 Genes for Virulence and IronAcquisition, and Promote Growth under Iron Limiting Conditions
    (2013-09) Hamner, Steve; McInnerney, Kathleen; Williamson, Kerry S.; Franklin, Michael J.; Ford, Tim E.
    Bile salts exhibit potent antibacterial properties, acting as detergents to disrupt cell membranes and as DNA-damaging agents. Although bacteria inhabiting the intestinal tract are able to resist bile’s antimicrobial effects, relatively little is known about how bile influences virulence of enteric pathogens. Escherichia coli O157:H7 is an important pathogen of humans, capable of causing severe diarrhea and more serious sequelae. In this study, the transcriptome response of E. coli O157:H7 to bile was determined. Bile exposure induced significant changes in mRNA levels of genes related to virulence potential, including a reduction of mRNA for the 41 genes making up the locus of enterocyte effacement (LEE) pathogenicity island. Bile treatment had an unusual effect on mRNA levels for the entire flagella-chemotaxis regulon, resulting in two- to four-fold increases in mRNA levels for genes associated with the flagella hook-basal body structure, but a two-fold decrease for “late” flagella genes associated with the flagella filament, stator motor, and chemotaxis. Bile salts also caused increased mRNA levels for seventeen genes associated with iron scavenging and metabolism, and counteracted the inhibitory effect of the iron chelating agent 2,2’-dipyridyl on growth of E. coli O157:H7. These findings suggest that E. coli O157:H7 may use bile as an environmental signal to adapt to changing conditions associated with the small intestine, including adaptation to an iron-scarce environment.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.