Center for Biofilm Engineering (CBE)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334
At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.
Browse
11 results
Filters
Settings
Search Results
Item Search for a Shared Genetic or Biochemical Basis for Biofilm Tolerance to Antibiotics across Bacterial Species(American Society for Microbiology, 2022-04) Stewart, Philip S.; Williamson, Kerry S.; Boegli, Laura; Hamerly, Timothy; White, Ben; Scott, Liam; Hu, Xiao; Mumey, Brendan M.; Franklin, Michael J.; Bothner, Brian; Vital-Lopez, Francisco G.; Wallqvist, Anders; James, Garth A.Is there a universal genetically programmed defense providing tolerance to antibiotics when bacteria grow as biofilms? A comparison between biofilms of three different bacterial species by transcriptomic and metabolomic approaches uncovered no evidence of one. Single-species biofilms of three bacterial species (Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii) were grown in vitro for 3 days and then challenged with respective antibiotics (ciprofloxacin, daptomycin, and tigecycline) for an additional 24 h. All three microorganisms displayed reduced susceptibility in biofilms compared to planktonic cultures. Global transcriptomic profiling of gene expression comparing biofilm to planktonic and antibiotic-treated biofilm to untreated biofilm was performed. Extracellular metabolites were measured to characterize the utilization of carbon sources between biofilms, treated biofilms, and planktonic cells. While all three bacteria exhibited a species-specific signature of stationary phase, no conserved gene, gene set, or common functional pathway could be identified that changed consistently across the three microorganisms. Across the three species, glucose consumption was increased in biofilms compared to planktonic cells, and alanine and aspartic acid utilization were decreased in biofilms compared to planktonic cells. The reasons for these changes were not readily apparent in the transcriptomes. No common shift in the utilization pattern of carbon sources was discerned when comparing untreated to antibiotic-exposed biofilms. Overall, our measurements do not support the existence of a common genetic or biochemical basis for biofilm tolerance against antibiotics. Rather, there are likely myriad genes, proteins, and metabolic pathways that influence the physiological state of individual microorganisms in biofilms and contribute to antibiotic tolerance.Item Role of hibernation promoting factor in ribosomal protein stability during Pseudomonas aeruginosa dormancy(MDPI, 2020-12) Theng, Sokuntheary; Williamson, Kerry S.; Franklin, Michael J.Pseudomonas aeruginosa is an opportunistic pathogen that causes biofilm-associated infections. P. aeruginosa can survive in a dormant state with reduced metabolic activity in nutrient-limited environments, including the interiors of biofilms. When entering dormancy, the bacteria undergo metabolic remodeling, which includes reduced translation and degradation of cellular proteins. However, a supply of essential macromolecules, such as ribosomes, are protected from degradation during dormancy. The small ribosome-binding proteins, hibernation promoting factor (HPF) and ribosome modulation factor (RMF), inhibit translation by inducing formation of inactive 70S and 100S ribosome monomers and dimers. The inactivated ribosomes are protected from the initial steps in ribosome degradation, including endonuclease cleavage of the ribosomal RNA (rRNA). Here, we characterized the role of HPF in ribosomal protein (rProtein) stability and degradation during P. aeruginosa nutrient limitation. We determined the effect of the physiological status of P. aeruginosa prior to starvation on its ability to recover from starvation, and on its rRNA and rProtein stability during cell starvation. The results show that the wild-type strain and a stringent response mutant (∆relA∆spoT strain) maintain high cellular abundances of the rProteins L5 and S13 over the course of eight days of starvation. In contrast, the abundances of L5 and S13 reduce in the ∆hpf mutant cells. The loss of rProteins in the ∆hpf strain is dependent on the physiology of the cells prior to starvation. The greatest rProtein loss occurs when cells are first cultured to stationary phase prior to starvation, with less rProtein loss in the ∆hpf cells that are first cultured to exponential phase or in balanced minimal medium. Regardless of the pre-growth conditions, P. aeruginosa recovery from starvation and the integrity of its rRNA are impaired in the absence of HPF. The results indicate that protein remodeling during P. aeruginosa starvation includes the degradation of rProteins, and that HPF is essential to prevent rProtein loss in starved P. aeruginosa. The results also indicate that HPF is produced throughout cell growth, and that regardless of the cellular physiological status, HPF is required to protect against ribosome loss when the cells subsequently enter starvation phase.Item Functional Characterization of the Pseudomonas aeruginosa Ribosome Hibernation-Promoting Factor(American Society for Microbiology, 2020-07) Franklin, Michael J.; Sandvik, Elizabeth; Yanardag, Sila; Williamson, Kerry S.Hibernation-promoting factor (HPF) is a ribosomal accessory protein that inactivates ribosomes during bacterial starvation. In Pseudomonas aeruginosa, HPF protects ribosome integrity while the cells are dormant. The sequence of HPF has diverged among bacteria but contains conserved charged amino acids in its two alpha helices that interact with the rRNA. Here, we characterized the function of HPF in P. aeruginosa by performing mutagenesis of the conserved residues and then as-saying mutant HPF alleles for their ability to protect ribosome integrity of starved P. aeruginosa cells. The results show that HPF functionally tolerates point mutations in charged residues and in the conserved Y71 residue as well as a C-terminal trunca-tion. Double and triple mutations of charged residues in helix 1 in combination with a Y71F substitution reduce HPF activity. Screening for single point mutations that caused impaired HPF activity identified additional substitutions in the two HPF alpha helices. However, alanine substitutions in equivalent positions restored HPF activity, indicating that HPF is tolerant to mutations that do not disrupt the protein struc-ture. Surprisingly, heterologous HPFs from Gram-positive bacteria that have long C-terminal domains functionally complement the P. aeruginosa Δhpf mutant, sug-gesting that HPF may play a similar role in ribosome protection in other bacterial species. Collectively, the results show that HPF has diverged among bacteria and is tolerant to most single amino acid substitutions. The Y71 residue in combination with helix 1 is important for the functional role of HPF in ribosome protection dur-ing bacterial starvation and resuscitation of the bacteria from dormancy.Item Expression and regulation of the Pseudomonas aeruginosa hibernation promoting factor(2018-10) Akiyama, Tatsuya; Williamson, Kerry S.; Franklin, Michael J.Bacterial biofilms contain subpopulations of cells that are dormant and highly tolerant to antibiotics. While dormant, the bacteria must maintain the integrity of macromolecules required for resuscitation. Previously, we showed that hibernation promoting factor (HPF) is essential for protecting Pseudomonas aeruginosa from ribosomal loss during dormancy. In this study, we mapped the genetic components required for hpf expression. Using 5ʹ‐RACE and fluorescent protein reporter fusions, we show that hpf is expressed as part of the rpoN operon, but that hpf also has a second promoter (Phpf) within the rpoN gene. Phpf is active when the cells enter stationary phase, and expression from Phpf is modulated, but not eliminated, in mutant strains impaired in stationary phase transition (ΔdksA2, ΔrpoS and ΔrelA/ΔspoT mutants). The results of reporter gene studies and mRNA folding predictions indicated that the 5ʹ end of the hpf mRNA may also influence hpf expression. Mutations that opened or that stabilized the mRNA hairpin loop structures strongly influenced the amount of HPF produced. The results demonstrate that hpf is expressed independently of rpoN, and that hpf regulation includes both transcriptional and post‐transcriptional processes, allowing the cells to produce sufficient HPF during stationary phase to maintain viability while dormant.Item Localized gene expression in Pseudomonas aeruginosa biofilms(2008-05) Lenz, Ailyn P.; Williamson, Kerry S.; Pitts, Betsey; Stewart, Philip S.; Franklin, Michael J.Gene expression in biofilms is dependent on bacterial responses to the local environmental conditions. Most techniques for studying bacterial gene expression in biofilms characterize average values over the entire population. Here, we describe the use of laser capture microdissection microscopy (LCMM) combined with multiplex quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) to isolate and quantify RNA transcripts from small groups of cells at spatially resolved sites within biofilms. The approach was first tested and analytical parameters determined for Pseudomonas aeruginosa containing an IPTG-inducible gene for the green fluorescent protein (gfp). The results show that amounts of gfp mRNA were greatest in the top zones of the biofilms, and that gfp mRNA levels correlated with the zone of active GFP-fluorescence. The method was then used to quantify transcripts from wild-type P. aeruginosa biofilms for a housekeeping gene, acpP; the 16S rRNA; and two genes regulated by quorum-sensing, phzA1 and aprA. The results demonstrated that the amount of acpP mRNA was greatest in the top 30 microm of the biofilm, with little or no mRNA for this gene at the base of the biofilms. In contrast, 16S rRNA amounts were relatively uniform throughout biofilm strata. Using this strategy, the RNA amounts of individual genes are determined, and therefore results are dependent on both gene expression and the half-life of transcripts. Therefore, the uniform amount of rRNA throughout the biofilms is likely due to the stability of the rRNA within ribosomes. Levels of aprA mRNA showed stratification, with the greatest amounts in the upper 30 microm zone of these biofilms. The results demonstrate that mRNA levels for individual genes are not uniformly distributed throughout biofilms, but may vary by orders of magnitude over small distances. The LCMM/qRT-PCR technique can be used to resolve and quantify this RNA variability at high spatial resolution.Item Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation(2017-03) Akiyama, Tatsuya; Williamson, Kerry S.; Schaefer, Robert; Pratt, Shawna; Chang, Connie B.; Franklin, Michael J.Pseudomonas aeruginosa biofilm infections are difficult to treat with antibiotic therapy in part because the biofilms contain subpopulations of dormant antibiotic-tolerant cells. The dormant cells can repopulate the biofilms following alleviation of antibiotic treatments. While dormant, the bacteria must maintain cellular integrity, including ribosome abundance, to reinitiate the de novo protein synthesis required for resuscitation. Here, we demonstrate that the P. aeruginosa gene PA4463 [hibernation promoting factor (HPF)], but not the ribosome modulation factor (PA3049), is required for ribosomal NA preservation during prolonged nutrient starvation conditions. Single-cell–level studies using fluorescence in situ hybridization (FISH) and growth in microfluidic drops demonstrate that, in the absence of hpf, the rRNA abundances of starved cells decrease to levels that cause them to lose their ability to resuscitate from starvation, leaving intact nondividing cells. P. aeruginosa defective in the stringent response also had reduced ability to resuscitate from dormancy. However, FISH analysis of the starved stringent response mutant showed a bimodal response where the individual cells contained either abundant or low ribosome content, compared with the wild-type strain. The results indicate that ribosome maintenance is key for maintaining the ability of P. aeruginosa to resuscitate from starvation-induced dormancy and that HPF is the major factor associated with P. aeruginosa ribosome preservation.Item Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection(2010-03) Perez-Osorio, Ailyn C.; Williamson, Kerry S.; Franklin, Michael J.The local environmental conditions in biofilms are dependent on the impinging aqueous solution, chemical diffusion, and the metabolic activities of cells within the biofilms. Chemical gradients established in biofilms lead to physiological heterogeneities of bacterial gene expression. Previously, we used laser capture microdissection (LCM) and quantitative RT-PCR to target defined biofilm subpopulations for gene expression studies. Here, we combined that approach with quantitative PCR of bacterial DNA to normalize gene expression per cell. By comparing the ratio of 16S rRNA to 16S rDNA, we demonstrate that cells at the top of thick Pseudomonas aeruginosa biofilms have 16S rRNA/genome ratios similar to cells in a transition between exponential and stationary phase. Cells in the middle and bottom layers of these biofilms have ratios that are not significantly different from stationary phase planktonic cultures. Since much of the biofilm appeared to be in a stationary phase-like state, we analyzed local amounts of the stationary phase sigma factor, rpoS, and a quorum sensing regulator, rhlR, per cell. Surprisingly, the amount of rpoS mRNA was greatest at the top of these biofilms at the air-biofilm interface. Less than one rpoS mRNA transcript per cell was observed in the middle or base of the biofilms. The rhlR mRNA content was also greatest at the top of these biofilms, with little detectable rhlR expression at the middle or bottom of the biofilms. While cell density is slightly greater at the bottom of the biofilms, expression of this quorum sensing regulator occurs primarily at the top of the biofilms, where cell metabolic activity is greatest, as indicated by the local expression of the housekeeping gene, acpP and by expression from a constitutive Ptrc promoter. The results indicate that in thick P. aeruginosa biofilms, cells in the 30 µm adjacent to the air-biofilm interface actively express genes associated with stationary phase, while cells in the interior portions do not express these genes, and therefore are in a late stationary phase-like state and are possibly dormant.Item Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population(2012-02) Williamson, Kerry S.; Richards, Lee A.; Perez-Osorio, Ailyn C.; Pitts, Betsey; McInnerney, Kathleen; Stewart, Philip S.; Franklin, Michael J.Bacteria growing in biofilms are physiologically heterogeneous, due in part to their adaptation to local environmental conditions. Here, we characterized the local transcriptome responses of Pseudomonas aeruginosa growing in biofilms by using a microarray analysis of isolated biofilm subpopulations. The results demonstrated that cells at the top of the biofilms had high mRNA abundances for genes involved in general metabolic functions, while mRNA levels for these housekeeping genes were low in cells at the bottom of the biofilms. Selective green fluorescent protein (GFP) labeling showed that cells at the top of the biofilm were actively dividing. However, the dividing cells had high mRNA levels for genes regulated by the hypoxia-induced regulator Anr. Slow-growing cells deep in the biofilms had little expression of Anr-regulated genes and may have experienced long-term anoxia. Transcripts for ribosomal proteins were associated primarily with the metabolically active cell fraction, while ribosomal RNAs were abundant throughout the biofilms, indicating that ribosomes are stably maintained even in slowly growing cells. Consistent with these results was the identification of mRNAs for ribosome hibernation factors (the rmf and PA4463 genes) at the bottom of the biofilms. The dormant biofilm cells of a P. aeruginosa Δrmf strain had decreased membrane integrity, as shown by propidium iodide staining. Using selective GFP labeling and cell sorting, we show that the dividing cells are more susceptible to killing by tobramycin and ciprofloxacin. The results demonstrate that in thick P. aeruginosa biofilms, cells are physiologically distinct spatially, with cells deep in the biofilm in a viable but antibiotic-tolerant slow-growth state.Item Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds.(2016-04) James, Garth A.; Zhao, Alice Ge; Usui, Marcia L.; Underwood, Robert A.; Nguyen, Hung; Beyenal, Haluk; Pulcini, Elinor D.; Hunt, Alessandra Agostinho; Bernstein, Hans C.; Fleckman, Philip; Olerud, John E.; Williamson, Kerry S.; Franklin, Michael J.; Stewart, Philip S.Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms and by the responding leukocytes, may impede wound healing by depleting the oxygen that is required for healing. In this study, oxygen microsensors to measure oxygen transects through in vitro cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse wound model, and ex vivo human chronic wound specimens was used. The results showed that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17 to 72 mmHg on live mice and from 6.4 to 1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. To characterize the metabolic activities of the bacteria in the mouse scabs, transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds was performed. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results also indicated that the bacteria within the wounds experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results supported the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions, through their metabolic activities and through their recruitment of cells that consume oxygen for host defensive processes.Item The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP(2016-01) Guragain, Manita; Kinga, Michelle M.; Williamson, Kerry S.; Akiyama, Tatsuya; Khanam, Sharmily; Perez-Osorio, Ailyn C.; Patrauchan, Marianna A.; Franklin, Michael J.Pseudomonas aeruginosa is an opportunistic human pathogen that causes severe, life threatening infections in patients with cystic fibrosis (CF), endocarditis, wounds, or with artificial implants. During CF pulmonary infections, P. aeruginosa often encounters environments where the levels of calcium (Ca2+) are elevated. Previously, we showed that P. aeruginosa responds to externally added Ca2+ through enhanced biofilm formation, increased production of several secreted virulence factors, and by developing a transient increase in the intracellular Ca2+ followed by its removal to the basal sub-micromolar level. However, the molecular mechanisms responsible for regulating Ca2+-induced virulence factor production and Ca2+ homeostasis are not known. Here, we characterized the genome-wide transcriptional response of P. aeruginosa to elevated [Ca2+] in both planktonic cultures and in biofilms. Among the genes induced by CaCl2 in strain PAO1 was an operon containing the two-component regulator PA2656-PA2657 (here called carS and carR), while the closely related two-component regulators, phoPQ and pmrAB, were repressed by CaCl2 addition. To identify the regulatory targets of CarSR, we constructed a deletion mutant of carR, and performed transcriptome analysis of the mutant strain at low and high [Ca2+]. Among the genes regulated by CarSR in response to CaCl2 are the predicted periplasmic OB-fold protein, PA0320 (here called carO) and the inner membrane-anchored five-bladed β-propeller protein, PA0327 (here called carP). Mutations in both carO and carP affected Ca2+ homeostasis, reducing the ability of P. aeruginosa to export excess Ca2+. In addition, a mutation in carP had a pleotropic effect in a Ca2+-dependent manner, altering swarming motility, pyocyanin production, and tobramycin sensitivity. Overall, the results indicate that the two-component system CarSR is responsible for sensing high levels of external Ca2+, and responding through its regulatory targets that modulate Ca2+ homeostasis, surface-associated motility, and production of the virulence factor, pyocyanin. IMPORTANCE During infectious disease, Pseudomonas aeruginosa encounters environments with high calcium (Ca2+) concentration, yet the cells maintain intracellular Ca2+ at levels that are orders of magnitude less than the external environment. In addition, Ca2+ signals P. aeruginosa to induce production of several virulence factors. Compared to eukaryotes, little is known about how bacteria maintain Ca2+ homeostasis, or how Ca2+ acts as a signal. In this study, we identified a two-component regulatory system in P. aeruginosa PAO1, termed CarRS, that is induced at elevated Ca2+. CarRS modulates Ca2+ signaling and Ca2+ homeostasis through its regulatory targets, CarO and CarP. The results demonstrate that P. aeruginosa uses a two-component regulatory system to sense external Ca2+, and relays that information for Ca2+-dependent cellular processes.