Earth Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/43

By virtue of our outstanding location in the scenic and rugged mountains of southwest Montana, Earth Science students have many opportunities to participate in field trips that will facilitate the study of earth processes, earth resources, earth history, and environments that people have modified. These field trips are an integral part of many courses, as well as extracurricular activities sponsored by the department. Fieldwork is a very important component of our instructional programs at both the undergraduate and graduate levels.Because of the research conducted by faculty in the department, an undergraduate student may have the opportunity to work on active research projects. In particular, we offer the opportunity to do a "Senior Thesis" to our top students in each senior class. The senior thesis enables a student to work on an actual research project under the supervision of a faculty member, write a research report (a mini-thesis), and present the results at a professional conference. This is excellent preparation for graduate school and/or the workplace. Our Master's theses frequently involve field-testing of state-of-the-art hypotheses proposed elsewhere, as well as formulation of the next generation of hypotheses, which will shape our disciplines in the decades to come. Most Master's thesis work in the Department is published in the peer-reviewed professional literature after presentation at regional or national professional meetings.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Opportunities and Trade-offs among BECCS and the Food, Water, Energy, Biodiversity, and Social Systems Nexus at Regional Scales
    (2018-01) Stoy, Paul C.; Ahmed, Selena; Jarchow, Meghann; Rashford, Benjamin; Swanson, David; Albeke, Shannon; Bromley, Gabriel T.; Brookshire, E. N. Jack; Dixon, Mark D.; Haggerty, Julia Hobson; Miller, Perry R.; Peyton, Brent M.; Royem, Alisa; Spangler, Lee H.; Straub, Crista; Poulter, Benjamin
    Carbon dioxide must be removed from the atmosphere to limit climate change to 2°C or less. The integrated assessment models used to develop climate policy acknowledge the need to implement net negative carbon emission strategies, including bioenergy with carbon capture and storage (BECCS), to meet global climate imperatives. The implications of BECCS for the food, water, energy, biodiversity, and social systems (FWEBS) nexus at regional scales, however, remain unclear. Here, we present an interdisciplinary research framework to examine the trade-offs as well as the opportunities among BECCS scenarios and FWEBS on regional scales using the Upper Missouri River Basin (UMRB) as a case study. We describe the physical, biological, and social attributes of the UMRB, and we use grassland bird populations as an example of how biodiversity is influenced by energy transitions, including BECCS. We then outline a "conservation" BECCS strategy that incorporates societal values and emphasizes biodiversity conservation.
  • Thumbnail Image
    Item
    Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica
    (2016-05) Michaud, Alexander B.; Skidmore, Mark L.; Mitchell, Andrew C.; Vick-Majors, Trista J.
    Subglacial Lake Whillans (SLW), West Antarctica, is an active component of the subglacial hydrological network located beneath 800 m of ice. The fill and drain behavior of SLW leads to long (years to decades) water residence times relative to those in mountain glacier systems. Here, we present the aqueous geochemistry of the SLW water column and pore waters from a 38-cm-long sediment core. Stable isotopes indicate that the water is primarily sourced from basal-ice melt with a minor contribution from seawater that reaches a maximum of ∼6% in pore water at the bottom of the sediment core. Silicate weathering products dominate the crustal (non-seawater) component of lake- and pore-water solutes, and there is evidence for cation exchange processes within the clay-rich lake sediments. The crustal solute component ranges from 6 meq L–1 in lake waters to 17 meq L–1 in the deepest pore waters. The pore-water profiles of the major dissolved ions indicate a more concentrated solute source at depth (>38 cm). The combination of significant seawater and crustal components to SLW lake and sediment pore waters in concert with ion exchange processes result in a weathering regime that contrasts with other subglacial systems. The results also indicate cycling of marine water sourced from the sediments back to the ocean during lake drainage events.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.