Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Investigating the effects of genotype and environment interaction (GEI) and stability analysis on short-duration rapeseed yield and oil content under different environmental conditions
    (Pakistan Journal of Botany, 2023-03) Shaila Islam, Shams; Khatun Ousro, Farhana; Kadir, Md Manjurul; Moonmoon, Sharifunnessa; Azam, MG; Khomphet, Thanet; Khairul Hasan, Ahmed; Soufan, Walid; Rajendran, Karthika; Abdelhamid, Magdi T.; El Sabagh, Ayman
    The yield and oil content of rapeseed (Brassica rapa), one of the most important sources of edible oil in the world, have been significantly impacted by environmental factors. The primary objective of this research is to identify the most optimal genotype(s) with a high yield and oil content that can adapt to various environments in Bangladesh. The GE interaction was estimated using the analysis of variance (ANOVA) and the AMMI model. An environment-wise ANOVA demonstrated significant variations in all traits across all environments. Heritability, genetic advance as a percentage of mean, GCV, and PCV were estimated. High GCV and PCV for seed yield and total dry matter were observed in all environments. Heritability and genetic advance as a percentage of the mean were found to be high for yield plant-1 across all environments. The AMMI analysis utilized the IPCA1 (First Interaction Principal Component Axis) scores of genotypes to predict environmental stability or adaptation. Higher IPCA1 scores indicated that a genotype was more suited to a given environment. Based on IPCA1 scores, BARI Sharisha-14 was a high-yielding, stable genotype. Under favourable conditions, BARI Sharisha-9 (G2), BARI Sharisha-15 (G4), and Sompod (G5) produced a higher yield. All genotypes in the Mymensing environment had high oil content (%). Sompod had the lowest mean seed yield across environments and was extremely environment sensitive. It was discovered that Ishwardi was better for rapeseed production than Cumilla.
  • Thumbnail Image
    Item
    Enhancing Canola Yield and Photosynthesis under Water Stress with Hydrogel Polymers
    (Tech Science Press, 2024-01) Badr, Elham A.; Bakhoum, Gehan Sh.; Al-Ashkar, Ibrahim; Islam, Mohammad Sohidul; Sabagh, Ayman El; Abdelhamid, Magdi T.
    While Egypt’s canola production per unit area has recently grown, productivity remains low, necessitating increased productivity. Hydrogels are water-absorbent polymer compounds that can optimize irrigation schedules by increasing the soil’s ability to retain water. Accordingly, two field experiments were conducted to examine hydrogel application to sandy soil on canola growth, biochemical aspects, yield, yield traits, and nutritional quality of yielded seeds grown under water deficit stress conditions. The experiments were conducted by arranging a split-plot layout in a randomized complete block design (RCBD) with three times replications of each treatment. While water stress at 75% or 50% of crop evapotranspiration (ETc) lowered chlorophyll a, chlorophyll b, carotenoids, and total pigments content, indole-3-acetic acid, plant development, seed yield, and oil and total carbohydrates of seed yield, hydrogel treatment enhanced all of the traits mentioned above. Furthermore, hydrogel enhanced to gather compatible solutes (proline, amino acids, total soluble sugars), phenolics content in leaves, seed protein, and crop water productivity, which increased while the plants were under water stress. The results revealed that the full irrigation (100%ETc) along with hydrogel compared to water-stressed (50%ETc) led to enhanced seed yield (kg ha), Oil (%), and Total carbohydrates (%) of rapeseed by 57.1%, 11.1% and 15.7%, respectively. Likewise, under water-stressed plots with hydrogel exhibited enhancement by 10.0%, 3.2% and 5.1% in seed yield (kg ha), oil (%), and total carbohydrates (%) of rapeseed by 57.1%, 11.1% and 15.7%, respectively compared to control. As a result, the use of hydrogel polymer will be a viable and practical solution for increasing agricultural output under water deficit stress situations.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.