Publications by Colleges and Departments (MSU - Bozeman)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3
Browse
4 results
Search Results
Item Compositional profiling of the rhizosphere microbiome of Canada thistle reveals consistent patterns across the United States northern Great Plains(Springer Science and Business Media LLC, 2024-08) Eberly, Jed O.; Hurd, Asa; Oli, Dipiza; Dyer, Alan T.; Seipel, Tim F.; Carr, Patrick M.Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant–microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant–microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.Item Long‐term soil change in the US Great Plains: An evaluation of the Haas Soil Archive(Wiley, 2024-06) Liebig, Mark A.; Calderon, Francisco J.; Clemensen, Andrea K.; Durso, Lisa; Duttenhefner, Jessica L.; Eberly, Jed O.; Halvorson, Jonathan J.; Jin, Virginia L.; Mankin, Kyle; Margenot, Andrew J.; Stewart, Catherine E.; Van Pelt, Scott; Vigil, Merle F.Diverse patterns of climate and edaphic factors challenge detection of soil property change in the US Great Plains. Because detectable soil change can take decades, insights into the trajectory of soil properties frequently require long-term site monitoring and, where available, associated soil archives to enable comparisons with initial or baseline states. Unfortunately, few multi-decadal soil change investigations have been conducted in this region. Here, we document effects of dryland cropping on a suite of soil properties by comparing matched historic (1947) and contemporary (2018) soil samples from the Haas Soil Archive at three sites in the US Great Plains: Moccasin, MT, Akron, CO, and Big Spring, TX. Current analytical methods were used to provide insight into changes in soil texture, pH, carbon, and micronutrients at 0- to 15.2-cm and 15.2- to 30.5-cm depths. Changes in direction and magnitude of soil properties over 71 years were site specific. Changes in textural class occurred at all sites, with Moccasin and Akron transitioning from loam to clay loam and Big Spring from sandy clay loam to sandy loam. The soil pH reaction class changed from slightly alkaline to moderately acid at Akron and slightly alkaline to moderately alkaline at Big Spring. At 0–15.2 cm, soil organic carbon decreased by 15% and 36% at Moccasin and Big Spring, respectively, but increased by 15% at Akron. Soil micronutrients generally declined at all sites. Weather-related variables derived from air temperature and precipitation records were not correlated with soil change. Inferred factors contributing to soil change included on-site management, inherent soil features, weather metrics not evaluated, or a combination thereof.Item Compositional profiling of the rhizosphere microbiome of Canada thistle reveals consistent patterns across the United States northern Great Plains(Springer Science and Business Media LLC, 2024) Eberly, Jed O.; Hurd, Asa; Oli, Dipiza; Dyer, Alan T.; Seipel, Tim F.; Carr, Patrick M.Canada thistle is a pervasive perennial weed, causing challenges to agricultural and natural ecosystems globally. Although research has focused on the phenology, genetics, and control of Canada thistle, little is known about the rhizosphere microbiome and the role plant–microbe interactions play in invasion success. This study investigated the rhizosphere microbiome of Canada thistle across diverse climates, soils, and crops in the U.S. northern Great Plains. Soil and rhizosphere samples were collected and bacterial 16S and fungal ITS2 sequencing were performed to characterize the core microbiome and identify potential factors contributing to invasion success. Amplicon sequencing revealed a stable core microbiome that was detected in the Canada thistle rhizosphere across all locations. The core microbiome was dominated by the bacterial phyla Actinobacteriota and Proteobacteria and fungal phyla Ascomycota and Basidiomycota. Differential abundance analysis showed rhizosphere fungal communities were enriched in pathogen-containing genera with a 1.7-fold greater abundance of Fusaria and a 2.6-fold greater abundance of Gibberella compared to bulk soil. Predictive functional profiling showed rhizosphere communities were enriched (p < 0.05, FDR corrected) in plant pathogen fungal guilds which represented 19% of the fungal community. The rhizosphere microbiome was similar in composition across environments, highlighting the stable association between Canada thistle and specific microbial taxa. This study characterized the core microbiome of Canada thistle, and the findings highlight plant–microbe interactions shaping invasive behavior. These findings are important for understanding the ecological impacts of plant invasion and soil-microbe ecological processes.Item Changes in Biological Soil Health Properties in Response to Increased Crop Diversity in a Dryland Wheat-Based Cropping System(Informa UK Limited, 2024-08) Eberly, Jed O.; Hammontree, Jenni W.; Fordyce, Simion I.; Jones, Clain A.; Carr, Patrick M.Diversifying wheat (Triticum aestivum L.)-based cropping systems is important for the sustainability of dryland agriculture. Research has focused on the agronomic benefits of increased crop diversity in semi-arid environments, but less is known about the impacts of increased crop diversity on the soil microbial community. This work compared soil health parameters between a continuous wheat crop sequence to a diverse sequence that included pea (Pisum sativum L.), proso millet (Panicum miliaceum L.), safflower (Carthamus tinctorius, L.), and spring wheat. Respiration was higher (p < .005) in the diverse sequence while activity of N-acetyl-β-d-glucosaminidase was lower (p < .05) with a mean rate of 26.3 and 16.3 mg ρ-nitrophenol kg−1 soil h−1 for the continuous wheat and diverse sequences, respectively. The mean net nitrogen mineralized during the growing season was 33.2 ± 2.5 kg ha−1 and was not different between treatments (p > .05). No difference was observed in bacterial alpha diversity, while fungal community diversity was 52% lower in the diverse rotation. The results of this work suggest that specific crops in a rotation may impact microbial processes related to nitrogen mineralization and that the soil fungal community may be more sensitive to changes in crop sequence than the soil bacterial community.