Publications by Colleges and Departments (MSU - Bozeman)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/3

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    Base-Catalyzed Phenol-Mannich Condensation of Preformed Cesium Iminodiacetate. The Direct Synthesis of Calcein Blue AM and Related Acyloxymethyl Esters
    (American Chemical Society, 2023-08) Mikesell, Logan D.; Livinghouse, Tom
    A rapid and highly practical one-flask procedure for the positionally selective preparation of (acyloxy)methyl N-(2-hydroxybenzyl)iminodiacetate and related diesters from iminodiacetic acid and phenols is described. The key to this multicomponent phenol-Mannich condensation resides in the use of cesium iminodiacetate as the reaction partner. This protocol has been applied in an unusually direct synthesis of the intracellular fluorescent dye Calcein blue AM, for which scant experimental and spectroscopic data are presently available.
  • Thumbnail Image
    Item
    N-(Trimethylsilyl)-2-amino-5-nitrothiazole: An Efficient Reagent for the Direct Synthesis of 2-Amino-5-nitrothiazole-Based Antimicrobial Agents
    (Georg Thieme Verlag KG, 2022-11) Livinghouse, Tom; Koenig, Heidi N.; Demeritte, Amethyst R.; Nelson, Genevieve P.
    Here we report the synthesis of a novel reagent designed to prepare 2-amino-5-nitrothiazole (ANT) amides and analogues in high yields. N-(Trimethylsilyl)-2-amino-5-nitrothiazole (N-(TMS)-ANT) was prepared in 99% yield via silylation of ANT using 1,1,1,3,3,3-hexamethyldisilazane (HMDS), trimethylsilyl chloride (TMSCl), and catalytic saccharin. N-(TMS)-ANT is a superb reagent for the preparation of ANT amides in excellent yields. Notably, cyclic anhydrides and base-sensitive acyl chlorides can be utilized with N-(TMS)-ANT to furnish ANT amides that are difficult to prepare by previously reported procedures.
  • Thumbnail Image
    Item
    Copper(I)-Catalyzed Cross-Coupling of 1-Bromoalkynes with N-Heterocyclic Organozinc Reagents
    (MDPI AG, 2022-07) Frabitore, Christian; Lépeule, Jérome; Livinghouse, Tom
    Nitrogen-containing heterocycles represent the majority of FDA-approved small-molecule pharmaceuticals. Herein, we describe a synthetic method to produce saturated N-heterocyclic drug scaffolds with an internal alkyne for elaboration. The treatment of N,N-dimethylhydrazinoalkenes with Et2Zn, followed by a Cu(I)-catalyzed cross-coupling with 1-bromoalkynes, results in piperidines and pyrrolidines with a good yield. Five examples are reported and a proposed mechanism for the Cu(I)-catalyzed cross-coupling is presented.
  • Thumbnail Image
    Item
    Sulfenate Esters of Simple Phenols Exhibit Enhanced Activity against Biofilms
    (American Chemical Society, 2020-03) Walsh, Danica J.; Livinghouse, Tom; Durling, Greg M.; Chase-Bayless, Yenny; Arnold, Adrienne D.; Stewart, Philip S.
    The recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.
  • Thumbnail Image
    Item
    Novel phenolic antimicrobials enhanced activity of iminodiacetate prodrugs against biofilm and planktonic bacteria
    (Wiley, 2020-09) Walsh, Danica J.; Livinghouse, Tom; Durling, Greg M.; Arnold, Adrienne D.; Brasier, Whitney; Berry, Luke; Goeres, Darla M.; Stewart, Philip S.
    Prodrugs are pharmacologically attenuated derivatives of drugs that undergo bioconversion into the active compound once reaching the targeted site, thereby maximizing their efficiency. This strategy has been implemented in pharmaceuticals to overcome obstacles related to absorption, distribution, and metabolism, as well as with intracellular dyes to ensure concentration within cells. In this study, we provide the first examples of a prodrug strategy that can be applied to simple phenolic antimicrobials to increase their potency against mature biofilms. The addition of (acetoxy)methyl iminodiacetate groups increases the otherwise modest potency of simple phenols. Biofilm-forming bacteria exhibit a heightened tolerance toward antimicrobial agents, thereby accentuating the need for new antibiotics as well as those, which incorporate novel delivery strategies to enhance activity toward biofilms.
  • Thumbnail Image
    Item
    Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria
    (2019-10) Walsh, Danica J.; Livinghouse, Tom; Goeres, Darla M.; Mettler, Madelyn; Stewart, Philip S.
    Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.
  • Thumbnail Image
    Item
    Phevalin (aureusimine B) Production by Staphylococcus aureus Biofilm and Impacts on Human Keratinocyte Gene Expression
    (2012-07) Secor, Patrick R.; Jennings, Laura K.; James, Garth A.; Kirker, Kelly R.; deLancey Pulcini, Elinor; McInnerney, Kathleen; Gerlach, Robin; Livinghouse, Tom; Hilmer, Jonathan K.; Bothner, Brian; Fleckman, Philip; Olerud, John E.; Stewart, Philip S.
    Staphylococcus aureus biofilms are associated with chronic skin infections and are orders of magnitude more resistant to antimicrobials and host responses. S. aureus contains conserved nonribosomal peptide synthetases that produce the cyclic dipeptides tyrvalin and phevalin (aureusimine A and B, respectively). The biological function of these compounds has been speculated to be involved in virulence factor gene expression in S. aureus, protease inhibition in eukaryotic cells, and interspecies bacterial communication. However, the exact biological role of these compounds is unknown. Here, we report that S. aureus biofilms produce greater amounts of phevalin than their planktonic counterparts. Phevalin had no obvious impact on the extracellular metabolome of S. aureus as measured by high-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. When administered to human keratinocytes, phevalin had a modest effect on gene expression. However, conditioned medium from S. aureus spiked with phevalin amplified differences in keratinocyte gene expression compared to conditioned medium alone. Phevalin may be exploited as potential biomarker and/or therapeutic target for chronic, S. aureus biofilm-based infections.
  • Thumbnail Image
    Item
    The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072)
    (2010-12) Strobel, Gary A.; Knighton, W. Berk; Kluck, Katreena; Ren, Yuhao; Livinghouse, Tom; Griffin, Meghan; Spakowicz, Daniel; Sears, Joe
    An endophytic fungus, Gliocladiun roseum (NRRL 50072), produced a series of volatile hydrocarbons and hydrocarbon derivatives on an oatmeal-based agar under microaerophilic conditions as analysed by solid-phase micro-extraction (SPME)-GC/MS. As an example, this organism produced an extensive series of the acetic acid esters of straight-chained alkanes including those of pentyl, hexyl, heptyl, octyl, sec-octyl and decyl alcohols. Other hydrocarbons were also produced by this organism, including undecane, 2,6-dimethyl; decane, 3,3,5-trimethyl; cyclohexene, 4-methyl; decane, 3,3,6-trimethyl; and undecane, 4,4-dimethyl. Volatile hydrocarbons were also produced on a cellulose-based medium, including heptane, octane, benzene, and some branched hydrocarbons. An extract of the host plant, Eucryphia cordifolia (ulmo), supported the growth and hydrocarbon production of this fungus. Quantification of volatile organic compounds, as measured by proton transfer mass spectrometry (PTR-MS), indicated a level of organic substances in the order of 80 p.p.m.v. (parts per million by volume) in the air space above the oatmeal agar medium in an 18 day old culture. Scaling the PTR-MS profile the acetic acid heptyl ester was quantified (at 500 p.p.b.v.) and subsequently the amount of each compound in the GC/MS profile could be estimated; all yielded a total value of about 4.0 p.p.m.v. The hydrocarbon profile of G. roseum contains a number of compounds normally associated with diesel fuel and so the volatiles of this fungus have been dubbed ‘myco-diesel’. Extraction of liquid cultures of the fungus revealed the presence of numerous fatty acids and other lipids. All of these findings have implications in energy production and utilization.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.