Computer Science

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/31

The Computer Science Department at Montana State University supports the Mission of the College of Engineering and the University through its teaching, research, and service activities. The Department educates undergraduate and graduate students in the principles and practices of computer science, preparing them for computing careers and for a lifetime of learning.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Flow Decomposition with Subpath Constraints
    (Institute of Electrical and Electronics Engineers, 2022-01) Williams, Lucia; Tomescu, Alexandru I. loan; Mumey, Brendan
    Flow network decomposition is a natural model for problems where we are given a flow network arising from superimposing a set of weighted paths and would like to recover the underlying data, i.e.,decompose the flow into the original paths and their weights. Thus, variations on flow decomposition are often used as subroutines in multiassembly problems such as RNA transcript assembly. In practice, we frequently have access to information beyond flow values in the form of subpaths, and many tools incorporate these heuristically. But despite acknowledging their utility in practice, previous work has not formally addressed the effect of subpath constraints on the accuracy of flow network decomposition approaches. We formalize the flow decomposition with subpath constraints problem, give the first algorithms for it, and study its usefulness for recovering ground truth decompositions. For finding a minimum decomposition, we propose both a heuristic and an FPT algorithm. Experiments on RNA transcript datasets show that for instances with larger solution path sets, the addition of subpath constraints finds 13% more ground truth solutions when minimal decompositions are found exactly, and 30% more ground truth solutions when minimal decompositions are found heuristically.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.