College of Agriculture
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4
As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.
Browse
4 results
Search Results
Item Oxic methane production from methylphosphonate in a large oligotrophic lake: limitation by substrate and organic carbon supply(American Society for Microbiology, 2023-11) Peoples, Logan M.; Dore, John E.; Bilbrey, Evan M.; Vick-Majors, Trista J.; Ranieri, John R.; Evans, Kate A.; Ross, Abigail M.; Devlin, Shawn P.; Church, Matthew J.While methane is typically produced under anoxic conditions, methane supersaturation in the presence of oxygen has been observed in both marine and fresh waters. The biological cleavage of methylphosphonate (MPn), which releases both phosphate and methane, is one pathway that may contribute to this paradox. Here, we explore the genomic and functional potential for oxic methane production (OMP) via MPn in Flathead Lake, a large oligotrophic freshwater lake in northwest Montana. Time series and depth profile measurements show that epilimnetic methane was persistently supersaturated despite high oxygen levels, suggesting a possible in situ oxic source. Metagenomic sequencing indicated that 10% of microorganisms in the lake, many of which are related to the Burkholderiales (Betaproteobacteria) and Actinomycetota, have the genomic capacity to cleave MPn. We experimentally demonstrated that these organisms produce methane stoichiometrically with MPn consumption across multiple years. However, methane was only produced at appreciable rates in the presence of MPn when a labile organic carbon source was added, suggesting that this process may be limited by both MPn and labile carbon supply. Members of the genera Acidovorax , Rhodoferax , and Allorhizobium , organisms which make up less than 1% of Flathead Lake communities, consistently responded to MPn addition. We demonstrate that the genomic and physiological potential for MPn use exists among diverse, resident members of Flathead Lake and could contribute to OMP in freshwater lakes when substrates are available. IMPORTANCE Methane is an important greenhouse gas that is typically produced under anoxic conditions. We show that methane is supersaturated in a large oligotrophic lake despite the presence of oxygen. Metagenomic sequencing indicates that diverse, widespread microorganisms may contribute to the oxic production of methane through the cleavage of methylphosphonate. We experimentally demonstrate that these organisms, especially members of the genus Acidovorax , can produce methane through this process. However, appreciable rates of methane production only occurred when both methylphosphonate and labile sources of carbon were added, indicating that this process may be limited to specific niches and may not be completely responsible for methane concentrations in Flathead Lake. This work adds to our understanding of methane dynamics by describing the organisms and the rates at which they can produce methane through an oxic pathway in a representative oligotrophic lake.Item Sustained stoichiometric imbalance and its ecological consequences in a large oligotrophic lake(Proceedings of the National Academy of Sciences, 2022-07) Elser, James J.; Devlin, Shawn P.; Yu, Jinlei; Baumann, Adam; Church, Matthew J.; Dore, John E.; Hall, Robert O.; Hollar, Melody; Johnson, Tyler; Vick-Majors, Trista; White, CassidyConsiderable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake’s high TN:TP ratios. Regardless of causes, the lake’s stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake’s imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.Item Seasonal-to-decadal scale variability in primary production and particulate matter export at Station ALOHA(2021-07) Karl, David M.; Letelier, Ricardo M.; Bidigare, Robert R.; Bjorkman, Karin M.; Church, Matthew J.; Dore, John E.; White, Angelicque E.Station ALOHA (A Long-term Oligotrophic Habitat Assessment) was established in the North Pacific Subtropical Gyre (22°45′N, 158°W) as an oligotrophic ocean benchmark to improve our understanding of processes that govern the fluxes of carbon (C) into and from the surface ocean. At approximately monthly intervals, measurements of the primary production of particulate C (PC) using the 14C method, and the export of PC and particulate nitrogen (PN) using surface-tethered sediment traps deployed at 150 m have been made along with a host of complementary physical, biological, and biogeochemical measurements. Euphotic zone depth-integrated (0–200 m) primary production ranged from 220.2 (standard deviation, SD, 10.8) mg C m−2 d−1 in Feb 2018 to 1136.5 (SD = 17.1) mg C m−2 d−1 in Jun 2000, with a 30-yr (1989–2018) mean of 536.8 (SD = 135.0) mg C m−2 d−1 (n = 271). Although the monthly primary production climatology was fairly well constrained, we observed substantial sub-decadal variability and a significant 0–125 m depth-integrated increasing trend of 4.0 (p < 0.01; 95% confidence interval, CI, 2.1–5.9) (mg C m−2 d−1) yr−1 since 1989, displaying a large relative increase of 37% (CI = 18–55%) in the lower portion (75–125 m) of the euphotic zone. Chlorophyll (Chl) a and suspended PC and PN concentrations also displayed significant (p < 0.01) increases in the 75–125 m region of the euphotic zone. PC export at 150 m exhibited both short-term (monthly) and longer-scale variability with a 30-yr mean of 27.9 (SD = 9.7, n = 265) mg C m−2 d−1. PC and PN export exhibited extended, multi-year periods of significantly lower or higher values compared to the 30-yr mean. These multi-year periods of anomalously low and high particle export, in the absence of contemporaneous variations in primary production, probably reflect periodic changes in remineralization efficiencies. The PC export ratio (e-ratio; PC export at 150 m ÷ 0–150 m depth-integrated 14C-based primary production) was low, with a 30-yr mean of 0.054 (SD = 0.021, n = 248), and exhibited a significant (p < 0.01) long-term decreasing trend over the 30-yr observation period. The 30-yr long-term increases in primary production (~37%), Chl a, and suspended PC and PN concentrations (~17%, 8%, and 8%, respectively) in the 75–125 m portion of the water column are hypothesized to result from an enhanced supply of nutrients to the lower portion of the water column over the past three decades.Item Differentiating Sources of Fecal Contamination to Wilderness Waters Using Droplet Digital PCR and Fecal Indicator Bacteria Methods(2021-06) Pendergraph, Daniel P.; Ranieri, John; Ermatinger, Lochlin; Baumann, Adam; Metcalf, Alexander L.; DeLuca, Thomas H.; Church, Matthew J.Introduction Human activity in wilderness areas has the potential to affect aquatic ecosystems, including through the introduction of microorganisms associated with fecal contamination. We examined fecal microorganism contamination in water sources (lake outlets, snowmelt streams) in the popular Absaroka Beartooth Wilderness in the United States. Although the region is remote, increasing human visitation has the potential to negatively affect water quality, with particular concern about human-derived microorganism fecal contaminants. Methods We used standard fecal indicator bacterial assays that quantified total coliform bacteria and Escherichia coli concentrations, together with more specific polymerase chain reaction-based microbial assays that identified possible human sources of fecal microorganisms in these waters. Results Total coliforms were detected at all lake outlets (21 of 21 sites), and E coli was detected at 11 of 21 sites. Droplet digital polymerase chain reaction assays revealed the presence of human feces-derived microorganisms, albeit at abundances below the limit of detection (<10 gene copies per milliliter of water) at all but 1 of the sampling sites. Conclusions Our results suggest low prevalence of water-borne pathogens (specifically E coli and human-derived Bacteroides) in this popular wilderness area. However, widespread detection of total coliforms, Bacteroides, and E coli highlight the importance of purifying water sources in wilderness areas before consumption. Specific sources of total coliforms and E coli in these waters remain unknown but could derive from wild or domesticated animals that inhabit or visit the Absaroka Beartooth Wilderness. Hence, although contamination by human fecal microorganisms appears minimal, human visitation could indirectly influence fecal contamination through domesticated animals.