College of Agriculture

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/4

As the foundation of the land grant mission at Montana State University, the College of Agriculture and the Montana Agricultural Experiment Station provide instruction in traditional and innovative degree programs and conduct research on old and new challenges for Montana’s agricultural community. This integration creates opportunities for students and faculty to excel through hands-on learning, to serve through campus and community engagement, to explore unique solutions to distinct and interesting questions and to connect Montanans with the global community through research discoveries and outreach.

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Momentum for agroecology in the USA
    (Springer Science and Business Media LLC, 2024-07) Ong, Theresa W.; Roman-Alcalá, Antonio; Jiménez-Soto, Estelí; Jackson, Erin; Perfecto, Ivette; Duff, Hannah
    The alarming convergence of ecological, health and societal crises underpins the urgent need to transform our agricultural and food systems. The global food system, with industrial agriculture at its core, poses a major threat to our planet’s health, contributing to climate change, biodiversity loss and food insecurity, which is known as the triple threat to humanity. The hidden costs of a global food system that relies on industrial agriculture are estimated to be US$12.7 trillion, with the vast majority driven by public-health crises due to unhealthy foods that disproportionately burden people on the lowest incomes.
  • Thumbnail Image
    Item
    Interactions and Regulatory Functions of Phenolics in Soil-Plant-Climate Nexus
    (MDPI, 2023-01) Misra, Deblina; Dutta, Writupana; Jha, Gaurav; Ray, Puja
    Phenols are major compounds produced by plant species as a peripheral stimulus or as a regulatory defense mechanism under different environmental biotic stresses. These secondary metabolites are generated from shikimic and acetic acid metabolic pathways. The aromatic benzene ring compound plays an important role in plant development, especially in the defense forefront. They provide structural integrity and support to the plants. Phenolic phytoalexins released by pathogen/arthropod-attacked or wounded plants nullify or repel organisms for the advantage of the host. The allelopathic potential of phenolic compounds is observed in both natural and managed ecosystems. The global impacts of climatic variabilities such as drought, increased carbon dioxide, or greenhouse gas emissions alter the quantitative response of plant phenols. This review primarily discusses the different aspects of phenolic interactions concerning health, antioxidant properties, and insect-plant interaction as a nexus of soil and plant relations in response to variable climatic conditions.
  • Thumbnail Image
    Item
    Effects of water surplus on prevented planting in the US Corn Belt for corn and soybeans
    (IOP Publishing, 2023-09) Lee, Seunghyun; Abatzoglou, John T
    Record-high prevented planting of staple crops such as corn and soybeans in the United States (US) Corn Belt due to heavy rainfall in recent years has spurred concern over crop production, as growing evidence suggests winter and spring precipitation extremes will occur more frequentlyin the coming decades. Using county-level data, we examine the effects of planting-season water surplus—precipitation minus evaporative demand—on prevented planting of corn and soybeans in the US Corn Belt. Using monthly water surplus data, we show significant impacts of excess moisture on preventing planting and suggest a 58%–177% increase in prevented planting during the months of April–June per standard deviation increase in water surplus. Downscaled climate change projections are used to estimate future changes in prevented planting during the mid-century (2036–2065) under the moderate emission scenario (RCP4.5). Our model predicts a decrease in prevented planting of approximately 111,000 acres (12%) for corn and 80,000 acres (16%) for soybeans in the US Corn Belt, relative to historical levels from 1950 to 2005. However, if we consider only precipitation and disregard evaporative demand, the alternative model indicates an increase of approximately 260,000 acres (30%) for corn and 86,000 acres (19%) for soybeans. Geographically, we find that prevented planting will slightly increase in some parts of Iowa, Minnesota, and Wisconsin and generally decrease in the other parts of the US Corn Belt. This work collectively highlights the value of incorporating water surplus data in assessing prevented-planting impacts and is the first known study to examine changing risk of prevented planting under future climate scenarios that may help inform adaptation efforts to avoid losses.
  • Thumbnail Image
    Item
    Recent and future declines of a historically widespread pollinator linked to climate, land cover, and pesticides
    (Proceedings of the National Academy of Sciences, 2023-01) Janousek, William M.; Douglas, Margaret R.; Cannings, Syd; Clément, Marion A.; Delphia, Casey M.; Everett, Jeffrey G.; Hatfield, Richard G.; Keinath, Douglas A.; Uhuad Koch, Jonathan B.; McCabe, Lindsie M.; Mola, John M.; Ogilvie, Jane E.; Rangwala, Imtiaz; Richardson, Leif L.; Rohde, Ashley T.; Strange, James P.; Tronstad, Lusha M.; Graves, Tabitha A.
    The acute decline in global biodiversity includes not only the loss of rare species, but also the rapid collapse of common species across many different taxa. The loss of pollinating insects is of particular concern because of the ecological and economic values these species provide. The western bumble bee ( Bombus occidentalis ) was once common in western North America, but this species has become increasingly rare through much of its range. To understand potential mechanisms driving these declines, we used Bayesian occupancy models to investigate the effects of climate and land cover from 1998 to 2020, pesticide use from 2008 to 2014, and projected expected occupancy under three future scenarios. Using 14,457 surveys across 2.8 million km 2 in the western United States, we found strong negative relationships between increasing temperature and drought on occupancy and identified neonicotinoids as the pesticides of greatest negative influence across our study region. The mean predicted occupancy declined by 57% from 1998 to 2020, ranging from 15 to 83% declines across 16 ecoregions. Even under the most optimistic scenario, we found continued declines in nearly half of the ecoregions by the 2050s and mean declines of 93% under the most severe scenario across all ecoregions. This assessment underscores the tenuous future of B. occidentalis and demonstrates the scale of stressors likely contributing to rapid loss of related pollinator species throughout the globe. Scaled-up, international species-monitoring schemes and improved integration of data from formal surveys and community science will substantively improve the understanding of stressors and bumble bee population trends.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.