Microbiology & Cell Biology
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/10
Browse
Item Comparison of Enrichment and Plating Media for Recovery of Virulent Strains of Yersinia enterocolitica from Inoculated Beef Stew(Elsevier BV, 1983-11) Schiemann, D.A.Five plating agar media were evaluated for their ability to recover pure cultures of virulent strains of Yersinia enterocolitica serotypes O:3, O:8 and O:5,27. Cellobiose-arginine-lysine and bismuth sulfite agars were unproductive at 32°C but gave quantitative recovery with 48 h of incubation at 22°C. Adjustment of the pH of bismuth sulfite agar to 7.4 made the medium inhibitory. MacConkey, DHL and cefsulodin-irgasan-novobiocin agars gave quantitative recovery with 24 h of incubation at 32°C. Four preenrichment media incubated at four different temperatures, three selective enrichment media incubated at 22°C, and the five plating media were evaluated for their ability to recovery Y. enterocolitica from beef stew seeded with a background of ten other gram-negative bacteria. None of the plating media was superior for recovery; however, cefsulodin-irgasan-novobiocin agar showed the highest confirmation rate for presumptive colonies. Buffered-sorbitol-bile broth was inferior to richer media such as trypticase soy broth for preenrichment. Of the three selective enrichment media examined, only bile-oxalate-sorbose broth was found useful, especially for strains of serotype O:8 which could be recovered after 1 d of preenrichment and 3 d of selective enrichment at 22°C. Strains of serotypes O:8 and O:3 were recovered when two cells with 107 cells of ten other gram-negative bacteria were added to 10 g of beef stew following preenrichment in trypticase soy broth at 2°C for 7 d and selective enrichment in bile oxalate-sorbose broth at 22°C for 3 to 5 d. Strains of serotype O:5,27 were more difficult to recover even with longer enrichment times. These studies indicated that the most comprehensive enrichment system for recovery of Y. enterocolitica from foods is preenrichment in trypticase soy broth at 22°C for 1 d and 2 to 4°C for 4 to 7 d followed by selective enrichment in bile-oxalate-sorbose broth at 22°C for 3 to 5 d and isolation on cefsulodin-irgasan-novobiocin agar.Item Effects of organochlorine contaminants on loggerhead sea turtle immunity: Comparison of a correlative field study and in vitro exposure experiments(U.S. Department of Health and Human Services, National Institute of Environmental Health Sciences, 2006) Keil, Deborah E.; Keller, J.M.; McClellan-Green, P.D.; Kucklick, J.R.; Peden-Adams, M.M.Several laboratory and field studies indicate that organochlorine contaminants (OCs), such as polychlorinated biphenyls (PCBs) and pesticides, modulate immune responses in rodents, wildlife, and humans. In the present study we examined the effects of OCs on immunity in free-ranging loggerhead sea turtles (Caretta caretta). Mitogen-induced lymphocyte proliferation responses, lysozyme activity, and OC concentrations were measured from blood samples. Mitogens chosen in the lymphocyte proliferation assay were phytohemagglutinin (PHA) and concanavalin A (ConA) for T-lymphocyte stimulation, and lipopolysaccharide (LPS) and phorbol 12,13-dibutyrate (PDB) for B-lymphocyte stimulation. Lysozyme activity was significantly and negatively correlated with whole-blood concentrations of 4,4 ́-dichlorodiphenyldichloroethylene (4,4 ́-DDE) and the sum of chlordanes. Lymphocyte proliferation responses stimulated by PHA, LPS, and PDB were significantly and positively correlated with concentrations of the sum of PCBs measured in whole blood. LPS- and PDB-induced proliferation were also significantly and positively correlated with 4,4 ́-DDE blood concentrations. These correlative observations in free-ranging turtles suggest that current, chronic exposure to OCs may suppress innate immunity and enhance certain lymphocyte functions of loggerhead sea turtles. To further test this hypothesis, lymphocyte proliferation was measured after in vitro exposure of peripheral blood leukocytes from 16 turtles to Aroclor 1254 (0–13.5 μg/mL) or 4,4 ́-DDE (0–13.4 μg/mL). Both contaminants increased PHA- and PDB-induced proliferation at concentrations below those that affected cell viability. Moreover, the concentrations that enhanced PDB-induced proliferation in vitro were similar to concentrations measured in turtles with the highest proliferative responses. The similarities between the in vitro experiments and the correlative field study suggest that OC exposure modulates immunity in loggerhead turtles. Key words: DDT, immunotoxicity, organochlorine contaminants, organochlorine pesticides, PCBs, persistent organic pollutants, polychlorinated biphenyls, reptile. Environ Health Perspect 114:70–76 (2006).Item Isolation of potentially pathogenic Escherichia coli O157:h7 from the Ganges River(2007-02) Hamner, Steve; Broadaway, Susan C.; Mishra, Veer B.; Tripathi, Anshuman; Mishra, Rajesh K.; Pulcini, Elinor D.; Pyle, Barry H.; Ford, Tim E.Escherichia coli serotype O157:H7 was detected among bacteria collected from the Ganges River. O157:H7 isolates tested positive for stx1, stx2, and eae gene sequences. Identification of potentially pathogenic isolates from extensively used source water indicates that O157:H7 may be a significant but as yet underacknowledged public health concern in India.Item Proteomic and Transcriptomic Analyses Reveal Genes Upregulated by cis-Dichloroethene in Polaromonas sp. Strain JS666(American Society for Microbiology, 2009-06) Jennings, Laura K.; Chartrand, Michelle M. G.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara; Spain, Jim C.; Gossett, James M.Polaromonas sp. strain JS666 is the only bacterial isolate capable of using cis-dichloroethene (cDCE) as a sole carbon and energy source. Studies of cDCE degradation in this novel organism are of interest because of potential bioremediation and biocatalysis applications. The primary cellular responses of JS666 to growth on cDCE were explored using proteomics and transcriptomics to identify the genes upregulated by cDCE. Two-dimensional gel electrophoresis revealed upregulation of genes annotated as encoding glutathione S-transferase, cyclohexanone monooxygenase, and haloacid dehalogenase. DNA microarray experiments confirmed the proteomics findings that the genes indicated above were among the most highly upregulated by cDCE. The upregulation of genes with antioxidant functions and the inhibition of cDCE degradation by elevated oxygen levels suggest that cDCE induces an oxidative stress response. Furthermore, the upregulation of a predicted ABC transporter and two sodium/solute symporters suggests that transport is important in cDCE degradation. The omics data were integrated with data from compound-specific isotope analysis (CSIA) and biochemical experiments to develop a hypothesis for cDCE degradation pathways in JS666. The CSIA results indicate that the measured isotope enrichment factors for aerobic cDCE degradation ranged from −17.4 to −22.4‰. Evidence suggests that cDCE degradation via monooxygenase-catalyzed epoxidation (C═C cleavage) may be only a minor degradation pathway under the conditions of these experiments and that the major degradation pathway involves carbon-chloride cleavage as the initial step, a novel mechanism. The results provide a significant step toward elucidation of cDCE degradation pathways and enhanced understanding of cDCE degradation in JS666.Item Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes(2009-07) Suvorova, Elena S.; Lucas, Olivier; Weisend, Carla M.; Rollins, MaryClare F.; Merrill, Gary F.; Capecchi, Mario R.; Schmidt, Edward E."Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response."Item Pneumococcal surface protein A contributes to secondary Streptococcus pneumoniae infection after influenza virus infection(2009-08) King, Quinton O.; Lei, Benfang; Harmsen, Allen G.We compared the growth of Streptococcus pneumoniae mutants with a disruption in the gene for either pneumococcal surface protein A (PspA−), neuraminidase A (NanA−), or hyaluronidase (Hyl−) to that of the parental strain D39 by means of a competitive growth model in mice with and those without prior influenza virus infection. The numbers of total bacteria recovered from mice with prior influenza virus infection were significantly greater than those recovered from mice without prior influenza virus infection. Although the Hyl− and NanA− mutants did not display attenuation in mice with or without prior influenza virus infection, the PspA− mutant exhibited attenuation both in mice with and in mice without prior influenza virus infection. This defect was severe in influenza virus–infected mice, for which growth of the PspA− mutant was 1800-fold lower than that of the parental strain D39. Furthermore, PspA immunization significantly reduced secondary bacterial lung burdens and concentrations of specific markers of lung damage in mice receiving serotypes 2, 3, and 4 pneumococci. Our findings indicate that PspA contributes to secondary S. pneumoniae infection after influenza virus infection and that PspA immunization mitigates early secondary pneumococcal lung infections.Item Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses(2009-09) Wiley, James A.; Richert, Laura E.; Swain, Steve D.; Harmsen, Ann L.; Barnard, Dale L.; Randall, Troy D.; Jutila, Mark A.; Douglas, Trevor; Broomell, Chris; Young, Mark J.; Harmsen, Allen G.Background Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage. The immunoprophylactic strategy described here utilizes a protein cage nanoparticle (PCN) to significantly accelerate clearance of diverse respiratory viruses after primary infection and also results in a host immune response that causes less lung damage. Methodology/Principal Findings Mice pre-treated with PCN, independent of any specific viral antigens, were protected against both sub-lethal and lethal doses of two different influenza viruses, a mouse-adapted SARS-coronavirus, or mouse pneumovirus. Treatment with PCN significantly increased survival and was marked by enhanced viral clearance, accelerated induction of viral-specific antibody production, and significant decreases in morbidity and lung damage. The enhanced protection appears to be dependent upon the prior development of inducible bronchus-associated lymphoid tissue (iBALT) in the lung in response to the PCN treatment and to be mediated through CD4+ T cell and B cell dependent mechanisms. Conclusions/Significance The immunoprophylactic strategy described utilizes an infection-independent induction of naturally occurring iBALT prior to infection by a pulmonary viral pathogen. This strategy non-specifically enhances primary immunity to respiratory viruses and is not restricted by the antigen specificities inherent in typical vaccination strategies. PCN treatment is asymptomatic in its application and importantly, ameliorates the damaging inflammation normally associated with the recruitment of immune responses into the lung.Item Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress(2009-09) Maaty, Walid S.; Wiedenheft, Blake A.; Tarlykov, Pavel V.; Schaff, Nathan; Heinemann, Joshua V.; Robison-Cox, James; Dougherty, Amanda; Blum, Paul; Lawrence, C. Martin; Douglas, Trevor; Young, Mark J.; Bothner, BrianTo avoid molecular damage of biomolecules due to oxidation, all cells have evolved constitutive and responsive systems to mitigate and repair chemical modifications. Archaea have adapted to some of the most extreme environments known to support life, including highly oxidizing conditions. However, in comparison to bacteria and eukaryotes, relatively little is known about the biology and biochemistry of archaea in response to changing conditions and repair of oxidative damage. In this study transcriptome, proteome, and chemical reactivity analyses of hydrogen peroxide (H2O2) induced oxidative stress in Sulfolobus solfataricus (P2) were conducted. Microarray analysis of mRNA expression showed that 102 transcripts were regulated by at least 1.5 fold, 30 minutes after exposure to 30 µM H2O2. Parallel proteomic analyses using two-dimensional differential gel electrophoresis (2D-DIGE), monitored more than 800 proteins 30 and 105 minutes after exposure and found that 18 had significant changes in abundance. A recently characterized ferritin-like antioxidant protein, DPSL, was the most highly regulated species of mRNA and protein, in addition to being post-translationally modified. As expected, a number of antioxidant related mRNAs and proteins were differentially regulated. Three of these, DPSL, superoxide dismutase, and peroxiredoxin were shown to interact and likely form a novel supramolecular complex for mitigating oxidative damage. A scheme for the ability of this complex to perform multi-step reactions is presented. Despite the central role played by DPSL, cells maintained a lower level of protection after disruption of the dpsl gene, indicating a level of redundancy in the oxidative stress pathways of S. solfataricus. This work provides the first “omics” scale assessment of the oxidative stress response for an archeal organism and together with a network analysis using data from previous studies on bacteria and eukaryotes reveals evolutionarily conserved pathways where complex and overlapping defense mechanisms protect against oxygen toxicity.Item TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen(2009-11) Kim, Kwang-Hyung; Willger, Sven D.; Park, Sang-Wook; Puttikamonkul, Srisombat; Grahl, Nora; Cho, Yangrae; Mukhopadhyay, Biswarup; Cramer, Robert A.; Lawrence, Christopher B.The regulation of intracellular levels of reactive oxygen species (ROS) is critical for developmental differentiation and virulence of many pathogenic fungi. In this report we demonstrate that a novel transmembrane protein, TmpL, is necessary for regulation of intracellular ROS levels and tolerance to external ROS, and is required for infection of plants by the necrotroph Alternaria brassicicola and for infection of mammals by the human pathogen Aspergillus fumigatus. In both fungi, tmpL encodes a predicted hybrid membrane protein containing an AMP-binding domain, six putative transmembrane domains, and an experimentally-validated FAD/NAD(P)-binding domain. Localization and gene expression analyses in A. brassicicola indicated that TmpL is associated with the Woronin body, a specialized peroxisome, and strongly expressed during conidiation and initial invasive growth in planta. A. brassicicola and A. fumigatus DtmpL strains exhibited abnormal conidiogenesis, accelerated aging, enhanced oxidative burst during conidiation, and hypersensitivity to oxidative stress when compared to wild-type or reconstituted strains. Moreover, A. brassicicola DtmpL strains, although capable of initial penetration, exhibited dramatically reduced invasive growth on Brassicas and Arabidopsis. Similarly, an A. fumigatus DtmpL mutant was dramatically less virulent than the wild-type and reconstituted strains in a murine model of invasive aspergillosis. Constitutive expression of the A. brassicicola yap1 ortholog in an A. brassicicola DtmpL strain resulted in high expression levels of genes associated with oxidative stress tolerance. Overexpression of yap1 in the DtmpL background complemented the majority of observed developmental phenotypic changes and partially restored virulence on plants. Yap1-GFP fusion strains utilizing the native yap1 promoter exhibited constitutive nuclear localization in the A. brassicicola DtmpL background. Collectively, we have discovered a novel protein involved in the virulence of both plant and animal fungal pathogens. Our results strongly suggest that dysregulation of oxidative stress homeostasis in the absence of TmpL is the underpinning cause of the developmental and virulence defects observed in these studies.Item HHsvm: Fast and accurate classification of profile-profile matches identified by HHsearch(2009-12) Dlakic, MensurMotivation: Recently developed profile–profile methods rival structural comparisons in their ability to detect homology between distantly related proteins. Despite this tremendous progress, many genuine relationships between protein families cannot be recognized as comparisons of their profiles result in scores that are statistically insignificant. Results: Using known evolutionary relationships among protein superfamilies in SCOP database, support vector machines were trained on four sets of discriminatory features derived from the output of HHsearch. Upon validation, it was shown that the automatic classification of all profile–profile matches was superior to fixed threshold-based annotation in terms of sensitivity and specificity. The effectiveness of this approach was demonstrated by annotating several domains of unknown function from the Pfam database.Item Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi?(2010-03) Grahl, Nora; Cramer, Robert A.Over the past two decades, the incidence of fungal infections has dramatically increased. This is primarily due to increases in the population of immunocompromised individuals attributed to the HIV/AIDS pandemic and immunosuppression therapies associated with organ transplantation, cancer, and other diseases where new immunomodulatory therapies are utilized. Significant advances have been made in understanding how fungi cause disease, but clearly much remains to be learned about the pathophysiology of these often lethal infections. Fungal pathogens face numerous environmental challenges as they colonize and infect mammalian hosts. Regardless of a pathogen's complexity, its ability to adapt to environmental changes is critical for its survival and ability to cause disease. For example, at sites of fungal infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments to which both the pathogen and host cells must adapt in order to survive. However, our current knowledge of how pathogenic fungi adapt to and survive in hypoxic conditions during fungal pathogenesis is limited. Recent studies have begun to observe that the ability to adapt to various levels of hypoxia is an important component of the virulence arsenal of pathogenic fungi. In this review, we focus on known oxygen sensing mechanisms that non-pathogenic and pathogenic fungi utilize to adapt to hypoxic microenvironments and their possible relation to fungal virulence.Item Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function(2010-03) Inskeep, William P.; Rusch, Douglas B.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Richardson, Toby H.; Macur, Richard E.; Hamamura, Natsuko; Jennings, Ryan deM.; Fouke, Bruce W.; Reysenbach, Anna-Louise; Roberto, Frank; Young, Mark J.; Schwartz, Ariel; Boyd, Eric S.; Badger, Jonathan H.; Mathur, Eric J.; Ortmann, Alice C.; Bateson, Mary M.; Geesey, Gill G.; Frazier, MarvinThe Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.Item Spectroscopic Identification of Heme Axial Ligands in HtsA That Are Involved in Heme Acquisition by Streptococcus pyogenes(2010-04) Ran, Yanchao; Liu, Mengyao; Zhu, Hui; Nygaard, Tyler K.; Brown, Doreen E.; Fabian, Marian; Dooley, David M.; Lei, BenfangThe heme-binding proteins Shp and HtsA of Streptococcus pyogenes are part of the heme acquisition machinery in which Shp directly transfers its heme to HtsA. Mutagenesis and spectroscopic analyses were performed to identify the heme axial ligands in HtsA and to characterize axial mutants of HtsA. Replacements of the M79 and H229 residues, not the other methionine and histidine residues, with alanine convert UV−vis spectra of HtsA with a low-spin, hexacoordinate heme iron into spectra of high-spin heme complexes. Ferrous M79A and H229A HtsA mutants possess magnetic circular dichroism (MCD) spectra that are similar with those of proteins with pentacoordinate heme iron. Ferric M79A HtsA displays UV−vis, MCD, and resonance Raman (RR) spectra that are typical of a hexacoordinate heme iron with histidine and water ligands. In contrast, ferric H229A HtsA has UV−vis, MCD, and RR spectra that represent a pentacoordinate heme iron complex with a methionine axial ligand. Imidazole readily forms a low-spin hexacoordinate adduct with M79A HtsA with a Kd of 40.9 μM but not with H229A HtsA, and cyanide binds to M79A and H229A with Kd of 0.5 and 19.1 μM, respectively. The ferrous mutants rapidly bind CO and form simple CO complexes. These results establish the H229 and M79 residues as the axial ligands of the HtsA heme iron, indicate that the M79 side is more accessible to the solvent than the H229 side of the bound heme in HtsA, and provide unique spectral features for a protein with pentacoordinate, methionine-ligated heme iron. These findings will facilitate elucidation of the molecular mechanism and structural basis for rapid and direct heme transfer from Shp to HtsA.Item Microcosm Assessment of a DNA Probe Applied to Aerobic Degradation of cis-1,2-Dichloroethene by Polaromonas sp. Strain JS666(Wiley, 2010-05) Giddings, Clolle G.S.; Jennings, Laura K.; Gossett, James M.A molecular biological tool based on an organism-specific DNA sequence does not necessarily indicate in situ activity but serves important functions of evaluating the potential for biodegradation and mapping the distribution of an organism. Currently, DNA-based probes are accepted as evaluative tools for site assessment. However, these techniques are far from standardized, and information on precision is usually lacking. Here, we present the development and evaluation of a DNA probe for Polaromonas sp. strain JS666, a bacterium that couples growth to aerobic oxidation of cis-1,2-dichloroethene (cDCE), and is therefore a promising candidate for bioaugmentation at sites where cDCE has accumulated in aerobic zones. The DNA probe was used in conjunction with quantitative polymerase chain reaction to track the abundance of JS666 in microcosms. This series of studies has allowed explicit resolution of the accuracy and precision of the probe and its correlation with variations in microcosm performance. We determined that the method is sufficient to monitor distribution of JS666 at bioaugmented sites. We found within environmental, mixed cultures, that the DNA target does not persist long after cell death, demonstrating that positive result from the probe is a strong indicator that degradation can occur in suitable environmental conditions. Finally, in the absence of suspected predation, the probe accurately and precisely tracks growth. Collectively, the studies appear to validate the utility of the molecular probe for site assessment in a bioaugmentation context.Item Hepatocytes lacking thioredoxin reductase 1 have normal replicative potential during development and regeneration(2010-07) Rollins, MaryClare F.; van der Heide, Dana M.; Weisend, Carla M.; Kundert, Jean A.; Comstock, Kristin M.; Suvorova, Elena S.; Capecchi, Mario R.; Merrill, Gary F.; Schmidt, Edward E.Cells require ribonucleotide reductase (RNR) activity for DNA replication. In bacteria, electrons can flow from NADPH to RNR by either a thioredoxin-reductase- or a glutathione-reductase-dependent route. Yeast and plants artificially lacking thioredoxin reductases exhibit a slow-growth phenotype, suggesting glutathione-reductase-dependent routes are poor at supporting DNA replication in these organisms. We have studied proliferation of thioredoxin-reductase-1 (Txnrd1)-deficient hepatocytes in mice. During development and regeneration, normal mice and mice having Txnrd1-deficient hepatocytes exhibited similar liver growth rates. Proportions of hepatocytes that immunostained for PCNA, phosphohistone H3 or incorporated BrdU were also similar, indicating livers of either genotype had similar levels of proliferative, S and M phase hepatocytes, respectively. Replication was blocked by hydroxyurea, confirming that RNR activity was required by Txnrd1-deficient hepatocytes. Regenerative thymidine incorporation was similar in normal and Txnrd1-deficient livers, further indicating that DNA synthesis was unaffected. Using genetic chimeras in which a fluorescently marked subset of hepatocytes was Txnrd1-deficient while others were not, we found that the multigenerational contributions of both hepatocyte types to development and to liver regeneration were indistinguishable. We conclude that, in mouse hepatocytes, a Txnrd1-independent route for the supply of electrons to RNR can fully support DNA replication and normal proliferative growth.Item Coordinated progression through two subtranscriptomes underlies the tachyzoitecycle of Toxoplasma gondii(2010-08) Behnke, Michael S.; Wootton, John C.; Lehmann, Margaret M.; Radke, Josh B.; Lucas, Olivier; Nawas, Julie; Sibley, L. David; White, Michael W.Background Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. Methodology/Principal Findings Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. Conclusion/Significance Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth.Item IgG Endopeptidase SeMac does not Inhibit Opsonophagocytosis of Streptococcus equi Subspecies equi by Horse PolymorphonuclearLeukocytes(2010-08) Liu, Mengyao; Lei, BenfangThe secreted Mac protein made by group A Streptococcus (GAS) inhibits opsonophagocytosis of GAS by human polymorphonuclear leukocytes (PMNs). This protein also has the endopeptidase activity against human immunoglobulin G (IgG), and the Cys94, His262 and Asp284 are critical for the enzymatic activity. The horse pathogen Streptococcus equi subspecies equi produces a homologue of Mac (SeMac). SeMac was characterized to determine whether SeMac has IgG endopeptidase activity and inhibits opsonophagocytosis of S. equi by horse PMNs. The gene was cloned and recombinant SeMac was overexpressed in Escherichia coli and purified to homogeneity. Mice with experimental S. equi infection and horses with strangles caused by S. equi seroconverted to SeMac, indicating that SeMac is produced in vivo during infection. SeMac has endopeptidase activity against human IgG. However, the protein just cleaves a small fraction, which may be IgG1 only, of horse IgG. Replacement of Cys102 with Ser or His272 with Ala abolishes the enzymatic activity of SeMac, and the Asp294Ala mutation greatly decreases the enzymatic activity. SeMac does not inhibit opsonophagocytosis of S. equi by horse PMNs but opsonophagocytosis of GAS by human PMNs. Thus, SeMac is a cysteine endopeptidase with a limited activity against horse IgG and must have other function.Item A novel multifunctional oligonucleotide microarray for Toxoplasma gondii(2010-10) Bahl, Amit; Davis, Paul H.; Behnke, Michael S.; Dzierszinski, Florence; Jagalur, Manjunatha; Chen, Feng; Shanmugam, Dhanasekaran; White, Michael W.; Kulp, David; Roos, David S.Background Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. Results Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals) and Plasmodium falciparum (a related parasite responsible for severe human malaria), we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP)-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis) and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at pilot scale to inform future array designs. Conclusions In addition to providing an initial global view of the T. gondii transcriptome across major lineages and permitting detailed resolution of recombination points in a historical sexual cross, the multifunctional nature of this array also allowed opportunities to exploit probes for purposes beyond their intended use, enhancing analyses. This array is in widespread use by the T. gondii research community, and several aspects of the design strategy are likely to be useful for other pathogens.Item T. gondii RP promoters & knockdown reveal molecular pathways associated with proliferation and cell-cycle arrest(2010-11) Hutson, Samuel L.; Mui, Ernest; Kinsley, Karen; Witola, William H.; Behnke, Michael S.; El Bissati, Kamal; Muench, Stephen P.; Rohrman, Brittany; Liu, Susan R.; Wollmann, Robert; Ogata, Yuko; Sarkeshik, Ali; Yates III, John R.; McLeod, RimaMolecular pathways regulating rapid proliferation and persistence are fundamental for pathogens but are not elucidated fully in Toxoplasma gondii. Promoters of T. gondii ribosomal proteins (RPs) were analyzed by EMSAs and ChIP. One RP promoter domain, known to bind an Apetela 2, bound to nuclear extract proteins. Promoter domains appeared to associate with histone acetyl transferases. To study effects of a RP gene's regulation in T. gondii, mutant parasites (Δrps13) were engineered with integration of tetracycline repressor (TetR) response elements in a critical location in the rps13 promoter and transfection of a yellow fluorescent-tetracycline repressor (YFP-TetR). This permitted conditional knockdown of rps13 expression in a tightly regulated manner. Δrps13 parasites were studied in the presence (+ATc) or absence of anhydrotetracycline (-ATc) in culture. -ATc, transcription of the rps13 gene and expression of RPS13 protein were markedly diminished, with concomitant cessation of parasite replication. Study of Δrps13 expressing Myc-tagged RPL22, -ATc, showed RPL22 diminished but at a slower rate. Quantitation of RNA showed diminution of 18S RNA. Depletion of RPS13 caused arrest of parasites in the G1 cell cycle phase, thereby stopping parasite proliferation. Transcriptional differences ±ATc implicate molecules likely to function in regulation of these processes. In vitro, -ATc, Δrps13 persists for months and the proliferation phenotype can be rescued with ATc. In vivo, however, Δrps13 could only be rescued when ATc was given simultaneously and not at any time after 1 week, even when L-NAME and ATc were administered. Immunization with Δrps13 parasites protects mice completely against subsequent challenge with wildtype clonal Type 1 parasites, and robustly protects mice against wildtype clonal Type 2 parasites. Our results demonstrate that G1 arrest by ribosomal protein depletion is associated with persistence of T. gondii in a model system in vitro and immunization with Δrps13 protects mice against subsequent challenge with wildtype parasites.Item The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection(2011-05) Watkins, Robert L.; Pallister, Kyler B.; Voyich, Jovanka M.Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin (IL)-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-γproduction during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes a relationship between a bacterial global regulator of virulence and the production of pro-inflammatory mediators.