Mechanical & Industrial Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/33

The mission of the Mechanical & Industrial Engineering Department is to serve the State of Montana, the region, and the nation by providing outstanding leadership and contributions in knowledge discovery, student learning, innovation and entrepreneurship, and service to community and profession.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Hydromulches suppress weeds and maintain fruit production in organically managed strawberry systems
    (Frontiers Media SA, 2024-05) Ahmad, Waqas; DeVetter, Lisa W.; McFadden, Dakota; Maupin, Brian; Bajwa, Dilpreet S.; Durado, Andrew; Weyers, Sharon; Galinato, Suzette P.; Weiss, Ben; Gramig, Greta
    Polyethylene (PE) mulches are widely used in strawberry (Fragaria × ananassa Duch) production for weed suppression and crop growth optimization. However, PE mulches are not biodegradable and contribute to plastic pollution. Our objective was to develop and test biodegradable liquid-applied ‘hydromulches’ (HMs) as a sustainable alternative to PE mulch. HM weed suppression efficacy, strawberry plant growth, and yield were evaluated. HM formulations consisted of shredded newsprint paper (NP), water, and a tackifier, either guar gum (GG) or psyllium husk (PH) added at 2 or 6%. Experiments were conducted at two environmentally distinct locations: northwest Washington (WA) and eastern North Dakota (ND). Five HM formulations were compared to black PE mulch within a randomized complete block design with four replications. PE mulch suppressed weeds completely at peak weed emergence and peak weed vegetative growth at both locations. Formulations of HM containing GG provided superior weed suppression compared to other HM formulations at peak weed emergence (4–6 vs. 18–22 plants m-2, respectively). At peak vegetative growth, HM formulations containing GG had the lowest weed density compared to other HMs in ND (1 vs. 9–12 plants m-2), whereas these differences were not observed in WA. Total weed biomass did not differ among HMs across both locations. GG HM formulations deteriorated similarly to PE mulch (3–5% vs. 2%, respectively) in ND, whereas other HMs deteriorated more substantially. In WA, all HMs deteriorated more than PE mulch (6–12% vs. 1%, respectively). Fruit yield did not differ among treatments in weedy and weed-free subplots (194–254 g plant-1) in WA. In ND, yield was greater in all HM treatments compared to PE mulch in both weedy and weed-free subplots. Across both locations, strawberry canopy cover was greater in PE mulch (56.1% canopy cover) compared to 2%GG and NP (42.4 and 39.8% canopy cover). Strawberry plant biomass was similar among mulch treatments. However, strawberry leaf and crown biomass were slightly lower in 2%PH compared to other mulch treatments. Results demonstrate HMs with GG tackifier are a promising alternative to PE mulch in organic strawberry systems based on ability to suppress weeds, enhance strawberry growth, and maintain yield.
  • Thumbnail Image
    Item
    Natural polymer hydrogel based 3D printed bioreactor testing platform for cancer cell culture
    (Elsevier, 2024-06) Rehovsky, Chad; Bajwa, Dilpreet S.; Mallik, Sanku; Pullman, Jessica E.; Ara, Ismat
    Although two-dimensional cell cultures provide a time- and cost-effective method for testing drugs at the preclinical level, they do not capture the three-dimensional cellular interactions or tumor penetration that must occur in vivo. Therefore, these drugs often fail as they transition from two-dimensional culture models to more complex ones, including animal models or even human clinical trials. The goal of this research was to develop a three-dimensional bioprinted pancreatic cancer drug testing platform that could increase the effectiveness of drug testing during the early preclinical stages. Specifically, different natural polymer hydrogel formulations of cellulose, alginate, and gelatin were tested to find the optimal printability and cell viability. It was determined that a cellulose nanocrystal and alginate hydrogel provided the best printability because of its superior shear thinning properties. In addition, BxPC-3 cells, that were printed and then cultured within this hydrogel for four days, exhibited a range of cell viability between 80 % and 60 %. To simulate vasculature around the bioprinted cultures, a spinning bioreactor was manufactured; however, it disturbed the cells, leading to a decrease in cell viability compared to stagnant cultures. Overall, the platform demonstrated good printability and cell viability for future use in pancreatic cancer drug testing.
  • Thumbnail Image
    Item
    Nano Boron Oxide and Zinc Oxide Doped Lignin Containing Cellulose Nanocrystals Improve the Thermal, Mechanical and Flammability Properties of High-Density Poly(ethylene)
    (MDPI, 2023-12) Bajwa, Dilpreet S.; Holt, Greg; Stark, Nicole; Bajwa, Sreekala G.; Chanda, Saptaparni; Quadir, Mohiuddin
    The widely used high-density polyethylene (HDPE) polymer has inadequate mechanical and thermal properties for structural applications. To overcome this challenge, nano zinc oxide (ZnO) and nano boron oxide (B2O3) doped lignin-containing cellulose nanocrystals (L-CNC) were blended in the polymer matrix. The working hypothesis is that lignin will prevent CNC aggregation, and metal oxides will reduce the flammability of polymers by modifying their degradation pathways. This research prepared and incorporated safe, effective, and eco-friendly hybrid systems of nano ZnO/L-CNC and nano B2O3/L-CNC into the HDPE matrix to improve their physio-mechanical and fire-retardant properties. The composites were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, thermo-gravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, horizontal burning test, and microcalorimetry test. The results demonstrated a substantial increase in mechanical properties and a reduction in flammability. The scanning electron microscope (SEM) images showed some agglomeration and irregular distribution of the inorganic oxides.
  • Thumbnail Image
    Item
    Design of Experiment to Determine the Effect of the Geometric Variables on Tensile Properties of Carbon Fiber Reinforced Polymer Composites
    (MDPI AG, 2023-05) Janicki, Joseph C.; Egloff, Matthew C.; Bajwa, Dilpreet S.; Amendola, Roberta; Ryan, Cecily A.; Cairns, Douglas S.
    Carbon fiber reinforced polymers (CFRPs) are increasingly used in the aerospace industry because of their robust mechanical properties and strength to weight ratio. A significant drawback of CFRPs is their resistance to formability when drawing continuous CFRPs into complex shapes as it tends to bridge, resulting in various defects in the final product. However, CFRP made from Stretch Broken Carbon Fiber (SBCF) aims to solve this issue by demonstrating superior formability compared to conventional continuous CFRPs. To study and validate the performance of SBCF, a statistical design of the experiment was conducted using three different types of CFRPs in tow/tape form. Hexcel (Stamford, CT, USA) IM7-G continuous carbon fiber impregnated with Huntsman (The Woodlands, TX, USA) RDM 2019-053 resin system, Hexcel SBCF impregnated with RDM2019-053 resin, and Montana State University manufactured SBCF impregnated with Huntsman RDM 2019-053 resin were tested in a multitude of forming trials and the data were analyzed using a statistical model to evaluate the forming behavior of each fiber type. The results show that for continuous fiber CFRP tows forming, Fmax and Δmax do not show statistical significance based on temperature fluctuations; however, in SBCF CFRP tows forming, Fmax and Δmax is dominated by the temperature and geometry has a low statistical influence on the Fmax. The lower dependence on tool geometry at higher temperatures indicates possibly superior formability of MSU SBCF. Overall findings from this research help define practical testing methods to compare different CFRPs and provide a repeatable approach to creating a statistical model for measuring results from the formability trials.
  • Thumbnail Image
    Item
    Hydraulic bulge testing to compare formability of continuous and stretch broken carbon fiber reinforced polymer composites
    (Springer Science and Business Media LLC, 2023-02) Shchemelinin, Yoni; Nelson, Jared W.; Ryan, Cecily; Bajwa, Dilpreet S.; Cairns, Doug; Amendola, Roberta
    The use of carbon fiber reinforced polymer composites has increased with the increased need for high-strength, low-density materials, particularly in the aerospace industry. Stretch broken carbon fiber (SBCF) is a form of carbon fiber created by statistically distributed breakage of aligned fibers in a tow at inherent flaw points, resulting in a material constituted of collimated short fibers with an average length larger than chopped fibers. While continuous carbon fiber composites have desirable material properties, the limited ability to form in complex geometries prevents their wide adoption. SBCF composites exhibit pseudo-plastic deformation that can potentially enable the use of traditional metal forming techniques like stamping and press forming, widely used for mass production applications. To investigate the formability of carbon fiber reinforced polymer composites prepared with either continuous or stretch broken Hexcel IM-7 12 K fibers and impregnated with Huntsman RDM 2019–053 resin, hydraulic bulge testing was performed at atmospheric pressure and elevated temperature to explore the strain behavior under biaxial stress conditions for the material system. Results based on deformation of surface patterning, bulge apex displacement and measurement of the bulge internal surface and volume, support the enhanced formability of the SBCF material when compared to its continuous counterpart. The SBCF enhanced formability is characterized by an axisymmetric stress response and a failure mechanism similar to the one observed for sheet metal
Copyright (c) 2002-2022, LYRASIS. All rights reserved.