Land Resources & Environmental Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11
The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.
Browse
Item A 21 000-year record of fluorescent organic matter markers in the WAIS Divide ice core(2017-05) D'Andrilli, Juliana; Foreman, Christine M.; Sigl, Michael; Priscu, John C.; McConnell, Joseph R.Englacial ice contains a significant reservoir of organic material (OM), preserving a chronological record of materials from Earth's past. Here, we investigate if OM composition surveys in ice core research can provide paleoecological information on the dynamic nature of our Earth through time. Temporal trends in OM composition from the early Holocene extending back to the Last Glacial Maximum (LGM) of the West Antarctic Ice Sheet Divide (WD) ice core were measured by fluorescence spectroscopy. Multivariate parallel factor (PARAFAC) analysis is widely used to isolate the chemical components that best describe the observed variation across three-dimensional fluorescence spectroscopy (excitation–emission matrices; EEMs) assays. Fluorescent OM markers identified by PARAFAC modeling of the EEMs from the LGM (27.0–18.0 kyr BP; before present 1950) through the last deglaciation (LD; 18.0–11.5 kyr BP), to the mid-Holocene (11.5–6.0 kyr BP) provided evidence of different types of fluorescent OM composition and origin in the WD ice core over 21.0 kyr. Low excitation–emission wavelength fluorescent PARAFAC component one (C1), associated with chemical species similar to simple lignin phenols was the greatest contributor throughout the ice core, suggesting a strong signature of terrestrial OM in all climate periods. The component two (C2) OM marker, encompassed distinct variability in the ice core describing chemical species similar to tannin- and phenylalanine-like material. Component three (C3), associated with humic-like terrestrial material further resistant to biodegradation, was only characteristic of the Holocene, suggesting that more complex organic polymers such as lignins or tannins may be an ecological marker of warmer climates. We suggest that fluorescent OM markers observed during the LGM were the result of greater continental dust loading of lignin precursor (monolignol) material in a drier climate, with lower marine influences when sea ice extent was higher and continents had more expansive tundra cover. As the climate warmed, the record of OM markers in the WD ice core changed, reflecting shifts in carbon productivity as a result of global ecosystem response..Item Abutilon theophrasti’s Resilience against Allelochemical-Based Weed Management in Sustainable Agriculture – Due to Collection of Highly Advantageous Microorganisms?(MDPI AG, 2023-02) Tabaglio, Vincenzo; Fiorini, Andrea; Sterling, Tracy M.; Schulz, MargotAbutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti.Item Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and alternative nitrogen sources(2012-04) Ludwig, M.; Bryant, Donald A.The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences.Item Acute Toxicity of Permethrin, Deltamethrin, and Etofenprox to the Alfalfa Leafcutting Bee(2018-05) Piccolomini, Alyssa M.; Whiten, Shavonn R.; Flenniken, Michelle L.; O'Neill, Kevin M.; Peterson, Robert K. D.Current regulatory requirements for insecticide toxicity to nontarget insects focus on the honey bee, Apis mellifera (L.; Hymenoptera: Apidae), but this species cannot represent all insect pollinator species in terms of response to insecticides. Therefore, we characterized the toxicity of pyrethroid insecticides used for adult mosquito management (permethrin, deltamethrin, and etofenprox) on a nontarget insect, the adult alfalfa leafcutting bee, Megachile rotundata (F.; Hymenoptera: Megachilidae) in two separate studies. In the first study, the doses causing 50 and 90% mortality (LD50 and LD90, respectively) were used as endpoints and 2-d-old adult females were exposed to eight concentrations ranging from 0.0075 to 0.076 μg/bee for permethrin and etofenprox, and 0.0013–0.0075 μg/bee for deltamethrin. For the second study, respiration rates of female M. rotundata were also recorded for 2 h after bees were dosed at the LD50 values to give an indication of stress response. Results indicated a relatively similar LD50 for permethrin and etofenprox, 0.057 and 0.051 μg/bee, respectively, and a more toxic response, 0.0016 μg/bee for deltamethrin. Comparatively, female A. mellifera workers have a LD50 value of 0.024 μg/bee for permethrin and 0.015 μg/bee for etofenprox indicating that female M. rotundata are less susceptible to topical doses of these insecticides, except for deltamethrin, where both A. mellifera and M. rotundata have an identical LD50 of 0.0016 μg/bee. Respiration rates comparing each active ingredient to control groups, as well as rates between each active ingredient, were statistically different (P < 0.0001). The addition of these results to existing information on A. mellifera may provide more insights on how other economically beneficial and nontarget bees respond to pyrethroids.Item Aerobic bacterial methane synthesis(Proceedings of the National Academy of Sciences, 2021-06) Wang, Qian; Alowaifeer, Abdullah; Kerner, Patricia; Balasubramanian, Narayanaganesh; Patterson, Angela; Christian, William; Tarver, Angela; Dore, John E.; Hatzenpichler, Roland; Bothner, Brian; McDermott, Timothy R.Reports of biogenic methane (CH4) synthesis associated with a range of organisms have steadily accumulated in the literature. This has not happened without controversy and in most cases the process is poorly understood at the gene and enzyme levels. In marine and freshwater environments, CH4 supersaturation of oxic surface waters has been termed the “methane paradox” because biological CH4 synthesis is viewed to be a strictly anaerobic process carried out by O2-sensitive methanogens. Interest in this phenomenon has surged within the past decade because of the importance of understanding sources and sinks of this potent greenhouse gas. In our work on Yellowstone Lake in Yellowstone National Park, we demonstrate microbiological conversion of methylamine to CH4 and isolate and characterize an Acidovorax sp. capable of this activity. Furthermore, we identify and clone a gene critical to this process (encodes pyridoxylamine phosphate-dependent aspartate aminotransferase) and demonstrate that this property can be transferred to Escherichia coli with this gene and will occur as a purified enzyme. This previously unrecognized process sheds light on environmental cycling of CH4, suggesting that O2-insensitive, ecologically relevant aerobic CH4 synthesis is likely of widespread distribution in the environment and should be considered in CH4 modeling efforts.Item Aerobic methane synthesis and dynamics in a river water environment(Wiley, 2023-06) Alowaifeer, Abdullah M.; Wang, Qian; Bothner, Brian; Sibert, Ryan J.; Joye, Samantha B.; McDermott, Timothy R.Reports of aerobic biogenic methane (CH4) have generated new views about CH4 sources in nature. We examine this phenomenon in the free-flowing Yellowstone river wherein CH4 concentrations were tracked as a function of environmental conditions, phototrophic microorganisms (using chlorophyll a, Chl a, as proxy), as well as targeted methylated amines known to be associated with this process. CH4 was positively correlated with temperature and Chl a, although diurnal measurements showed CH4 concentrations were greatest during the night and lowest during maximal solar irradiation. CH4 efflux from the river surface was greater in quiescent edge waters (71–94 μmol m−2 d) than from open flowing current (~ 57 μmol m−2 d). Attempts to increase flux by disturbing the benthic environment in the quiescent water directly below (~ 1.0 m deep) or at varying distances (0–5 m) upstream of the flux chamber failed to increase surface flux. Glycine betaine (GB), dimethylamine and methylamine (MMA) were observed throughout the summer-long study, increasing during a period coinciding with a marked decline in Chl a, suggesting a lytic event led to their release; however, this did not correspond to increased CH4 concentrations. Spiking river water with GB or MMA yielded significantly greater CH4 than nonspiked controls, illustrating the metabolic potential of the river microbiome. In summary, this study provides evidence that: (1) phototrophic microorganisms are involved in CH4 synthesis in a river environment; (2) the river microbiome possesses the metabolic potential to convert methylated amines to CH4; and (3) river CH4 concentrations are dynamic diurnally as well as during the summer active months.Item Agro-economic returns were reduced for four years after conversion from perennial forage(2019-09) Miller, Perry R.; Bekkerman, Anton; Holmes, Jeffrey A.; Jones, Clain A.; Engel, Richard E.Perennial crops are increasingly converted to annual cropping systems as Conservation Reserve Program (CRP) contracts expire. We compared crop yields and net returns across 2013–2018 for no‐till pulse crop‐wheat (Triticum aestivum L.) (P‐W) systems, preceded either by 10 yr of P‐W or 10 yr of perennial cropping (P‐WPer) at Bozeman, MT. The perennial mixed species planting, dominated by alfalfa (Medicago sativa L.), was split into unharvested and annually harvested treatments 2005–2012. The 2013–2018 experimental design included both systems replicated as main plots, with 50 and 100% recommended available N rates as subplots. Precipitation was below average during three of the first four growing seasons, followed by two wetter than average years. The P‐WPer system had generally lower soil moisture and equal or greater nitrogen supply than the P‐W. ‘Haying off’ (reduced harvest index) occurred in wheat grown 2 and 4 yr after conversion from perennial to annual cropping, which reduced grain yield, and increased grain protein. Crop yield losses in the P‐WPer system averaged 0.84 Mg ha–1 (28%) over 4 yr and two N rates. After adjusting grain prices using historical discounts and premiums for test weight and protein content at Montana grain elevators, P‐WPer net returns were reduced for four consecutive years in three economic scenarios, and for 2 yr in a fourth scenario by a 4‐yr cumulative average of (USD) $731 ha–1 (45%). We conclude annual crop yield and economic returns were compromised for 4 yr following 10 yr of an alfalfa‐dominated perennial cropping system.Item Air temperature and photosynthetically active photon flux density data from the Abisko Scientific Research center [dataset](2014-12) Stoy, Paul C.Air temperature and photosynthetically active photon flux density data from the Abisko Scientific Research center courtesy of Annika Kristofferson. The Stoy Lab adheres to an open data policy. Data collected by the Stoy Lab are free to anyone to use with two caveats: 1. Coauthorship may be requested if intellectual input is provided. Intellectual input is defined in this case as an analysis that is critical to outcomes that could not otherwise be performed. 2. Graduate students operate the towers and analyze the data. They must be given the opportunity to be coauthors on your work. Please email paul dot stoy at gmail dot com with any questions. Further information is available from the Biosphere-Atmosphere Interactions Lab website https://sites.google.com/site/stoylab/homeItem Air-Parcel Residence Times Within Forest Canopies(2017-06) Gerken, Tobias; Chamecki, Marcelo; Fuentes, Jose D.We present a theoretical model, based on a simple model of turbulent diffusion and first-order chemical kinetics, to determine air-parcel residence times and the out-of-canopy export of reactive gases emitted within forest canopies under neutral conditions. Theoretical predictions of the air-parcel residence time are compared to values derived from large-eddy simulation for a range of canopy architectures and turbulence levels under neutral stratification. Median air-parcel residence times range from a few sec in the upper canopy to approximately 30 min near the ground and the distribution of residence times is skewed towards longer times in the lower canopy. While the predicted probability density functions from the theoretical model and large-eddy simulation are in good agreement with each other, the theoretical model requires only information on canopy height and eddy diffusivities inside the canopy. The eddy-diffusivity model developed additionally requires the friction velocity at canopy top and a parametrized profile of the standard deviation of vertical velocity. The theoretical model of air-parcel residence times is extended to include first-order chemical reactions over a range of of Damköhler numbers (Da) characteristic of plant-emitted hydrocarbons. The resulting out-of-canopy export fractions range from near 1 for Da=10−3Da=10−3 to less than 0.3 at Da=10Da=10. These results highlight the necessity for dense and tall forests to include the impacts of air-parcel residence times when calculating the out-of-canopy export fraction for reactive trace gases.Item Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration(2010-02) Hollinger, David Y.; Ollinger, S. V.; Richardson, Andrew D.; Meyers, T. P.; Dail, D. B.; Martin, M. E.; Scott, N. A.; Arkebauer, T. J.; Baldocchi, Dennis D.; Clark, K. L.; Curtis, P. S.; Desai, Ankur R.; Dragoni, Danilo; Goulden, Michael L.; Gu, Lianhong; Katul, Gabriel G.; Pallardy, S. G.; Paw U, Kyaw Tha; Schmid, H. P.; Stoy, Paul C.; Suyker, Andrew E.; Verma, Shashi B.Vegetation albedo is a critical component of the Earth's climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site‐years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climate models that rely on a common two‐stream albedo submodel provided accurate predictions of boreal needle‐leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two‐stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo=0.01+0.071%N, r2=0.91; forests, grassland, and maize: albedo=0.02+0.067%N, r2=0.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two‐stream albedo model and foliage nitrogen concentration. These nitrogen‐based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes.Item Analyzing Increases in Impervious Surface and the Effects on Hydrology and Water Quality in Big Sky, Montana(Montana State University, 2017-05) Leach, BradenAt a resolution of 30 m, there was a 26% increase in impervious surface in the West Fork of the Gallatin watershed from 1990 to 2005. After assessing the negative effects of impervious surface increase on aquatic systems, this review concludes that freshwater ecosystem health is likely to be the primary object of concern. Specifically, stream biota is negatively affected by reduced base flow and increased sediment loads that result when a watershed is overlaid by more impervious surfaces. Effective impervious surfaces, or impervious surfaces with gray stormwater infrastructure, have the greatest effect on hydrology and thus aquatic communities. Unless stormwater best management practices (BMPs) are implemented, greater increases in impervious surface will further stress freshwater ecosystems in the West Fork watershed and Upper Gallatin River.Item Antarctic subglacial water: Origin, evolution and ecology(2008-09) Priscu, John C.; Tulaczyk, Slawek; Studinger, Michael; Kennicutt II, Mahlon C.; Christner, Brent C.; Foreman, Christine M.Recent discoveries in the polar regions have revealed that subglacial environments provide a habitat for life in a setting that was previously thought to be inhospitable. These habitats consist of large lakes, intermittently flowing rivers, wetlands, and subglacial aquifers. This chapter presents an overview of the geophysical, chemical, and biological properties of selected subglacial environments. The focus is on the large subglacial systems lying beneath Antarctic ice sheets where most of the subglacial water on our planet is thought to exist. Specifically, this chapter addresses the following topics: (1) the distribution, origin, and hydrology of Antarctic subglacial lakes; (2) Antarctic ice streams as regions of dynamic liquid-water movement that influence ice-sheet dynamics; and (3) subglacial environments as habitats for life and reservoirs of organic carbon.Item Antecedent climatic conditions spanning several years influence multiple land-surface phenology events in semi-arid environments(Frontiers Media SA, 2022-10) Wood, David J. A.; Stoy, Paul C.; Powell, Scott L.; Beever, Erik A.Ecological processes are complex, often exhibiting non-linear, interactive, or hierarchical relationships. Furthermore, models identifying drivers of phenology are constrained by uncertainty regarding predictors, interactions across scales, and legacy impacts of prior climate conditions. Nonetheless, measuring and modeling ecosystem processes such as phenology remains critical for management of ecological systems and the social systems they support. We used random forest models to assess which combination of climate, location, edaphic, vegetation composition, and disturbance variables best predict several phenological responses in three dominant land cover types in the U.S. Northwestern Great Plains (NWP). We derived phenological measures from the 25-year series of AVHRR satellite data and characterized climatic predictors (i.e., multiple moisture and/or temperature based variables) over seasonal and annual timeframes within the current year and up to 4 years prior. We found that antecedent conditions, from seasons to years before the current, were strongly associated with phenological measures, apparently mediating the responses of communities to current-year conditions. For example, at least one measure of antecedent-moisture availability [precipitation or vapor pressure deficit (VPD)] over multiple years was a key predictor of all productivity measures. Variables including longer-term lags or prior year sums, such as multi-year-cumulative moisture conditions of maximum VPD, were top predictors for start of season. Productivity measures were also associated with contextual variables such as soil characteristics and vegetation composition. Phenology is a key process that profoundly affects organism-environment relationships, spatio-temporal patterns in ecosystem structure and function, and other ecosystem dynamics. Phenology, however, is complex, and is mediated by lagged effects, interactions, and a diversity of potential drivers; nonetheless, the incorporation of antecedent conditions and contextual variables can improve models of phenology.Item Antixenosis, Antibiosis, and Potential Yield Compensatory Response in Barley Cultivars Exposed to Wheat Stem Sawfly (Hymenoptera: Cephidae) under Field Conditions(2020-08) Achhami, Buddhi B.; Reddy, Gadi V. P.; Sherman, Jamie D.; Peterson, Robert K. D.; Weaver, David K.Wheat stem sawfly, Cephus cinctus Norton, is an economically serious pest of cereals grown in North America. Barley cultivars were previously planted as resistant crops in rotations to manage C. cinctus, but due to increasing levels of injury to this crop, this is no longer a valid management tactic in Montana. Therefore, we aimed to understand antixenosis (behavioral preference), antibiosis (mortality), and potential yield compensation (increased productivity in response to stem injuries) in barley exposed to C. cinctus. We examined these traits in eight barley cultivars. Antixenosis was assessed by counting number of eggs per stem and antibiosis was assessed by counting infested stems, dead larvae, and stems cut by mature larvae. Potential yield compensation was evaluated by comparing grain yield from three categories of stem infestation: 1) uninfested, 2) infested with dead larva, and 3) infested cut by mature larva at crop maturity. We found the greatest number of eggs per infested stem (1.80 ± 0.04), the highest proportion of infested stems (0.63 ± 0.01), and the highest proportion of cut stems (0.33 ± 0.01) in ‘Hockett’. Seven out of eight cultivars had greater grain weight for infested stems than for uninfested stems. These cultivars may have compensatory responses to larval feeding injury. Overall, these barley cultivars contain varying levels of antixenosis, antibiosis, and differing levels of yield compensation. Our results provide foundational knowledge on barley traits that will provide a framework to further develop C. cinctus resistant or tolerant barley cultivars.Item Applying information theory in the geosciences to quantify process uncertainty, feedback, scale(2013-01-29) Ruddell, Benjamin L.; Brunsell, Nathaniel A.; Stoy, Paul C.The geosciences are increasingly utilizing a systems approach to quantify spatial and temporal dynamics among multiple subsystems, their couplings, and their feedbacks. This systems approach demands novel strategies for experimentation and observation in the “natural laboratory” rather than in simple controlled experiments and thus relies heavily on Earth system observations and observation networks. Current and forthcoming examples of Earth system observatories include the Critical Zone Observatories (CZOs), the National Ecological Observatory Network (NEON), EarthScope, FLUXNET, National Water Information System/National Water‐Quality Assessment (NWIS/NAWQA), and others. These networks are designed to observe complex processes across a wide range of temporal and spatial scales to synthesize scientific understanding of the fundamental interactions across the interfaces of society, hydrology, ecology, atmospheric sciences, and geosciences.Item Are Adult Mosquito Control Products (Adulticides) Harmful? A Review of the Potential Human Health Impacts from Exposure to Naled and Dichlorvos (DDVP)(MDPI AG, 2023-12) Mendoza, Daniel L.; Peterson, Robert K. D.; Bonds, Jane A. S.; White, Gregory S.; Faraji, AryWe performed a thorough systematic review of published literature to determine potential links between human health impacts and naled, a registered adult mosquito control product (adulticide), and its major degradate, dichlorvos (DDVP). A search query was performed on 8 September 2023, capturing all articles published up to that date on the Scopus and PubMed databases. Inclusion criteria were the presence of either pesticide and a measured or modeled human health outcome or risk. The search string resulted in 382 articles; however, 354 articles were excluded, resulting in only 28 articles that met the inclusion criteria. The studies that directly relate to aerosolized ultra-low volume (ULV) mosquito control applications did not report any associated deleterious human health outcomes. Results from the reviewed papers displayed no negative health effects or led to inconclusive results. No studies showed adverse health effects from aerial ULV applications for mosquito management. Our findings are congruent with the United States Environmental Protection Agency and Centers for Disease Control and Prevention recommendations that aerial applications of naled, following label parameters, do not pose an adverse risk exposure to humans, wildlife, and the environment.Item Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and hardwood forests using impulse-response analysis(2007-06) Stoy, Paul C.; Palmroth, Sari; Oishi, A. Christopher; Siqueira, Mario B. S.; Juang, Jehn-Yih; Novick, Kimberly A.; Ward, Eric J.; Katul, Gabriel G.; Oren, RamA number of recent studies have attributed a large proportion of soil respiration (Rsoil) to recently photoassimilated carbon (C). Time lags (τPR) associated with these pulses of photosynthesis and responses of Rsoil have been found on time scales of hours to weeks for different ecosystems, but most studies find evidence for τPR on the order of 1–5 d. We showed that such time scales are commensurate with CO2 diffusion time scales from the roots to the soil surface, and may thus be independent from photosynthetic pulses. To further quantify the role of physical (i.e. edaphic) and biological (i.e. vegetative) controls on such lags, we investigated τPR at adjacent planted pine (PP) and hardwood (HW) forest ecosystems over six and four measurement years, respectively, using both autocorrelation analysis on automated soil surface flux measurements and their lagged cross‐correlations with drivers for and surrogates of photosynthesis. Evidence for τPR on the order of 1–3 d was identified in both ecosystems and using both analyses, but this lag could not be attributed to recently photoassimilated C because the same analysis yielded comparable lags at HW during leaf‐off periods. Future efforts to model ecosystem C inputs and outputs in a pulse–response framework must combine measurements of transport in the physical and biological components of terrestrial ecosystems.Item Artificial drainage and associated carbon fluxes (CO2/CH4) in tundra ecosystems(2009-11) Merbold, L.; Kutsch, Werner L.; Kolle, O.; Zimov, S. A.; Corradi, C.; Stoy, Paul C.; Schulze, E.-D.Ecosystem flux measurements using the eddy covariance (EC) technique were undertaken in 4 subsequent years during summer for a total of 562 days in an arctic wet tundra ecosystem, located near Cherskii, Far‐Eastern Federal District, Russia. Methane (CH4) emissions were measured using permanent chambers. The experimental field is characterized by late thawing of permafrost soils in June and periodic spring floods. A stagnant water table below the grass canopy is fed by melting of the active layer of permafrost and by flood water. Following 3 years of EC measurements, the site was drained by building a 3 m wide drainage channel surrounding the EC tower to examine possible future effects of global change on the tundra tussock ecosystem. Cumulative summertime net carbon fluxes before experimental alteration were estimated to be about +15 g C m−2 (i.e. an ecosystem C loss) and +8 g C m−2 after draining the study site. When taking CH4 as another important greenhouse gas into account and considering the global warming potential (GWP) of CH4 vs. CO2, the ecosystem had a positive GWP during all summers. However CH4 emissions after drainage decreased significantly and therefore the carbon related greenhouse gas flux was much smaller than beforehand (475 ± 253 g C‐CO2‐e m−2 before drainage in 2003 vs. 23 ± 26 g C‐CO2‐e m−2 after drainage in 2005).Item Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs(2016-02) Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day^-1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.Item Assessing interactions among changing climate, management, and disturbance in forests: a macrosystems approach(2015-03) Becknell, Justin M.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Stoy, Paul C.; Duffy, Paul A.; Franklin, Jerry F.; Pourmokhtarian, Afshin; Hall, Jaclyn; Binford, Michael W.; Boring, Lindsay R.; Staudhammer, Christina L.Forests are experiencing simultaneous changes in climate, disturbance regimes, and management, all of which affect ecosystem function. Climate change is shifting ranges and altering forest productivity. Disturbance regimes are changing with the potential for novel interactions among disturbance types. In some areas, forest management practices are intensifying, whereas in other areas, lower-impact ecological methods are being used. Interactions among these changing factors are likely to alter ecosystem structure and function at regional to continental scales. A macrosystems approach is essential to assessing the broadscale impacts of these changes and quantify cross-scale interactions, emergent patterns, and feedbacks. A promising line of analysis is the assimilation of data with ecosystem models to scale processes to the macrosystem and generate projections based on alternative scenarios. Analyses of these projections can characterize the range of future variability in forest function and provide information to guide policy, industry, and science in a changing world.