Land Resources & Environmental Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11

The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Vulnerability of dryland agricultural regimes to economic and climatic change
    (2018) Lawrence, Patrick G.; Maxwell, Bruce D.; Rew, Lisa J.; Ellis, Colter; Bekkerman, Anton
    Large-scale agricultural systems are central to food production in North America, but their ubiquity could be threatened by vulnerability to economic and climatic stressors during the 21st century. Prior research has focused on understanding the influence of climatic changes on physiological processes in these systems and has increasingly recognized that other factors such as social, economic, and ecological variation and the interaction among these factors may cause unexpected outcomes. We assess the vulnerability of large-scale agricultural systems to variation in multiple stressors and investigate alternative adaptation strategies under novel conditions. We examine dryland farms in Montana’s northern Great Plains (NGP), which represent large-scale semiarid agricultural systems that are likely to be affected by climate change. Farmers in the NGP have experienced three distinct periods of economic- and drought-related stressors since the 1970s, primarily driven by uncertainty in soil moisture, but at times amplified by uncertainty in nitrogen fertilizer and wheat prices. We seek to better understand how farmers evaluate and respond to these conditions. The results indicate that although farmers perceived few alternative agronomic options for adapting to drought, strategies for adapting to high input prices were more plentiful. Furthermore, we find that increasing the overall resilience of dryland agricultural systems to economic and climatic uncertainty requires intrinsic valuation of crop rotations and their field-specific response to inputs.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.