Land Resources & Environmental Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11
The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.
Browse
2 results
Search Results
Item Roadside disturbance promotes plant communities with arbuscular mycorrhizal associations in mountain regions worldwide(Wiley, 2024-04) Clavel, Jan et al.We assessed the impact of road disturbances on the dominant mycorrhizal types in ecosystems at the global level and how this mechanism can potentially lead to lasting plant community changes. We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with an existing database of mycorrhizal–plant associations in order to approximate the relative abundance of mycorrhizal types in natural and disturbed environments. Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. These biogeographical patterns suggest that changes in mycorrhizal types could be a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems. Indeed, roadsides foster AM-dominated systems, where AM-fungi might aid AM-associated plant species while potentially reducing the biotic resistance against invasive non-native species, often also associated with AM networks. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.Item Carbon and phosphorus exchange rates in arbuscular mycorrhizas depend on environmental context and differ among co-occurring plants(Wiley, 2024-01) Lekberg, Ylva; Jansa, Jan; McLeod, Morgan; DuPre, Mary Ellyn; Holben, William E.; Johnson, David; Koide, Roger T.; Shaw, Alanna; Zabinski, Catherine; Aldrich-Wolfe, LauraPhosphorus (P) for carbon (C) exchange is the pivotal function of arbuscular mycorrhiza (AM), but how this exchange varies with soil P availability and among co-occurring plants in complex communities is still largely unknown. We collected intact plant communities in two regions differing c. 10-fold in labile inorganic P. After a 2-month glasshouse incubation, we measured 32P transfer from AM fungi (AMF) to shoots and 13C transfer from shoots to AMF using an AMF specific fatty acid. AMF communities were assessed using molecular methods. AMF delivered a larger proportion of total shoot P in communities from high-P soils despite similar 13C allocation to AMF in roots and soil. Within communities, 13C concentration in AMF was consistently higher in grass than in blanketflower (Gaillardia aristata Pursh) roots, that is P appeared more costly for grasses. This coincided with differences in AMF taxa composition and a trend of more vesicles (storage structures) but fewer arbuscules (exchange structures) in grass roots. Additionally, 32P-for-13C exchange ratios increased with soil P for blanketflower but not grasses. Contrary to predictions, AMF transferred proportionally more P to plants in communities from high-P soils. However, the 32P for-13C exchange differed among co-occurring plants, suggesting differential regulation of the AM symbiosis.