Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    An Overview of the Impact of Tillage and Cropping Systems on Soil Health in Agricultural Practices
    (Hindawi Limited, 2023-05) Bishnu Angon, Prodipto; Anjum, Nafisa; Masuma Akter, Mst.; KC, Shreejana; Parvin Suma, Rucksana; Jannat, Sadia
    There is currently a demand to grow more crops in less area as a result of urbanization’s reduction of agricultural land. As a result, soil fertility is gradually declining. To maintain soil fertility, various management methods are used in modern times. The conventional tillage method is a traditional tillage method that damages soil structure, but zero tillage can improve soil quality. By maintaining soil structure with no-tillage, biological processes are frequently improved and microbial biodiversity is increased. This review helps to understand the role of tillage as well as cropping systems in increasing crop production by maintaining soil fertility. For agricultural production and environmental protection to be sustained for future generations, soil quality must be maintained and improved in continuous cropping systems. The nodulation, nitrogen fixation, and microbial community are all impacted by different cropping systems and tillage methods. They also alter soil properties including structure, aeration, and water utilization. The impact of tillage and cropping system practices such as zero and conventional tillage systems, crop rotation, intercropping, cover cropping, cultivator combinations, and prairie strip techniques on soil fertility is carefully summarized in this review. The result highlights that conservational tillage is much better than conventional tillage for soil quality and different aspects of different tillage and their interaction. On the other hand, intercropping, crop rotation, cover cropping, etc., increase the crop yield more than monocropping. Different types of cropping systems are highlighted along with their advantages and disadvantages. Using zero tillage can increase crop production as well as maintain soil fertility which is highlighted in this review. In terms of cropping systems and tillage management, our main goal is to improve crop yield while minimizing harm to the soil’s health.
  • Thumbnail Image
    Item
    Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain
    (Elsevier BV, 2024-04) Bishnu Agnon, Prodipto; Shafiul Islam, M.D.; KC, Shreejana; Das, Arpan; Anjum, Nafisa; Poudel, Amrit; Akter Suchi, Shaharia
    Heavy metal (HM) poisoning of agricultural soils poses a serious risk to plant life, human health, and global food supply. When HM levels in agricultural soils get to dangerous levels, it harms crop health and yield. Chromium (Cr), arsenic (As), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg), zinc (Zn), and copper (Cu) are the main heavy metals. The environment contains these metals in varying degrees, such as in soil, food, water, and even the air. These substances damage plants and alter soil characteristics, which lowers crop yield. Crop types, growing circumstances, elemental toxicity, developmental stage, soil physical and chemical properties, and the presence and bioavailability of heavy metals (HMs) in the soil solution are some of the factors affecting the amount of HM toxicity in crops. By interfering with the normal structure and function of cellular components, HMs can impede various metabolic and developmental processes. Humans are exposed to numerous serious diseases by consuming these affected plant products. Exposure to certain metals can harm the kidneys, brain, intestines, lungs, liver, and other organs of the human body. This review assesses (1) contamination of heavy metals in soils through different sources, like anthropogenic and natural; (2) the effect on microorganisms and the chemical and physical properties of soil; (3) the effect on plants as well as crop production; and (4) entering the food chain and associated hazards to human health. Lastly, we identified certain research gaps and suggested further study. If people want to feel safe in their surroundings, there needs to be stringent regulation of the release of heavy metals into the environment.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.