Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Culexarchaeia, a novel archaeal class of anaerobic generalists inhabiting geothermal environments
    (Springer Science and Business Media LLC, 2022-09) Kohtz, Anthony J.; Jay, Zackary J.; Lynes, Mackenzie M.; Krukenberg, Viola; Hatzenpichler, Roland
    Geothermal environments, including terrestrial hot springs and deep-sea hydrothermal sediments, often contain many poorly understood lineages of archaea. Here, we recovered ten metagenome-assembled genomes (MAGs) from geothermal sediments and propose that they constitute a new archaeal class within the TACK superphylum, “Candidatus Culexarchaeia”, named after the Culex Basin in Yellowstone National Park. Culexarchaeia harbor distinct sets of proteins involved in key cellular processes that are either phylogenetically divergent or are absent from other closely related TACK lineages, with a particular divergence in cell division and cytoskeletal proteins. Metabolic reconstruction revealed that Culexarchaeia have the capacity to metabolize a wide variety of organic and inorganic substrates. Notably, Culexarchaeia encode a unique modular, membrane associated, and energy conserving [NiFe]-hydrogenase complex that potentially interacts with heterodisulfide reductase (Hdr) subunits. Comparison of this [NiFe]-hydrogenase complex with similar complexes from other archaea suggests that interactions between membrane associated [NiFe]-hydrogenases and Hdr may be more widespread than previously appreciated in both methanogenic and non-methanogenic lifestyles. The analysis of Culexarchaeia further expands our understanding of the phylogenetic and functional diversity of lineages within the TACK superphylum and the ecology, physiology, and evolution of these organisms in extreme environments.
  • Thumbnail Image
    Item
    Next-generation physiology approaches to study microbiome function at single cell level
    (Springer Science and Business Media LLC, 2020-02) Hatzenpichler, Roland; Krukenberg, Viola; Lange Spietz, Rachel K.; Jay, Zackary J.
    The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
  • Thumbnail Image
    Item
    High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics
    (Frontiers Media SA, 2021-04) Reichart, Nicholas J.; Bowers, Robert M.; Woyke, Tanja; Hatzenpichler, Roland
    Enzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermostable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.
  • Thumbnail Image
    Item
    Metabolic Implications of Using BioOrthogonal Non-Canonical Amino Acid Tagging (BONCAT) for Tracking Protein Synthesis
    (Frontiers Media SA, 2020-02) Steward, Katherine F.; Eilers, Brian; Tripet, Brian; Fuchs, Amanda; Dorle, Michael; Rawle, Rachel; Soriano, Berliza; Balasubramanian, Narayanaganesh; Copie, Valerie; Bothner, Brian; Hatzenpichler, Roland
    BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT) is a powerful tool for tracking protein synthesis on the level of single cells within communities and whole organisms. A basic premise of BONCAT is that the non-canonical amino acids (NCAA) used to track translational activity do not significantly alter cellular physiology. If the NCAA would induce changes in the metabolic state of cells, interpretation of BONCAT studies could be challenging. To address this knowledge-gap, we have used a global metabolomics analyses to assess the intracellular effects of NCAA incorporation. Two NCAA were tested: L-azidohomoalanine (AHA) and L-homopropargylglycine (HPG); L-methionine (MET) was used as a minimal stress baseline control. Liquid Chromatography Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) were used to characterize intracellular metabolite profiles of Escherichia coli cultures, with multivariate statistical analysis using XCMS and MetaboAnalyst. Results show that doping with NCAA induces metabolic changes, however, the metabolic impact was not dramatic. A second set of experiments in which cultures were placed under mild stress to simulate real-world environmental conditions showed a more consistent and more robust perturbation. Pathways that changed include amino acid and protein synthesis, choline and betaine, and the TCA cycle. Globally, these changes were statistically minor, indicating that NCAA are unlikely to exert a significant impact on cells during incorporation. Our results are consistent with previous reports of NCAA doping under replete conditions and extend these results to bacterial growth under environmentally relevant conditions. Our work highlights the power of metabolomics studies in detecting cellular response to growth conditions and the complementarity of NMR and LCMS as omics tools.
  • Thumbnail Image
    Item
    Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment
    (Springer Science and Business Media LLC, 2020) Reichart, Nicholas J.; Jay, Zachary J.; Krukenberg, Viola; Parker, Albert E.; Lange Spietz, Rachel K.; Hatzenpichler, Roland
    Metagenomic studies have revolutionized our understanding of the metabolic potential of uncultured microorganisms in various ecosystems. However, many of these genomic predictions have yet to be experimentally tested, and the functional expression of genomic potential often remains unaddressed. In order to obtain a more thorough understanding of cell physiology, novel techniques capable of testing microbial metabolism under close to in situ conditions must be developed. Here, we provide a benchmark study to demonstrate that bioorthogonal non-canonical amino acid tagging (BONCAT) in combination with fluorescence-activated cell sorting (FACS) and 16S rRNA gene sequencing can be used to identify anabolically active members of a microbial community incubated in the presence of various growth substrates or under changing physicochemical conditions. We applied this approach to a hot spring sediment microbiome from Yellowstone National Park (Wyoming, USA) and identified several microbes that changed their activity levels in response to substrate addition, including uncultured members of the phyla Thaumarchaeota, Acidobacteria, and Fervidibacteria. Because shifts in activity in response to substrate amendment or headspace changes are indicative of microbial preferences for particular growth conditions, results from this and future BONCAT-FACS studies could inform the development of cultivation media to specifically enrich uncultured microbes. Most importantly, BONCAT-FACS is capable of providing information on the physiology of uncultured organisms at as close to in situ conditions as experimentally possible.
  • Thumbnail Image
    Item
    Occurrence and expression of novel methyl-coenzyme M reductase gene (mcrA) variants in hot spring sediments
    (2017-08) McKay, Luke J.; Hatzenpichler, Roland; Inskeep, William P.; Fields, Matthew W.
    Recent discoveries have shown that the marker gene for anaerobic methane cycling (mcrA) is more widespread in the Archaea than previously thought. However, it remains unclear whether novel mcrA genes associated with the Bathyarchaeota and Verstraetearchaeota are distributed across diverse environments. We examined two geochemically divergent but putatively methanogenic regions of Yellowstone National Park to investigate whether deeply-rooted archaea possess and express novel mcrA genes in situ. Small-subunit (SSU) rRNA gene analyses indicated that Bathyarchaeota were predominant in seven of ten sediment layers, while the Verstraetearchaeota and Euryarchaeota occurred in lower relative abundance. Targeted amplification of novel mcrA genes suggested that diverse taxa contribute to alkane cycling in geothermal environments. Two deeply-branching mcrA clades related to Bathyarchaeota were identified, while highly abundant verstraetearchaeotal mcrA sequences were also recovered. In addition, detection of SSU rRNA and mcrA transcripts from one hot spring suggested that predominant Bathyarchaeota were also active, and that methane cycling genes are expressed by the Euryarchaeota, Verstraetearchaeota, and an unknown lineage basal to the Bathyarchaeota. These findings greatly expand the diversity of the key marker gene for anaerobic alkane cycling and outline the need for greater understanding of the functional capacity and phylogenetic affiliation of novel mcrA variants.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.