Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Condensation of chromium vapor, generated in high-temperature (>800°C) environments, and interactions with aluminosilicate surfaces
    (Montana State University - Bozeman, College of Engineering, 2024) van Leeuwen, Travis Kent; Chairperson, Graduate Committee: Paul E. Gannon; This is a manuscript style paper that includes co-authored chapters.
    This work represents a collection of research and reporting with the goal of improving fundamental understanding of chromium (Cr) vapor reactive condensation, relevant in many high-temperature (>800°C) process environments where Cr-containing alloys are used. While reactive evaporation of Cr from stainless steels used in high-temperature solid oxide electrochemical systems is well-documented, the dynamics of Cr condensation onto surrounding interfaces during complex and dynamic system operation is less understood. Understanding these interactions during operation is critical for improving system performance and safeguarding environmental, health and safety, as some condensed species contain hexavalent chromium (Cr(VI)), a known carcinogen. A series of studies were designed and conducted to investigate the condensation pathways of Cr vapors within representative high-temperature system environments, simulating extreme conditions for Cr evaporation and downstream aluminosilicate fibers used in high-temperature insulation. The first study focuses on the influence of water vapor concentration in the gaseous environment on reactive Cr condensation and speciation onto aluminosilicate fibers. The second study explores the effects of alkaline oxide additives in aluminosilicate fibers on Cr condensation and speciation. The third study investigates the effects of presence of alkaline oxides within the Cr vapor source on reactive evaporation and condensation of Cr vapors onto downstream aluminosilicate fibers. To accomplish the specific objectives of these studies, Cr vapors, produced by high-temperature (>800°C) air exposures of trivalent chromium (Cr(III)) oxide (Cr 2O 3) (chromia) powder with variable moisture content, were condensed onto various ceramic materials (aluminosilicate fibers) downstream at lower temperatures (100-500°C). Total condensed Cr and ratios of oxidation states were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES) and diphenyl carbazide (DPC) colorimetric/direct UV-VIS spectrophotometric analyses, respectively. Results indicate presence of both Cr(III) and Cr(VI) species condensed on all samples investigated. Total Cr and ratio of Cr(VI) to total Cr detected was significantly more on those containing alkaline oxides and at higher atmospheric water vapor concentration, while the presence of alkaline oxides in the Cr vapor source (Cr 2O 3) decreased the evaporation and amount of Cr/Cr(VI) condensed on the samples downstream. Computational thermodynamic equilibrium modelling helps explain experimental results showing the relative stability of alkaline-chromate compounds.
  • Thumbnail Image
    Item
    Reactive evaporation of chromium from stainless steel and the reactive condensation of chromium vapor species on ceramic surfaces
    (Montana State University - Bozeman, College of Engineering, 2018) Tatar, Gregory Steven; Chairperson, Graduate Committee: Paul E. Gannon
    Stainless steels are often used in high temperature (greater than or equal to 500°C) applications such as solid oxide fuel cells (SOFCs), combustion engine exhaust systems, and various power/chemical plant process equipment. At high temperatures and in oxidizing conditions, chromium containing oxides, such as chromia (Cr2O 3), form protective surface layers on the underlying stainless steel. Reactive evaporation of these surface layers, however, may form volatile chromium species such as CrO 2 (OH) 2 and CrO 3, compromise the protection of stainless steels, and cause deleterious downstream effects. Such effects include SOFC performance degradation and hazardous materials generation. This study focuses on both the reactive evaporation and reactive condensation processes and their dependencies on materials and environmental conditions. First, the corrosion behaviors of stainless steels were investigated in a variety of exposure conditions and then the nature of chromium vapor condensation was investigated on ceramic surfaces under various conditions. Ferritic stainless steel samples (T409) were examined after 700°C exposures (94 h) to dry or wet air or nitrogen, and with or without contacting aluminosilicate fibers. Surface compositions and structures were characterized using field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction. The fibers had a substantial impact on corrosion behaviors; likely serving as a mass transport barrier for corrosive gas species. Observed corrosion behaviors under these different environments and their potential mechanisms are presented and discussed. Additionally, quantification of chromium content on fibers was performed using inductively coupled plasma mass spectroscopy. Fibers were observed to collect chromium in dry/moist air consistent with the formation of CrO 3 and CrO 2(OH) 2, respectively, and their subsequent reactive condensation. To better understand the reactive condensation of volatile chromium species onto various ceramic surfaces, volatile chromium species were generated from chromium containing sources at 500-900°C and flowed past samples of aluminosilicate fibers, alumina, mica, and quartz wool at temperatures ranging from 100-900°C for 24-150 hours. The ceramic surfaces were characterized using x-ray photoelectron spectroscopy. Analysis of Cr 2p 3/2 peak positions revealed the influence of temperature, material, and exposure time on the oxidation states of surface chromium compounds, and extent of chromium deposition. Potential mechanisms are proposed to help explain the observed trends.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.