Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
4 results
Search Results
Item Synthesis and characterization of boron-doped graphitic carbon for energy storage applications(Montana State University - Bozeman, College of Letters & Science, 2023) McGlamery, Devin Gray; Chairperson, Graduate Committee: Nicholas P. Stadie; This is a manuscript style paper that includes co-authored chapters.Carbonaceous materials offer great utility as a medium for electrochemical energy storage of ions or for the storage of chemical fuels. The low molecular weight of the second-row element carbon affords access to materials that express remarkably high gravimetric energy densities, and the robust nature of carbon-carbon bonds allow for good cyclability and longevity of carbon-based materials for use in energy storage applications. With the growing popularity and recent advancement of electric vehicles, current battery technologies are pushed to their limits in terms of capacities as well as in minimizing charging times. This has motivated great efforts to discover new lightweight materials that outperform what has traditionally been used in these applications. Alternative energy carriers, such as hydrogen, are also critical for the development of our energy landscape yet are plagued with their own technical challenges; mainly low volumetric energy densities and safety concerns associated with high pressure gas storage systems. Chapter 2 reviews hydrogen storage in today's society as well as provides a review of past synthetic methods to generate high boron content graphite (BC 3'); being a promising metastable material for the storage of alkali metal ions as well as for solid state hydrogen storage at near ambient conditions. Chapter 3 focuses on the discovery of a new lithium storage mechanism within a novel carbon-based material possessing a high hydrogen content that is tolerant of extremely fast charging, yet still expresses high reversible capacities. Chapter 4 presents a systematic investigation for the detection of chemical environments within BC 3' through an examination of unique spectroscopic properties that originate from the materials phonon structure. Chapter 5 explores the generation of boron and carbon binary phases by the co-pyrolysis of molecular precursors and establishes a density functional theory based approach to align the cracking temperatures of molecular feedstocks; affording access to bulk metastable materials that contain a homogeneous distribution of chemical environments. This work is concluded with an assessment of the materials investigated herein from the perspective of energy storage, as well as provides directions for future work.Item Multi-component oxide powder processing dynamics & synergy towards multi-functionality(Montana State University - Bozeman, College of Engineering, 2022) Heywood, Stephen Kevin; Chairperson, Graduate Committee: Stephen W. Sofie; This is a manuscript style paper that includes co-authored chapters.Multi-component or multi-cation ceramic oxides are particularly sensitive to processing-properties variation, in which a single defined chemical stoichiometry can embody dramatic variability in measured properties simply through the steps of synthesis and processing to reach the desired form. Hence, the tailoring of complex oxides is often convoluted by chemical doping and changes in stoichiometry when the influence of processing is not understood. Mixed conducting, multi-valent double perovskite Sr 2-x V Mo O 6-delta (SVMO) shows extraordinary electrical conductivity relative to comparable double perovskites. The technical hurdles of synthesizing and processing bulk powders of SVMO to optimize studies of fundamental electrical transport mechanisms otherwise convoluted by porosity in prior literature were overcome. The basis of various synthesis conditions via rapid microwave assisted sol-gel synthesis were discerned for their contribution to either open porosity of SVMO or enhanced densification. Enhanced resistance to particle coarsening under reducing contrast to inert atmosphere and a means to generate electrical percolation via solid-solution stability of SVMO were two key discoveries among fundamental breakthroughs understanding particle consolidation behaviors. It was discovered that SVMO's elastic modulus was well in excess of other oxide materials, approaching 300 GPa and in correspondence with the mixed V/Mo valency system provides an explanation for low thermal diffusion during sintering. The advanced solid lithium conducting garnet Li 6.25 La 3 Zr 2 Al 0.25 O 12 (LLZO) demonstrates high ionic conductivity for all solid-state batteries, however, it must be paired with an active cathode and anode to enable high energy storage capacity. The study presented here identifies methods to process LLZO materials into dense and porous constituents to satisfy the design architecture of a solid-state battery emphasizing the sensitivity of LLZO performance to lithium content and the desired cubic phase. The aim was to calibrate synthesis techniques towards minimizing sensitivity to thermal processing that contributes towards lithium loss. Studies of sintering optimization and excess lithium content in conjunction with novel freeze based tape casting methods to generate low tortuosity pores were explored. Development of these novel microstructures represents a backbone of processing methodology necessary to incorporate multivalent double perovskites in fuel-electrolysis cells and improve solid state lithium battery technologies.Item A dielectric and nuclear magnetic resonance study of lithium hydrazinium sulfate and its deuterated isomorph(Montana State University - Bozeman, College of Letters & Science, 1971) Parker, Robert SanfordItem The electrochemical oxidation of lithium-ammonia solutions(Montana State University - Bozeman, College of Engineering, 1968) Bennett, John Edwin