Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
18 results
Search Results
Item Combination of acoustic telemetry and side-scan sonar provides insight for lake trout Salvelinus namaycush suppression in a submontane lake(Montana State University - Bozeman, College of Letters & Science, 2021) Siemiantkowski, Michael James; Chairperson, Graduate Committee: Christopher S. GuyExpansion of an invasive Lake Trout Salvelinus namaycush population in Swan Lake, Montana threatens a core area population of Bull Trout Salvelinus confluentus in Montana. Given the increased efficacy of suppression using novel embryo suppression methods, there is renewed interest in Lake Trout suppression in Swan Lake. The specific questions of this study were: 1) where are Lake Trout spawning, 2) where are the most used spawning sites, 3) what is the amount of spawning habitat, 4) does the estimated spawning area differ between estimates from telemetry locations and side-scan sonar imagery of suitable spawning substrate, and 5) how much phosphorous and nitrogen would be added to Swan Lake if carcass-analog pellet treatments were implemented? Acoustic tags were implanted in 85 Lake Trout in July and August of 2018 and 2019. Nightly tracking efforts during September, October, and November of 2018 and 2019 resulted in 1,744 relocations for 49 individual Lake Trout. Kernel-density analysis was used to evaluate Lake Trout aggregation locations identifying 10 distinct spawning sites -- corroborating previous studies. Visual observation of Lake Trout embryos confirmed spawning at three sites with the remaining seven sites considered to be unconfirmed spawning sites. All confirmed spawning sites were located in the littoral zone along areas of steep bathymetric relief and were the most used across both spawning seasons. In 2019, side-scan sonar imaging was used to classify and quantify the total area of suitable spawning substrate, which comprised 12.8% of the total surface area estimated for confirmed sites and 11.4% for unconfirmed spawning sites. Simultaneous treatment of all confirmed and unconfirmed spawning sites would require 205,709 + or - 86 kg of carcass-analog pellet material, resulting in 370.4 + or - 0.2 kg of phosphorous and 7,487.9 + or - 3.1 kg of nitrogen inputs to Swan Lake. Thus, pellet treatment would increase the Carlson's trophic state index (TSI) values from 20.8 to 27.7 for total phosphorous, and from 22.1 to 26.2 for total nitrogen. Based on a TSI threshold value of < 40 for an oligotrophic lake, the use of carcass-analog pellets could be a feasible addition to renewed Lake Trout suppression efforts in Swan Lake.Item Use of eDNA to estimate abundances of spawning Yellowstone cutthroat trout in Yellowstone National Part, Wyoming, USA(Montana State University - Bozeman, College of Letters & Science, 2020) Detjens, Colleen Rachel; Chairperson, Graduate Committee: Alexander V. ZaleInvasive Lake Trout Salvelinus namaycush and whirling disease have reduced the abundance of native Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri (YCT) in Yellowstone Lake, Yellowstone National Park, thereby disrupting the Yellowstone Lake ecosystem. One indication of the YCT population decline is the decrease in the number of adults returning to tributaries to spawn each spring. Yellowstone National Park implemented a gillnetting program to remove Lake Trout starting in 1995 to restore YCT abundance and size structure and thereby conserve the Yellowstone Lake ecosystem. An important metric for evaluating the success of the program is the number of YCT ascending spawning tributaries each year. Annually, 9 to 11 of these tributaries are visually surveyed on a weekly basis from May through July for the presence of spawners, but these surveys are time consuming. The use of environmental DNA (eDNA) has become increasingly common for determining presence of aquatic species and may provide managers with a more efficient tool for estimating abundances of YCT spawners. The primary objective of my study was to evaluate the efficacy and accuracy of using eDNA to detect the presence and estimate abundance of YCT spawners by collecting eDNA samples from spawning tributaries to Yellowstone Lake in conjunction with visual surveys of YCT spawners. A secondary objective was to evaluate whether terrestrial or semi-terrestrial species such as grizzly bear Ursus arctos horribilis and North American river otter Lontra canadensis could be detected in a water sample from YCT spawning tributaries. Environmental DNA quantities were more effective for determining presence of YCT spawners than for predicting their abundances, but eDNA quantities were positively related to spawner abundances. The difference between eDNA rates when spawners are present versus absent may provide managers with an efficient method for monitoring YCT in tributaries throughout Yellowstone Lake basin. I also demonstrated that DNA from a terrestrial species, grizzly bear, can be detected in water samples. Incorporation of eDNA sampling with existing methods for monitoring YCT spawners in Yellowstone Lake tributaries would facilitate an increased scale of assessment and allow for detection and quantification of multiple species of current and future interest from single samples.Item Reproductive ecology of hatchery-origin pallid sturgeon upstream of Fort Peck Reservoir, Montana(Montana State University - Bozeman, College of Letters & Science, 2020) Cox, Tanner Lewis; Chairperson, Graduate Committee: Christopher S. Guy; Christopher S. Guy and Molly A. H. Webb were co-authors of the article, 'First maturity, spawning periodicity, and follicular atresia of hatchery-origin pallid sturgeon in the Missouri River above Fort Peck Reservoir, Montana' submitted to the journal 'Journal of applied ichthyology' which is contained within this thesis.; Christopher S. Guy and Molly A. H. Webb were co-authors of the article, 'Reproductive ecology and behavior of hatchery-origin pallid sturgeon in the Missouri River above Fort Peck Reservoir, Montana' submitted to the journal 'Journal of applied ichthyology' which is contained within this thesis.Conservation propagation of pallid sturgeon above Fort Peck Reservoir has successfully recruited a new generation of spawning-capable pallid sturgeon to a location that would otherwise have fewer than 30 remaining. Successful recovery of pallid sturgeon will now rely on spawning in locations that provide adequate drift distance for larvae to recruit. Prior to this study, all reproductively-active female pallid sturgeon underwent ovarian follicular atresia. The reasons for and prevalence of ovarian follicular atresia were unclear, spawning periodicity of females remained undescribed, and remaining prepubescent fish indicated that age- and size-at-first maturity would vary more than currently described. Furthermore, spawning location, spawning-related interactions among conspecifics, and substrate composition at spawning locations remained undescribed. We used data on reproductive status and location to describe age- and size-at-first maturity, the prevalence of ovarian follicular atresia during first gametogenic cycles, spawning periodicity for female and male pallid sturgeon, where spawning occurs, if spawning locations are related to discharge, if substrate characteristics at the spawning locations were similar to other river reaches, and if female, male, and atretic female pallid sturgeon use the river similarly. Pallid sturgeon matured at older ages and larger sizes than described for other populations with females maturing at 18 years old and males at 15; however, prepubescent pallid sturgeon as old as 20 were documented. During the presumed-first gametogenic cycle, 62.5% of female pallid sturgeon underwent follicular atresia. Females had biennial reproductive cycles, and males had annual and biennial reproductive cycles. Reproductively-active male and female pallid sturgeon were found in similar locations, while locations of atretic female pallid sturgeon varied. The furthest upstream locations of pallid sturgeon including locations in the Marias River occurred during 2018 when discharge was at an unprecedented high. Spawning occurred in locations less than 131 km from the river-reservoir transition zone, which does not provide adequate drift-distance for larvae. Altering discharge and water temperature at Tiber Dam to mimic observed values in 2018 may increase use of the Marias River by pallid sturgeon during spawning, which would provide adequate drift distance to larvae.Item Do spawning salmon indirectly influence ungulate space use in the Copper River Delta, Alaska by attracting bears?(Montana State University - Bozeman, College of Letters & Science, 2020) DeFries, Elizabeth Shaw; Chairperson, Graduate Committee: Greg FrancisOne of the key challenges in ecology is understanding the drivers of animal movements and distributions. Here, I used remote camera photography to examine whether the timing of spawning salmon altered ungulate space use due to the presence of bears. Using observational data collection methods, I quantified ungulate and bear presence at individual salmon spawning sites. I then analyzed relationships between bear and ungulate detection data to test for indirect effects between salmon and ungulates by applying linear regression models. A zero-inflated negative binomial model suggested that increases in bear detections are associated with decreases in ungulate detections. Results did reveal little overlap in the timing of ungulate and bear use of stream habitat during salmon spawning times, however, rigorous testing of my hypothesis may be limited by low rates of ungulate detection. Research dedicated to understanding the indirect effects of the timing of salmon spawning in the Copper River Delta can help evaluate the evidence for trophic interactions at various ecosystem levels. It may also offer insights into the potential magnitude the impact salmon has on the prey of large predators, other herbivore densities, plant communities, riparian area morphology, and essential ecosystem functions.Item Responses of rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) to creation of access into a spawning tributary(Montana State University - Bozeman, College of Letters & Science, 1996) Snelson, Scott IrvenItem Status and biology of the spawning population of Red Rock Lakes Arctic grayling(Montana State University - Bozeman, College of Letters & Science, 1996) Mogen, James ToryItem An evaluation of Yellowstone cutthroat trout fry recruitment related to water leases on four tributaries of the Yellowstone River(Montana State University - Bozeman, College of Letters & Science, 1998) Hennessey, Leanne ElizabethItem Effects of fine sediment accumulation on egg-to-fry survival of cutthroat trout inhabiting a highly sedimented headwater stream(Montana State University - Bozeman, College of Letters & Science, 1998) Bowersox, Andrew LeeItem Run timing and spawning distribution of coho salmon (Oncorhynchus kisutch) in the Kenai River, Alaska and their relation to harvest strategies(Montana State University - Bozeman, College of Letters & Science, 1990) Booth, Jeffrey AllanItem Grizzly bear habitat use on cutthroat trout spawning streams in tributaries of Yellowstone Lake(Montana State University - Bozeman, College of Letters & Science, 1990) Reinhart, Daniel Paul