Animal & Range Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9
The curricula in animal science provide students with a firm foundation in the biological and natural sciences, animal breeding, reproductive physiology, nutrition, and livestock production and management. Natural Resources & Rangeland Ecology focuses on managing the interaction of livestock, and wildlife and their rangeland habitats. Emphasis is placed on soil, water and vegetation attributes which influence habitat ecology and management of livestock and wildlife.
Browse
3 results
Search Results
Item Protein Supplementation and 48-Hour Calf Removal Effects on Range Cows(1992-03) Sowell, Bok F.; Wallace, Joe D.; Parker, Eugene E.; Southward, Morris G.In 1984, 99 Angus × Hereford cows (4- to 6-yr-olds) were assigned randomly to a 4-yr, 2 × 2 factorial study. Treatment assignment was permanent, and no new cows were added during the study. By 1987, 71 cows remained, and over-all, 335 complete cow-calf data sets were used. Main effect treatments were beginning time (prepartum [PRE] vs postpartum [POST]) for crude protein (CP) supplementation (twice weekly feeding of 41% CP cottonseed meal pellets at 1.58 kg • $\text{cow}^{-1}$ • $\text{feeding}^{-1}$) and temporary calf removal (48 hour [48-H] vs 0 hour [CONT]) just before the breeding season. For analyses, sex of calf was included as a third main effect (2×2×2) and year was included as a random factor; the 4-way interaction served as the testing term for repeated measures over years. Year was the dominant source of variation for most traits; we attributed this mainly to different amounts and timing of precipitation among years. Very few interactions were observed. The PRE supplemented cows had reduced (P<0.01) spring body weight losses and higher prebreeding body condition scores (4.9 vs 4.5; P<0.01) compared with POST cows. Reproductive performance did not differ between PRE and POST cows. Use of 48-H calf removal vs CONT did not influence (P>0.10) reproductive traits measured. Likewise, 48-H treatment did not impair health or reduce weaning weights of calves. In a separate, within-year analysis used to examine age of dam effects, productivity of 4-yr-old cows during 1984 was slightly below that of older cows for some traits. Cow age effects were not detected in other years. We conclude that control cows in our study were approaching optimum fertility and production levels in concert with their environment and that improvement beyond these levels with the treatments imposed was unlikely.Item Influence of Ruminally Dispensed Monensin and Forage Maturity on Intake and Digestion.(1993-05) Fredrickson, Eddie L; Galyean, M. L.; Branine, M. E.; Sowell, Bok F.; Wallace, Joe D.Eight ruminally cannulated crossbred steers (average weight 336 kg) grazing native blue grama (Bouteloua gracilis [H.B.K.]) rangeland were used in a repeated measures design to evaluate effects of monensin ruminal delivery devices (MRDD) and forage phenology on ruminal digestion. Three periods were assessed: mid-August (Aug.), early October (Oct.), and mid-November (Nov.). One MRDD was placed in the reticulum of 4 steers via the ruminal cannula 21 days before each period. Intake was estimated using total fecal collections. Diet samples were collected using 3 esophageally fistualted steers. Ruminal fill was measured by ruminal exacuation; rate and extent of in situ ruminal neutral detergent fiber disappearance were estimated before ruminal evacuations. Ruminal passage rates, retention time, and apparent total tract organic matter digestibility were estimated using indigestible neutral detergent fiber. In vitro organic matter disappearance of esophageal masticate did not differ (P>.05) in Aug. and Oct. (average of 53.7%), but declined (P<.05) in Nov. (48.7%), whereas organic matter digestibility was greater (P<.10) in Aug. (62.3%) than in either Oct. (55.2%) or Nov. (53.9%). Release of monensin from the bolus (68 mg day-1) was less than expected (100 mg day-1). Intake, organic matter digestibility, ruminal passage rates, retention time, pH, and ammonia were not affected (P>.10) by MRDD. In situ neutral detergent fiber disappearance at 96 hours was decreased (P<.10) by MRDD (68 vs 65% for control and MRDD, respectively). As the grazing season progressed, intake declined (P<.10), whereas ruminal fill and retention time increased (P<.05), and passage rate of indigestible neutral detergent fiber decreased (P<.05). At 48 hours in situ neutral detergent fiber was greatest (P<.05) in Aug. and least (P<.05) in Nov.Item Liquid supplementation for ruminants fed low-quality forage diets: a review(1995-09) Bowman, J. G. P.; Sowell, Bok F.; Paterson, J. A.Forty-three studies involving liquid supplementation of cattle and sheep consuming low-quality forages were identified, summarized in tabular form and reviewed. All studies that could be found containing animal gain, forage intake and (or) supplement consumption with molasses-urea supplements under grazing conditions were reviewed. Seven studies were found which compared forage intake or animal performance by animals fed hay or straw and molasses-urea supplements with unsupplemented animals. Molasses-urea supplements did not increase forage intake or animal performance compared with unsupplemented animals in five of the seven studies. Thirteen studies were identified which evaluated performance of grazing animals receiving molasses-urea supplements compared with unsupplemented animals. Seven of these 13 grazing studies reported improved live weight change when animals received molasses-urea supplements. Only two grazing studies were found which evaluated forage intake by animals consuming molasses-urea supplements and compared it with unsupplemented animals. Both studies found no effect. Five of six studies identified that compared molasses-urea supplements with dry supplements, forage intake or animal live weight change were not increased by molasses-urea supplements over dry supplements. Most authors concluded that feeding molasses-urea supplements to grazing ruminants was not as profitable as feeding dry supplements; however, few studies reported economic data. Studies demonstrated that level of molasses and nitrogen influenced animal performance. Asynchrony between molasses and nitrogen resulted in animal weight loss. Most positive animal responses were seen with a combination of high levels of molasses and nitrogen. However, these results may have been influenced by supplement formulation. Performance and intake results were confounded by pasture condition, forage quality, animal variation and supplement delivery system. In four studies that measured supplement intake by individual animals, between 1 and 20% of experimental animals refused to consume any molasses-urea supplement. Quantification of supplement intake and animal feeding behavior has not been adequately addressed in the literature.