First report of Ser653 Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.)
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
BACKGROUND
Bromus tectorum L. is one of the most troublesome grass weed species in cropland and non-cropland areas of the northwestern United States. In summer 2016, a B. tectroum accession (R) that survived imazamox at the field-use rate (44 g ha-1 ) in an imidazolinone-tolerant (IMI-tolerant or Clearfield™ ) winter wheat field was collected near Hammond, Carter County, MT, USA. The aim of this study was to determine the resistance profile of the B. tectroum R accession to imazamox and other ALS inhibitors, and investigate the mechanism of resistance to imazamox.
RESULTS
The R B. tectorum accession had a high-level resistance (110.1-fold) to imazamox (IMI) and low to moderate-levels cross-resistance to pyroxsulam (TP) (4.6-fold) and propoxycarbazone (SCT) (13.9-fold). The R accession was susceptible to sulfosulfuron (SU) and quizalofop and clethodim (ACCase inhibitors), paraquat (PS I inhibitor), glyphosate (EPSPS inhibitor), and glufosinate (GS inhibitor). Sequence analysis of the ALS gene revealed a single, target-site Ser653 Asn mutation in R plants. The pre-treatment of malathion followed by imazamox at 44 or 88 g ha-1 did not reverse the resistance phenotype.
CONCLUSION
This is the first report of evolution of cross-resistance to ALS-inhibiting herbicides in B. tectorum. A single-point mutation, Ser653 Asn, was identified, conferring the high-level resistance to imazamox.
Description
Keywords
Citation
Kumar, Vipan, and Prashant Jha. "First report of Ser653 Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.)." Pest Management Science (July 2017). DOI:https://dx.doi.org/10.1002/ps.4673.