Drought resistance in barley as related to color and screening tests by Thomas Conrad Fink A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Crops and Soil Science Montana State University © Copyright by Thomas Conrad Fink (1979) Abstract: Color as it affects drought resistance in barley isogenes and screening tests for drought resistance in barley cultivars were investigated. The greater reflection by the light isogene was related to its smaller water use early in the season. From mid-season on the higher stomatal resistances in the dark isogene more than compensated for its smaller reflection with the result being smaller water use by the dark isogene. Seasonal totals showed the light isogene used as much or more water than the dark isogene. Osmotic potential does not appear to be useful as a screening test because of unreliability and inability to differentiate between cultivars. Soil water use has good potential as a screening test. The best correlations with drought resistance occur at the shallow and deep depths. The less water used the larger the drought resistance. Water loss after dry-down is also a potentially good screening test. The optimum drying interval was 24 hours, with whole plants being the best sample. The smaller the water loss, the larger the drought resistance. Modulus of elasticity gave the highest correlations with drought resistance. However, the tediousness of the procedure makes it of questionable value in preliminary screening. The higher the modulus, the larger the drought resistance. Plant height, percent plump kernels, and 100 kernel weights are all positively correlated with drought resistance.  DROUGHT RESISTANCE COLOR AND IN BARLEY AS RELATED TO SCREENING TESTS by THOMAS CONRAD FINK A thesis submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Crops and Soil Science Approved: Chapman, Exami^pfig Committee Heady/Major Deparg^ent Graduate ^ ean MONTANA STATE UNIVERSITY Bozeman, Montana June, 1979 iii ■ ACKNOWLEDGMENTS I ' The author wishes to thank his advisor. Dr. A. H. Ferguson, for his suggestions and help in completion of the requirements for his degree. He would also like to thank Dr. J. Brown for his useful sugges­ tions concerning his research. Finally, he would like to thank June Freswick for typing the final copy of the manuscript. TABLE OF CONTENTS Chapter ^aSe VITA .................... ii ACKNOWLEDGMENTS . .................................. iii TABLE OF CONTENTS.................................. iv LIST OF TABLES...................................... viii LIST OF F I G U R E S .................... xi ABSTRACT . .......................................... xii 1 INTRODUCTION ........................................ I Drought resistance theory ........................ I Color as a drought resistance trait in barley isogenes . .............................. 7 Screening tests for drought resistance in barley cultivars............................. 7 2 REVIEW OF LITERATURE ................................ 9 Color as a drought resistance trait in barley is o genes................. 9 Screening tests for drought resistance in barley cultivars................... 16 3 METHODS AND MATERIALS............................ . .21 Color as a drought resistance trait in barley isogenes........................................ 21 Screening tests for drought resistance in barley cultivars ................................ 25 4 RESULTS AND DISCUSSION . . . . . . . ................ 36 Color as a drought resistance trait in barley isogenes................................ 36 Screening tests for drought resistance in barley cultivars . ............ 57 5 SUMMARY AND CONCLUSION. . . . .................. .. . . 99 Color as a Drought Resistance Trait in Barley Isogenes........................................ 99 VScreening Tests for Drought Resistance in Barley Cultivars ................................ 99 Appendices 1 Key to Symbols Used in Appendix Table 2 and 3. . . . 104 2 Energy balance values for Compana - Golden,Compana. July 4, 1976. This table-will be continued through August 5, 1976 .......................... 106 3 Energy balance values for Liberty - Golden Liberty. June 24, 1977. This table will be continued through August 2, 1977 .......................... 132 4 Reflected radiation/total radiation-for-Compana - Golden Compana. 1976 149 5 Reflected radiation/total radiation for Liberty - Golden Liberty. 1977 152 6 Linear regression for net radiation vs. reflection radiation, 1976 .................. . . 155 7 Linear regression for net radiation vs. reflection radiation, 1977 ............. 157 8 Evapotranspiration/net radiation for Compana - Golden Compana. 1976 ....................... . 158 9 Evapotranspiration/net radiation for Liberty - Golden Liberty. 1977 160 10 Biweekly soil water use Gin) for Compana and Golden Compana. Bozeman farm (1975) . . . . . . . 163 11 Biweekly soil water use (in) for Compana and Golden Compana. Kamp1S farm (1976) ...... 164 12 Biweekly soil water use (in) for Liberty and Golden Liberty. Kamp1s farm (1976) . . . . . . . 165 13 Biweekly soil water use (in) for Liberty and Golden Liberty. Kamp rs farm ( 1 9 7 7 )... 166 vi Appendices Page 14 Cultiyar number, name, and number of rows in head . 167 15 Osmotic potentials* (liars)'for the morning (A.M.), afternoon (P.M.) and the difference (P.M. — • A.M.). 1975 .................................... 170 16 Osmotic potential (bar) for the morning (A.M.), afternoon (P.M.)- and the difference (P.M. - A.M.) . 1976 ....................... . 171 17 Osmotic potential (bar) for the morning (A;-M,) ,. afternoon (P.M.) and the difference (P.M. - A.M.). June 22,- 19.77 .......................... 172 18 Osmotic potential (bar) for the morning (A.M.), afternoon (P.M.) and the difference- (P.M. - A.M.). July 20, 1977 .................... . . 173 19 Soil water content (%) at 6 in intervals for the drought line. Bozeman farm. 1976 .......... 174 20 Cumulative water use (in) at 6 inch intervals for the drought l i n e ............................ 175 21 Total soil water use (cm) at 6 in intervals, for the drought line. Kamp *s farm. 1977 .......... . 188 22 Soil water use plotted according to the relation­ ship , w = a + b In t ........................... 189 23 Total water use (in), yield (bu) and water use efficiency (bu/in) for the drought line. ' Kamp's farm. 19.77............ 193 24 Water loss (%) for young (not headed) plants of the drought line. 19.75............. 194 25 Water loss (%) for old (headed) plants of the drought line. 1975.............................. 195 26 Water loss' (%) for- whole plants of the drought line. 1976 196 Appendices . Page• 27 Water loss (%) for leaves of the drought line. 1976 ................ ....................... . . 197 28 Water loss (%) for heads of the drought line. 1976 .............................................. 198 29 Modulus of elasticity' (Bar) for the drought- line. 1976 & 1977 ............ . .................. .. . 199 30 Plant height to the Bottom of the head, A (cm), and top of "the awns, B (cm) , percent plump kernels (%), and 100 kernel -weights (gm) for the drought line. 1977 200 ^l List of symbols ................................ . 201 32 Feekes Scale (45) ................................ 204 LITERATURE CITED..........'....................... 206 vii viii LIST OF TABLES Table .Page 1 Predicted yields at different yield levels and the slope for 49 barley cultivars....................... 34 2 Daily and seasonal totals of energy balance factors involving Compana and Golden Compana barley, 1976 ; . 37 3 Daily and seasonal totals- of energy balance factors involving Liberty and Golden Liberty barley, 1977 . . 38 4 Canopy temperatures for Liberty and Golden Liberty,. July 20, 1977 .44 5 Stomatal diffusive resistance for Liberty and Golden Liberty, Kamp's farm (1977) 48 6 Stomatal diffusive resistance, Bozeman farm (1977) . . . 50 7 Soil water use by d e p t h ........................... . 52 8 Correlation coefficients comparing osmotic potentials over three seasons....................... 59 9 Analysis of variance for osmotic potentials in 1977 . . 60 10 Correlation coefficients from correlating Eslick's drought resistance ratings with osmotic potential, 1975 ........... 61 11. Correlation coefficients from correlating Eslick's drought resistance ratings, with osmotic potential, 1976 ......... 63 12 Correlation coefficients from correlating Eslick's drought resistance ratings with osmotic potential, June 22, 1977 64 13 Correlation coefficients from correlating Eslick's drought resistance ratings with osmotic potential, July 20, 1977 . 6 6 ix Table Page 14 Correlation coefficients from correlating Eslick's drougtrt--resistance ratings with, water remaining in soil, 1976 ...................... ............... 68 15 Correlation coefficients from correlating Eslick1S drought resistance ratings with soil water use at a given date .......................................... 71 16 Correlation coefficients from correlating Eslick's drought resistance ratings with total water use . . . 76 17 Correlation coefficients from correlating Eslick's drought resistance ratings with the slope of the relationship, w = a + 6 In t ........................ 78 18 Correlation coefficients from correlating Eslick's drought resistance ratings with water use efficiency.............. 79 19 Correlation coefficients from correlating Eslick's drought resistance ratings with percent water loss of young plants, 1975 81 ,20 Correlation coefficients from correlating Eslick's drought resistance ratings with percent water loss of headed plants, 1975 .............................. 82 21 Correlation coefficients from correlating Eslick's drought resistance ratings with water loss for whole plants, 1976 .................................. 84 22 Correlation coefficients from correlating Eslick's drought resistance ratings with water loss for leaves., 1976 ............... 85 23 Correlation coefficients from correlating Eslick's drought resistance ratings with water loss for heads with grain and without grain, 19.76 . . . . . . . 86 24 Analysis of variance summaries for whole plant dry-down, 1976 ...................................... 88 25 Analysis of variance summaries for leaf dry-down, 1976 ............. 89 Table 26 27 28 29 x Analysis of variance summaries for head dry-down, 1976 ............................................... 90 Correlation coefficients from correlating EslicRtS drought resistance ratings, with modulus of elas­ ticity, 1976 and 1977 . .................... . 92 Correlation coefficients from correlating EslicR’s drought resistance ratings -with percent plump Rernels, 100 Rernel weight, plant height A and B . . . 94 Multiple correlation coefficients from correlating EslicR's drought resistance ratings with various combinations of 5 screening tests ............ 96 LIST OF FIGURES Figure Fage 1 Net radiation vs. reflections for Compana on July 3, 1976 42 2 Cumulative soil water use By Compana and Golden Compana, Bozeman farm (1975) 53 3 Cumulative soil water use By Compana and Golden Compana, Kamp's farm 0.976) .......................... 54 4 Cumulative soil water use By LiBerty and Golden Liberty, Kamp's farm (1976)......................... 55 5 Cumulative soil water use By Liberty and Golden Liberty, Kamp's farm (1977).......................... 56 6 Cumulative soil water use for the cultivar Betzes at the 6—12 inch d e p t h .............................. 77 xi xii ABSTRACT Color as It affects drought resistance in barley isogenes and screening tests for drought resistance in barley cultivars were inves­ tigated. The greater reflection by the light isogene was related to its smaller water use early in the season. From mid-season on the higher stomatal resistances in the dark isogene more than compensated for its smaller reflection with the result being smaller water use by the dark isogene. Seasonal totals showed the light isogene used as much or more water than the dark isogene. Osmotic potential does not appear to be useful as a screening test because of unreliability and inability to differentiate between cultivars. Soil water use has good potential as a screening test. The best correlations with drought resistance occur at the shallow and deep depths. The less water used the larger the drought resistance. Water loss after dry-down is also a potentially good screening test. The optimum drying interval was 24 hours, with whole plants being the best sample. The smaller the water loss, the larger the drought resistance. Modulus of elasticity gave the highest correlations with drought resistance. However, the tediousness of the procedure makes it of questionable value in preliminary screening. The higher the modulus, the larger the drought resistance. Plant height, percent plump kernels, and 100 kernel weights are all positively correlated with drought resistance. Chapter I INTRODUCTION Drought Resistance Theory The research for this thesis has involved two related, but separate, research problems. The first involved the influence of color as a drought resistance trait in barley isogenes. This is part of an on­ going research program at Montana State University in which different plant morphological features, such as color, awn length, and others, are evaluated in relation to drought resistance. The second area of research relates screening techniques to drought resistance of barley cultivars. These two areas will be treated separately throughout the thesis. A brief introduction to drought resistance theory will follow in order to give a general background to the.specific areas of drought resistance that were studied. Since this thesis research involved only plant characteristics and their, relation to drought resistance, no discussion will be presented involving environmental factors and their relation to drought resistance. Probably the simplest drought resistance classification scheme includes two categories, drought tolerance and drought avoidance. Drought tolerators include those plants capable of undergoing water 2stress (experiencing lowered water potential)"*" while still functioning normally. This is often referred to as desiccation resistance. Plant physiological characteristics that enhance this drought tolerance include: a) increased cell wall elasticity; b) the ability of the vacuole to gel or solidify; c) the production of sugars, polyols, pep­ tides and proteins; and d) enlargement of cell walls (54). This thesis measured, as a screening test, osmotic potential, which should be a measure of the production of sugars, polyols, and other salts and, thus, of drought tolerance. Another screening technique researched, modulus of elasticity, measures cell wall elasticity and, consequently, also measures drought tolerance. Drought avoiders are those plants that maintain a favorable inter- nal water status (high water potential) when undergoing water stress or, such as is the case with desert ephemerals, maintain a high water potential by avoiding altogether any stressful situation. In order 2 to maintain high water potential it is necessary that uptake, U, of 3water be equal to or greater than the transpirational water loss. ^Throughout this thesis a water potential with a large negative value will be considered low. 2 All symbols are defined in the text as well as Appendix Table 31. In some instances, such as with succulents, it is not precisely the uptake, but rather the retention of water in various plant organs that must equal or exceed transpiration. 3 3Using an analogy of Ohm's Law it is possible to define the move­ ment of water in soil and plants as q =. AY/r (56) CD where q = water flux, AY = gradient of water potential across some component, r = resistance across that component. In a similar fashion to equation (I) we may write the uptake of water as being proportional to root and soil resistances would increase uptake of water. Potentials in the plant, including Y , consist of three components (2) where U = uptake of water Y = root water potential, Yg = soil water potential, r^ = root resistance, and r = soil resistance.s Plant morphological features that lower root potential and decrease (±) Y = (-) Ym (-) Yo (±) Yp (3) where Y = total plant potential (root, leaf, etc.). Y - matric potential. m DR = osmotic potential, and Y = turgor or pressure potential. 4Matric potential is due to the adsorptive qualities of the tissue matrix. Osmotic potential is due to the presence of salts or other solutes. Turgor potential is caused by vacuolar fluid pressure being greater than atmospheric. Lowered root potential would likely include lowered osmotic poten­ tial caused by increased production of salts, sugars, etc. As men­ tioned above, osmotic potential was one of the screening tests studied. Soil resistances would be decreased by more extensive rooting systems, both deeper as well as more highly branched with finer root hairs. In both the color study and the screening tests study, soil water use was periodically monitored throughout the season. It was hypothesized that soil water use should give an indirect measure of the rooting patterns and, thus, of root resistance. Again using an analogy to equation (I), we may define transpira­ tion as being proportional to E oc r + r. a I (4) where E = transpiration. - air potential, ^ = leaf potential, r = air resistance, and a r^ = leaf resistance. Any feature that lowers leaf potential or increases leaf resistance 5would decrease transpiration. One factor causing lowered leaf poten­ tial is lowered osmotic potential, as described above, which was measured in a screening test. Another plant feature, color, also exerts an influence on the leaf potential. A lighter colored plant reflects more visible radiation and, subsequently, maintains a cooler canopy temperature. This cooler temperature results in a lower leaf potential which in turn means a smaller transpiration rate. In simpler terminology, "cooler water will evaporate more slowly than warmer water" It is interesting to use Gates and Papian1s (35) tables on the energy budgets of plant leaves to predict what a difference between plants of 16 percent in visible reflection (a realistic difference between a light and dark colored plant) would do to transpiration rates for a "typical" summer day. If this 16 percent difference in visible reflec­ tion results in a 16 percent difference in the radiation load, and if we assume other mean daily values of leaf dimension along airflow: 5 cm, leaf dimension across airflow: I cm, -I internal diffusion resistance: 5 sec-cm , -X windspeed: 20 cm-sec , radiation absorbed - dark plant: .86 ly-min \ -X radiation absorbed - light plant: .72 ly-min , relative humidity: 25 percent, and air temperature: 20° C, 6we find a predicted transpiration rate of 0.115 ly-min for the dark -Iplant and 0.090 ly-min for the light plant. For a 10 hour day this represents 69.00 Iy (1.19 mm) for the dark plant and 54.00 (0.93 mm) for the light plant. This is approximately a 22 percent difference between plants in transpiration rates. Plants can also reduce their temperature by sensible heat advection to the air. Morphological features, related to drought resistance, which accomplish this include thin leaves and stems, tall structures, and the presence of hairs’ or awns. Leaf resistance depends upon cuticular resistance and stomatal resistance. Stomatal resistance is sometimes broken down into stomatal, sub-stomatal, and cell wall resistances. Plant morphological structures that would increase leaf resistance include a thick cutin, small density and size of stomata, rapid responsiveness of stomata to water stress, leaf rolling, and others. One screening test studied, dry-down or percent water loss, is probably at least partly a measure of leaf resistance. In the color study, stomatal diffusive resistances were monitored throughout the season. This discussion on plant morphological features as they relate to drought resistance is not intended to be exhaustive. Rather, it is presented here to elucidate a few important drought resistance traits and, in particular, to show how this thesis research fits into the scope of drought resistance theory and research. 7Color as a Drought Resistance Trait in Barley Isogenes For many years, researchers and growers have pointed out the possible advantages of lighter colored plants in arid regions. The primary advantages they claimed involved cooler plant temperatures and smaller evapotranspiration rates. A review of literature on iso­ genic barley pairs, differing by color, indicates that the lighter color isogene reflects more radiation and maintains a cooler canopy temperature. Consequently, it was hypothesized that the light isogene would also have smaller evapotranspiration rates, thus making it better adapted to arid regions. Water use in this thesis research was measured by two methods: I) the Bowen ratio energy balance method which measures transient evapotranspiration fluxes, and 2) the neutron meter method which measures soil water consumption. In addition stomatal diffusive resistance was measured in 1977. Screening Tests for Drought Resistance in Barley Cultivars C/jr' Each year breeders at many places develop many new cultivars of barley. In breeding for a particular trait, such as drought resistance, it would be highly desirable to have rapid screening tests that can reliably differentiate the cultivars as to drought resistance. Several parameters that were researched as potential screening tests include osmotic potential, soil water use, water retention, modulus of elasti­ city, plant height, percent plump kernels, and 100 kernel weights. In order to determine their usefulness, each of these tests were performed on a group of 50 barley cultivars, 25 two-row and 25 six-row, covering the spectrum of drought resistant to drought sensitive; and the results were compared with independent drought resistance ratings of the 50 8 cultivars. CHAPTER 2 REVIEW OF LITERATURE Color as a Drought Resistance Trait in Barley Isogenes Bowen Ratio Energy Balance Method According to the conservation of energy theorem, energy cannot be created nor destroyed. Consequently, the simplest statement of the energy balance equation is that the sum of the energy entering a crop canopy must equal the sum of the energy stored, utilized, and leaving the canopy. In symbolic form the equation becomes R -(r+t) R +R-ER1-LE-S-A-B - P - M = O (5)s s I I s s where the signs follow the convention of positive entering and nega- 4 tive leaving. The available incoming short wave radiation, Rg - (r+t) Rg, includes the short wave energy which is neither reflected, r, nor transmitted, t. The long wave radiation entering the canopy is R^; and that leaving the canopy is denoted by eR^, where e is the emissivity of the particular crop, usually approximately .98 (33), and R^ refers to the fact that only long wavelengths are emitted. Further energy loss can occur by either conduction into the soil, S, termed the soil heat flux, convection into the air. A, termed the sensible In some instances the signs may differ such as the case when LE is positive during dew formation. 10 heat flux, or by evaporation of water, LE. The storage term, Bg, is normally neglected since it is a significant factor only for a short period near sunrise and sunset when R^, A and LE are small and (change in temperature/change in time) is large (62). Photosynthetic, Pg, and metabolic, M, processes are also ignored since their influence is estimated to be less than 2 percent (62). Normally net radiation, R^, an easily measured quantity, is in­ cluded in the energy balance equation. Net radiation is the difference between incoming radiation and outgoing radiation (both short and long waves). In symbolic form, the relation is R = R - (r + t) R + R1 - e R1 (6)n s s i I , Including R^ and neglecting Bg, Pg, and M gives a simplified energy balance equation of R — LE — S - A — 0. (7) n Application of this equation in field experiments is made easier by inclusion of the Bowen ratio, g, which is defined as A/LE (10). Utilizing the equation for sensible heat flux and latent heat flux, the Bowen ratio is B - A/LE CpKh P 8T/9z LwK 9e/9z C refers to the specific heat of air. L is the latent heat of vapori- P zation. P is the absolute barometric pressure, w is the ratio of mole weight of water vapor to dry air. Kh and K^ refer to the conductivity 11 terms of heat and water, respectively. 3T/9z is the temperature dif-. ferential with height (z), 9e/3z is the vapor pressure differential with height. By replacing the derivatives with finite differences and assuming /K^ to be 1.0,~* the ratio becomes B - C PAT P____ LwAe If we divide equation (7) by LE, substitute g for A/LE, and rearrange we get _ Rn " S (9) 1 + 6 (10) This is the final form of the energy balance equation which can be readily applied to calculate evapotranspiration fluxes, LE, throughout the day. Evapotranspiration Since evapotranspiration flux is ultimately the most important. . parameter of drought resistance, we will review its relationship to other energy balance factors. Brown and Rosenberg (12) have found that a greater proportion of the Rn goes into LE at lower values of Rn , particularly at lower vapor This assumption of equality appears to be good for most situations except strong advective and very stable conditions where the ratio is greater than one (8, 14, 19). 5 12 pressures and higher temperatures. Fritschen (28) computed values for LE/R^ and found the ratio to generally exceed 1.0 for irrigated barley in Arizona. A ratio greater than 1.0 indicates advective condi­ tions found frequently in semi-arid and arid regions. Under conditions of very strong advection the energy balance method consistently under­ estimates LE, sometimes exceeding .20 percent (8). LE tends to be inversely related to humidity. According to Brown and Rosenberg (12), the influence of humidity is greater at low values of (Rn - S), low temperature, and low values of air resistance. Air resistance is primarily influenced by wind speed or turbulence. Normally, LE decreases logarithmically with an increase in leaf resistance. Brown and Rosenberg (12) found the dependence of LE on leaf resistance was greatest at low values of (Rn - S), air vapor pressure, and air resistance. This suggests that stomatal control of LE is greater during periods of cloudy weather and during early morning and late afternoon. Lemon et al. (48) have found LE to decrease with the maturation of the crop, even before physiological maturity. Reflection Radiation impinging on a leaf can be either reflected, trans­ mitted, or absorbed. The reflectivity of leaves in the infrared, IR, beyond 2.Oy is small, being less than 10 percent for an angle of 13 incidence of 65°, and less than five percent for an angle of 20° (36). Reflectivity of visible radiation (.4 to .7y) has been found to vary between six percent and 25 percent (61). Transmissivity of leaves is usually zero in the IR beyond I.Oy (36). Transmissivity in the visible region ranges from 0 to 10 percent. Consequently, absorptivity will range from 90 percent to nearly 100 percent in the IR and from 65 per­ cent to nearly 100 percent in the visible portion of the spectrum. The maximum visible reflection usually occurs around .54y, contributing to the characteristic green color of the plant. However, there are usually smaller reflectance peaks at .57 and .64y. Reflection from leaves is made up of two components. One is the reflection occurring at the first air-cuticle interface, which probably is fairly uniform throughout the spectrum. The other is the reflection occurring at interfaces within the leaf - with the different pigments accounting for the selective absorption (52). . The following statements include some empirically derived rela­ tionships between reflectance and plant characteristics. At far IR wavelengths, the upper leaf surface reflects more than the lower, old leaves more than young, and.shade leaves more than sun leaves. In each instance the inverse is true in the visible and near IR (34). Billings and Morris (6) found that the drier the habitat, the greater the visible arid near. IR reflectances. While studying color influences on reflectance, Shull (61) found that the darkest green leaves had six 14 to eight percent reflectance, whereas the lightest green leaves had 20 to 25 percent reflectance. From a computer simulation model, Seginer (60) predicted that a 15 percent reduction in net radiation, caused by increased short wave reflection, would cause a 30 percent reduction in LE. Since there appeared to be a relationship between increased reflec­ tivity and lowered crop temperature and decreased evapotranspiration rates, investigators and growers began to look into artificial reflec­ tances (applied chemicals or sprays). Several growers have used "white-washing" to reduce sunburn in crops (22, 51). Elam (22) reported a decrease in the temperature of tomatoes of 4° F after whitewashing. Rosenberg and his associates in Nebraska (3, 4, 21, 46, .47) are currently studying the effects of two types of artificial reflectants - Celite and Kaolinite sprays. Their findings include the following: a) Reflectant treatment of canopies increased reflectivity by 10 to 20 percent. b) Reflectant treatment resulted in a reduction of net radiation from five to 10 percent. c) Reflectant treatment resulted in temperature increases of one to 2° C. Normally increased reflection would lower the temperature. The authors concluded that the surprising in­ crease in temperature was caused by reduced emissivities 15 d) Reflectant treatment resulted in increased net radiation at lower levels within the canopy. This was evidently caused by downward reflection. e) Evapotranspiration rates were 10 to 15 percent lower in the treated canopies. Color Influences in Barley Isogenes Crop breeders have developed isogenic pairs of barley cultivars. These cultivars differ, theoretically, by only one gene or group of genes. Several researchers have studied the characteristics of isogenic pairs that differ only by color (I, 2, 24, 25, 26). Some of their findings are reviewed below. All evidence shows that the light cultivars reflect more radiation than do the dark cultivars. Aase (I) averaged reflectivity for three pairs (Compana, Liberty, and Betzes). and found the light cultivars to have a six percent higher reflectivity. Furthermore, Aase et al. (2) showed greater light transmission for the lighter cultivars. Greater reflectivity should correspond to lower net radiation. However, Aase et al. (2) discovered little difference in net radiation between the colored isogenes (the light isogene had slightly higher net radiation). This would suggest that some component, other than short wave which decreased long wave radiation, and decreased evapotran- spiration rates which decreased evaporative cooling. 16 reflection, is also influencing the net radiation. Canopy temperatures in the light isogenes are usually cooler than in the dark isogenes. Ferguson (24) found the light Betzes cultivar to be .6° C cooler than the dark cultivar and the light Liberty cultivar to be .9° C cooler than the dark cultivar. Screening Tests for Drought Resistance in Barley Cultivars Since drought resistance can include a complex array of physiologi­ cal and morphological features, it is likely that in order to adequately differentiate cultivars as to drought resistance It will be necessary to use a combination of screening tests that measure some facet(s) of both drought tolerance and drought avoidance (50). In the review of each screening test, it is indicated whether the test measures drought tolerance and/or drought avoidance. Osmotic Potential A measure of osmotic, potential would probably give a measure of drought avoidance since plants that have a lower osmotic potential have a higher absorbing capacity and a smaller transpiring capacity (see equations (2) and (4)), thus maintaining a more favorable internal water condition. A supporting argument states that lower potential decreases vegetative growth throughout the season, thus saving water for the more important latet stages of growth (44). It can also be argued, as noted in the introduction, that osmotic potential measures 17 a form of drought tolerance. Levitt (49), summarizing the work of several Investigators, showed an increase in drought resistance with a lowering of osmotic potential. Studying winter wheat in Canada, Kaui (43) also found an increase in drought resistance with a lowering of osmotic potential. Campbell and his associates (15, 16) found, for wheat varieties, an increase in drought resistance with a decrease in (osmotic potential in the afternoon minus the osmotic potential in the morning). Rooting Patterns/Soil Water Use A measure of the rooting patterns would probably also give a measure of avoidance, since a more extensive rooting system could extract more soil water. Several investigators have found that as the width, depth, and branching of roots increase, the plant-water stress decreases (5, 63, 64). Levitt (50) reported that deep-rooted plants show greater drought avoidance only if ground water is available. If ground water is not available, the deeper rooted plants show less avoidance. Working with winter wheat, Sandhu and Laude (59) showed that, in general, drought and heat-hardy varieties had higher root/top ratios than nonhardy varieties. Research in Canada shows that the rooting patterns below a certain depth may be an important drought resistance trait (40). Hurd (40) reports that the most important soil depth for the root development of wheat is below 60 cm. He states that 18 it is advantageous to breed cultivars that have the greatest root mass below 60 cm. Water Retention/Dry Down A measure of a plant's ability to retain water is another measure of drought avoidance since a high retention of water would result in a better internal water status. Dedio (.19), working with 6 week old spring wheat and durum plants found a significant difference between cultivars on a measure.of water content. The ten spring wheat culti­ vars varied in percent water content from 74.2 percent (least drought resistant) to 83.8 percent (most drought resistant). The five durum cultivars ranged from 76.7 percent to 79.2 percent. Drying at room temperature for a 24 hour period showed the greatest differential among cultivars. Also, the authors found that stage of growth and position of leaf considerably affected the water retention ability.. In another study with winter wheat, Sandhu and Laude (59) discovered large differences in water retaining capacity of the plants at the tillering stage. The percent decrease in weight upon drying varied from 25.6 percent (most drought resistant) to 40.4 percent' (least drought resistant). The cultivars showed a greater differential water retaining capacity in the tillering stage than in the dormant stage. The shortest drying period for effective differentiation of cultivars was 3 hours. A study on wheat, oats, and barley (58) showed only poor 19 differentiation between cultivars on water retention of detached leaves. Water retention of intact plants following exposure to low vapor pressure was correlated with survival. Modulus of Elasticity In general terms a modulus of elasticity is defined as the ratio of the stress to the corresponding strain. A modulus of elasticity for plants is defined as the ratio of turgor, potential to the cell volume (water content) (13). Philip (54) gives its formal definition as turgor potential, and.relative water content, it is possible to cal­ culate em from Wilson’s (.66) relation e = E--- m V/Vo - I (11) where e^ = modulus of elasticity, V = cell volume, V =s cell volume at zero turgor potential, and o V = turgor potential. P By knowing the turgid values of osmotic potential and metric potential. T + ¥ + Y e * Y + Y (12)m . o mt I - R where Y0fc = turgid osmotic potential. Ymt =s turgid metric potential, Y = turgor potential, and 20 R = relative water content. A simpler approach was developed by Campbell (16) in which he calculated e^ as the slope of the relationship of (1/total potential) vs. relative water content. ■ His assumptions include zero matric poten­ tial and a linear relationship between water content and turgor poten­ tial. A couple of studies (15, 16) have shown an inverse relationship between modulus of elasticity and drought resistance. However, Cowan and Milthorpe (18) disagree on theoretical grounds because "a combina­ tion of large elastic modulus and low osmotic potential provides a mechanism for maintaining the water supply to the metabolic component while sustaining large gradients of potential associated with water flow to the leaf". Chapter 3 METHODS AND MATERIALS Color as a Drought Resistance Trait in Barley Isogenes Physical Location Both in 1976 and 1977, one acre plots each of Compana, Golden Compana, Liberty and Golden Liberty barley were grown on John Kamp’s dryland grain farm located approximately eight miles northwest of Three Forks. This area has an average annual precipitation of 12 inches (30.48 cm). The location consists of deep, well-drained soils on probably a broad fan. These soils formed in strongly calcareous, stra­ tified alluvium. The slopes range from level to two to three percent slope. The soil family classification is a coarse-loamy, mixed borollic calciorthid. The series is Amesha. Reflection Reflection was measured with inverted Kipp radiometers. These instruments measure the short wave radiation up to approximately 3y. In 1977 a 2 cm high cylindrical shield was placed on the outer edge of the radiometers to reduce the measurement of scattered sky radia­ tion. The instruments were suspended to the south of the support post and elevated, early in the season, approximately I m above the crop canopy. 22 Net Radiation Net radiation was measured with a Fritschen miniature net radio­ meter. These instruments were also suspended to the south of the support post and elevated approximately I m above the crop canopy. In 1977 the net radiometers were calibrated, using the shading tech­ nique (41), before and after the growing season. The mean values agreed reasonably well with the factory calibration values. The factory calibration factors were therefore used in the subsequent calculations. Soil Heat Flux A single heat flow transducer (Micromet industries) was buried 10 cm under the surface between two rows in each plot. The factory calibration factors were used to determine soil heat flux. Brown Ratio Apparatus In 1976 the Bowen ratio apparatus consisted of thermocouples (.005 inches, matched copper-constantan) for temperature measurements and thermistors (YSI 44005, differential) arranged in a wet-dry bulb manner for the vapor pressure measurements. The recording device was a non-integrating data logger (Multifunction Data Logger, MDL-930)- with a separate digital recorder. Readings were taken every 20 minutes. While the temperature measurements appeared close to the .25° C theoretical accuracy, the vapor pressure measurements presented 23 considerable inaccuracy. The exact cause of the inaccuracy was not ascertained. To correct for this problem, it was decided to discard any data obtained between the hours of 6:00 a.m. and 6:00 p.m. that gave LE rates greater than 0.0 ly-min * or less than -1.5 ly-min-'1". These somewhat arbitrary values were then chosen because typical Bowen ratio LE rates from literature are generally within these limits (8, 12, 62). This resulted in considerable exclusion of data. Furthermore, even the data retained are somewhat questionable. In 1977 the Bowen ratio apparatus consisted of similar thermo­ couples; however, the psychrometer sensors were replaced with humidity sensors (Weather Measure Corporation). Although these sensors had a factory rated accuracy of + I percent relative humidity, our laboratory calculations indicated less accuracy. Therefore, it was decided to rotate the sensors every half hour in order to remove individual sen­ sor bias. This resulted in reasonably accurate vapor pressure gradient data; and very little data had tq be discarded. A different data logger (CR5 Digital Recorder, Campbell Scientific, Inc.) was used in 1977. This recorder had the capability of integrating signals over a time interval and printing the mean value. Readings were taken every 30 minutes. In order to develop the energy balance equation to a useable form we assumed: I) K^/K^ = 1.0, as discussed above, and 2) C^ P/Lw = 0.642 | -I mb-deg . The second assumption is reasonable since diurnal and 24 season variation in pressure is small and the other constants vary only slightly with temperature. These assumptions reduce the equation to its final useable form R - S LE " 1+0.642 AT/Ae Stomatal Diffusion Resistance In 1977 stomatal diffusive resistances of Liberty and Golden Liberty were measured at two different locations. . First, stomatal re­ sistances of the upper surface were determined, using a Li Cor Auto- porometer, on Liberty and Golden Liberty grown on Kampfs dryland farm. Random samples were taken throughout the day on June. 24, July 7, July 11 and 12, and July 20. A randomized complete block design was employed treating time as the block variable. A second approach involved measuring the stomatal resistances of Liberty and Golden Liberty grown at the Bozeman farm. A randomized . complete block design was used with seven replicates. Since it took approximately 3 hours to complete the study, it was performed twice, once in the morning a,nd once in the afternoon. This was accomplished to determine if time of day influenced stomatal resistance. Soil Water Uge A second means of determining water consumption by the barley isogenes involved the periodical monitoring of soil water consumption 25 by the neutron meter method. Two inch (5.08 cm) diameter aluminum alloy access tubes were placed 60 inches (152.40 cm) deep, centered between rows, with 3 per plot. Row spacing was 30.5 cm. Readings were taken twice weekly at 6 inch (15.24 cm) intervals down to 60 inches (152.40 cm) throughout the season. Soil water data were obtained for Compana - Golden Compana at the Bozeman station in 1975 and at Kamp's farm in 1976. Data for Liberty - Golden Liberty were obtained at Kamp's farm in 1976 and 1977. Screening Tests for Drought Resistance in Barley Cultivars Osmotic Potential Osmotic potential data were developed from the 50 barley culti- vars grown in 4 row x 10 feet (3.05 m) plots. Readings were taken during all three seasons at two different times: I) prior to heading and 2) after heading. In 1975 the cultivars were.grown at the Bozeman farm.and readings taken on July 14 and August 12. In 1976 the cultivars were grown at Kamp's farm and readings taken on July 14 and August 10. In 1977 the cultivars were again grown at. Kamp's farm. However, two replications were run in a randomized complete block design. Data were taken on June 22 and July 20. On each sampling day, readings were taken at maximum turgor, defined as just prior to sunrise, and at minimum turgor, defined as 2:00 p.m. Single leaves from 3 plants (the most recent prior to 26 heading, and the flag leaf after heading) were inserted in 15 cm lengths of surgical tubing with an inner diameter of 1.3 cm. The pieces of surgical tubing with leaves were closed with rubber stoppers and frozen on dry ice. After thawing, the sap was extracted with steel rollers. The sap was absorbed by filter discs and the osmotic potential was determined with a desk model thermocouple psychrometer (C-52, Wescor, Inc.). Soil Water Use In 1976 soil water consumption and, indirectly, rooting patterns were measured for the 50 cultivars grown, in 4 row x 10 feet (3.05 m) plots having a 30.5 cm row spacing at the Bozeman farm. These data were taken after the cultivars had been harvested. Soil samples were taken at 6 inch (15.24 cm) intervals down to 60 inches (152.40 cm). The percent soil water remaining was calculated from gravimetric data by taking the ratio of soil water to dry soil mass. In 1977 neutron . access tubes were, placed in the middle of the 4 row x 10 feet plots with a 30.5 cm row spacing at Kamp’s farm and soil water use was / monitored once a week throughout the season. Readings were taken at 6 inch intervals down to a maximum of 60 inches (where the gravel per­ mitted). Water Retention/Dry Down ' Water retention of young plants and also plants after heading was 27 72 hour, 96 hour, and 10 days. The sample consisted of a single plant in each case which was allowed to dry at room temperature. The percent water loss, on a dry weight basis, was calculated by dividing the water transpired in a given interval by the dry weight and then multiplying by 100. In 1976 the percent water loss of whole plants, grown at the Bozeman farm, was determined at I hour, 6 hour, 12 hour, 24 hour, and 48 hours. The percent water loss of leaves was determined at 3 hours and after oven drying. The percent water loss of heads with grain weight included and of heads with grain weight subtracted were determined for one drying interval, that being oven dry. The category of heads with grain weight subtracted was determined by subtracting the weight of. the kernels from the total head weight before calculating percent water loss. In each study in 1976, five samples of each cultivar was used. Using a completely randomized design, an analysis of variance was determined for these data. Modulus of Elasticity ' In developing a means.for measuring the modulus of elasticity, e , an approach somewhat like Campbell?s (16) was used. Important modifications included using Wilson's (63).equations for osmotic poten­ tial, Yq, matric potential, and turgor potential, V . These determined in the summer of 1975 at the Bozeman farm. Plant weights were taken at I hour, 6 hour, 12 hour, 18 hour, 24 hour, 48 hour, 28 equations are: ¥o (¥ + Y ) Cl - B) °t mt________ R » where Y0fc = osmotic potential at full turgor, Ymfc = matric potential at full turgor, B = fraction of bound water, R = relative water content, (Y + Y ) B (I - B) ¥ _ m R(R - B) and (14) (15) O^t+ V1 -%• <16> Combining the osmotic potential and matric potential, the equation for total water potential becomes (To + T H l - B> ' = R- B----- 1 + - < % +■ V ” - ^ For R < OR the turgor potential becomes zero. If . we. now invert, the equation for total water potential becomes •I /U/ — _____^ B______ _ _______R______ _ ______B____ ■ /I QN 1 (vO ^ m t) Cl-5) ('l'ot:+' V (1-B) (Yot^mt)(I-B) (18) It is seen that B= - intercept/slope and (Y0t^Ylllt) = I/(slope(I-B)) of the regression of 1/Y on R. Now DR and Y^ are determined (eg. (14) and (15)) and Y^ can be determined by algebraic subtraction (eq. (3)). From the regression of Y^ on R (eq. (16)) it is seen that the intercept 29 is - em> Thus, using only two experimental variables, Y and R, it is possible to readily determine e^. The experimental procedure consisted of taking a single leaf, inserting its stem through a rubber stopper, and forcing water into the leaf until a water droplet appeared on the extruding stem. This would correspond to full turgidity. Then the leaf was allowed to dry down at room temperature; while total poten­ tial and leaf weights were periodically determined. Total potential was measured with a pressure bomb (PMS Instrument Co.) while R:, calculated by fresh weight/turgid weight, was determined with a 3- place Mettler balance. In 1976 data for the relationship of 1/Y vs. R were obtained for 29 cultivars grown at the Bozeman farm. In 1977 similar data were obtained for .21 cultivars grown in the green­ house. Eslick's Drought Resistance Ratings (Table I) In order to determine drought resistance ratings for. the 50 barley cultivars, Eslick (23) has analyzed yield data from regional nurseries and Montana nurseries including the Northern Great Plains Barley Nursery, Rocky Mountain Barley Nursery, Western 2-Row Barley Nursery, Western Spring Barley Nursery, Western Dryland Spring Barley Nursery, Montana Interstate Nursery and other Montana nurseries. This includes nurseries grown in Oregon, Washington, Idaho, Utah, Colorado, Wyoming, Montana, western North Dakota, western South Dakota; western Nebraska Table I, Predicted yields at different yield levels and the slope for 49 barley cultivars. Data from R.Fo Eslicko Yield Level- bu/a Variety 10 20 30 40 50 60 . 70 80 90 100 H O 120 Slope—Method E Marie 9.6 19.8 30.0 40.1 Predicted 50.3 60.4 Yield, 70.6 bu/a 80.8 90.9 101.1 111.2 121.4 1.02 Titan 12.2 20.8 29.4 38.0 46.6 52.2 63.8 72.4 81.0 89.6 98.2 106.8 .86 Betzes 10.4 20.2 30.0 39.8 49.6 59.4 69.2 79.0 88.7 98.5 108.3 118.1 .98 Vantage 8.9 19.5 30.0 40.6 51.2 61.7 72.3 82.9 93.4 104.0 114.6 125.2 1.06 Compana 12.5 20.8 29.2 37.5 4 5.9 54.2 62.6 70.9 79.3 87.6 96.0 104.3 .84 Glacier 10.2 20.1 30.0 39.9 .49.8 59.8 69.7 79.6 . 89.5 99.4 109.3 119.2 .99 Dekap 13.2 21.8 30.4 39.0 47.7 56.3 64.9 73.5 82.1 90.8 99.4 108.0 .86 Traill 10.2 20.1 30.0 39.9 . 49.8 59.7 69.6 . 79.5 89.4 99.3 109.3 119.2 .99 Freja 9.1 19.6 30.0 40.5 50.9 61.4- 71.8 82.3 92.7 103.2 113.6 124.1 1.05 Trophy 12.0 21.1 30.1 39.2 48.2 57.3 66.3 75.4 84.4 93.5 102.5 111.6 .91 Ingrid 9.1 19.5 30.0 .40.5 50.9 61.4 71.8 82.3 92.8 103.2 113.7 124.1 1.05 Darker 12.7 21.3 29.9 38.6 47.2 55.8 64.4 73.0 81.6 90.2 98.8 107.4 .86 New Moravian 14.4 22.1 29.8 37.6 45.3 53.1 60.8 68.5 76.3 84.0 91.8 99.5 .77 Atlas 46 11.1 20.6 30.0 . 39.5 48.9 58.4 67.8 77.3 86.7 96.2 105.6 115.1 .95 Piroline 10.5 20.3 •30.0 39.8 49.5 59.3. 69.0 78.8 88.5 98.3 108.0 117.8 .98 Harlan 6.9 18.4 29.9 41.4 52.9 64.4 ■ 75.9 87.4 98.9 110.4 121.9 133.4 • 1.15 Frontier 11.8 21.0 30.1 39.3 48.5 57.7 66.9. 76.0 85.2 ■ 94.4 103.6 112.8 .92 Hiland 7.3 18.7 . 30:0 41.4 52.8 64.2 75.5 86.9 98.3 109.6 121.0 132.4 1.14 Heines Hanna 12.3 21.1 29.9 38.7 47.4 56.2 65.0 73.8 82.6 91.3 100.1 108.9 .88 Otis 10.0 20.0 30.0 40.0 50.0 . 60.0 69.9 79.9 89.9 99.9 109.8 119.8 1.00 Horn 11.0 19.4 27.9 36.4 44.8 53.3 61.7 70:2 78.7 87.1 95.6 104.0 .85 Trebi 12.5 21.4 30.3 . 39.2 48.0 56.9 65.8 74.7 83.6 92.4 101.3 110.2 .89 Haisa II 9.7 19.9 30.0 40.2 50.3 60.5 70.6 80.8 90.9 101.1 111.2 121.4 1.02 Gem • 9.8 19.9 30.0 40.1 50.1 60.2 70.3 80.4 90.5 100.5 110.6 120.7 1.01 Hannchen 13.9 21.9 29.9 37.9 45.8 53.7 . 61.7 69.7 77.6 85.6 93.5 101.5 .80 Bonneville 9.2 19.6 30.0 ' 40.4 50.9 61.3 71.7 82.1 92.5 103.0. 113.4 123.8 ' 1.04 Munsing 11.9 21.1 30.2 39.3 48.4 57.5 66.6 75.7 84.8 93.9 103.0 112.2 ' .91 Liberty ■ 12.6 ■ 21.2 29.8 38.4 47.1 55.7 64.3 72.9 81.5 90.2 98.8 107.4 .86 Spartan 15.3 22.0 28.7 35.4 42.1 48.8 55.5 62.2 69.0 75.7 82.4 89.1 .67 Gait 8.3 19.1 29.8 40.6 51.4 62.2 73.0 83.7 94.5 105.3 116.1 126.9 1.08 Table 1« Predicted yields at different yield levels and the slope for 49 barley cultivars„ Data from RoFo Eslick= Cont= Yield Level, bu/a Variety 10 20 30 40 50 60 70 80 90 100 H O 120 Slope-Method E Firlbeck III 9.5 19.7 30.0 40.2 Predicted Yield, 50.4 60.7 70.9 bu/a 81.2 91.4 101.6 111.9 122.1 1.02 Steptoe- 3.3 15.9 28.6 41.3 54.0 66.6 79.3 92.0 104.6 117.3 130.0 142.6 1.27 Vanguard 9.5 19.7 30.0 40.2 50.4 60.7 70.9 81.2 91.4 101.6 111.9 122.1 1.02 Beecher 12.3 20.9 29.4 38.0 46.6 55.2 63.8 72.3 80.9 89.5 98.1 106.7 .86 Hector 9.1 19.5 29.9 40.3 50.8 61.2 71.6 82.1 92.5 102.9 113.4 123.8 1.04 CM67 Klages 9.3 19.7 30.2 40.6 51.0 61.5 71.9 82.3 92.8 103.2 113.6 124.0 ' 1.04 Steveland 8.0 18.9 29.8 40.7 51.6 62.5 73.4 84.3 95.2 106.1 117.0 127.9 1.09 Erbet 12.3 21.0 29 i 8 38.5 47.2 56.0 64.7 73.4 82.2 90.9 99.6 108.3 .87 Dickson 11.4 20.7 30.1 39.4 48.8 58.1 67.4 76.8 86.1 95.5 104.8 114.1 .93 Maris Mink -0.5 14.5 29.4 44.4 59.4 74.4 89.3 104.3 119.3 134.2 149.2 164.2 1.50 Montcalm 11.8 20.5 29.2 37.8 46.5 55.2 63.8 72.5 81.2 89.9 98.5 107.2 .87 Vireo 20.5 27.7 35.0 . 42.2 49.4 56;7 63.9 71.2 78.4 85.6 92.9 100.1 .72 Primus II 9.2 19.6 30.0 40.4 50.9 61.3 71.7 82.2 92.6 103.0 113.5 123.9 1.04 Zephyr 7.2 18.5 29.7 40.9 52.2 63.4 74.7 85.9 97.1 108.4 119.6 130.9 1.12 Nordic 22.3 27.3 32.3 37.3 42.3 47.2 52.2 . 57.2 62.2 67.2 72.1 77.1 .50 Georgie . 8.5 19.2 30.0 40.8 51.6 62.4 . 73.2 84.0 94.8 105.6 116.4 127.1 1.08 . Briggs 14.2 21.8 29.3 36.9 44.4 52.0 59.5 67.1 74.6 82.2 89.7 97.3 .76 Herta 9.7 19.8 30.0 40.1 50.2 60.4 70.5 80.7 90.8 ioo.9 111.1 121.2 . 1.01 Unitan 8.0 18.9 29.7 40.6 51.5 62.3 73.2 84.0 94.9 105.8 116.6 127.5 1.09 32 and southern Alberta. Drought is frequently encountered in these areas. The data used were from the 40 year period 1936 through 1976. The cul- tivars, which are typically grown in these regions, are equally divided between 2-row and 6-row cultivars. California Hariout 67 was not tested in the area which resulted in the ratings of only 49 cultivars. Whenever two cultivars were grown in the same nursery the paired values were used in a regression analysis. Thus, if all 49 cultivars were grown in a given nursery there are a possible 48 equations to predict the yield of a selected cultivar. However, not all 49 cultivars were grown in every nursery which resulted in fewer regression equa­ tions. Since the regression equations had different reliabilities based on n, the values were weighted in accordance with the value of n. Weighted means, weighted regression coefficients and weighted standard errors were calculated for each cultivar and used to predict the yields (dependent values) of each cultivar by 10 bushel yield incre­ ments from 10 to .120 bu/a (independent values). These independent values of 10 to 120 bu/a will be referred to as yield levels. The dependent values will be referred to as predicted yields. The pre­ dicted yields, were weighted and averaged to give the values listed in the first 12 columns of Table I. Several methods of calculating slopes were employed to summarize these 12 data points for each cultivar. Only Method E was used in this thesis. Method E consisted of taking all predicted yields for yield levels of 80 and above, determining a 33 regression for these values, and from this regression predict a yield for a yield level of 90. The same was accomplished for yield levels of 40 and lower to obtain a predicted yield for a yield level of 30 ^ The slope was then determined from these two yield levels of 30 and 90 and their predicted yields. These values are given in the last column of Table I. The twelve columns of yield levels and their predicted yields plus the thirteenth column measuring the slope (Method E) will be referred to as Eslick's drought resistance ratings (Table I). These ratings (Table I) were used as the standard to compare the effective­ ness of the potential screening tests that were researched in this thesis.^ Probably the most ideal drought resistant cultivar would yield high under drought conditions and continue to yield high under wetter conditions. This means that the predicted yield would be greater than 10 bu/a for a yield level of 10 bu/a and also greater than 120 bu/a for a yield level of 120 bu/a. A cultivar that has high predicted yields (> 10 bu/a) for a yield level of 10 bu/a and has low predicted yields (< 120 bu/a) for a yield level of 120 bu/a would also be con­ sidered a drought resistant cultivar, although less ideal than the ^Table I is currently being revised at Montana State University. Since maturity dates may have an important influence on drought resistance, it was. decided to remove any maturity differences. This may have an important influence on the analysis given below. 34 above. Using the same reasoning as above, it is expected that the more drought resistant a cultivar is, the smaller the slope. In order to determine the effectiveness of a particular screening technique, comparisons using Pearson product moment correla­ tion coefficients, were made between Eslickfs drought resistance ratings and the data of an individual screening test. For example, a correlation coefficient was calculated for percent water loss at 24 hours for the 50 cultivars vs. predicted yield at a yield level of 10 bu/a. Then another correlation coefficient was calculated for per­ cent water loss at 24 hours for the 50 cultivars vs. predicted yield at a yield level of 20 bu/a. This procedure was continued for all yield levels and the slope (Method E). The analysis of these correlation coefficients determines the effectiveness of a given screening tech­ nique. A screening technique which would be in good agreement with Eslickfs ratings of drought resistance (Table I) would at least show high correlations at low yield levels. What consists of a "high" correlation when considering drought resistance is difficult to say. However, it seems reasonable to assume that coefficients of around + .20 at low yield levels may indicate a useful screening test. It is more difficult to theorize what sort of correlations should occur at intermediate and high yield levels for high drought resistance. A screening test that resulted in high correlations at low as well as 35 intermediate and high yield levels would imply that cultivate high (low) . I in the measured trait yielded well under both drought and wet condi­ tions. (In some cases plants high in the measured trait, such as water retention, were more drought resistant; whereas in other cases plants low in the measured trait, such as soil water use, were more drought resistant.) Whereas, a screening test that had high correlations at low yield levels and low correlations at intermediate and high yield levels implies that those cultivars high (low) in the measured trait yielded well only under drought conditions. Finally, a screening test that had high correlations at low yield levels, low correlations at intermediate yield levels and high correlation, but with opposite algebraic sign, at high yield levels implies that plants high (low) in the measured.trait yielded well under drought conditions, but yielded poorly under wet conditions. In comparing the screening . tests with the slope (Method E), high correlations implies that plants high (low) in the measured trait yielded relatively high under drought conditions and relatively low under wet conditions. Chapter 4 RESULTS M D DISCUSSION Color as a Drought Resistance TrajLt in Barley Isogenes Appendix Table 2 gives the daily energy balance values for the 1976 season. Appendix Table 3 gives the daily energy balance values for the 1977 season. Rather than analyze each day's table of values, the approach will be to analyze trends within the tables giving the daily totals for each season (Tables 2 and 3). Most of the analysis will concentrate on the. 1977 data since very few measurements had to be discarded and certain trends are more evident. Reflection Summaries of the daily totals for.the various energy balance factors, stage of development as determined by the Feeke's scale (44), and the solar time period of measurement are given for the 1976 and 1977 data in Tables 2 and 3, respectively. Columns in these tables giving reflected radiation for the light isogene, R^-L, and reflected radiation for the dark isogene, R^-D, reveal the anticipated greater reflectivity for the light isogene. This holds true until the heads began to turn on August 3, 1976 and July 20, 1977, after which the dark isogene reflects more. This reversal in trend is caused by the earlier heading of the dark isogene, which increases the reflectivity. 7 Table 2«, Daily and seasonal totals of energy balance factors involving Compana and Golden Compana barley, 1976 (Iy)„ Month/day LE-D LE-L Rn-D R -L n Rr-D U G S-D S-L A-D A-L Rt Time period of measurement Feekes D Scale* L July 4 16 20 42 35 25 26 2 I 28 16 104 11:20 AM- 4:20 PM 10.1 10 5 I 37 192 181. 71 79 14 11 177 133 415 6:20 AM-11:00 PM 6 2 38 H O 94 34 35 7 5 101 52 166 3:40 AM- 4:40 PM 10-5.2 10.1 7 27 21 . 166. 141 53 59 8 5 130 115 261 11:20 PM-10:40 PM 8 I 4 44 36 16 17 3 2 40 31 ■ 78 9:40 AM- 7:20 PM 9 O O 23 21 O 0 3 I 20 20 6 11:20 PM- 4:00 AM 13 2 31 2.11 178 121 126 7 5 202 142 342 10:30 AM-10:40 PM 10-5.6 10-5:4 14 O 3 257 242 80 90 20 11 237 227 401 10:20 AM- 8:00 PM 15 3 11 69 62 30 34 4 5 62 46 135 11:40 AM-10:40 PM 11.1 11.1 28 2 2 208 181 78 88 16 15 191 164 360 9:40 AM-11:00 PM 11.1.1 11.1.1 29 2 10 98 76 42 46 3 3 92 64 188 11:00 PM-11:00 PM Aug 3 O 14 93 78 42 41 5 2 88 62 87 10:00 AM-H :40 PM 11.1.3 11.1.3 A 6 2 94 82 65 64 • 10 10 78 70 148 11:20 AM- 8:20 PM 5 ' . 3 4 146 128 121 119 9 9 134 115 230 10:40 AM-IHOO PM 11.1.3 11.1.2 Total 65 . 197 1753 1535 778 824 111 .85 1580 1257 2921 D “ Dark Isogene L = Light Isogene LE = Evapotranspiration Rn = Net Radiation Rr = Reflected Radiation S = Soil Heat Flux A = Sensible Heat Flux Rt = Total Radiation * Appendix Table 32 gives a description of the stages of development associated with the numerical categories. Table 3„ Daily and seasonal totals of energy balance factors involving Liberty and Golden Liberty barley, 1977 (Iy). Month/day LE-D LE-L R -D Tl H U G R - D Rr-L S-D S-L A-D A-L Rt Time period of measurement Feekes D Scale* L June 24 258 196 183 136 „ 49 48 24 12 417 7:30 AM- 1:00 PM 8-9 4 27 144 HO 111 96 — — 24 24 9 11 246 11:30 AM-.2:30 PM 10 30 150 121 209 179 65 78 11 8 48 50 329 11:00 AM- 3:00 PM 10.1 July I 139 121 222 191 74 86 10 8 73 62 350 9:00 AM- 1:30 PM 5 172 168 225 206 70 82 10 8 43 30 362 10:00 TES I ARN PM 10.2 4-9 6 72 . 79 . 146 135 42 51 .6 4 69 52 220 9:00 AM- 1:00 PM 7 57 64 129 111 38 46 6 4 66 43 203 10:00 AM-12:00 PM 10.2 4-10 11 155 177 269 222 82 97 13 12 102 33 418 10:00 AM- 5:00 PM 10.3 4.10.1 .12 88 79 159 130 51 58 4 4 66 46 244 6:30 AM-11:00 AM 14 187 172 328 273 98 114 14 12 127 89 509 8:30 AM- 3:30 PM 10.4 4-10.1 15 61 78 185 153 53 62 9 8 116 67 277 10:00 AM- 1:00 PM 18 32 24 119 103 40 45 3 3 84 76 198 8:30 AM-H :30 AM 11.1.1 5-10.2 20 56 59 166 144 84 67 7 7 103 84 303 7:00 AM- 7:00 PM < 27 34 71 168 152 75 71 8 9 126 71 320 7:00 AM- 7:00 PM 11.1.1 5-11.1 ‘ 29 57 39 137 130 53 50 6 . 7 74 84 235 9:00 AM- 1:30 PM Aug I 34 42 185 155 77 71 7 8 144 105 314 8:00 AM- 1:00 PM 2 72 71 159 155 74 68 8 9 79 75 293 9:00 AM- 3:00 PM 11.1.1 5-11.1 Total 1768 1671 3100 2676 976 1046 195 183 1353 990. 5238 D = Dark Isogene L “ Light Isogeae LE = Evapotranspiration Rn = Net Radiation Rr = Reflected Radiation S = Soil Heat, Flux A = Sensible Heat Flux Rr= Total Radiation Appendix Table 32 gives a description of the stages of development associated with the numerical categories. 39 Appendix Tables 4 and 5 give the ratio reflected radiation/total radiation X 100. This represents the percent of total radiation that is reflected. In 1976, the mean values for the season were 28 percent reflectivity for the dark isogene and 30 percent reflectivity for the light isogene. In 1977, the mean values for the season were 22 percent reflectivity for the dark isogene and .23 percent reflectivity for the light isogene. Early in the season the light isogene commonly has 15 to 20 percent greater reflectivity than the dark isogene. As noted in the introduction, a 16 percent reduction in reflectivity should cause a 22 percent reduction in transpiration for a "typical" day. This appears to hold true early in the season. For example, on June 30 the light isogene had a 19 percent smaller LE rate. Early in the season the differences in LE rates are probably caused by differences in . reflectivity. . However, by July 5, 1977 the differences in LE rates had decreased substantially and by July 6, 1977 the trend had reversed, since the light isogene was then using more water. This is certainly not explained in the reflectivity data since on July 6, .1977 the light isogene still had 20 percent greater reflectivity. The explanation for this reversal in water use pattern will be discussed later. Net Radiation Net radiation is a measure of incoming radiation minus outgoing radiation. Since the incoming radiation for both isogenes is the 40 same, the important differentiating term is likely the outgoing radia­ tion, both short and long wavelengths. Reflectivity differences were measured with a Kipp radiometer which measures only the short wave radiation (up to approximately 3y). This, as we have seen, showed higher reflectivity by the light isogene. Since the light isogene maintained cooler temperatures, it would be expected to have smaller long wave radiation losses. Thus, the short wave reflectivity values indicate increased outgoing radiation by the light isogene, whereas the long wave emitted radiation indicates decreased outgoing radiation. Consequently, the influence of color on net radiation is dependent upon whether the short wave radiation term or the long wave emitted radiation term is more significant. Using Stefan's Law, R1 = e a T4 (19) where R1 = long wave emitted radiation, e = emissivity, a = Stephan-Boltzmann constant, T = absolute temperature, with an emissivity equal to 0.90, we can calculate the influence of a 1° C difference between isogenes (which is a typical midday difference for Liberty and Golden Liberty). The calculated thermal radiation -I -I at 26° C is 0.588 ly-min while at 25° C it is 0.580 ly-min . This represents a 1.4 percent difference which is considerably less than the 15 to 20 percent differences in reflectivity that are commonly 41 encountered at midday. Thus, the increased reflection of short wave radiation by Golden Liberty is likely larger than the decreased long wave radiation. This results in a potentially smaller net radiation for the light isogene. If we turn our attention to actual data, we will see in columns 4 and 5 of Tables 2 and 3 that, as expected, the light isogene has lower net radiation for all days throughout the entire season. (It should be noted that Aase (2) found no significant difference in net radiation between the isogenes.) Although the dark isogene has a larger net radiation throughout the season, the differ­ ence becomes quite small late in the season, as we observe in the 1977 data. If we plot net radiation vs. reflection, see Figure I, we observe a relationship that is best described as linear. Therefore, a linear regression was determined for all days and both seasons. Appendix 2 Tables 6 and 7 list the r , intercept and slope for 1976 and 1977. The r^ values were mostly in the high .80’s and .90's, indicating that most of the net radiation variation is associated with reflection variation. The mean seasonal value for the slope of the light iso­ gene in 1976.is 2.95. Its value for the dark isogene is.3.86. Like­ wise, the mean seasonal value for the slope of the light isogene in 1977 is 3.20; whereas, the dark is 4.32. The steeper slope for the dark isogene implies a larger net radiation for an equivalent reflection. This implies a smaller outgoing long wave radiation term Ne t Ra di at io n, ly -m in ' 42 Reflection, ly-min Fig. I. Net radiation vs. reflection for Compana on July 3, 1976. 43 for the dark isogene. The only explanation for this pattern is that the dark isogene has a lower emissivity which results in less outgoing long wave radiation [see eq. (19)]. Sensible Heat Flux Columns 10 and 11 in Tables 2 and 3 give information on the sensible heat flux to the air, Previous literature (24) as well as Table 4 indicate that the dark isogene maintains a higher canopy temperature (almost I0 C greater) at least during portions of the season. Since sensible heat flux is directly proportional to the temperature gradient, it is anticipated that the dark isogene will have a higher sensible heat loss. This is what we find for the greater part of the season. However, during the early part of and toward the end of the growing season, the difference between the isogenes is much smaller. We shall see later that these findings are highly correlated with the stomatal diffusive resistance data. Early in the season, when resistances are small and there is little difference between iso­ genes, most of the net energy is dissipated by evapotranspiration, and very little by sensible heat flux. Consequently, the sensible heat loss is small with little difference between isogenes. As the season progresses, the dark isogene experiences rising resistances more rapidly than the light isogene (this will be shown in data below). This results in the dark isogene’s evapotranspiration rates decreasing 44 Table 4. Canopy temperatures for Liberty and Golden Liberty, July 20, 1977«, Temp (0C) Time_________ _____ Golden Liberty_____________Liberty 6:40 AM 15.0 16.0 7:00 AM 15.5 17.0 7:30 AM 17.0 18.0 8:00 AM ' 18.0 18.5 8:30 AM ' 19.5 21.5 9:00 AM • ■ 21.0 22.5 9:30 AM 22.0 23.0 10:00 AM 24.0 24.0 10:30 AM 23.5 25.5 11:00 AM 24.0 25.5 11:30 AM 26.5 27.0 12:00 Noon 26.0 28.0 12:30 PM . 27.5 29.5 1:00 PM 28.0 31.0 1:30 PM 28.5 32.0 2:00 PM 30.0 32.0 2:30 PM 30.5 31.5 3:00 PM 30.5 32.0 4:00 PM 31.0 33.0 5:00 PM 28.0 30.0 5:30 PM 25.5 25.5 : 0 PM 25.5 25.5 Mean 24.4 25.9 45 more rapidly while its sensible heat fluxes are increasing more rapidly than the light isogene. At the end of the season, it is speculated that the stomatal resistances in the light isogene become comparable to that of the dark isogene, thus resulting in comparable sensible heat losses. Soil Heat Flux Columns 8 and 9 of Tables 2 and 3 give the soil heat flux for,the 1976 and 1977 seasons. In Table 3, the soil heat fluxes are equivalent early in the season. From June 30 to July 15, the dark isogene generally has higher fluxes. The remainder of the season, the fluxes are again equivalent. This trend is similar to the sensible heat and stomatal resistance data discussed above and below. Soil heat flux results from either solar radiation passing through the canopy, re­ radiation being emitted downward from the canopy, or sensible heat flux downward from the canopy. The higher reflectivity of the light isb- gene,should result in a greater proportion of the solar radiation reaching the soil surface in the light isogene. However, the lower canopy temperature and lower stomatal resistances in the light isogene should result in less energy reaching the soil surface. From the data it appears that the canopy temperature and stomatal resistance in­ fluences are the more important, resulting in smaller soil heat fluxes in the light isogene for the majority of the season. 46 Evapotranspiration The dependent variable of the energy balance equation, which is calculated from the other measured variables, is evapotranspiration, LE (see eq. (13)). The LE data are found in columns 2 and 3 of Tables 2 and 3. The dark isogene appears to use more water early in the season (24 percent greater on June 24, 1977). This early trend was probably missed in the 1976 season. By about July 6, for the.1977 data, the light isogene had a higher LE rate which continued until approximately June 15 (July 28 for the 1976 season). Following this the isogenes were fairly equivalent in LE rates. As noted above, this pattern resembles the pattern found in the sensible heat flux data and the stomatal diffusive resistance data. Early in the season, with small equivalent resistances in both isogenes, the LE rates are high with the light isogene being smaller because of its greater reflectivity and slower growth rate. During the middle portion of the season the high resistances of the dark isogene and slower growth rate more than com­ pensate for its greater net radiation load resulting in smaller LE rates. Finally, at the end of the season, where reflectivities are comparable and resistances probably comparable, the LE rates are comparable. Appendix Tables 8 and 9 give data on the ratio LE/R^. A ratio greater than one would indicate advection was taking place. Consider­ able advection, as noted in the literature review, causes some error 47 in the Bowen ratio energy balance method. In 1.976 the area west of ■ the experimental plots was planted in winter grain. Since winds in. this area are predominantly westerly, it was speculated that little advection would occur. This was the case in 1976, where the ratios are primarily less than one. In 1977 a different situation occurred, where the area immediately west was summer fallow. Advection was noticed early in the season (June 24, 1977 and June 27, 1977), where the ratios are greater than one. However, for the remainder of the season advec- ' ■ tion only infrequently occurred in the early morning and late evening hours. Stomatal Diffusive Resistance Table 5 gives the stomatal diffusive resistances for four dif­ ferent periods in the 1977 season. Early in the season, June 24, the resistances are small with little difference between the isogenes. By July 11 and 12 the dark isogene had slightly higher resistances, with -Ithe mean for the dark being 8.7 sec-cm (both days included) and the -Imean for the light being 7.1 sec-cm . Late in the season, July 20, the mean for the dark isogene was 41.7 sec-cm ^while that for the light was 19.4 sec-cm \ This was a statistically significant difference. Consequently, as the season progresses and the stored soil water is decreasing, the stomatal resistances are increasing with the dark isogene apparently undergoing a -larger increase. This trend is Table 5. Stomatal diffusive resistance for Liberty and Golden Liberty (sec/cm). Kamp1s farm (1977). 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 F-Stat June 24: Liberty Golden Liberty 2.3. 1.6 2.7 2.2 2.3 2.5 3.6 3.9 3.1 3.1 2.8 3.1 .22 July 7: Liberty Golden Liberty 6.3 8.3 14.4 17.9 12,3 10.6 .67 July 11: Liberty Golden Liberty 8.5 5.5 11.7 9.9 12.4 14.8 7.3 ~ ~ 7.4 6.0 5.7 1.40 £ July 12: Liberty Golden Liberty 5.7 3.5 1.5 7.0 13.2 6.6 .64 July 20: Liberty Golden Liberty 17.8 23.4 11.6 6.7 20.8 8.4 69.3 33.1 82.2 38.3 36.9 18.1 14.15* *Signifleant at p = .025. 49 probably associated with more rapid maturation rate of the dark culti­ vate since resistances are dependent upon age. If it were strictly a response to the differences in canopy temperature or chlorophyll con­ centration, then there should have been differences in resistances early in the season. This was not observed. The replicated resistance studies performed on plots at the Bozeman station are summarized in Table 6. The study performed in the morning revealed no significant differences between isogenes with the -I -Imean for the dark being 4.7 sec-cm and that for the light 5.2 sec-cm The afternoon study showed a statistically significant difference, with the dark isogene having larger resistances (13.8 sec-cm ^ compared to 10.3 sec-cm for the light isogene). When the isogenes are grown at the Bozeman farm (where the annual precipitation is 5 in. more than at Kamp * s farm), the differences in growth rates are not as notice­ able. It is possible that the higher LE rates in the Bozeman area, because of more available soil water, would result in smaller tempera­ ture differences between the isogenes. If the temperature differences and/or the growth rate differences are related to stomatal resistances, then it is reasonable for the differences in stomatal resistances to be smaller at the Bozeman farm. These data appear to indicate a daily pattern in stomatal resistances, with the dark isogene increasing its resistances more rapidly than the light isogene. This daily trend is likely associated with canopy temperature. Table 6. Stomatal diffusive resistance (sec/cm). Bozeman farm (1977) Rep I Rep 2 Rep 3 Rep 4 Rep 5 Rep 6 Rep 7 F-stat 9:00 AM-12:00 — Liberty 5.5 4.0 3.9 3.8 4.3 4.6 6.9 I )| Golden Liberty 6.7 5.9 4.2 4.5 5.7 4.4 5.3 12:00- 3:30 PM — Liberty 33.8 12.3 8.6 11.3 9.6 10.2 10.7 f. R* Golden Liberty 23.3 7.0 9.1 7.1 8.4 7.9 9.1 * Significant at p = .05 51 Soil Water Use Soil water use data obtained with the neutron meter are given in Table 7. This table gives the usage by 6 inch (15.24 cm) soil depth intervals for the Compana lines in 1975 and 1976 and the Liberty lines in 1976 and 1977. No definitive use-by-depth patterns are visible. In analyzing total consumption, we find Compana using 0.41 in. (1.04 cm) more water than Golden Compana in 1975. In 1975 these isogenes were grown at the Bozeman station where the wetter conditions probably lessen the influence of growth rate and diffusive resistance differences. In 1976 these isogenes were grown under drier conditions at Kamp1s farm and the result was Golden Compana used 0.40 inches (1.02 cm) more water than Compana. In 1976 Liberty used 0.05 inches (0.13 cm) more water than Golden Liberty which was probably due to the influence of a cold, wet growing season. A much drier year occurred in 1977 and the result was that Golden Liberty used 0.36 inches (0.91 cm) more water than Liberty. Figures 2-5 give the cumulative soil water use for the two lines in 1975-1977. In all four cases the dark isogene initially used more water. As mentioned previously, this correlates well with the higher net radiation load and the faster growth rate of the dark isogene. Figure 2 presents data obtained at the Bozeman farm with the Compana line. In this case the dark isogene appears to maintain an equivalent or larger LE rate throughout the season. As mentioned earlier, the Table 7. Soil water use by depth. Inches 6-12 12-18 18-24 24-30 30-36 36-42 42-48 48-54 54-60 Total 1976: Liberty .71* .69 .62 .54 .46 .32 .35 .16 3.85 Golden Liberty .76 .72 .71 .58 .44 .29 .21 .11 3.80 1977: Liberty .95 .91 .89 .72 .56 .42 .26 .12 .07 4.90 Golden Liberty .94 .90 .90 .79 .69 .57 .35 .12 .00 . 5.26 1975: Compana .48 .66 .71 .70 .70 . 66 .52 .41 .30 5.56 Golden Compana .50 .65 .72 . 66 . .65 . 60 .47 .36 .24 5.15 1976: Compana .69 .64 .62 .56 .45 .39 .17 .08 3.60 Golden Compana .64 .69 .72 . .63 .54 .43 .27 .08 4.00 *The addition of the rain factor is not included. 53 A C o m p a n a G o l d e n C o m p a n a Sept. IAny. IJuly I Figure 2. Cumulative soil water use by Compana and Golden Compana„ Bozeman farm (1975). iu la ti ve w at er us e 54 ▲ C o m p n n a B Golden Compana # H a i n f a 11 «h I 6 B B ▲ A B ▲ B A B ▲ A I 4 a 2 • • • • June I A B July I Auy. I Figure 3. Cumulative soil water use by Compana and Golden Compana„ Kamp1s farm (1976), an d 55 10 A Liberty ■ Golden Liberty # Rainfall A A WI--? June I July I Aug. I Figure 4. Cumulative soil water use by Liberty and Golden Liberty. Kamp1s farm (1976). 10 56 C 8 5 .5 2 I 0) CO3 S % 3 Q> 5 tj I 6 4 2 A Liberty 0 Golden Liberty # Rainfall A A A June I July I Aug. I Figure 5. Cumulative soil water use by Liberty and Golden Liberty. Kamp's farm (1977). 57 higher precipitation at the Bozeman farm appears to lessen the.dif­ ferences in stomatal resistances and growth rates which result in the reflectivity differences being more important in determining LE rates. The 1976 data on Compana - Golden Compana,, Figure 3, show the expected crossover where the light isogene uses more water later in the season. This crop was grown at Kamp1s farm, which is much drier. The crossover, as mentioned above, is apparently caused, by higher stomatal resistances in the eark isogene more than compensating for the lower reflectivity in the dark isogene.' Figure 4 gives the data for Liberty - Golden Liberty in 1976. There is no crossover point with the final seasonal total indicating equivalent LE rates. This season there was con­ siderable more rainfall (5.2 inches compared to I;8 inches in 1977) which probably accounts for the light isogene not crossing over as in 1977. Finally, Figure 5 gives the data for Liberty - Golden Liberty in 1977 and indicate^ the expected crossover with the light isogene using 0.50 inches (1.27 cm) more water. Figures 3 and 5 appear to correlate well with the water use data obtained from the energy balance method in 1976 and 1977. Screening Tests for Drought Resistance in Barley Cultivars Osmotic Potential Morning osmotic potentials, afternoon osmotic potentials, and (afternoon minus morning osmotic potentials) were determined for the 50 458 cultivars over three seasons. These readings are given in Appendix Tables 15 through 18. In each year samples were taken twice: I) some­ time prior to heading and 2) sometime after heading. Two approaches were used in determining the reliability and the differentiating ability of these measurements: I) a table of linear correlations comparing one season with the next was constructed and 2) a replicated study and its associated analysis of variance was run in 1977. Table 8 lists the coefficients obtained by correlating the morning and afternoon osmotic potentials for a particular measuring time in one season with a comparable time in another season. Other than two ‘ values above r = .30, the values are generally low and indicate little repeatability across seasons. Using two replicates, an.analysis of variance was determined on . the morning and afternoon values on June 22, 1977 and July 20, 1977. Table 9 summarized this analysis. The only F-ratio which approaches significance occurred on July 20 morning. Its ratio of 1.75 is signifi­ cant at p = .10. The lack of significant differences between culti­ vars in this study indicates it may not be possible to differentiate cultivars on a measure of osmotic potential. Table 10 gives the correlation coefficients from correlating Eslick1s drought resistance ratings with osmotic potential in 1975. The readings on July 14 give little indication of any correlation. How­ ever, on August 12, there are two conflicting patterns. In the morning, 59 Table 8„ Correlation coefficients comparing osmotic potentials over three seasons« July 14. 1975 Aug. 12. 1975 July 14, 1976 Aug. 10, 1976 AM PM AM PM AM PM AM PM July 14. 1976 AM .37* . PM .33 Aug. 10, 1976 AM .10. PM .21 June 22. 1977 ■ AM .04 .06 PM .14 .15 . July 20. 1977 AM .17 .04 ' PM .25 .01 *Significant at p - .05. 60 Table 9. ANOVA for osmotic potentials in 1911. df • SS MS F June 22, 1977— AM: . Treatments 46 Error 47 Total . 93 PM: Treatments 47 Error. 48 Total 95 July 20, 1977— AM: Treatments 33 Error 34 Total 67 PM: Treatments 16 Error 17 Total 33 56.17 ' 58.20 ■ 11,4.37 1.22 1.24 .99 90.07 . 69.56 159.63 1.92 ■ 1.45 1.32 160.13 4.85 . 1.75* . 94.06 2.77 254.19 96.32 6,02 .89 114.82 6.75 211.14 *Signifleant at P = .10. 61 Table 10„ Correlation coefficients from correlating Eslick1s drought resistance ratings with osmotic potential. 1975. duly 14, 1975 Aug. 12, 1975 Yield Level AM PM ■ A AM PM A bu/A 10 .07 .04 -.02 .07 -.14 -.19 20. -.03 .07 .08 .17 -.04 -.15 30 . .03 .27 .20 .15 —. 08 -.19 40 .08 .23 .13 -.04 -.06 -.03 50 .07 .15 .08 -.10 -.03 .03 60 .08 .12 .04 -.09 -.01 .05 70 . .06 .11 .05 ■ -.12 . -.02 .06 80 .07 .10 .04 -.12. -.01 .06 90 .06 .09 .03 -.13 -.01 .07 100 .06 .09. .03 -.13 -.01 .07 H O .06 .09 .03 -.13 -.01 .07 120 .06 .08 .03 -.13 -.01 .07 Slope-Method E .06 .06 .01 -.14 .00 . .08 p (.05) - .28 62 the coefficients are reasonably high (e.g., .07 and .17) at low yield levels and then reaches, reasonably high negative values (e.g., -.13 and -.14) at high yield levels. This indicates a positive correlation with drought resistance. However, the afternoon values and difference values on August 12 have reasonably high negative, values (e.g., -.14 and -.19 at 10 bu/a) at low yield levels and approach low values (e.g., -.01 and .07 at 120 bu/a) at high yield levels. !This indicates a negative cor­ relation with drought resistance. Table 11 gives comparable data for 1976. Here we see osmotic potentials for the morning of July 14, the afternoon of August- 10, and the osmotic potential differences of August 10 showing reasonably good correlations with drought resistance. Again, the correlations are primarily negative (e.g., -.17, -.23, and -.34) at. low yield levels with comparably high positive values (e.g., .11, .27 . and .13) at high yield levels.. .The correlations with the slope (.09 to .27) imply that the plants with low osmotic potentials yielded better under drought conditions and poorer under wet conditions.■ Table 12 gives comparable data for June 22, 1977. Both replicates in the morning indicate negative correlations with drought resistance, with negative values (e.g., -.27 and -.06 at 10 bu/a) at low yield levels and positive values (e.g., .19 and .11.at 120 bu/a) at high yield . levels. The potential difference for replicate I shows a conflicting, positive correlation again, with positive values (e.g., .12 at 10 bu/a) at low yield levels and negative values (e.g., -.14 at 120 bu/a) at . 63 Table 11. Correlation coefficients from correlating Eslick1s drought resistance ratings with osmotic potential, 1976. July 14, 1976____ ■ August 10, 1976 Yield Level AM PM A AM PM A bu/A 10 -.17 -.06. -.06 .26 -.23 -.34 20 -.14 .05 -.02 .04 ■ —. 16 -.17 . 30 -.12 .27 .13. .30 .12 ' -.15 40 .04 .25 ■ ,18 .30 .34 ' .03 50 .08 . .18 .15 .22 .33 .09 60 .10 .15 .13 .20 .31 . .09 70 .10 .14 . .13 .17 .31 .11 80 .10 .13 .12 . .16 .30 .11 90 .10 . .12 .12. .15 .30 .12 100 ..Ir . .12 ; .12 . .15 .29 .12 H O . .11 .12 .12 .14 .29 ' .12 • 120 . -I! . .11 .12 .14 .29 .12 Slope-Method E . .11 .09 .11 .12 ' .27 .13 p (,05) = .28 64 Table 12. Correlation coefficients from correlating Eslick1s drought resistance ratings with osmotic potential, June 22, 1977. Yield Level AM-. I AM-2 PM-I PM-2 i—l .01). Also, in all cases the variation within cultivars was non-significant. This indi­ cates that the method does differentiate between cultivars. In summary, a measure of water retention, or loss, appears to I) differentiate between cultivars, and 2) give repeatable measurements, at least with whole plants. A drying interval of 24 hours appears sufficient to give good correlations with drought resistance. In all instances, percent water loss is negatively correlated with drought resistance with the better correlations giving values from .15 to .35. Finally, in most cases, the generally smooth transition from negative correlations at low yield levels to comparable positive correlations at high yield levels, as well as the positive correlations with the slope (Method E)$ indicates that the plants that had high water reten­ tion yielded better under drought conditions and poorer under wet conditions. Modulus of Elasticity Values for the modulus of elasticity in 1976 and 1977 are given 88 , Table 24, Analysis of variance summaries for whole plant dry-down 1976. Drying interval: Source of Var. I. DF 5 hr SS MS . F Source of Var. DF SS MS F Between Cult. 49 22616.6 461.6 5.7* Within Cult. 4 226.9 56.7 .4 Error 186 15046.9 80.9 Error 231 37436.6 162.1 Total 235 37663.5 Total 235 37663.5 Drying interval: 6 hr Source of Var. DF ■ SS MS F Source of Var. DF SS MS F Between Cult. 49 152049.0 3103.0 7.6* Within Cult. 4 3561.i 890.3 .9 Error 192 78479.2 408.7 Error 237 226967.0 957.7 Total 241 230526.0 Total 241 230526.0 Drying interval: . 12 hr Source of Var. DF SS MS F Source of Var. DF SS MS F Between Cult. 49 281208.0 5738.9 8.5* Within Cult. 4 2666.2 666.5 .4 Error 193 131045.0 679.0 Error 238 409586.0 1721.0 Total 242 412253.0 Total 242 412253.0 Drying interval: 24 hr Source of Var. DF SS MS F Source of Var. DF SS MS F Between Cult. 49 352648.0 7196.9 6.9* Within Cult. 4 4501.0 1125.3 .5 Error 192 200428.0 1043.9 Error 237 548574.0 2314.7 Total 241 553075.0 Total 241 553075.0 Drying interval: 48 hr Source of Var. DF SS MS F Source of Var. DF SS MS F Between Cult. 49 402392.0 8212.1 6.3* Within Cult. 4 6685.8 1671.4 .6 Error 192 249669.0 1300.4 Error 237 645375.0 2723.1 Total 241 652061.0 Total 241 652061.0 Significant at p= .01 89 Table 25. Analysis of variance summaries for leaf dry-down; 1976. Drying interval: O-Shr . Source of Var. DF SS MS F Between Cult. 49 137819.0 2812.6 10.9 Error 145 37266.4 257.0 Total. 194 175085.0 Within Cult. 3 802.9 267.6 ,3 Error 191 174282.0 912.5 Total 194 175085.0 - Drying interval: 0-oven dry Between Cult. 49 72366.7 1476.9 * 5.4 Error 147 • 39968.4 271.9 Total 196 112335.0 Within Cult. 3 668.4 222.8 .4 . Error 193 111667.0 . 578.6 . Total 196 112335.0 ‘Significant at p= .01 90 Table 26. Analysis of variance summaries for head dry-down Grain weight included Source of Var. DF SS MS F Between Cult. 49 7679.8 156.7 11.0 Error 199 2850.8 14.3 Total 248 10530.6 Within Cult. 4 5.8 1.4 .03 Error 244 10524.8 43.1 Total 248 10530.6 Grain weight subtracted * Between Cult. 49 111518.0 2275.9 7.1 Error 194 62255.7 . 320.9 Total 243 173774.0 Within Cult. 4 493.2 . 123.3 .2 Error 239 173281.0 725.0 Total 243 173 774-.0 Significant at p = .01 1976 91 in Appendix Table 29. In analyzing these data, it should be remembered that the values in 1976 were derived from field grown plants, whereas, those in 1977 were from greenhouse grown plants. Table 27 lists the correlation coefficients from correlating.modulus of elasticity, with Eslickrs drought resistance ratings for 1976 and 1977. The values for the various yield levels in 1976 range from .33 at 10 bu/a to -.35 at 120 bu/a. This appears to do a very good job of differentiating culti- vars as to drought resistance. The positive correlations at low yield levels mean that drought resistant cultivars have high moduli! of. elasticity, or are very inelastic. This is in agreement with Cowan and Milthofpe (18). The correlation with slope gives a value of r = -.35. This implies that plants with high moduli! yielded better under drought conditions and poorer under wet conditions. Although the correlation. coefficients for 197,7 begin with .32, the lack of a smooth transition to low correlation at intermediate yield levels, as well as the low correlation with the slope (r = .10), indicate that calculating moduli! of elasticity for greenhouse plants is much less effective in differentiating cultivars as to drought resistance. Plant Height, Percent Plump Kernels, 100 Kernel Weights Several miscellaneous measures were taken in the drought line grown at Kampr s farm in 1977. These included plant height, percent plump kernels, and 100 kernel weight. Appendix Table 30 gives the 92 Table 27. Correlation coefficients from correlating Eslick1s drought resistance ratings with modulus of elasticity. 1976 & 1977« Yield Level e - 1976 e - 1977 bu/A 10 .33 .32 20 .28 -.11 30 -.19 -.08 40 -.34 .05 50 -.35 .08 60 -.37 .09 70 ■ -.35 .09 80 -.35 .09 90 -.35 .09 100 -.35 .10 H O -.35 .09 120 -.35 .10 Slope-Method E -.35 .10 p (.05) = .28 93 original data for these measures. The correlation coefficients from correlating these measures with Eslickrs drought resistance ratings are given in Table 28. There is some indication that both percent plump kernels and 100 kernel weight are positively correlated with drought resistance. That is, both begin with positive correlation (e.g., .15 and .12 at 10 bu/a) and drop to low correlations at the higher yield levels. Both plant height A, which includes the height to bottom of head, and plant height B, which includes the height to the top of the awns, give good positive correlations with drought resistance (e.g., .19 and .16 at 20 bu/a). The correlations with the slope (Method E) of r = -.34 and -.32 imply that the taller plants yielded better under drought conditions and poorer under wet condi­ tions. Multiple Correlation Drought resistance is a complex phenomenon involving potentially many facets of drought tolerance and/or many facets of drought avoid­ ance. Consequently, it is likely that in order to adequately differen tiate cultivars as to drought resistance it will be necessary to use some combination of screening tests. Therefore, five screening tests that showed reasonably good simple correlation with drought resistance were taken in all possible combinations and multiple correlation coefficients computed between EslickrS drought resistance ratings and 94 Table 28. Correlation coefficients from correlating Eslick's drought resistance ratings with % plump kernels, 100 kernel weight, plant height. A and B. % plump 100 kernel Plant height Yield Level kernels weight A B bu/A 10 .15 .12 .18 .13 20 -.04 -.03 .19 .16 30 -.15 -.16 -.18 -.19 40 -.12 -.15 -.44 -.42 50 . -.09 -.11 -.41 -.39 60 -.07 -.09 -.38 -.35 70 —. 06 -.08 -.38 -.36 80 -.06 -.08 -.38 -.35 90 .05 -.07 -.37 -.34 100 -.05 -.07 -.37 -.34 . H O -.05 -.07 -.37 -.34 120 -.05 -.07 -.36 -.33 Slope-Method E -.04 -.06 -.34 -.32 p (.05) = .28 95 these combinations of screening tests. These coefficients are listed in Table 29; Multiple correlation coefficients are always positive; thus the trend from positive to negative or vice versa will not be visible in these data. As one would expect, the best correlations occur when all five tests are correlated with Eslick's drought resistance ratings. The values range from .62 at 10 bu/a to .51 at 120 bu/a and .51 for the correlation with the slope (Method E). With combinations of four tests, there are three combinations that resulted in significant correlations at a yield level of 10 bu/a. These are (osmotic potential, soil water use, modulus of elasticity, and plant height with a value of .61), (osmotic potential, soil water use, water loss, and plant height with a value of .62), and (osmotic potential, soil water use, modulus of elasticity, and water loss with a value of .62). With combinations of three tests, there are five combinations that resulted in significant correlations at a yield level of 10 bu/a. These are (osmotic potential, water loss, and modulus of elasticity with a value of .56), (osmotic potential, soil water use, and modulus of elasticity with a value of .61), (osmotic potential, water loss, and plant height with a value of .45), (osmotic potential, water loss, and soil water loss with a value of .49), and (osmotic potential, soil water use, and plant height with a value of .44). 96 Table 29. Multiple correlation coefficients from correlating Eslic drought resistance ratings with various combinations Of screening tests o Yield O.P.,W.L., O.P.,M. E. , O P.,W.L.. O P. ,M.E. . M.E.,P.H., O I'. ,W Level s . w . u . , s . w . u . , S w . u . , s W.U., S.W.U. , M.E. ,P (bu/a) M.E. ,P.H. P.H. P 11. W L . W.L. 10 .62 .61* .62* .62* .50 .56 20 .41 .39 .39 .39 . 36 .37 30 .34 .33 .26 .26 .28 .34 40 .56 .56 .39 .39 . 56 .54 50 .54 .54 .44 .41 .54 .52 60 .54 .54 .42 .44 .54 .51 70 .53 .52 .42 .42 .52 .50 80 .52 .52 .42 .42 .52 .49 90 .52 .52 .42 .42 .51 .49 IOO .52 .52 .42 .42 .51 .49 no .52 .51 .42 .42 .51 .49 120 .51 .51 .42 .42 .51 .48 Slope .51 .51 .43 .43 .50 .48 Yield O.P. ,M.E. , 0 .P.,W.L., O.P.,M. W.L. , M .K.. W.L .,M.E., O.P.,W. L. , Level P.H. M E. S.W.U. P.H. S.W .0. P.H. (bu/a) 10 .51 .56* .61* .43 .48 .45 * 20 .37 .36 .38 .33 .32 .21 30 .33 .26 .23 .28 . 2 2 31» 40 .54 .37 .38 .54 .38 .45 50 .51 .38 .41 .51 .38 .40 60 .51 .41 .44 .51 .41 .36 70 .50 .39 .42 .49 . 38 .36 80 .49 .39 .42 .49 .38 .35 90 .49 .40 .42 .46 .38 .35 100 .49 .39 .42 .48 .38 .35 H O .48 .39 .42 .48 .38 .34 120 .48 .39 .42 .46 .38 .34 Slope .48 .40 .43 .47 .39 .32 ^Significant at p = .05 ^Significant at p = .01 "*0.P : Osmotic potential difference on Aug . 10,1976. W.L. z Percent water loss of young plants, 1975. S.W.U. I Total soil water use at 6-12 in, 1977. M.E. = Modulus of elasticity, 1976. P.H. = Plant height to tip of awns, 1977. 97 Table 29. Multiple correlation coefficients from correlating Eslick1s drought resistance ratings with various combinations of 5 screening tests. Cont. Yield 0.P 11WL,, O.P..P.H., W.L..P.H., P.H..M.K.. O.P., O.P., O.P., Level S.W.tl. S.W.U. S.W.U. S.W.U. P.H. W.L. M (bu/a) 10 . -19 .44* .37 .48 .35* .45* .51' 20 .20 .23 .18 .35 .21 .18 .36 30 .21 .28, .22. .26 .28., .20 .23 40 . IB .44* .45. .56* .43** .17 . 35 50 .17 .40' .41 .54* -39% .16 .37 60 .18 .37 .38 .54* .35% .16 .40 70 .10 .37 .37 .52 .35% .16 .38 BO .18 .36 .37 .51 .35* .16 .39 90 18 .36 .36 .51 .31% .16 .39 100 .18 .36 .36 .51 ■ 34% .16 .39 H O .18 .35 .35 .51 .34 .16 .39 120 .16 .35 .35 .50 .33 .16 .39 Slope .18 .34 .33 .50 .32 .16 .40 Yield O.P., W.L. , M. E.. P.H. , W.L., W.L. , M.E. , Level S.W.U. P.H. P.H. S.W.U. M.K. S.W.U. S.W.U (bu/a) *IO .M .31 .35 .30 .41 . 35* .46* 20 .20 . 16 .32 .18 .29 .08 .31 30 .15 .22 .26.. .19 .22 .14 .19 40 .11 .44** .54** .43** .36 .18 .37 50 .15 .40* .51* .40* .35 .15 .38 60 .16 .36* .51* .37* .38 .16 .41 70 .16 .36* .49* .37* .35 .13 .38 80 .16 .35* .4")% .36* .35 .13 .38 90 .17 .35* .48* .36* .35 .13 .38 100 .17 .34* .35* .35 .13 .38 H O .17 .34* .48* .35* .35 .12 .38 120 .17 .34* .48* .35* .35 .12 .36 Slope .17 .32 .47* .33 .35 .12 .39 '‘Significant at p = .05 "Significant at p = .01 ***().H.: Osmotic potential difference on Aug. 10,1976. W.L. : Percent water loss of young plants, 1975. S.W.U.: Total soil water use at 6-12 in, 1977. M.K.: Modulus of elasticity, 1976. I'.II. : Plant height to I ip of awns, 1977. 98 With combinations of two tests, there are six combinations that resulted in significant correlations at a yield level of 10 bu/a. These are (osmotic potential and plant height with a value of .35), (osmotic potential and water loss with a value of .45), (osmotic potential and modulus of elasticity with a value of .51), (osmotic potential and soil water use with a value.of .44), (water loss and soil water use with a value of .35), and (modulus of elasticity and soil water use with a value of .46). As noted in the discussion under osmotic potential, the useful­ ness of osmotic potential as a screening test is questionable. Fur­ thermore, the tediousness of the modulus of elasticity test makes it questionable in initial screening processes. Therefore, if we delete these two tests we find the one remaining combination of three tests to give a correlation of .37 at 10 bu/a and .35 at 120 bu/a. Neither of these values are statistically significant. With combinations, of two tests, there is one combination that gives significant correla­ tion at 10 bu/a. This is (water loss and soil water use) with a value of .35 at 10 bu/a. These values for multiple correlation are slight improvements over the typical correlation values in the .20's found when employing simple correlation. The inclusion of modulus of elas­ ticity with these three tests results in values increasing to the high .40's and low .50's. , Chapter 5 SUMMARY AMD CONCLUSION Color as a Drought Resistance Trait in Barley Isogenes Reflection data showed that the light isogene has greater reflec­ tion than the dark isogene for the majority of the season. Seasonal . averages were one to two percent greater for the light isogene. Early■ in the season the greater reflectivity of the light isogene is apparently related to its smaller water consumption. However', from mid-season on, the light isogene consumes more water than the dark iso­ gene. In fact, for seasonal totals, the light isogene uses as much or more water than the dark isogene. This surprising finding is apparently related to the higher stomatal resistances of the dark isogene from mid-season on. These higher stomatal resistances of the dark isogene are in turn related to the faster growth rate and higher canopy temperature of the dark isogene. In this instance, a dominant drought resistance trait(s), stomatal resistance and/or maturation rate, has more than compensated for a less influential drought resis­ tance trait, high reflection. The result is that with the two isogenic pairs studied, the dark isogene is better adapted to arid regions. Screening Tests for Drought Resistance in Barley Cultivars Osmotic potential does not appear to be a promising test because of its unreliability and inability to significantly differentiate 100 between cultivate. However, morning potentials early in the season and afternoon osmotic potentials late in the season appear to be correlated with drought resistance. The best differentiator as to drought resis­ tance is the osmotic potential difference late in the season which gave correlations coefficients up to the high teens. In nearly all cases, the lower the potential, the larger the drought resistance. Soil water use has good potential as a screening test. The best correlations with drought resistance occur at the shallow and deep depths. The better correlation coefficients ranged from .15 to .25. The best method is a single determination of soil water con­ tent after the crop has been harvested. Generally, the less water used at the shallow and deep depths, the larger the drought resis­ tance. Water use at the intermediate depths indicate that while drought resistant cultivars use more water than drought sensitive cultivars at a wet site (Bozeman farm), they use less water at a dry site (Kamp's farm). Another potentially good screening test is the measure of water loss after dry-down. Optimum differentiation occurs for a drying interval of 24 hours, with whole plants being the best sample. The better correlation coefficients ranged from .15 to .35. The smaller the water loss, the larger the drought resistance. Probably the best screening test was a measure of the modulus of elasticity. This gave correlation coefficients mostly in the I 101 mid-thirties. However, the tediousness of the procedure makes it of questionable value in preliminary screening. The higher the modulus (the less the elasticity), the larger the drought resistance. Plant height, percent plump kernels, and 100 kernel weight are all positively correlated with drought resistance. However, plant height gives far better correlations with the better coefficients reaching the low thirties. Its ease of determination makes it a good candidate for a screening test. . If we look at combinations of tests (with the exclusion of the osmotic potential test), we find that while simple correlation gave coefficient values in the .20's, multiple correlations of two tests gave values in the .30's, multiple correlations of three tests gave values in the .40's, and multiple correlations of four tests gave values in the .50's. Screening tests such as plant height and soil water use are likely dependent on environmental conditions. In fact, we noted that while drought resistant cultivars used more.water than drought sensi­ tive cultivars at a wet site (intermediate depths), they used less water at a dry site. This dependence on environment limits any inter­ pretation of this thesis data since the plants were grown in only one or two locations. Further experimentation, involving growing the plants in various locations, and thus environments, should be done, before any conclusive generalizations be drawn. Plant water loss upon dry-down, as well as the modulus of elasticity, are probably independent of environment. This makes them potentially more useful screening tests. 102 APPENDIX 104 Appendix Table.I. Key to symbols used in Appendix Table 2 and 3. Time: Data in minutes ETPD: Evapotranspiration - dark isogene, ly-min-1 ETPL: Evapotranspiratiori - light isogene, ly-min""1 ARADND: Net radiation - dark isogene, ly-min-1 ARADRD: Reflected radiation - dark isogene, ly-min-1 ARADNL: Net radiation - light isogene, ly-min”1 ARADRL: Reflected radiation - light isogene, ly-min--* ASOIHD: Soil heat flux - dark isogene,.ly-min-1 ASOIHL: Soil heat flux - light isogene, ly-min"! BRL: Bowen ratio - light isogene BRD: Bowen ratio - dark isogene ARADT: Solar radiation, ly-min-1 CETPD: Cumulative evapotranspiration - dark isogene, Iy CETPL: Cumulative evapotranspiration - light isogene, Iy CRADND: Cumulative net radiation - dark isogene, Iy CRADRD: Cumulative reflected radiation - dark isogene, Iy CRADNL: Cumulative net radiation - light.isogene, Iy CRADRL: Cumulative reflected radiation - light isogene, Iy CSOIHD: Cumulative soil heat flux - dark isogene, Iy Appendix Table I. Key to symbols used in Appendix Table 2 and 3. cont. CSOIHL: Cumulative soil heat flux - light isogene, Iy CSENHD: Cumulative sensible heat flux - dark isogene, Iy CSENHL: Cumulative sensible heat flux - light isogene, Iy CRADT: Cumulative solar radiation, Iy 105 106 Appendix Table 2. Energy balance values for Compana - Golden Compana . July 4 , 1976. T h i s table will be icontinued through August 5,1976. TlHt * 0 » f T P O • JO C T H L ••Ol APAllND ••07 3 | 3 - | I 3 » 1 -(T — 0 0 • «06 1 o 1 - + H • • 0 0 A s eiHO -•oi ASBlHL ••Ol PPL - 9 .56 HRD 151.JB APAUT - C f TlHE * 0 ' CfTHr O l C f TPL • 1 * l B 1 I(- • 1 • 63 l | 3 - | I l > 1 -(T ••0* •!'27 C H iDRL • • 0 2 cseI o Y 26 Cs o I HI. •• 1 0 C S f N M D l i e d d T L v ,bv C W AUT -.35 TlHf * 0 * ETP U ETP L •*oo A P A O N D ••06 3 | 3 I | I 1 u 1 -(T IO O •»06 A H iOPL A s einD -•ot AseiML ••rl PPL - 3 7 . S C MRD IOC . »5 ARtOT — O? T I mE * 0 * CfTHr • 0 1 C f TPL / d a l B 1 - „ I t 96 l B 1 - | - l u 1 I(T • • 0 1 t 36 C H iOPL • 0 2 Cse I d Y /Ov CseiHL 23 C S E N M U •1.96 T i e d d T 2 32 CPtOT — 71 TlHf *0 ' f T P U • 0 0 ETH L ••oi 3 u 1 - „ — - 0 7 3 | 3 I u I 1 u 1 -(T • 0 0 "'O* AHtDPL tee Two ot ASBIHL ••ol PPL • 8 .*9 B PO 2 22 Jl ARA^T * • 0 2 TlHf 6 O 1 C f THT •ot CfTPL ••31 l u 1 - „ Y • * • 0 « l u 1 I | I l u 1 -(T /.b L ■ aaa l | 1 I + H C s e i H O .35 CseiHL ••*o A i e „ d Y - 3 .o9 l i B d d T •3.63 l | 1 nLny -!•c* TlHf •o* E T P U •CO ETP L * • 0 0 A R A O N D — 07 A R A D R O A R tONL • • 0 0 ••06 ARtDPL ••oo A s e i H O -•ot ASeiML ••oi BPL 26 *9 HRO 1*6.69 A R tOT — C2 TImE 1 O' C f THr 'Cf C f TPL ••35 l | 1 -(- b 31 C R t D R D l u 1 I(T • • 0 1 6 6 CP4OPL .0 3 C se I o Y / t /b. Cs o IHL ••60 l w e „ o - • * • 0 0 CspM M L • * • * 1 l u 1 l y TlHf loo* ETP U E TPL •oi A R A O N D - 0 6 A R t D R O A * tONL • 0 0 **07 ARtDPL A s e i n o Ot tseiHL ••oi BPL 8.S9 BPO 2 3 * . 6 8 1 | 1 - y • • 0 2 T l ME 1 0 0 ' C f THr •03 C f TPL • • M l | 1 I „ — •7»oi C P t O R O l | 1 -(T /.a •■ 23 C H 4ORL • 09 c s e i n n -!•66 CseiNi — 79 l i e „ o I • 5 . 3 2 C s p N M L •5.66 l B 1 - y •1*79 TlHt l^O* ETP U •CO ETPL • 0 0 A P A U N O 06 A R t O P D A R tDNL • 0 0 e e O? 3 > 1 -uT • • 0 0 AteiHD -•ot tseiHL ••oi PPL 17.06 BRP 2 6 7.78 A R AUT - • 0 2 TlHE 1 ? 0 * C f THr •03 C f TPL • M * l u 1 - (I • ■ • 6 6 C R t O R D l u 1 I(T /0 * " T 'A! C W 4ORL • o* C s e I H O t ot CseiHL • •SB C S E N H O -6.bl l i e „ d T • 6 * 8 1 l | 1 r s TlHf 1 * 0 ' ETP U E THL ••ot A P A D N D • • 0 7 A R t O R D ARtDNL • • 0 0 " 'O? APtD R L • • 0 0 A s eino • • 0 2 AgeiHL ••ol BPL - 3 .*9 BRO 1*3.33 APtOT • • 0 2 TIHf 1 * 0 ' C f T H f •0 * C f TPL ••60 l | 1 - „ — • 1 0 * 0 6 C R t D P D l u 1 I(T ••O t • # 3t l > 1 -uT •02 C s e i H O - 2 * 1 CseiNL • 1 • 1 7 C S E N M D •7.61 A i e „ d H •6.37 CRAUT - ? • * * TlHf too* E T P U C T H L • 0 * A R A U N O — 07 3 | 1 G| - A R t O N L • 0 0 — 06 3 u 1 | B H A s e i n o " • 0 2 ASBIML ••oi BRL . 0 0 BRO 168.29 ARA U T -•n? T IME too* C f THn •05 C f T P L •t3 l | 1 - (I • l l ' * 0 l + 1 - | I l u 1 I(T •00 e I O eOI l | 1 -|T •0 * C s e i n n e 63 CseiHL • I t C S f N M D • 6 .63 l i e „ o T •8.37 l B 1 C y -?»*o TlHf tto* E T P U • •oo E TPL • oo A R A O N D • •OB ARtDPD ARaDNL •»oo — 0 0 A R t O R L • • 0 1 Asei n o -•oi ASBIHL ••03 BRL • 1 63.07 BPD • 1 6 . 8 3 ARtOT -•?* T I mE M o C f T H n ••Cl l e m|T •13 l | 1 - (I It * l u 1 I | I l u 1 I „ T p .b / ▲ .n.2 l o aDRL • • o ’ c $ e s o Y L v a.2 C se i os, • I • 99 C S f N M D • 9 .43 l i e „ o T •7*6s l u 1 - y - T . B 2 TlHf 1*0' E T P U ETPL • 0 0 A R A D H D ••0 7 A R t D R D A R tDNL • • 0 0 "'OB 1 o 1 I B H ••oc A S O l H O - • 0 2 AseiHi ••ol BRL 1 1 1 * BRO 2 2 1 . 6 2 APtUT -•OP Cf T Mr • • 0 0 Ce T PL •30 l | 1 I( - •13* 7 9 l 0 1 I|T • • 1 0 C s e i H O - 3 »3f CseiHL • t et 7 C S f N p O • 1 0 * 2 7 A i e „ d H • 6 . 6 1 A B 1 - y •7.87 TlHf M O ' E TPU • 0 0 E T P L ••oi A R A D N D - 0 7 A R A D R D ARtD N L •DO ee OS A N t D R L • 0 0 A s e i H O Ot AseiHi ••Ol PPL •8.96 BRO 179.18 AflAO7 " • 0 2 TlHf M o ' le y |- • 0 0 Cf TPL 'I* l u 1 - (I •B M l u 1 Iu - C R ^ D N L — 0 3 e I t eIt C H 4ORL — o* C s e i H D - * • 0 1 CsBIHL t SB C S f N M D •11*22 l i e „ d T •9.68 l u 1 - 7 -8 . 1 B TlHf M o ETP U e y B H ••Ol A R A O N D • •07 A R t D R D R R A D N L • • 0 0 «*06 1 0 6 I + H • i t A s e i H O -•ot AseiHi ••Ol BRL • 8 . 8 8 B RO 216. 1 * AflAD7 TI m C Ho' l e y o Y " ' 0 1 C f TPL •o' l u 1 I(- s . wuw, C R t D R D C R a DNL * • 0 * " 1 3**) CRtOflL • 1 * 1 C s e i H D - * •*9 CseiHL • 2 6* C S f N M O / ■ g , J a C s p N M L - 1 C * B 5 C P t U 7 - 8 .S 6 T I mE Joo ' E T P U C TPL • • 0 t A R A O N O • • 0 7 A R t D R D A H t D N L ••0 0 eeO* AHtD R L tee IMD ct AseiHL - O f BPL • 3 .58 BRD 211. 8 7 A R t D 7 Cf T I mC J O o ' C f THT •01 C f TPL It l u 1 I (I • i 7 . 6 7 C R t D R D l u 1 - (T mtO 7 e M eBI C W 4DPL •l«*l C se I o Y / a , b b CseiHL •3* l7 C S f N M D • 12 .87 l i e „ o T 1 1 * 3 l | 1 Y 7 -8.76 y s d e J * 0 ' E T P U • 0 0 CTP L •oi A R A D N D •• 0 7 A R t D R D 1 u3 -(T /.. //-P ARtDPL A s e i n o - • o i ASBJML of BRL 3.6 5 B RO 161 .62 AflAD7 -• 0 1 ysde 3*0' A e y o y . 0 1 C f T P L ^ C R A D N D • M l # C R t O R O l u 1 -(T — OB "i* * 6 6 CRtD P L •2.37 C se I o Y / O,’v CseiHi . 3 * 9 C S f N H D • 1 3.66 l i e „ d H - 1 2.13 CfltO7 • 8 . 0 9 TlHf 3&0* E T p u E T P L ••oo A R A O N D ••06 t R A D P D A P t H N L • 0 0 ■•Ot 3 u 1 I + H • 0 0 A S B I MD t AseiML RRL • 1 6 . 2 9 B RD 193.82 ARtOT .CC 107 Appendix Table 2. Energy balance values for Compana - Golden Compana. July 4, 1976. Cont. n ME l e m 6' C f TPL l u 1 - ■I C P A O R D l u 1 piNL C W i OPL Csn I MD CseiHi CSfN w n L S E NHL C P iUT 3&0" •cz ••o' ZO 38 ••01 •1*» 5 A •f f» •♦•Cl 3 SP •16.33 “I?.8p •M.91 T I mE F T P U ETPL 3 u 1 I „ I A P AORD 1 u 1 I „ H A W iORL A s e i w n Aseiwi RRL Bpn 3 » 3 C y 3*0* •00 ••oi •'OS •oz ••03 •0? 03 ••of • 3 .79 178.16 •D5 TI mE 3®0* C E TM^ •of CfTPL ff l u 1 - „ - Zl 35 C P A D R O •33 C R iDNL e I7 M A C H iORL •1*»1 C s e i w O ♦ Sf CgeiHL •♦• J6 l i e „ o I •16.«1 l i e „ o T • 1 3 . 3 0 l » 1 C y -7.89 TIME f TPU ETP L A R A O M D A R ADPO 1 | 1 -(T A H i DfiL A s e i w O AseiHL RRL BPD A R iUT**Oe ••oo ••!♦ •!♦ M O M t M O ••oz • rf • UO 6 5 .77 •36 T I m E l e y B d •C3 C f TPL l u 1 - (-I* ♦* l | 1 - |- l u 1 -(T•!♦••« C P iDRL l i Y s o I Cgeiwi l w e „ o I C s f N W L C R iUT*♦0' f )♦ f :♦ M 7 - 6 . So •♦•66 * 11 • ♦ I “ 13.30 “ •73 y s d e F T P U ETP L A R AONO A R A D R O 3 u 1 I(T AR iOfiL Asei n n Aseiwi BPL BfiC Ae AUT ♦♦o' •00 ••oi 'ZO M l M 7 M Z ••of ••ei 16.93 52 3 T I m E C t TMM C t TPL l u 1 - (- l | 1 -uI C R iONL C R iOPL C g e i w D CgeiHL C S f N H D l i e „ o T l | 1 I y ♦♦o* •O* •1»|* •!♦ ♦f ♦ Sf • l l ' S o f 69 •7,21 •♦• TA •7.16 • 9 . » o /•99 y s d e E T P U ETPL A R A O N O A P AORO 3 0 1 I(T A H iDRL A s e i w D ASSIHL RRL MPD 1 u 1 n,;y ♦«*0' •00 ••oo •Z3 •!♦ •zs • I? ••oi ••oi 2 9 1.59 •50* 0 Z •57 TIME C f fMM CfTPL l u 1 -(I l | 1 - |- C R iDML C W iORL C se Iwo CseiHL C S E N H D l i e „ d T l | 1 C y ♦♦o' '15 *3* I* 7.18 6 87 9.7 A - 7 ,62 •♦•SB • 2 3 1 • 6 .78 19.62 TIME E TPU ETPL 1 u 1 | „ - A R ADRD 1 u 1 I (T A R iDPL Asei M D ASSIHL PRL BRD A W AUT S Z o e *•01 •CO 'I 7 M O •!♦ M t “ •00 ••oi • 3 7.92 13.♦♦ •*1 T I m E CETMr C f TPL l | 1 - „ - l u 1 - |- » •30 C R iONL C R i ORL C s e i H O CgeiHL C S E N H D l i e „ o T C P iUT 29.67SZO' ••ce 3 0* -••87 • 3 '8o / d s •7,68 L w d i . 8 0 -1.77 TIME E TPU ETP L A R A D N O A P ADPD A W iONL A H iDPL ASBI H D AS9IHI RRL BRD AR AU T S ^ o e • 00 ••oo •17 •07 M J . O 7 • 01 ■ oo 8 7 .89 • 3 7 . 1 5 • 31 TIME C E T r P CfTFL l u 1 - (- C R A O R D C R i DNL l > 1 -uT C s e i w D •7.31 c.giHi C S E N H D ♦ • 0 6 C S F N W L C R ADT 5 6 0 » •01 •3* 11 3 f6 1 0 *63 M 29 J 52 •S,o» • 73 30.88 y s d e E T P U ETP L A R A D N D A R AORO A R i DNL A H iDfiL A s e i w D Aseiwi PRL Bpn A R iUT 700' S 'SB • 1 7 •♦8 .1» • 08 •of ,00 ,uo 82 TIm E 7OO' l e y m P • l u » U C f T P L If fO A + 1 - „ — * I l + 1 -u- !♦•0» C R iDNL # : 7 C R i DPL U 2* c s e i w o - 6 .60 CseiHL •A 68 l i e „ o I ♦ •o* A i e „ o H .73 CfiiUT 5p. 1» TIME E T P U ETP L A R A U N O A R ADPO A H i D NL A W iDfiL A s e i w D ASSlHl PRL 9 P0 AfiAUT 7 ^ o e ••zo ••o» •7f 'I* '56 »29 • 05 'Cf 13.68 2 . Al 1 1 1 l e y d Y " ! ♦ • 7 0 C f TPL • I f tJf l u 1 - „ Y z: #♦ CfiADRD i 7 .e» C R iONL ! » •♦♦ C R iSPL * • '!» CseiHL • ♦ • n C S E N H D 13*61 l i e „ o T 10*65 C R A U T ^ 6 TlHt E T P U ETP L A R A O N O A P AOPO A P iD NL A R i BRL A i e I H O ASBIHL RRL BRD A R AUT M 0 . ••of '3» •♦i M J _ '37 M Z •05 •03 .00 15.05 •♦2 Tl"! l e y B B / s c » i♦ C f T P L •l*»8l l u 1 - „ — l u 1 - |- C P i ONL C R i DfiL l s f s o I CieiHL C S E N H D C s t NHL l u 1 C y 86.78M 0 . 31'0* t Q .56 ^ 6 * 9 6 I O '*) • ♦ . Br •3'So Z 0 'A3 I Q*6 ® Tl"t E T P U E T P L 3 u 1 -(I AfiADPO A R iDNL 1 d ■ o Y AieiHL PRL MfiD AfiiUT M g . "'Cl ••oi • 2 8 • 0» '83 ‘ 10 •0* •C3 I A f S 29.#1 ♦Z T I mE le y d — * Xb . 2* C f T P L l u 1 -( - 3 o : l u 1 - u- C P iON L l a 1 -»T C i e i w D ClBIHL C S E N H D A i e „ o H l u 1 C y M 0 ' • « 0 * 0 7 P f M 1 1 '93 * « •»» - 3 .73 2 96 2 6 .67 IA * AQ 9 5 .12 TI m E E TPU ITP L A R A O N O A P A D R D A R iDNL AN«0»U A i eiwD AseiHL BRL BRD AfiAUT M n ' "'O f ••of f* M O M 7 •10 •03 '33 7.91 8 .02 •A3 l e y d B • \ 9 , 7 k l u 1 I( I ♦ l ' 0 » l u 1 - u- Ek Ek C H iONL !♦88 C N » 0 « L f A .79 C i e i w O • J ' O 7 CeeiHL E ♦♦ C S f N H D 2 8 .AP l i e „ o H 16.93 l u 1 C y 103*63 TIME E T P U ETP L A R A O N O A R AOPO A R iDNL A H iOfiL A S B I w D Aseiwi BRL MfiD AfiiDT 1000' ••00 •00 •o* •o* •O 7 .QA •03 •of •13. 6 0 17.86 M ft y s d e l e y d Y C f TPL l | 1 I „ — l u 1 -|- C R iONL C W i OfiL c s e i w o CgeiHL A i e „ o — l i h „ o T l u 1 C y 1000' " ! * • * 0 •Z0'31 ♦ *•7 7 f5«o8 3*'3A 5 88 f Sr •!•Of 2 9 .6» 18-U5 106*85 TIME E T P U E T P L A P A U N O A R AORO A W i DNL 3 9 1 -uT A s eiwo ASBlHl BRL B RD ARAIlT iQlO* •00 •00 ••of • 00 •'03 .00 • of •Of 9.60 1 5 . JA “•IP y s d e CETMr C f TPL ■ Z O'ff C R A O N p C R A D R O l > 1 - „ H C W i DfiL cieI o Y CseiHL C S f N H D 2 8 .60 A i e „ o H CfiAUT IClO' ♦Z'fB P S M l 3* 8 # 25.61 -P eO7 •1*69 l7.*7 106.*6 TIME E T P U ETP L A R A O N D A R ADRO 3 u 1 m NL A W i Dfil A s eiwD ASBIHL PPL Hpn ARAUT 1040' *co ••oo ••0 3 ••0 0 ••Of -•oc •Of • of - 1 2 5 . 1 3 1 7 .19 -•01 y s d e W N O ' l e y d — •l»e7c C f TPL " Z O ' f f C R A U N O ♦ l'7t C P A D R O Z S 'O* C R iPNL IS »37 C W iOfiL S » c s e i w o - 1 .76 CgeiHL •1 » 3 8 CSENHD 2 7 . 8 2 l i e „ o T 1 6 • 1 7 CRAUT l U * e36 108 Appendix Table 2. Energy balance values for Compana - Golden Compana . July 5, 1976 0 Cont, TI*F r I TfU k TmL *Pa'*-n AkAUyp A U 11Nl 1a»I5T ASfll-'" ASlMI PRL ilcn AlUUl **rv "'"C "•oo •18 •oq •14 • 1 0 •*r2 • • r? 4?.*4 "85=.Cl • 36 TlHt lh y m'' CfTPL l|1vv6- l•1-u- l>1mNI l>1IBH Csflf=P rSSIHI PfiENH I |i A drH PRA11T •CO ••0 » 8*31 1*83 2* 7I 8 * 0 0 -•13 -•3(1 2*64 f .94 ,er 1 ti-r Cl**0 LTHL 1|1C„- 381I>- 3d 3vv(T 1W1IBH ASflI= 3 ASfllHl 9=1 W D A = TYbC " 'CO * • 0 0 •I7 * 1 1 •1» •l? • • 0 1 ••nl 8 0 * 8 6 289./| TInE ls,ym- CrTPL lB aUNO C=AD=O lu1I(T 6 *«B l(1-WT Cjfll=O CSSIHL B i e „ o Y Ljf-=L C=ArT Hfcf)* •• 'i "•18 •>•77 4 • p? 4*3« -.fo -•55 6.36 6 . » 2 IN.74 r yMF C1OO LTmC A=AONO 3|1IW- AR4ONL 391IWT ASflI=P ASflI=I 4PL HHO A = AnT ‘•o' " • 0 0 •oo •83 M 3 •24 • I* " Cl "Tl ■121*64 2141.46 • «r TImE lH y m* CfTPL l|1C(- l+ 1-W- C=A3NL Cw4D=L CseiHi1 cSSlHl rSENHU CflfN=L C=AnT 4*0" "Tl “•o* 10*40 6*59 ll‘3« • * 8 0 Il-I9 11 *96 26*13 TInE rTPU LTML A=AUNO 3u1IW- A=A3NL AW4D=L ASSl-"' ASflI=I. P=L tiPO A = AnT 5or* " • 1 0 " 0 3 •31 •1 » •2fl •1» " • 0 1 "Tl lo.ii 156.11 •61; TImL lh y m- Cf TPL l|1C„Y l|1IW- C = AfINL C=AORL Cse ■o0 CS8 I»L li h „ o| csr-L lM 1Cy *0 0 ' "•05 ••F8 lfc«7o 9.jc 16 • 78 1 0 ' I7 -.94 •.«3 17.39 17.14 3 8 .C9 TImE ETHU LTHL A=AONO A=AD=D A=AnNL 391I+H ASfllHn AJflI=I P=L e=p 3W3Cy 5rfo* " • 0 0 •oo •42 •1* •32 / sS ••no ••co •93.32 270.96 •69 TlflE CtTHC le m BH l|1-(| CRAD=D C = AfINL C=AD=L CseiMD Csei»i li e „ dI li e „ oT C=AnT 5«?0* "•41 2M *03 18*33 = 3 25 «3 . , 4 • 1 * 0 1 •IT? 29.96 23*'6 Bi*ifr TIME ETHU r THL 3W3-„I APAD=D A=A3NL A=AO=L AJfll=O ASfllHl P=L BRT 3W3-y TlMt lU y m* CE TPL C=AUwO lB 1 IuI C=A3NL C=AD=L Csei=P -.46 CSSIHL PSFNHP 35.76 CflEN=L 23*76 C = ADT R4Q* •*•13 3<**88 15*68 Jl'Of I 7 • I 7 • I T S 67.*6 TImE ETPU LTHL A=AUNO A=AD=D A=A3NL A=AD=L ASflI=C AflflML P=L BKO A = AUT fc*n' •-.o ••03 •83 •83 •73 •?* • 06 T l 21*60 "169.36 I «21 TImE lh ym* lhyBH l-1C(I C=AD=O C=A3NL C=AU=L CjflI=P cSSIHL |i e „ o- CflfN=L CWA'JT fcKrj* • t •■•9S 51*38 80*39 49*63 72*29 • 2 1 -.4J 51.18 37.1 = 9j .74 TImE ETHU tTHL A=AUNO 3|1IW- A=ADNL A=AD=L ASfllwO AJflIHl n=L BPP 3 W 3-y 700" "CO •03 •*6 •85 • 78 • 2 7 • 0 6 •P3 27.28 » * » *«»« 1*77 TImE lh y m* CpTPL lP1C„Y l+ 1-W- C=An=L C=AD=L CjfllMD cSSI-I lw)(o I 67.0* CflfNHL lW3|y 7U1T •03 -9.(,3 6 ** *51 ?5*3C 6 V 8 P 27.60 I* SC T 8 51.68 U 7-IO TImE ETPU tT“L A=A3NO AfiDwD A=AD=L 3ww■o I AJflIHI BBL B=D A = A1Cy 7fc0* " 0 0 ••cl •97 85 •fll •8 7 •o* •04 38.02 * « * *»»* 1*35 TImL le ym* CpTPL l|1C„Y lu1IuI C=A3NL l > 1 - Y H cseiHi; CjbIHI li e „ oC CflfMHL C=AnT "03 •9'8* 8fleCO 30 2* 77*38 ‘ 3 'C* 2*77 • 87 85.Zfc 66*64 1*4.1« TImL ETPU L TmL A=A3ND A=AD=O A=A3NL A=A3=L ASSlHO AJflML P=L B=D A8 3-y 78n* C2 "•13 •79 84 '8O •2* •07 • p5 4.59 29.38 I *?9 TImE le y m* LfTPL l|11g„I lU 1--I C=A3NL lW1IWT CjeiHD 4*10 cSSlHl CJENHD 99.29 CflfNHL 78.94 C=ADT 7*c" "•*4 •12*57 103*84 35 • 19 43*36 38*36 1*80 1 6«*.oj, TImE FTHU ETPL A=AOtO ARADRD A=A3NL A»AD»L 3Pw■o l AJflIMl PPL H=D A=AUr •0 0 ' "•on I7 •=5 •25 •fl? 2' AQ7 T * 1.89 213.02 I • 33 TImE lH ym* CfTPL C=AUND lu1-WI C=AnNL lW1-WT 43*77 li i s o| cSSl-L CSENHU CflfNHL C=A3T 8 Cn" •43 -17.18 128*86 ^O * ! 6 in9 ' * 6 p»84 116.87 89*22 I 96 . 6 3 TIME ETPU ETHL A=AUNO A=AD=D AB4DNL 3W1IWT AJflIHD ASflML P=L BWD A = A3T "in' • 0 0 ••76 •98 24 •to * 2 6 • 0' •0* • 00 •353.69 I • 29 TImE CE TM* Cf TPi C=AfINp CRAD=D CH4PNL C=AD=L li f s oI cSSI-L CJENWD CflfN=L C=A3T 820* -.48 -33*p4 I 47•47 44.99 I S eIiRt 48.96 6.79 3*42 I35.?c 89.22 222.36 r i m T-H ARAUND APADFO AWA3NL A=AD=L ASSlHP AJflMi oRL =RP A=A3T 8* O • "•00 •93 25 *79 • 2 / *07 •0 " 13.62 305.43 !•30 CE T H- lh ■ BH CRAONn l+ 1-W- CH4ONL CH4DflL CseiHO 8*14 cSSl-I TJENHP CflfN=L A B 1|y »*r.' "•S3 •34*g7 Ill'll • 9*96 14 I*78 44*36 A.fO 152*43 103«*3 ***•35 109 Appendix Table i 2 . Energy ba lance va lu es fo r Compana - Golden Compana . J u ly 5 , 1976. C o n t. TiME F 8 f>» ET»U fcTML 3u1 C(l AP»o*n AMArNL 1 d 1 - MH AQflIMO AflflIHL BPL BPD AM1UT e:c " eIl •so 8 + •78 8 + • C 7 •0 + 6,32 "246.27 I »26 TI^F 8 Mn . C f Te" 1 "'46 CffPL •Jfc.f" l| 1 C „h t27,sG l+ 1 CwI B4»7P l M 1 („H 196*77 l„ aORL «9.99 CgfllwD CflflIHL SeIl rgfcNwu i®*ei® CflfK-L 115.38 CS 1 C y 273.59 Tl^E £ TMU LTML 3|1 -(- APACSO 3u 1I„ T 36 1-+H ASfliHD AflflIHL RRL HRD AM1 C y Sfc0 * ' 0 0 "'O 7 M O • 8 8 •73 • 8 8 •0 ® •c® S.y* -23**3 48 TImF l h m60 LpTPL -J7*fcl lG 1 C „ | l| 1-P- CRaDNL l 6 1-uT 63.8* CgfllHD CflOIHL CflfcNwD 1*9.94 LflfNUL 187.40 CP 1 C y 9 6 O 1 " 4 3 1 * 1 '!* Pw,* A I7 1eSfc IO * 7 7 6*35 283*12 TIME F TMU ETML 3u1 dnD ARAOSp 3d 3dNL 10 1-+H ASflIHD AflflIHL BRL MRD AM1UT ;»o' C* "'I? •MB '81 Sfc •83 •0 * •0 + 8*79 24.37 I*CO TImE Cfc TM" "'Sc LfTML l| 1 4(| 1 »+'M* l+ 1 IM Y l9 1 l „ T ld K-uT CgflIHD l i e „ o l LflfcN-L l9 1d T SB,,* •4C '? T 63*3? 1 S?*8 * 68.41 1 1 93 1 8 1 . 3 9 13+*®3 7 OJeCE TImF fcTMU ETML AQACNC ARADRP 39 1I „ T AMADPL AQfllHD AflOIHL BRL BRC AP1Uf i C lO '!* ••co •oc '0 * • 03 'O7 • 03 • pB •0 + •10.59 l*C*+0 l'+c y s d aE lh y d L LffML C R A'.'Np !SN.77 l+ 1 I i — CBaPNL CHaDRL CpflIo I cseTifl CflfcNHl' 1®?.08 CflfcN-L 135*51 CR1VT ICO')' -*sp "+OePI fcJ.Si 1*3*59 69.Ql 18**4 331*11 TImE fcTMU LTML ARALNC 3u 1IPI A1-AdnL AM1DRL ASfllHD AflgIHL BPL ORD AMAUT ••oo •'C3 'O7 •03 •0 * •0 + • 04 '03 • 0 0 6 8 . » 0 I * + c TImE CfcfM" CfTML l| 1 C(| CPADBD l M aPNL l„ v-uT CgflIHO CflflIHL CflfcNHU l®8e72 CflfNML CW1Hf ica .• •'"I •4y'8l l, 7 'f3 64.BM lAfc'MS *9.79 l3**C fl.Q® 13*.»1 359.10 TlMf FTPU LTPL 3u1dnO AflADBO 3d 3dNL AM 1 I+H AflflIHD Afl+I Ml BRL BRD AB1 C y *0*4)»*» ••co "'Ql M 3 'O6 ' 1 0 •0 + •03 '03 7.44 381*73 •81 m CfcTM" CffML c iis.S, CRAVWD fWA"NL Cw1DRL CgflIHC CflOlHl CBENHU 1*4.75 CflfNkL A+1Hny iCHa* -.Sf •40‘Sq 66*98 1* 6 * 8 0 70*61 ! + •IB ISfce7O ■>6 3 . 3 9 y s d e fcTMU LTPL 3u1 ^ (| ARAORD 3d 3dNL AW1ORL AgfllHD AS91HL BRL HPO AP1UT Ilooe "•-c -•co '03 •03 •03 • 03 •C8 •C? 29.57 IPI*"* I* MR TlMf CfcT M" LfTPL l| 1 dnO l|1 IPI l| 1|(T l„ v--T CgflIHO CflflIHl CflfcNHO CflfcHkL ld 3C y U v o e -.Q2 •+o•ss MOV'S3 66.Oq 1*7.Jf 7 I *80 ! + •Bo 9.49 I89»OV 136.+4 3*0•* 6 TIME fclPU LTML 3|1 dnO AMADRD 3d 3dNL AW1DPL AgflIHD AflflIHL RRL BRD AMA"T M i T V "'CO // Y B 'I* •11 •19 •1? •01 •0% 9.92 161.*7 TImE tiio' lA y 60 ".«4 LfTML "+I'll lu 1 4(l B Y LnY a l| 1-uI 68*31 CN1nNL Ill'll l„ vIuT 2b,a2 CflflIWC !4.79 C,T „ CflfcNHU 1 8 8 .2 * LflfcNWL 13*.99 l f 1 Lnm 3*9•?3 TlMf fcTPU LTML 3u1 dnP ARADRO 3d 3dNL 39vI+H AgfllHD AflflIHl RRL BRD AM1UT I IMfie ••oo ••oi 'll • o® •18 •09 •01 •cl 5.So 1B+.S2 *33 TImE I H o ' CfTM" ■ » Sfc LfTPL "+!•*0 lu1 dnO *0*'** l + 1 Iu- 69.94 l| 1 I(T 1 * 3 + 9 ld vIuT 78.93 CflflJHO ItteO* CflOIHl 10'tl CflfNHC I5C Z 6 LflfcNHL l+l'7+ l|vCm KJ ’,2O TIME fcTMU LTPL 1 6 1 InD A*ADWO 3d 3dNL 39vI BH AflBIwD AflflIHL RPL BRP 3d 3d T 11*0' ••00 "•00 'C7 •o® • o* •0® •01 •ol I*.•! 173.HO •?8 TI Mf CfcTh" LfcTPL l| 1 C(I l| 1 Iw- CWaPNL l„ 1DRL 77,go CflBIHD CgflIML CflfcNHC CflfcNkL I+3*0® l| 1dT 1160' ".Sfc - 4 J • fcS M O 7'7* 7IeSB 1*9*10 ItteI+ 10'3+ iSi.Bb +11*37 TlMfc fcTMU LTML 361 InD ARAORD AMaPNL AM1OPL AflflIHP AflflIML RPL BRD 1 d 1 C y ! H O * •*cr • 00 •08 *0P •03 • 0® .01 •01 *4.58 888.49 .19 TlMfc lh y d A LfTPL lu 1 g„ | l|1 -u- lf 3dNL CN1ORL CgflIHP CgflIML CSfcNHD CflfcNHL l» 1 — y u l n ' ".Sfc •4j.fc7 PO* M I * BS 1*9*69 71.33 tB. + i 10*98 I^ie7S 143.45 +15.Pb TlMfc fcTMU ETPL ARADNP AMADRD 3d 3dNL AM1OPL AflflIHD AflOlMI ORL BRD AMAnT IZCOe •00 •oo *'w3 '0+ ••01 •0 + •01 •01 16*71 8®+ * I * •14 TlMf CfcTh' Lp TPL ApednO MO7'+* npedi nxeTaA CN1ORL CflfliwO CflflIMl CflfcNHU CflfcWkL CP1UT 1*00' ".Sfc "41.64 7S eSl 1*9*41 TB,I? 1B.9C IO*77 ■7J ,7= 143.00 4 l®*Cl TlMfc ETMU LTPL ebelnO AMAORO 2x2dNL AW1OPL AflfllHO AflOIML RPL BRO 2x2Er I P t V •CO •no -•0» •0* ••0* •0« •00 •oi 81.89 153.92 • rfc TImE Cfc TM" LfTPL l|1 4(I lu1 -|I ngedNL1*4*8+ CN1DRL79.91 CflfllwP CflflIML CflfcNHC CflfNkL npedT iesn' SP "MeQM Moi"* + 73*66 jB.fco 10' *8 !§*.?* 1+1*73 +1“ .?2 H O Appendix Table 2. Energy balance values for Compana - Golden Compana„ July 5,1976. Cont. Tire FTPL1 ' 0 feTPt. • • C 9 - * i r APaDNL 391IYH •CO AseiHfi ASBIHl • M PPL 80.7? MRD 107.86 ApAUT T l Tl'r iPS.T Ih* -.q3 CrTPL POklIZ lf 1 G|I 7j *33 CPaDNL |9?*«t l91IuT 79.98 li f s oI 15*63 CseiHi I l T 6 CSfNhO 187.56 Aie„oH I4f*2? l|1GL 6 19 * 4 E Tiri • JO fTPI •C? 1|1-„— //.2 1|1IBY •*oi ApAftNL ••07 Ap ADPL - . 0 1 ASBlHft • CO ASBIHl •Cl PPL • QO HRD 166,99 ApAftT • T ? TImI lf6 0 ' CfTh" -.q? Cf TPL -•»0*1? lf 1I„ - PO?'66 lB aOBD 7I*?? CKaDNL IqI1So Cw1ORL 79.63 CseiHD lS.63 cSBIHL I l T k C SE NHft 1*6*10 CgfNhL IqC Z Z lM 1ijT 6 IM • I 2 TlMg ' U LTPL •c? ABArNO -.C7 /u1-P- •*oo ApAftNL ApADPL -•Or ASBIHft ASBIMl •oc PPL ?• 31 1 6 ?.IN ApAftT - • r? riMi IZtlle Cf T*"' Cf TOL •dq«6l lB aJNO PQI'PO AB 1Y L»Y 7I1Ik CpAftNL IqC1IS Cw1DPL 7 9 .3 # CgeiHft l5.5q CseiHt 11 * ?3 fSE (d I 1*4.69 li e „ d T l3q*z? Cp1QT 6 1F • 6b T ImF 130d a r TpO •or LThL •Ql ‘ A" 0 7 • • o - ApADNL ••o7 39v-+H ••OC. ASBIHft • • 0 1 ASBIHL • 0 0 FPL 11.33 MRC 130*37 Ap1QT - T Z Tl-E 1301' Tc Th' *'ql CfTPL -jq.^7 CPaUNO ,99.-»6 l+ aDPD 7 I M q Cp4DNL !**•*0 Cp1DPL 7 9 . 3 3 Cse o Y l5*66 CgBIML Il1?7 CSENHf- 1*3»*2 LgfNhL 137.96 CpAUT 6lF«?0 Tire Uiu* FTPU •C? LTpC 1O7 * *-'t7 ••Or AuaDNL •*C7 Ap1OPL -.CO 3wP■o I * • 0 1 ASflIpI FPL • 00 156.ZB ApAftT • T 2 Tl^ 13d.' CtThf- "'qO lh ybL "3**23 lB 1-„- "7»as7 l•1IMY 7I1IO CW4--NL 1*7.66 Cw1DPL 7 9 . 3 1 CyBIH-* l5.2» CseiMi ii* ? 7 lie„dY 1*Z*Z1 137.96 CP1ftT 617.77 FTPU • JC LThL •*ci -.C7 ARADBD Ap1DNL eeO7 ••00 ASBIHC • • c i ASBfHI. - T O FPL •1Z.1Z tiPD 111.14 ApAftT - T7 U rL I^Hoe CkTh <9 LfTPu C,96*99 l•1I|l 7I1I^ CpAftNL 16 6 •16 Cw1OOL 7 9 . 3 0 A i fso— ib.f« li fsmI I V P e li e „ dl 1*l*oZ CSFNWL 136*5* CpADT »16**3 Tire P TPU LTpL 3Y 3g„- AWACPD 3B 1I„ T Ap1DRL 3wP■ol ASBIHl FPL WQD ApAUT »31,V • OC •CO ••07 -•OC •*06 -.oc • • 0 1 -•CO 16.33 196,fl? -T t TIKE 13*0' CtTf'" -.** CfTPL -39«?* lf 1 I„- 1»-«69 lf 1 G|I 71*C< ChAr-NL I* 6 *q5 Cw1DRL 79.25 CseihD 16.89 Cse ini I l T 7 CSENHl) I 79.92 li h d dT vb’,P- CpAftT 616.Cl rire l*UCi* FTPU «00 LTpL -*cc 1|1C„— L • l>7 AKADwO •*oc ApAnNL ••06 39vI—H - . 0 0 3wP■o I -.Cl ASflIHl ••no PPL •ZB.6* MPf* 261.63 ApAftT • • 1 2 TlhI 1*U0 ' CETh-' - . s c CpTPL -3**33 r" L * 3 6 7 I1O? CH4DNL 1 6 3 . 6 8 Cw1DPL 79 . ?c lifso— 1 6 . 6 6 CsflIHl IlTO lw)(o I l7«.Fl CgfNhL 136.2= CpAOT •15*60 r i r r 1*2' I ' FTPU •CO LTpL •C» ApAONr> •*o6 • • 0 0 ApAftNL • * 0 6 39vIBH -.OC ASBlHft -•Cl ASflIHL - T l PPL .OC MRC 196.UO ApAftT • * r z TlwE l * d f l e CfTh** -.«7 CtTpL -37*33 lB aONO 19 '*?0 CFADPD 7Q* 97 CpADNL 1*?*S7 lM 1IYH ?9.,6 lifso— 1 6 . 3 9 cSflIHI 1U*9* CSENHft 177.93 li h „ dT 136.25 l|1Cy Al-*?! TlhL 1*10' f T PU •CO t ThL • • o c ••0* APAOBD • * o c ApAftNL -•C6 Ap1DpL "•GO ASBlHD • • c l ASBIHl -Tl •26.76 O R D IqI.WZ ApALT •*rz TlhF IeUO' CtTh-* •«S7 CfTPL -37.37 1’Z‘c* l»1I|- 7V .«H CpaDNL 1*1*39 Cp1DpL 79.,6 Cseino IeM O CsBIHl 1 0 ' * * CSfNHD I77T l CRf N H L I 3 7 • I 6 CpAljT 4,6.A* Ill Appendix Table 2 . Energy balance values for Compana - Golden Compana. July 6,1976. Cont. TlME 2*0* ETMU •00 ETML •*oo 1 61-„- -•05 AMAORO *•00 361-(T ••C6 3u1-+H "•00 A96IH0 "•Of ASOIML "Cl DRL •63*IU tiRO 26,99 A»A'’T "•Cl TImE 2*0* le ym^ '02 leyd H l61-(- -I1O9 CMADMO •»03 lu1-(T •I'll A „ 1-dH "•0* CS01 MD 62 CsetML 2» CStNMO * .65 CgtNML • .86 A + 1ngy EB TIME 300' ETMU •OC ETML ••01 APAOND " 0 * ARAORD •oc 1u1-„H ••06 10 1-BH 1 i Y s oI "•02 AseiMi "01 RRL -8.58 9RD 29.55 APAUT "•C2 TImE 300* le m / J ’ CrTML • M 3 l|1-„ - •2*30 l61Iu- " 0 3 lu1I„ T * *7 A d 1-BH L/o* CseiHO 8i CsejMi ••13 CStNMD •1.66 CstNML •1*89 l|1nSm 58 TImE 320* ETMU •00 ETML •o* APADNO * * 0* 361-uI •oc 1u 1-„T CS AMfOPL • oo Aseiwo "•02 AseiML "01 PML • 00 URD 30* 7O 1 o 1n»y " Tl TImE 3*0' CE TM'' •o7 CrTML • 65 l|1-„Y b O’ CMAOPD •00 lu1-„H / babb CMfDML ••02 Cseso— Lvav7 CseiML ••79 CStNMD 2 Il CStNML •1.89 A + 1—y -.79 TIME 3<0* ETMU • 00 ETML •03 APAUND ••C8 AMADRO • 00 3u1-(T 1 „ 1-+H / .. Aseino •*ot ASOIHL •01 BRL • OC URD 20,71 ARAOT • ri TImE 3»0* CE TM'' •1C le m6T 1*3» l|1 I„Y •»•67 CMAORO '09 lu1-(T CMADPL •07 cseiHO •!•57 CeeiML •!•o® CStNHO •2. PO CSENML •1.89 CHADT -•(9 TIME 360t ETMU ••oo ETML •00 3u1-(I ••os 361-+- •02 1u1-„H / /Y: AMiOPL •0< ASelMD -•02 AS9IML -•ei BRL JO* »3 URD -29.68 AtADT • C5 TImE 3*0' leyd d •o* CrTPL 1*3® lu1I(I •5*53 l61 Iu- '39 lu1I„H /O»7: CMfDPL •39 CseinD -1*96 CseiHi •!•30 CStNMU 3 ®c CgtNML "2'26 CPApT •36 T,a 0. ETMU •00 ETML " O 9 1u1-„G 3 ARAORO •23 3f 3pmL • 67 3u1-BH •2® Aseino • o® ASOIHL '0? PRL 12*11 URD 878 83 A^ADT I'l7 TImE 6*0' CETMr M O CpTPL •36 lu1-(- 11*13 l>1IuI 5*oo lu1-„T = 7* CNfDML 9*61 CseiwD -.97 CseiMi ••86 CStNMD 12« 2C CgtNML 9.72 l»1Im 23.77 TIME **o' ETPU *01 ETML •o* AMAUNO I'00 AMADRD •25 ARAONL •85 1 „ 1-+H •27 3w-■o I 'C7 AseiMi •p6 PPL •69.78 BRD •96.JB APAUy 1*3» TImE a»o* CgTMM •3C CrTML •6® lu1-(- bv n-= CRAOPD 9.38 CRfONL 25*69 CMfORL 10*86 CseiHO '63 CseiHi " O 7 CStNMO 30.92 CgtNML 26*25 lB 1Iy wu 58 TImE *®0' ETMU '01 ETML ••77 1u1-„- •97 AMAOPO 29 1 u1-„H •*1 1u 1-BH •27 Aseino •O7 AtetHi '0* PRL URD 128 27 ARApT 1*32 TImE 8*0' CETM^ CtTML •1»»6* lu1I(I So* 62 l61I|- 16*96 CRaONL 6f66 CMfOML 16 » 3o cseino 1.86 CseiML • 77 CStNMO 69.02 Aie„ o H 26 25 l|1Iy 7/.P7 TImE *00' ETMU •00 ETML ••33 3u1-(- •96 ARADPD 29 AbaONL •78 AMfDPL •27 Aseino .07 AieiML •o* SRL 1*21 BRO •316.59 APApT I *3U TIME 9OO' CCTMf' •so CtTML •21*33 lu1-„Y 6P*i2 l+ 1IBY 19*93 CRaONL 17*36 CHfOML 21*73 Cse I oY 3.p7 Cse ini 1*69 CltNMO 66.35 li e „ oT bO" g2 A + 1 Y y 103*16 TImE 9*0' ETMU ••oi ETML ••63 AMAUNQ •76 ARAORO •22 1u1-„H •47 ANfDML •29 1 i Y s oI / .2 ASM IML /YB BRL • 00 URD 69.67 APADT 111 TIME 98O' leyd — •23 CtTML •33«»1 CRAOND 83*93 CRAORD 2 62 CRaONL >0**i CRADPL 26.65 cseino 6 • 68 c$eIML 2 56 CStNMO 79.68 A i e „ d H 3617 CRAOT 125 65 TIME iooo* ETPU ••08 ETML •*o8 ARAONO 72 ARAORO 22 ARAONL •63 AMADPL • 2* 1 i Y s oI •06 AieiML • p6 BRL 6.17 HRD 7.73 ARApT 1*06 TImE 1000' CETlfn -!•?7 le y6H b’ ’7 CRAUNO 98*32 l+ 1 I+Y 28 7* CRaONL 83*61 A d 1I+H 31*62 Cseino 5.97 CsmtML 3*3« CStNMD *1 • O8 l+ e „ d T 66,69 CRApT IA6.f6 TIME 142 0' ETMU ••03 ETML ••10 ARAONO •66 ARADRO •21 ARaONL •56 AHfDML • 21 AieiHD •0* ASOIML • 0» BRL 6.Ul HRO17.22 ARApT!•no TImE iato' CETMn * I »92 Ct TPL•37*61 CRADND i n ' 3 7 lu1I+—32*96 CR4pNL 9*» *63 CHfDRL35*53 cseino CseiML6.J* CStNMD102*32 CgtNML52*83 CRApT1*m.*7 TIME UNO' ETMU ETML ••co ARADmO ••06 ARADPO • 0» 3f3pNL AMfDML•*oo ASOIHD•02 AgeiML•02 PRL•16.61 URO35.68 ARApT- T f TImE UNO' CETMm •1.83 CfTPL •37.71 lu1C„- 110*28 CPADRD 33.77 CRaONL 93*78 CHfOPL 15.69 Cse ■oA 2,O7 CgeiML 6.57 CStNMC IOO*88 A i e „ d H 5l»bo lu1Iy 166*19 112 A p p e n d i x T a b l e 2 . E n e r g y b a l a n c e v a l u e s f o r C o m p a n a - G o l d e n C o m p a n a . J u l y 7 , 1 9 7 6 o C o n t . TIME FTM U LTML AfcAPNQ AflfcD-P AMfcPNL AMfcDPl A S e ’HC *S9|Hi MflL Hup fcflfc'T fn* •'jO T C - T B ••00 ••05 ••ou - T l • T O 2 3 .33 178./7 - T l TIm E l e y m'* CpfML l u 1 C(- CPfciwp CWfcONL C-fcO-L CfieiNO CflHIHl l w ) ( o - c SFNwL CRfcQf Po* .QC •c* • V C * ••01 •1 T B ••OP -•to ••o* -.68 -.BA - • 3 b TIm E f TMU LT-L AMfcUND AflfcOflD fcflfcPNL ANfcOflL A S e i H D fcseiNi. MflL HRD AflfcQf •e* •00 •00 " O S ••00 ••05 / y Y " T l • • o i 185.9b 1A2.J9 • T 7 T lMt CfcTM1* CfcTML CRfcUNO CflfcOflD CRfcQNl CNfcOflL C s e i N O CseiWL l w ) ( „ | C S FNuL CflfcQf Mg. •01 •o* -I • o* • •03 •1*00 • T * - AR • M # • I • 6| -1.78 / 4 m J T l ME F T M U LTML ARfcUSO AflfcDRD AHfcPNl ANiOflL AfteiHp *seiHi ftfll BRD AflfcQt I6 U e •00 •oi -•o* ••oo - T B " T l - T I ••rl 6.10 172.93 • M 2 Tl-I l e y m'' CfTML CRfcCsn CflfcPRO CWfcPNL CWfcOflL C s e i N O CseiHi l w l ( „ | C S f NNl CflfcUf I6O t •01 •1» -3*20 ••o* •3 0# I* ••76 •33 2 *2 •2#b7 •ft 'CO TIME E T M U LTML fcRfcUND AflfcDRO AWfcONL AflfcOflL fcielHD fcseiHi BRL HWQ AflfcUf Iuo • •30 •CO ••o* ••oo / y P ••oo 0* ••rl 55.31 162.>1 Cl y s d e CfcTMM CfcfMu CRfcDNO CflfcOWD l > 1 -(T CflfcDfll C s e io Y c SftIHl CStNNC l i e „ „ T CflfcOf J U O e •OP •I* •••3* • M # • A T * • • 2 7 • V I # ••88 •3» I* •3*P9 •ft * ?3 T I mI ETM J L Tm C AflfcDsO AflfcOWP AflAONL AMfcOflL A i e i„ Y AftfttHl BRL tiRP AflfcDf 3?3' •00 •oo ••05 •00 • • 0 8 • 00 - T l - T l ftO#*2 1 9 3.73 T l T I mL l f y m ' CfcTML l 3 1 - i I • «• Afc CflfcOflD l 9 1 |(■ L f y s CflfcDflL Cse I o Y CseiHi 5 l w ) ( d - l w ) ( „ T CflfcQf J P o e • i? •10 • M ? • I* • 1 5 ® •3.66 -3.97 •* • A ft TlMfc ETM U LTM L AflAOSO AflfcOPO fcflfcPHL fcflfcOfli fcseiwD ARftIHL MRL BRP fcflfcOf 3 + O e •oo •co * *0® •or ••0# T O cl ••ci tic** 1AM . 97 - T l TI ME CtTM- CrTML CflAOsn CflfcDflO l > 1 I(T •*•31 CflfcOflL C i e i H p c SftI-I l i e „ o - cSfNNl CflfcCf 3*0' •03 T O • * •*? • * 0* Il • V 9® • I M P / 1 ,P 1 /3 / 2 J •A . Rf TIME f T°U L T m C AflAONO AflfcORO 1 > 1 -(T fcflfcOfli fcseino AflBIHL B»L HflP AflfcDf 3 # n e • CO T O ••OB •on " " .00 " T l - T l BA 8ft 202.P1 T O T I mL CF T -r CfcTML l u 1 - „ I / m / 1 ’ CRfcOflO l u 1 |(T 6 *® CflfcDflL C s eiwD CsftJHL C S E N H O li e „ „ T CMfcDf 3*0' •Cl T l ••o® ••13 I 3T • V AO • 5 . CS S g #6 TIME E T M U LTM L AflAONO AflfcDflD fcWfcONL fcflfcOfli 3 P w ■ o | Aftei-i ftfll HRO fcWfcPf *»?0' -.QO - T C • 0 6 •06 •06 • 0* " T l ..Qf 3 3 T b 116 . Pft • MU T l M t le m 6L CfcTPL CflADNO CflfcDRO CWfcONL CflfcDflL C s e i w O CSftIHL C S tNHP l i e „ o T CWfcDf "PO' •01 •1» •6*?5 I M O • 5* 11 I M J I fto •!•TO • 3 . Al •3 BA ••*1 T l M E ETM U I TML 3 u 1 l(- AflfcDflD fcflfcONL AMfcOflL Aiei w D fcseiHi ftflL BRO fc»AP? 6*o* *•00 •86 • M •AT •|3 • T O - T l A. 2» 2 0 3 . P * ftfc TIm E C f T - CfcTML CflfcDsn CflfcDflO CflfcPNL CMfcOflL c s e t w o l i Y s o H l ■ e „ o | A i e „ „ H CflfcOT B*o' ••o* " I T * • •91 8*31 3 66 5*13 I #6 • V * l m , z H 3 2 16*77 T l M t PTMU LTML fcflfcOND ARfcORO fcflfcONL fcflfcOfli A i eiHO fcseiHi MflL HRP AflfcDf 8*0' *•00 " M •I* • 0 6 M A «0* T O ••co 11.96 ft V 39 T B T ImE CfcTMO C f TML CAfcONO CflfcORO CWfcONL CMfcDflL c t e i w o CsftlMl C S ENkO A i e „ o H CflfcOT 5*o' *•0» " 1 * 8 # 9A *'®1 ***• m s J w I *3 • I • *8 I V 2® 6 . Af 213ft TIME ETMU LTML fcMfcCND AflfcOBP fcflfcONL fcflfcOfli *seiHO AftftIHL MflL HRD fcBfcOf 8*0' *•00 • M O •Aft M * 39 • t o T l T O !•73 P A 3 5 . 1 9 • 79 Tl-E l e y m '* C f TPL CflfcONC Im M S CflfcDflD CflfcONL CflfcDflL C s e i w o c SftINL A i e „ o B cSENHL CMfcPf 5*0' ■ o * 3 98 I O eOO !••IT 1 0 * M •2 • Tp -VftA 1 0 'tb 1?*1® 3 * 1 # TIME ETM U L T H fcflfcOND AflfcORO fcflfcONL fc«»0*l A s eiwo AtetHI B*L HflO AMfcOf » * O e "•CO • • d T B •03 T i •pl T l •oo 3 36 39.30 M l T ImE Cfc Tm ' CfcTML CflfcOSD 1»*C6 CflfcDflO CflfcPNL CflfcDfll C s e i w n CflftlHl C B E N H D A w ) ( „ T CMfcOf **0' " M G "»•1* I O fSA l®**! 11 «56 •e» 1 a • V t* f t VAf 12.61 *0 * A I TlMfc ETMU L T M L fcflfcOND AflfcOBO fcflfcONL fcflfcOfli Aieiwn ASSINl BflL HRD AMfcDf **0' ■•oo • o * •66 M * 51 •II T l T l 7.63 6pft T ® I T A TlMfc l e y m- CfcTMt CflfcUND CMfcOflD CflfcONL CflfcDflL C s e i H P CieiHL C S E N H P l w l ( „ T CflfcQf 8*0' e M i 5 36 3P* It IA» Jf ft®*To 1 * T l • ? • 11 ■ V AS 3A.31 ? V 99 61*93 TlMfc fcTMU ETML fcflfcONC fcflfcORO fcflfcONL fcflfcOfli Afle ■d B Aflft |HI SflL HRO fcflfcOf T l O e ••oi • * 0 6 •IP •I® • Tfl •ft T B T l 10.67 R S .A7 V f l 113 Appendix Table 2. Energy balance values for Compana - Golden Compana . July 7,1976o Cont. TlHE 74* (I* CETHr ".»3 LfTPL "<••62 LeALNf 5f* 7) CpAoeo 19.36 CPADNl 40*87 CNApRl »1 42 CseinD M.na cSR Iw^6 CfifwwD 61.36 l+8dMT 35.50 CeA-T 87.?7 TlHE ETeO ETPL 3|1-LL- ARfORD 3|1I(T AHiDPl ARBIwP ARNfWL PNL HR C 3f 3mT 7»@* ■»c* " M O ‘96 •25 .79 *?7 •06 •r? 6.57 23.46 I *?9 TImE CE TM' LfTPL ll1I(I l+ 1-|- lu1-(T l>1-BH CRBiwr CseiWL CSENWC LSFN^L 42.61 l|1 Sm 7*0' * I • I 6 •b.fc4 69.ft* ?4 • 4? 96*68 26.67 *C9 ••18 68.41 I l S T 9 TI mE ETPU ETML AeACNO 1u1-B- 3|1I(T 3>v-Bs ARBTwD Aseiwt BRL URP 3+ v4y Pon" *•'? "•08 •89 .,8 4 •2* • 0 6 ' C8 13*11 36.14 I • 19 TImE GET"' LfTPL l|1-(- = 2ab7 l+ 1 -BY CNaDNL CN4DPL CseiwD Cseiwi CSENWO 84.41 A i ewwL CP1UT 8One / s zaY •9.7« ?8«05 71*42 12*11 1 . 3 8 'P8 6 1 . 6 0 I 36.8 3 TlHE ETPO ETML 3-1mNO 3|1I„| ANaONL 3>vIBs ARBlwD ARBIWL PRL HRP 3^ 3-y 8?0* ••03 "Mt *99 •27 '92 .2" •07 •p9 4.8c 30»U5 !•40 TImE8Zo' PfTM'•d-PQ CfTPL -12.7* l|1-„ - to7*?6 CRAOPD 33 • 9* l|1I„H 91*74 l>1-MH 17.90 CseTwD Cs,,r u CfiE„ d- v.*a b% CfifMwL 78.ui lB vCy ,64.7b TIME ETPU LTPL APAOHO APADPP 1 91I„ T AN1DPL 3wP■o I ASeiWL PRL OPP 3^ 3-y 8*il* 25 "'O7 I 'CO .pA •86 • e7 •07 'C8 11*52 2.73 I*?8 TlME le m6na CfTPL l|1L■(- lu1-|I CP4DNL in8'9* lu1IBs li Y s oI CsflTWL CSENWO CfifMwL 81*11 lB vCy 8*0* "1*'09 IZ''!8 38*67 4 3 * 3 7 8 13 1*73 115.89 I90*33 TIME 88O' ?TPO ETML APA11NO ARADND 1(1-(T AH1DPL ARBlwD AgOTWi BRL OP r 3|vCy •*31 "M l *46 •15 •37 •l8 •07 eP8 2» CI 71.31 •73 TIME le T Mr Cr TPL CPAOND l|1I|I luaI„ T l„ 1IBH Cse I wo 5 . 4 7 l+f:Ms CfifNH'' li e „aH lB v-y 8#n" "I8 *?8 |38*4J *1 8I 1,6*34 46.56 2.64 123*69 97.51 20»*88 TlMF FTPU E-PL 1|1C„ - 1| 1lB— ANaDNL AR1OPL ASBlwP Aseiwi RRL dPP AN1Ov ’on* •• Il -*o9 *84 •?* •73 • 27 •0* * P* 6* A9 1*72 I • ?3 TlMt CF TM" CfTPL l|1-„Y lu1-uI CPaDNL lu1IBH Cse ■dB 6 , 7 4 Cgeiwi CfiENHO CfiFNwL CN1UT 9UO* "13.44 • 18 • P 7 153*22 46.45 110*93 5i.86 3 3» 133*1)4 IO8-Sl 229.4* TlHf FTPU ferPL 3|1-LK. APAOPD AbaDNL AR1DpL Aseiwp Agmfwi RRL rtpD AN1OT 9*0' "'70 "•25 •73 •2* •68 .26 • 03 •D3 1.6b . 0 0 1*06 TlME 98O' CFTHfT 7 LfTpL •22*99 lu1l„ - 167.90 CRADPD 51*80 l|1I(T 144*49 lu1IBH O2,J O CseiwP^ cse I wi 3.87 CSENwO 133.0» Aie„MH 117.63 l|vCy 251.16 TlME ETPU ETML 3(1 C Ml) ARAONO 1u1I„H 3u1I|T 1 i Y s o- ASBfWL RRL IPP AN1OT io**o* •00 • oc •02 •02 •02 *0? • 04 •0? 7.4? 40«7§ • C8 TImE ioZo' le Tm** -2/.47 CfTPL •22*98 CPACNO 168*38 %1'94 CRaDNL 144*86 lu1I|T 57.36 cseiwo 8M O CgBfwi » 31 CSENwr- l32*8l CfifWWL 117*57 l|1Cy ?62*69 ysde ETPU trPL 1|1-„- ARADPD A8ADNL AR1DPL AseiwP AgBfWL BRL WRP 1u1Cy 1ICO* •00 •oc •02 •01 •01 • ot *02 • ol 7.73 116*93 *C4 TImE UOO' le m60 •p 7•4 7 LfTPL •22•98 CPAUNO 16 «•7i l|1IuI 51*69 lu1I(T 145*10 CR1DOL 57.56 Ci9iH°4 "TL, % l|1-y253.»2 TIME F TPu ETHL 3u1l„- APADRD 3u1I(T 3uvIBH AseiHp ABflfWL BNL BRO 1 „ 1-y iUo* •00 -•oo •*oo •oi "•01 •ol • 01 •Ol •6.3» 33*06 T 4 TImE 11*0' lhydY L: ‘,KO CffPL -23'O8 lu1l(- 168*62 lu1I|I 91*94 lu1I(T 1 4 82 luKIBH 67.85 CseiwD l+fsMH CfiENWfI 132.46 CfifNWL 116.94 l|vI y 254*35 TIME ETPU F.T ML ANADNO ARADPD 3u1I(T 3uvIMH Aseino ARBfWl BRL BRD 3(vCy !1*0' "'GO '03 1U8 •o* eO8 •0* • 0 1 T l -3.32 32*00 • 16 TImE CETM" CfTPL l(1-(- ■ 2-nb. CRAOPP l(1-(T 146*38 CW4ORL Cse ■o— 8. wJ CfiflImL CfiENwD l+ e „ o T l|vIy11*0' • f M o -22*5C 2 66 68.65 4 9 9 133.**0 118.65 257*57 TIME ETPU ETML 3|1I„- ARAOPD A8ADNL 3uvI+H ARBlMD AgflIWL BRL HRP AP1OT U 8O' "•00 ••oo 'O8 •05 •O7 *00 •01 •Cl 24.99 »0* 7I •22 TlME A e ydY CfTPL lu1-„Y lu1Iu| l(1I(T 147*83 CN4DPL CseiwD 9 * 0 6 CgeiML CfiENwO CfiENWL l|v-y H 8O' **'•54 22 5 l7i*8l 93*73 68.70 5* 17 I 35.29 120*M 262*06 ysde ETPU ETML 1(1I„- ARADPD 1u1I(T 3(K-+H Age 1wo AgflfHl BRL BRP AP1DT If8O' •CO •oo ••c* -•oo ••06 • 0 0 • 0 0 •CO 17.76 122,68 •01 TImE CfTMr “2 ,*5| CffPL l|1-(- I7Ue7O l+ 1 I|I CRaDNL 146*72 CR4ORL CgelHD 9*0* Cgeiwi CSENwO 13».O9 CfifNWL 119.00 l(1Iy 1**0' •22*49 ’b,2s 68.72 5» 23 262*25 114 Appendix Table 2. Energy balance values for Compana - Golden Compana, July 7,1976. Cont. Uh-E 186c. E T M U • 00 LTPL -•CT --CO AflAONL^ Tl*E12*0' CtTM- "2'.10 CpTPL -22-41 CflAONp 169-4g l+ 1 -|-53.6* lu1-(T14 AS TlMf ETPU •00 LTPL AflAlNO ••06 ARAOQD ••oo ARAfTNL TIMf ■|d-n le y dL eF7-S0 CfTPL d2 3* l|1-(- 1 6 * M * lu1-G| ab,Or lu1-(T U A ' ? 7 TlM£ i3un* ETPU •rc ktPL -C6 1-1-„- a / .* ARAOQO • - 0 0 A=AONL ••06 TlMf 1300' CtTM- -27"»9 CpTPL eS l M 9 l|1-„— I67eOO CflADQO 5 3 -62 lu1-(T 143*13 T l M E 13*0' E T P U -CO LTPL 'CO AflAONP *.cs 1A 1IuI "'00 A=AONL •*03 TImL 13"*)' le y dL CfTPL eS l M i lu1-(- : *5•^l lu1-GI 5 3 -9* lu1-(T U S M l TImL 1»?0' E T P U H yBH 'CO AflAONO Ci AflADflO •'01 A=AONL TlMC U i r e CtTK •gT.^S l8m|H - S i M C CQAONO 16»-<2 CflAOQD 3 2» CHAONL IAl*86 AflAOflL • • 0 0 A36IHD ASBIHL •CO BRL 16.10 t*RD 54.15 A QA'J T -•Cl l>1IuT AS.69 C,'i^ liYsoH5-30 lw)(d C 132.94 CflAOT ?6?./M AHAOQL • • 0 0 3 6 ■ d- • *o o ASiIHL PRL 15.3* bRP 138./5 AHAOT -•c? l>1-GT «8.64 CseiHi 6*3* CSENMO 131•T? li e „ dT H 6-6O lu1-y Pfl-M 3>1-JT "•00 AseinO -.01 AflOIHl • 0 0 ■ RL • 00 bRO 128.22 1u1 Sy -•CP l|1IuT «8 .S7 Cge I HO a . 6 3 CseiHL 5 .34 li e „ dI 130-68 li e „ d T ■ ■OLO- lG1-y P6 I-I6 AflAOflL • • 0 0 AgeiHO "'Ol AseiHi ••ot SRL 69.A3 BRP 135.97 A=AOT -•02 l>1-|T 98.56 li Y s o- 8 .5 * CseiHL 5' ? A CSENH0 129.89 lih„dH Ilf-7O l»1-y ?60-79 3>1-+H • • o c AseinO 0 8 AflOIHI -•oi RRL d.l* HQP 13?.'}5 AflAOT CRAORL «8.5* d e l no 8.21 CSBlHL 5*r7 lw)„ d| 129.93 CSF„dH vv’,.7 CRAJT PfO-eP 115 Appendix Table 2. Energy balance values for Compana - Golden Compana. July 8,1976. Cont. TIME **0' ETFU • • c o ETPL • • o i 1u1-d- / 2v ARAORD •*1 1u1 L„H •43 AWADRL • 25 AseiHD •03 ASOIHL '0* 54.64 bRO 1395.25 ARADT 1 1 2 Tl-MC t*0. CETMP "'Cl CfTFL " 2 2 lu1 -(I lS.53 lu1-u- 4«6? lu1 -(T 231»T lu1-+H 5. io li Y s o I •*o CSOIHL •30 li A „ o - va,7s li e „ d H 12*02 lu1 Y y ** * ysde #&o" ETMU • 0* ETML " • o i ARADND •79 ARADRD •13 1u1-(T / K7 1u1I+H • 1® ASO I oY • 0 6 ASOIHI •0* BRL 30»70 BRD 44*28 AMAOT .74 TIME 9*0* CETMp • 3# leyd H lu1-(I 31*40 lu1IuI 9*30 lu1-(T 22 *9 CMADRL ■ •o6 A i Y s o Y 1.76 C8OIHL I'O* A i e „ o Y 29.30 li A „ d T 20*73 lu1 Y y 37.13 TlMC 9#o* C T F O • • o o A ydH ••05 ARADNO '24 ARAORD •14 ARAONL •32 ARADRL • ** 3w-■ol •0» ASOIHL •03 BRL 5,16 ORD 64.44 ARAOT ' I *96 ysde 9#0* CETMO "•40 leyhH " 1 4 5 CRADMD 34*66 CRADRD 12*60 lu1-(T >«•78 lu1IuT 13*56 li Y s o — 2.7« CsOIHL 1*74 CSENHO 33.%9 lie„dH 25»6o lu1-y 6 4 .42 TlMC iezo« E T F O • • o i E T M L " •1C ARAONO •39 ARADRO •17 ARADNL 38 ANAORL *19 1 i-■o I •03 ASOIHl •ri BRL 2.39 BRD 30*31 ARAOT •67 TlMc 12*0' Ce T dY //Kb tET*L 3 54 A + 1-„Y 44*43 CRAORD 15.94 lu1-„H 36*37 CRADRL 17« 2* li Y soY 3.46 CgOIHL *•22 CSENHD 4 0 '34 CSfNML 30**1 A + 1Cy 77.86 116 A p p e n d i x T a b l e 2 . E n e r g y b a l a n c e G o l d e n C o m p a n a . v a l u e s f o r C o m p a n a - J u l y 9 , 1 9 7 6 . C o n t . m ■ > e Z o e £ r r v •'CO E TML AflAUND * • O 8 AflADflD •'00 Ap AONL • •oi A p ADflL ••00 3 w - ■ o > " •00 AseiHL BflL • PO 2 5 .6b • 7 1 1 . 3 5 Ap AJT •'12 TlHf ?r>* l e y d y •'0 0 CrTPL '0* l 3 1 - „ Y -I '68 CflADBD ••0 2 C p An NL - 1 *53 C p AOflL ••oi C se I o Y / / G i CseiHi C S f N w r •n2 • 1.61 C g fNwL - 1 • A9 l u 1 I y •'43 TlhE *0' E T F U •'0 0 E TPL "'CO AflAOHD C 8 AflADflO -•oo 3 u 1 >(T ' AflAOflL ••oo A S e i n O •'00 AS6IHL pRL •00 - 5 7 2 . 3 6 HflD 230 25 Ay ADr " T 2 TI m E *0* l e y h O ••oi C6 TML • 0 6 l P 1 - „ Y •3'3? CflADflD ••o9 l u 1 > „ T -3'06 Cp ADflL ••0 3 C s e i n D " • 17 CseJHL C S t N H i •0+ -3*21 C g 6 NHL - 3 *0+ l u 1 I y 5 TlHE «0* E T M U E T M L ^ AflAONO ••OB AflADflD ••00 3 u 1 I „ T • •07 Ap AOflL -•00 A s e i n O -.01 AS6IHL BflL -•nC 2 0 5 . 5 0 PflC 9 6 7 . 2 2 Ap AOT -•C? TIME 6 O e C E T F n ••oi C f T P L '0* CflAONO •9*oB CflADflO ••0+ CflADNL A 55 CflADflL ••o' C s e I o l *2 CselHL C s E N W r* •«3 " A . 79 CgEN H L - A .&2 CflAOT •1'25 TlHE B0 * )mh C •'00 ETPL AflAONO ••o* AflADRO •00 AflADNL • •07 Ap ADflL A s einD -•oi ASOIHL BflL -•oo 76.98 HRD • 6 M 2 . B A Ap AUT •'P2 TIME 8 O* CE TM* ••01 C f TPL 'O 8 CflAONO -6«77 CflADflO - ' O 8 l u 1 I „ T • 6 '09 l u 1 I f H - ' O 8 Cge ■o — • + 1 Csei H L A i e „ o — L / n? - 6 .36 l i e „ o T 5 95 l u 1 gy - 1 *65 TIM E 10J» ETM U ETML ••ot AflAOND ••Oi AflADflO ••oo 1 u 1 I „ H Ap ADflL -•oo A t e i H D ••01 ASOIML BRL • •00 - 6 • AU OflD 2 9 8 . Bi Ap ADT -•C2 TIME C E TMr C 6 TPL l P 1 - „ I l P 1 -uI l u 1 I „ H l u 1 I + H C s e t H D CseiHi A i e „ o — l i e „ o T CflADT 103' ••oi • • l 8 -B • 33 -'ll • 7'52 -•Oi ••60 -•Ot - 7 .73 •7,61 -2'C1 TIME lZfl' E T p U •00 ETP L • 00 AflAOND ••oi AflADflD - •00 A R AONL Ap ADflL ••oo A S 6 1 H D ••01 A 8 SIHL flflL • •00 1+0*02 rtRD 9 4 0 9 . 1 5 AflAJT • *C2 T lMt 123' C f TMn •*oo L f TPL "•If l Y 1 - „ Y 9 Bi CflADflO • •12 C R aONL -B RB C p ADflL • 1 + C s e i H O • • 7i C s eiHL A i e „ o Y - I A - 9 .10 A i e „ d H L 9,Ut CflADT -2'41 TIME 1*0' E T M U •00 E T pL AflAOND ••Qi AflADflD ••oo 1 N 1 - „ H ••07 Ap ADflL A S 6 I H 0 "•01 ASOIHL BRL ••00 17.66 P + — A 1 5.»0 AflADT • T P T I h E 1 + 0' CETMr- •'00 C f TPL •'10 l 3 1 - „ Y /vv n N K l u 1 - uI •'13 l u 1 - „ H a v. n == Cp AOflL •13 C s e i n O "•36 C s eiHL l i e „ o I " '22 - I O ' + 9 C g fNHL " 1 0'26 CflA'JT -?• 76 y s d e 1*0' E T F U ETP L ••oo AflADND ••Oi AflADflD *•00 3 u 1 - ( T ' Ap ADflL • 00 A S e l H D -•01 ASOIHl SflL -•ol « « * * « 0 0 BflD * * * * * * * AflADT ••07 T I mE 1*0' C E TMr •'00 C f TPL •'10 l u 1 I (I 0 ■ b n -- CflADRO •'lB C R aHNL - I l ' 88 Cp ADflL •13 C s e io Y L ■ 6 = c$e i os, A i e „ o — '33 " l l ' i 8 C g f N H L - 11.61 CflA'JT -+•ic y s d e I8 O' E T F U •00 E T p L •00 AflADND ••0» AflADflD ••oo A p AONL •'07 Ap ADflL ••oo A s e i n D ••oi AgeiHL BflL -'Ol + I M 9 B RD 397,43 AflADT - 'CS T I mE I8 O' le y d o C f TPL ••o7 l u 1 I „ — CflAORD " I * C R aONL • l 3 ' 2 8 Cfl4DflL "'I* C s e i H O - 1 *37 CseiHl C S E N H C -'AA -13' 2 2 C g fNHL -12'9! l u 1 I y y s d e 200' e y d r ••oo E T p L AflADND ••Oi AflADflD • 00 3 u 1 - (T ••07 Ap ADflL • OC A s e i n D -•01 ASOIHL RBL ••01 23.21 HflD * * **** AflAUT • »C2 l e y d o ,00 C f tPL -.Ol l u 1 I(I L ■ a , ■P l u 1 Iu- ' C R aDNL •1+.71 Cp 4OflL "•! + " ! I : : . CgeiHl C S 6NHD -.58 -I A ,57 C s 6NHL - 1 4.15 CflAn T -+.72 l m h 4 •00 ) m B T -•oo AflAOND • ' O 8 AflADflO ••0 0 Ap ADNL • •07 Ap ADflL -•or Ate I o Y //.v AgeiHL pRL -•ml -A9. 2 6 HRO 360*11 AflADT • 'OS y s d e 220' C E T M O •01 C f TPL - o * l u 1 - „ - • l 7 . 7 7 l u 1 IuI •'21 C R a DNL • l + ' l 8 C R 4DflL " • I 8 C s e i H O - l 't3 CgeiHL l w ) ( o I -•7 2 - 1 5 . 9 3 li e „oH -I 8 l 8 O CflADT -5'14 y s d e 2+0' E T P U E TPL ■•oo AflAOND - ' O 7 AflAORD ••00 Ap AHNL^ Ap ADflL -•o o A s e i n D ••01 ASOIHL BBL -'Ol - 3 7 . 6 2 BRD P95. B 9 AflADT -•os TIm E 2+0' CL T MO •01 C f TPL ••o7 l u 1 - „ — • l 9 ' j 6 l + 1 I u- 2+ Cp AON L •l7.5i l > 1 I + H " 2 2 C i B !HO - 2*06 CSOIHL C S E N W D -»B6 - 1 7 , 2 0 A i e „ o H • 1 6 . 7 ? CflADT TIME 2 6 0 * E TPU ETM L AflAOND • • O 7 AflAOflD " •00 A p AONL -•07 Ap ADflL - .00 A s e i n o ••01 ASOIML RflL “ •Ol 7 0 . 1 3 BRD 4 6 9 . AS AflAUT -.CS TI m E 2*0' le y d o •01 C f TPL * *08 l Y 1 - „ Y / = . n = b CflADflD "'26 C R aDNL • l * ' S 2 C H 4 DflL 2 8 l i Y s o I *2*31 CseiHi C s 6 NHO • I •03 -l8'31 C S 6 NHL - 1 7.84 l u 1 | y - 5 '82 y s d e 2#0' E T F U ETP L * ' 0 0 AflADND ••07 AflADRD ■•00 A p ADNL Ap ADflL ••0 0 3w-■o I ••01 ASOIHL BflL -•ol * * * * * * * BRD 6 0 4 . 6 4 AflADT -•02 TlMr Z8 O' l e y d Y '01 C f TPL * 'O8 l u 1 - (- • 2 1 ' * 7 l u 1 IuI •'30 C R aDNL “ ?0'0 6 C H 4DBL ••2* l i Y s o Y * ’O CseiHL CS 6 NHO •!•20 e I9 l AQ A i e „ o H * 1 ® » 9 1 CflADT *6 • 12 m ■ d e 300' E T P U ETP L " '00 AflADND " 0 6 AflADflD ••o o A p AONL ••05 Ap ADflL *•00 3w-■o - -•oi ASOIHl RflL ••ml -12.91 BflO 1 6 2 M 7 AflADT y s d e 300' l e y d d '02 C f T P L ••1 + CflADND •23* 1 2 l u 1 -u I -•3 6 C R a HNL - P I '1+ C p 4OflL ••31 l i Y s o — * P3 CsSIHL C S 6 NHD •1«36 - 2 0 * 2 6 C s 6NHL - I 9 -9 I l u 1 I y 2 117 Appendix Table 2. Energy balance values for Compana - Golden Compana. July 13,1976. Cont. TlMI ‘•o* ETMtr eOt I TML • •*» 3 6 1 - „ - •SI A M A D M O •** 1 6 1 w „ H 3 u 1 - d H /7i •A7 3n■4s o I ' D •0* ASSIHl •01 BRL f 26 B RD Si 89 A M A 0 T I M l 1X C f T M O•11 C f TML•*•11 l 6 1 I „ - v2 aK. lu 1 -6II I# l 6 1 - „ H l u 1 -d Hl A l A 9 . AA C l S I M DTl CSSIHL•1* C S f N M O17*1» c e f ^ 1 l d 1 - y **a %l TlKI ’00' f TFU eOl I T M L - I l 3 6 1 -( - I A M AOMO Al A M aON L A M iDML •7A .A7 Ate ■o Y /.= ASSIHL eCl BRL BRO If* 63 A M AOy I • 17 T I Kl > 00 • C f T M O *♦? C f TML •7»ol l 6 1 -(- IS 14 l d 1 - 6I l7*9i l 6 1 - ( T l 6 1 > T I 6 Il ll*9l A i i s d Y 1*76 CSSIHI •A3 C S E N MO 3**69 l i e „ d H 2 1 * 4 9 l d 1 - y ♦ 5 *63 Tl"! >‘ o« C TMU •00 ITM L - l 7 A M A D N O I eOl A M AOMD I 3 a 1 - (T A l ADML •i* 'So ASSI M D •04 ASSIHl •of BRL 1*7 4 BRD 8 9 9 OS A R AOT I* PB TIKt >*0' C f T M O •Si C f TML M O * * * l 6 1 - (- 54 21 C' W » c , t r * 4 C s e s o — ■, J w CSSIHL •91 C S f N M O 6 3 *69 li e „ d T l*.*l l u 1 - y 2 ■ ab. Tl"! *00' E TMO ETML — #* A M ADNO f 0 6 A M AOMO • 8 0 3 a 1 I (T 3 u 3I6T 1 7 .SI A S S !MD •O? ASSIHL •oi BRL BRO • 9 9 9 * 2 6 A R A 0 T 1**9 T I "I *00' C f T M O •51 C f T M L •e7« g * l 6 1 -(I 7 7 * 1 3 C M A O M O |7'4| C N aD NL l 6 1 -6T Kv, > v 7 ,v. l s i s o Y *•1 9 CSSIHL !.RA C S f N M O 7 1 *27 A f e „ o H ba , O ■ C M A O T 101*03 Tl"! 6*0' C T M U •00 CTM L •0* A M AONO IeOt A M A O M D • 9* 3 a 1 - (T AlADML IS si 3 w w ■ d - •04 ASSlHL •0* BML • ♦ * • 3 6 B RD S 6 2 89 ARAUT !•37 Tl"! • ‘ o' C f T M O •54 C f TML • 1 4 . 1 4 l 6 1 - (I 9 7 * 6 4 C M A l M O Al #1 l 6 1 - (T l 6 1 I6T ■- ■ ’ . a v v l i i s d Y w KK CSSIHL f 10 C S f N M O • l* *6 l i e „ o H 5| 24 l u 1 - y 12»*A2 TlKl ■*0' C T M O ■m6 T p J ’ A M A O N Q 1*0 0 A M ADMO •BA 1 6 1 - (T 3 u 1 I + H H .84 A S S I M O •04 ASSIHL •0* M L 1**01 B RD • 1 0 7 . 9 * A R A°T 1*32 TIKi ••o' C f T M D •41 C f T M L •17* 1 0 l 6 1 - (- l l 7**5 C M A D M D 59.11 l 6 1 - (T l 6 1 -6T 14 IA 4 1 * 8 1 l i i s o I K a 7 1 C S S IHL 1'09 C S E NMO 1 1 1.17 A i e „ d H AS * l u 1 - y 15**90 TlKf *00' I TMO •01 s y d H •Oi 3 6 1 - „ - •51 A M A D M O • SO 1■ 1 P „ T 1 6 1 - d H /27 33 A S S I HO • 04 ASSIHL •o* BML •110*01 BRD • 1 4 1 * 7 9 A M A 0 T I It TlKl *00' C f T M Q •71 C f TML • 1 7 . Tl C M A O N D H * e l4 l d 1 - ■- 4 9 . o* l 6 1 - „ T l 6 1 - d H H I eS l O l# e i e Ir; . CseiHL I 99 l w l ( d - 119*69 l i e „ d T * 0 * * A l u 1 - y I6 V t O TlKl *10 C T M D •01 ITM L •of 3 6 1 - „ - I 36 1 - ■- SA 3 6 1 - „ T A l AOML •74 .87 A M I HO •0* A S S IHL •o* BML • * * • 9 1 B MD • 6 1 * 7 6 A R AOT V l t Tl"! »«0' C f T M O *•01 C f TML 17 #4 l 6 1 -( - 1 6 * * * 1 l 6 1 I6- 7 9 Il C M aC N L - C M i O l L 1*7 7# # 4 1 l d s U Y ' CfSIHL A t C S E N M D 1*6*1* l i e „ d T 9 5 * 9 8 l u 1 - y ? 0 7, 97 " ‘‘ o' E T M O ••oo ITM L o: A M A O N O •IT A M A O M D •51 A M aO N L A l i D M L •7# «64 A M I MO •0» ASSlHL •o* BML 2 9 *97 B RD 3 6 6 7 . 1 9 A R A 0 T V P * " S o . C C TMO 1*01 C f TML • 1 7 * 1 1 l 6 1 - (- 1 # Ql l 6 1 - 6- 9 0 *AA C M i O N L l 9 1 I6T 1 1 Si j 9 1 . 7 9 A d s o — I O '*. CSSIHL 8*66 C S f N M D l * f l l l i e „ d T 1 0 9*ul C R A 0 T 21 2 PB TlMf M 0 * f T MO ••o i CTM L • •o* A M A O N Q •74 A M A O M D ' SI A M A O M L AMJkDML • 41 ,.A l C l A D N L t r i o i L ISA 99 I Q l A I m i o Y / .a ASSIHL •o* BML 9 32 BRD 19.36 ARAUT 1 1 1 T , s , l s y 6 J •ii C f T M L • l * . 04 l 6 1 I „ Y ! • 7 * 1 0 l d 1 Y d Y s Y Y n■ Y l d s o — ii'.* CSSIHL 6 6 C S E N M O |76.7T l i e „ d H v v 7 , O 1 l + 1 Y y 25*. 5 9 TlMC IO 6 O e f T MO ••it I T M L - Q l 3 6 1 - (- 'Al A l A O M O •1' A l i O N L AlADML * 1 fl A M l H O •0* ASSlHl •of BRL 30»07 BRD 3*07 1 u 1 I y *95 T I "I IQ6 O e C C T M O • l *»i C f T M L • 1 5 * 1 1 l 6 1 - (- 94 *1 l 6 1 - 6 - I O * * ! 6 " C M aD N L C W aO ML 1 4 1 1 1 1J K " K ■ A d s o Y I * . * CSSIHL 4* TS l i e „ d I 1 9 2**0 l i e „ d T 127* 2 8 l u 1 - y 2 7 1*56 TlMC IO6 O e C T M O •01 C TML ••o f AMAONO *1 A l A O M O •17 A l i C N L AlAO M L *1 'll A M l H O •01 ASSIHL •of BRL 19.10 N RD - 5 9 * 1 9 ARADT *77 TlMf C C T M O C f T M L l 6 1 - (- C M A O M O T M i O N L CWiO M L C M I H D C se IHL C S E N H D l i e „ d H C M AOT IO6 O e • 1 5 * Ti ■ J w aJ a 107* 1 1 1 7 1 'SB 110* 1 0 I * . I 7*17 190*11 1 1 * . SS 297 OS TlMC *100' CTMO ••oo ITM L •oi 3 u 1 - „ — •1* A M AOMO • IB AlADNL AlADML •11 - ail 3 6 ■ d - Ol ASSIHL •of pML 39 SI B RD 2 5 6 . 8 4 A R AUT •69 TlMf U O O e C f T M O • ! •It C f T M L • 1 5 * 6 5 C M A O N D t i l *51 C M A D M D H O ' ! * l 6 1 - (T l 6 , I6T 1 7 l ‘0l I! * • Al l d s o - t l 'lt CSSIHL 7*SB CSENMO I96*9o C S E N M L I* 0 « * 9 C R AOT 300* 6 0 TlMf U t 0 * C T M O • 00 ITML •00 A M A O N D •f7 A M ADRD • 1* A l A D N L A l A H L •14 * I* 3 6 ■ d - / .v ASSlHL •of BRL •41*98 B RC ft * S AMAOT *69 Tl"! I H O e C f T M Q I 7# C f T M L •25* * 7 l61-„- t l ,e 3l l 6 1 - 6- 111 si l 6 1 - (T l 6 1 I6T vavav2 v v 2 , K K l d s o Y i.'*> C SS IHL 7*98 A i e „ d Y f o r * 8 A i e „ d H 1 * 5 * 9 6 l61Iy I l f A P TlMf 11*0* E T M O •00 ITM L •00 A M A D N O •to 3 6 1 -6- If 1 z 1 I „ H 1 d 3 I d H •i* •!* A M l H O •01 ASSIHL eOl BML • 7 1*81 B RO • 1 1 9 * * 7 1 u 1 - y / •o 118 Appendix Table 2. Energy balance values for Compana - Golden Compana. July 13,1976. Cont. Tl^E ll*0# A e y d — •le78 Ct TPL 2 *2 lu 1 - „ . 2 2 1 * 1 lu 1 -u- l l i ' M lu 1 -(T l*7 '07 CRffORL 20 *2 Cse ■o Y l3.7f "IIS. ClENHO P0SeS* A i e „ o H IAS.B7 l u 1- y 322'*0 TIME ll*Oe ETFU .00 ETFL • 00 ARADNO •14 ARAlWO U O ARAONL 'll ARffOffL • 0* AeeiHD- .00 AieiHL •01 BRL •82.22 BRO •3A.33 ARffOT *1 TlMr 11*0' CfThO •1*67 cSiSilT lu 1 -(- 22* 2* CRAORO IlitO7 lu 1 -(T 1*3*48 CRffORL U l * 77 csIiIS, C M r , p cSSSIS. l i e „ o T ■82 'Uf l u 1 - y 330*67 y s d e 11*0' ETFO '01 ETFL •'00 3u1 - „ Y •o? ARADRD •o* AMAONL •03 ARffORL •10 AieiHO ••oo AieiHL • 00 BRL Bi IA BRO •12*02 APffOT •32 TlMr 11*0' le y h — •!•S3 Ct TFL ":*'3* l + 1 - „ . 22* * lu 1 -u- ■■an2a l u 1 -(T H O ' * * CRffORL 1 2 3 * 3 Cee ■o Y vba2 v c"iii. lwe „ o I 210'*f li e „ o T 1 8 3 1 3 CRffUT 337*02 TIME IfOOe ETFU .00 ETFL • •00 3u1 -(. •Of ARAORO tO* 3a1 - „ T ,,, n.a ARffDffL • 07 AeeiHO • •01 AieiHL^ BRL 11.01 BRO -21.TA ARffOT •23 TIhE i:oo' CtTM0 -!'Si c;tz:?. CRA0Ro iei'03 cteIo Y ▲b,av CteiHl * A? A i e „ o Y 211.07 CIENHV 151.AA CRAUT 3*1.«5 y s d e i::o' ETFU ••oo ETFL •00 ARAOND ••o* ARAlWO .'0* AppDNL - B K ARffORL •o* AtelHO ••01 AeeiHto BRL 30*81 BRO -21.31 ARffDT •15 y s d e i::o' A e y d — •!•S3 cSiii,, CRtDND 22* 38 CRADRp 121*3* CppDNL Jl0 -Kl CppWK. IfIp0 I ClllHO U - M c"ili, CIENHO 21Q.AI cIiSIir CRffUT 3*4 6 f TIME i:*o' ETFU ••oi ETFL ••01 ARADN0 •'10 auaIu-,«« 3a1 -(T, •oi - 0* A"ffOHL •fl ffieiMO ••01 AieiHL ••00 RRL •6.63 BRD -11.20 3u 1- y •02 Tl"! I!‘e* CCT"0 •l*T0 CtTpL lu 1 -(I 2:3 3# CRAlWD 122 Q 7 cIiSIi0 CRfflWL 12# 23 Cf!!HO Jl-Jl csT i i CltNHD IBl'IJ A i e „ o H i9o.*s CRffOT 3*a.0s y s d e 12*0' ETFU *'00 EtFL "'Ol ARAOND ••o* ARAPRO •*oo ARffONL •'07 .ARjkPm. ••to AiO IHO ••02 AieiHL •'01 |RL -S.18 BRD 36 BI 3u3-y ••02 Ti;i0. ClTpB •J.TJ cSiii., lu 1 I(I 221 *7 lu 1IuI 122*01 cIiSIL cIHH. CeeiHO it*7 ? csT t. cSt0S H r cIENHlIAteA0 CRffOT JAA.7S y s d e n o o • ETFO ••oo ETFL ••oo ARAOND 0* ARAORD •*00 ARffDNL ••07 ffRffPRL ••oo AieiHO ••02 ASIIHL ••01 BRL •23.37 BRO -33.es ARffOT ••02 y ■ :w f a cStiiii lu 1 I„ . 220 0* cIiSIi. cIiISi csTl, ClrNMO 204.00 cHSTt. CRffOT3AA«36 TIME 1120 e ETFQ ••oo ETFL •ot AffAONO •'o f 1 uaPFO . •00 aRAQNL • •0* KtKFh e ‘••!IS, '"HS, BRL 6.13 f + Y •SA.ll ARAOT ••02 y s d e 1320' CETPO •1.7* CfTpL • «3 *7 f lu 1 I(I 21* #2 lu1 -u- 122*01 CRffONL li*'67 Cp p OpL Ill-Il CteiHO I V * 7 cseId H Te** CIfNHO 208 .o* A i e „ o H IKK.Il CRffUT 3*3*S6 TIME 13*0' ETFO * »00 ETFL ••0 3 ARAOND ••0* ARAlWO ••00 ..KKpBKlg AtQIHO ••0* AieiML ••02 BRL •2 .AG ■+ Y -3S.3A pKpOj CseyiNS " C e . Cc1FL _ •30 »37 cIJiiSr lu 1 Iu- 121*37 -cI l S H r cIiSIii A s Y s o Y I O '77 c' T i , cStBlIS. cHSTSr CRffOy3*3 PB y s d e 13*0' ITpO ■•oo ETFL •'00 ARAONO 0* ARAlWO ••o* .AKpONL7 pI pBKl0 pIllMO5 AieiHL ••03 RRL •13.22 BRD 22 ** ARffOT -'02 y s d e 13*0' CCTpD •l*e« CfTFL *30'*7 CpAONO CRAORO tid'ii CRffONL 1: 1 * 7 CKpDp L III.Jl c" i : s . CfOIHL *• 3J CIENhO 203*77 ls e „ o T l**'3o l u 1 I y 3*3*1* TIME 13*0' ETp D *•00 ETFL •'00 ARtONO ••07 ARAlWO •00 ffRffONL " ' ..O7 AKpBKLg t ie Id Y //.= AteiML ••02 BRL •18.37 BRD -6A.A8 ARffDT ••02 y s d e 13*0' CET»D • 1 * 3 CfTFL •*0 'B* lu1 -(- 213 ** CRAlWO 120 ** CRffDNL 1«0'10 CffffORL 12*'21 CfllHOg CieiHL *•** CIfNMO 203*23 l i e „ o H 1*3*33 CRAUT 3 * 2 * 3 TlME 1*0 0 ' ETFO ••oo ETPL ••oo 3u 1 -„ . •*0 7 ARAlWd •00 ARffDNL ••O7 3u 1 I + H / 00 A ie !MO ••08 AIOIHL ••02 BRL •31.01 BRO 2A SB ARffDT ••02 y s d e 1*00' CETF0 *8 CtTpL •lO'll CpAONO ,I.-*. CppBpD Il0 - H CKpBNL ,Tl I, CKpDp L Ill'll c" i l S , CieiHL 5 SA lw)(o - 202 *3 A i e „ o H va* a* CRffOT 3*2 A* TlME 1**0' ETFO ••oo ETFL ••oo ApAONB " B r pppBK0 pK pONL pK pDKL AtelHO ••os AieiHL " O i RRL I* 32 BRO -68.37 ARffUT ••of y s d e l*to' Ct TFL •30'*1 lu1 -(. 211'0* lu1 Iu- 120'*7 CRffDNL 177.8* CRffDffL 12*»2* l s s s d Y CseiHL 8*38 CSfNHD 202*31 CgtNHl 1* 1-.I CRffUy 3*2*10 119 Appendix Table 2 . Energy balance values for Compana - Golden Compana . July U t , 1976. Cont. T hit ETPU ETPL ARADRO ApAMNL ApAORL AseiHD ASS I HI. ARL HRD ARAHT 6 *0 * • 0 0 • 0 0 •78 •83 '71 • ?5 •05 •n? •IpOeS I •6 8 1 * 2 1 !•1* le y dd •08 le m|T 1O7 lu1 -(I l9*S9 lu1IuI ♦ •So CPaDNL 19*24 Cp4ORL 5*o3 CseiHD^ CseipL •30 rSE (o l I 4 e 6 3 LSfNhL 19'Ul C»A >T 23*53 TlHc ETPU ETPL 1+ 1 Y„— ApADRD ApADNL ApAORL ARelhD ASSfMI AflL BRD ApA^T 700* • 0 0 ••03 •75 •83 • 77 •29 • 0 6 T C ?6 * 1 0 •696.46 I 21 TImE CfTMD CfTPL l+ 1I„Y lu1-uI luKI(T %7L» 2J CW4ORL lo s o I CsSfhL rSENHC CstNpL CRAnT ?0 0 ' •C* • • 4 8 3f3* 9»o8 IOMO 8 * 1 0 •67 ?9» *»8 pa . 5 5 47.68 T I H£ ETPU CTPL ARADND ARADRO ApADNL ApADRL A 581 NO AseipL BRL BRD ApAnT 720* •00 ■01 •85 •83 ••1 * 2 6 •07 • 0 8 •130*81 •329.75 1*25 TImE CE T MD CfTPL l+ 1 I„— A8«Al CRADRD CR4DNL 5 87 CM.ORL CseihD OiieiHi CSfNpn 45.g7 CgfNWL lu1Cy •0’ • ■ 3 6 13*59 ts.?» 3*43 V H 4 4 . 3 7 72*73 Tl"E CTPU ETPL 3u1I„Y ARADRD ApADNL ApAORL AMtHO ASOIpL BRL BRD ARAnT ’•a- ••00 • • 0 0 •95 29 '*1 •2* •o7 •03 3678.58 3l74.u1 !•?« TlME A e yd— CfTPL CRaOND *7.Aj lu1Iu- CR4ONL CR4ORL CseihD CseiHi CSENpD lie NpL l+ 1Cy •0* • • S7 !>•*? 81*97 20*96 4*9o I • 7(J 6?.6l 59.90 98.40 TlHE ETPU ETML 3u1-(- ARADRD Ap4DNL Ap4DRL AseihD ASBfHt ARL BRD 1,3Iy ?»0. •00 • • 0 8 •93 29 •85 •8* •0« '03 2 73 •796.5 4 1.?7 TImE CETMh CfTPL lu1I(I CRADRD Cp4DNL 79*o7 Cp4ORL CseihO 6*50 CsefHi rSE NhD li e „ MT 75*97 lu1Iy 7&0* •11 ••7* 85*97 83*18 85*85 C 99 79,58 123*79 TlHE ETPU ETPL ARAONO ARADRO ApADNL 391I+H AseihO ASOlpL ABL MRD ARAUT 7*0* •00 • • 0 8 •94 89 89 *87 •09 •04 54.24 001*0*» 1.39 TlME CETMr CfTPL lu1-(- CRADRO lu1-(T CpAORL CseihO CseiHi lw8 („ C li e „ d T CRAOT ?«0. •18 "!'OS 109*70 »••01 96*77 31*82 8.20 3» 96.62 92*63 151*52 TIME ETPU ETPL ARAONO ARADRD ApADNL Ap4DOL ASOlHD Aseipi. ARl BRO ARAOT 820* •»oo •0* 1*00 •25 88 •27 *0« • 04 •46*11 584.12 1*40 " ' L ' le y B — •o* CfTML • 6# lu1I„- If*'*! lu1-u- 38*98 CR4ONL 119*32 luK-+H 36*67 A d s R — CSENHD 119*00 li e „ o T 109*68 lu1Iy 179.66 T I mE ETPU ETfL 1u1I„ - ARAORO Ap4DNL 1(,-AsH ASDlhD AseiHi ABL HRD ApAnT TIME le yB— CfTPL lu1-„Y lu1Iu- Cp4DNL l!1-ssH CieiHO CseipL CSENHO li e „ oT CpADT “ o' / Y ’ ••59 191*08 3 7.9 0 130*30 92*11 11*82 131.«» 184.83 ?0B**1 TImE ETPU E *01 zuz-„Y ARADRD AR4ONL 3u1-+H Aseiwo ASOfHL HRL BRD ApAnT H 0. ••oo ' 0 8 2» •88 •1’ •O7 •09 •91*21 »142.38 1*34 Tl"E le ydA CfTPL l+ aONQ lu1-u- CR4DNL 147 88 Cp4OflL 7 55 CseiHO CseiHL CSENhD li e „ d T lu1> y •o# Cl l*l'9o 2 3 12.49 5*74 148.89 1*1'9: 232*52 TIME ETPD ETPL 3u1-+Y 3u1-u- AO4ONL 1»1-»H Aseiwo ASOfHL APL BRD ARAnT ysde CETrO CfTPL CRAOND l79'07 lu1Iu- CR4ONL lz1-»H CseinD CseiHi fSENhO ClENpL lu1-y *00* •0» #7 47*44 144*46 52*82 1 6 * 18 6'55 164.96 157,04 %’=,sY TIME CTPU ETpL 1+ 1-„Y A««0«0 Ap4DNL Ap4OflL 3w-■oI AgOfML ABL BRD ARAUT H o ' •08 • • 1 0 84 •2* * 8 1 •27 •O7 *09 6.99 -38.18 1*27 TIME 920' le y 6— •90 CfTpL 2 80 lu1I„Y 95 82 l+ 1 Y+— 58*29 CR4DNL 180*78 CpADflL 8 2% CseinD 15.44 CSOIpI 7e 38 CSENhU 1 8 0 .69 CSENpL 170.65 lu1Cy 283.54 TIME ETPU ETP L ARAONO ARADRO AR4DNL ApADflL AseinD ASOfHL ARL BRD AflADT 120 Appendix Table 2„ Energy balance values for Compana - Golden Compana. July 14,1976. Cont. 7 O J , •00 • •09 •75 •23 • 73 • re .** • 0* 12.09 • 2 1 6.68 1*17 TIME 9&0' C E TMO •97 l e y B H " 3 * 8 6 C R A O N O 2 1 0*85 C R A O R D 56 82 l u 1 I(T 195*35 l u 1 -uT 63»*8 C s e s d Y 16*94 l i Y s d H 8*14 C S E N M O 194.48 A i e „ d H 183.36 C R AOT 306*89 TIME 9*0* E T P O •00 ETPL A R A O N O •69 A R ADRO •22 A R ADNL • 68 3 u 1 I + H 25 A s e i H D •o6 AseiMi. »03 RRL - 2 9 2 . 0 3 B RD - 1 5 1 . 3 5 ARAOT I M O TI m E 9 * 0 ' l e y ' Y •45 l e y B H •3*81 l u 1 -( - 2 2 * * 5 9 l u 1 -u- 6 I eI9 C R *0NL 208*68 l u 1 IuT 6 8 * * 9 C s e 1d Y 18*08 CseiML 8 3 C S f N H D 207.15 l i e „ d T 196.24 CRAOT 328*92 y s d e icoo* E T P O eOl ETP L •0* ARAO N O •64 •25 Ap ADNL •63 Ap ADRL Z 9 Asei M D A S ® IML •03 RRL •61.54 BRC •100*51 3 | 1 I 2 1*04 TI m E 1000* l e y m O • 77 l e m|T • 3 *62 l u 1 - „ Y 2 3 T»?9 l u 1 -uI 66*29 l u 1 .(T 2 2 1 * 3 9 l u 1 I + H 7 4 *25 C s e i M O i9 e n A i e „ o Y 218.95 l i e „ d T 2 0 * * 2 9 CP AU T 349.79 T I mE IO6 O e E T P U E T PC eOl A R A O N D •#6 A R ADRD M 9 Ap ADNL •45 Ap ADRL •22 3 w - ■ d - •0 J ASOI ML eCZ RRL •51. 2 4 BRD " 1 4 0.11 ARA'lr •83 TI mE IO6 O e C E T P fI •63 CF T PL •3»*9 C R A D N O ?*6 *48 l u 1 -u- 7O 1O 9 l u 1 I(T 2 3 0*33 l u 1 IuT 78.66 C s e i p L 9.06 C S E p MD 227*51 l i e „ d T Z l 6 -9 I A B 1 I y 366.92 TI mE IC6 O e E T P O ••03 L T p L ••oz A R A O N D •39 A R ADRD •I 7 A p AONL •39 Ap 1 I + H a*. ASOI M O • 03 A S ® INt •P2 RRL 2 2 .63 BRD 10*09 Ap A n T •75 TI mE IO 8 O e l e y mO •I* CE TPL "3* 76 l u 1 -(- 25** 3 1 l u 1 -u- 73.44 l u 1 I(T 238*05 l u 1 IuT 8 2 .72 l i Y s d I 2 0 *38 C s e Ed H v.a k ■ l i e „ o I 2 3 4 . ic l i e „ d T 2 2 3 * 6 8 l u 1 - y 1*1.32 TIME U Z n e E T P O *•01 E T p L •0* A R ADNO • Z 7 ARAD R O e I9 Ap ADNL •26 Ap ADRL •1' AseiMO •01 ASOIML *02 RRL -7.79 BRD 2 4 .99 A p An T • 54 T I m E U Z o e C E TPM "•02 C f TPL *3»e6 l u 1 - (- 2 5 9.75 CRAO R D 7 6 .46 l u 1 I(T 2 4 3 * 2 3 l ( 1 IuT 36.1? l i Y s d — 2 0 * 66 Cse I d H IQ*75 A i e „ d — * b 7 , . 2 l i e „ d T 2 2 9 . 4 3 l u 1 - y b 7 % , .’ T I m E U 8 O e E T P O • •oo E T p L ••oo A R A D N O eO? A R A O R O M l Ap AONL • 0* A p ADRL M 2 3 w-■ d - •00 AS® I Ml *01 RRL I6 * HO BRD 3 1 *68 A p ADT •32 TI m E U 8 O e A e y B Y ••ct C C TPL • 3 M Z l u 1 - „ Y Z6 Ie IS l u 1 Iu- 78.73 Cp ADNL 2 4 4*75 l u 1 - + H 38.61 C se I d Y 20*67 CseiML 10*86 C S E N H D 240*42 l i e „ d T 230*75 l u 1 I y 398.41 TIME 1Z*0« E T P U • 00 ETPL ••oi A R A D N D • M l •05 A p AONL^ Ap AORL •09 3 w - ■ d - "•01 A S ® IMl • 00 B p L - 6 .36 BRD 36.61 A R A O 7 •08 TI m E IZ 6 O e A e y B Y ••oz C f TPL • 3 »*0 C R A D N D ? 5 9 . 0 3 C R A D R O 79.69 C p ADNL 2 4 3*32 l u 1 I + H 8 9 .59 C s e i H O 2 0 *48 CseiHL I f e I l w ) ( o I 2 3 8.53 l i e „ d T 229.cl l u 1 - y TIME IZ6O* ETPO •00 E T p L "•00 A R A D N O • M l A R ADRO •03 A p An NL • •09 Ap ADRL *03 3 w - ■ d - ••01 AS®IML • 0 0 PRL - 3 4.92 MRD 39.61 ARADT •02 TIm E IZ6 O 1 CETPO * 03 C f TPL 3 49 l u 1 I (- ZS6eM l u 1 IuI 8O1SO l u 1 I(T 2*1* 5 3 l u 1 -uT p O • I 4 CseiMD to* 2 ® liYsdH IUepZ lw)(d I *bO,(3 l i e „ d H 2 2 7 . 1 7 C R A n T 400*93 121 Appendix Table 2. Energy balance values for Compana - Golden Compana. July 15,1976. Cont. TlME ITTMU ••08 ETML ••o* •*1 AHADRD •8* ApAMNL • 76 AW4DRL •87 Aseino •05 ASOIHL • -Z PPL 18.78 tiflO 37.26 ApAUT 1'Zl le Tm^ •'*0 le mdL ••73 l6'?Z lu1-u- *•85 luK6„T ,6*79 Cw4ORL 5.63 A i Y s o — ■ / -2 Cs* I os, •33 CSENHD 16.76 li e „ MT 13*73 luKCy 26.13 TlME »00* rTPU • • c z ETmL •'I6 • 98 ApAODD •8? ApAMNL 86 AW4DRl •8’ 3w-■o- • 07 ASOIHI •nS PRL ORD 66» Aa AR4Ur 1*35 TImE 9oo* Ct TM1" -.79 CfTPL 3 #7 lI1Cd - 3b'7* lB 1Iu- 10*81 C04MNL 31*53 CW4ORL 11 • 27 CgeiHD 2 * 9 Cseios ■n*z ClENHl.' 32.66 li e „ MT 26.61 CR4UT 51 • ? I TImE icZo* ETPU ••>1 ETpL •oi 1I1-„Y '72 ARAORD 8» AR4ONL •69 Ap 4DRL •Z7 ASOIHD • 0 6 ASOIHL '0* PPL •87.40 ORD 69.36 ARAUT 1» 16 TlMf 10?]' CtT^ -1 • V6 CpTPL -3»7p 8o* 17 CRADRD l5*07 CW4ONL 5 32 CW4DQL 1 6 .6 * li Y s o| 3.78 CseiHi 2»p8 CSFNHD 65.33 li e „ oT 39.52 luK-y 76.67 TImE IC6O' ETPU "'Cl ETpU -•oi 1|1-„- •67 •2Z 4R40NL 88 Ap 4ORL • 25 ASOIHO •05 ASOIHl '0* PRL 76.65 ORn 7o.»7 3uKCy IT S TImE IC6O' le y Ban I 89 CpT pL "3 • 86 lu1C„- 63*83 lu1 -u- if'SS CR4ONL 36*93 CW4DRL 21*66 A i Y s o Y 6**6 CsoiHt 2 * Aie„ o Y 57.46 A i e(MH ’l»?* CR4Ul 95*66 TIME 11*0' ET»U •'01 ttPL -•03 ADAONO •*1 ARAODD M 7 AW4ONL •36 39KI+H •80 ASOIHD •03 ASOIHI •03 PPL 8.61 HRD 35.33 ARAUT •75 TImE 11*0' CE T •iMi CprPL l|1-„ | 7l'7t l+ 1 IoY 88*«0 CR4DNL 66*00 Cw4DRL 25.59 A i Y s o — ’ * C9O JHL 3'3« li e „ oC 66.76 li e „ o T 56 »u8 CR4DT 110*96 TIME I l*o* ETPU •')i ETPL •81 ADAUMC •35 ARAODD •15 ApAONL •83 AR4DRL • 1* 3w-■oI •03 ASOIHI * O3 ORL ORP 9.O0 3uKCy / aO ysde U 6O' le y mi) LpTPL 8 68 lu1-„I 78*66 CRADRD 86'00 CP4MNL 6«'«6 lu1IBH 79.1b A i Y s o — O,vv liYsoH 3 89 CSENHD 7o.Se Aie„ o H 56*1)8 luK-y 123**'6 TIME 18*0' ETPU ••)7 ETpL •ot ADAONO •o« ARADRO •0« ApAONL '07 1u1I+H •09 ASOIHD •01 ASOIHL •08 PRL -9.P6 HRP • 00 AP4OT •30 TImE 18*1' Cg T ^ c' £ „ lu1-(- 8o *?5 lu1-uI *2,a2 CN1DNL 7O M S CM4ORL H ' O 3 cS0JHj6 li h „ o- 7Q.56 lie„oH 57.61 luKIy v%7aOY ysde IP6O' ETPU "'CO ETPL •oo ADAONO ' 0 8 ARADRD •O6 AR4ONL '03 AR4DRL '07 3w-■o- ASOIHL • d PRL •600 *89 ORP 62.11 3uKIy •?2 TImC IZ6O' le ymi' •d.0 ETPL "'03 " C * APADPD •02 1u1I(T AftAftRL •02 a7=■d - - • 0 0 *seiHi •oi RRL -3.33 BRC 278.33 ARAftT • 06 ysde U C o • Cf TH? l|1I(- 77.fl6 CPAORO 30M3 lu1I(T A»'46 CftAftRL 33'72 li i s oI 6.35 CseiHi^ CSENHD 66.0» li e „dH 55.42 CPAftT 117.RR TIME ETML APADNO APADRD AftAftNL AftAftRL a7=■o - AseiftI RRL BRD ARAftT U 1-O' • 00 •C2 ••C7 •«00 • •06 -.00 • .01 '00 3.28 195.28 -'02 TIMt 13*0' CtTfr lh y BT -fl.gB lu1-„Y 76*46 l|1IuI b.nvv lu1I(T 6*'22 l>1IuT 33.68 Cse IMD 6 * 2 CseiHi 4 92 CStNHft 66.86 li e „dH 5 4 2 CPAftT 137.49 TIME *3*0' FTPU •CO LTPL '0* APAOND ••07 APADPO -•oo AWADNL ••07 AftAftRL -.oc a==go I -•01 *S8IwL RRL 9.44 MRD 25 R J ARAftT -•02 TlhE 13*0' CFTHr' CpTPL •8.75 lu1-(- 7S'03 lB 1 -uI JQ'O* l|1-(T 66*89 CftAftRL 33*62 CseiHft 5 94 CseiHL 4'94 CSENHD 65.67 li e „ dT 53*1» CRAftT 137'01 TIME IJBf)' ETPU •00 LrHL " 0 2 APAOND -'O7 ARADRO '00 AftAftNL -'O7 AftAftRL -•oo *88 IHD -•02 AgeiftI • oo BRL -4,65 BPD 139.U2 ARAftT -'02 TlMt 13*0' CtTT •J'M coK l 0 lu1IuI lO'O* CftAftNL 6* 58 CftAftRL 33.8» CieiHO 5» 6J li h „ oT zv ,’* CPAftT 136.92 TIME 1*00' I TPU 'CO EtPL -•c7 -'C7 ARADPD '00 AftAftNL •'06 AftAftRL ASBIHft -•02 AgeiftL -'CO BRL -1.88 BRD 268.05 ARAftT -•02 TIME 1*C0* ClTM'' CgTPL -10'** lu1-„ - 2 23 l|1Iu- 30'0® CftAftNL 6*'3l CftAftRL 33'6o CseiHft 6» 25 CseiftL 4 .92 CSENHft 63.57 CggNHL 48.85 CRAftT 13*11 T I Mt l»2f)' ETPU O C t T ML ••o? 1 | 1 - „ — -'O7 ARADRD '00 AftACNL • ' 0 6 AftAftRL - • o o 1 i iso— - • o t AgeiNi - 0 1 RRL •3.96 BRD 665*66 ARAftT -•02 TIhE 1*20' CfTMr -JOl CgTPL •lC'q2 l+ 1-„- 7O ' * * CRADRD lO'O1 CftAftNL 67 'O7 CftAftRL 33 58 CseiHft * * 1 fSENMD 62.67 li e „dH 4 7 . 3 6 CRAftT 139•7j TIME 1**0' FTMU • o c )y|T • d APADND -'O7 ARADRD •00 AftAftNL -'O7 AftAftPL 'Cl *581 HO -•02 ASftIHl - eftI RRL 3.76 BRD -792.84 ARAftT TImE 1**0' leydB -JOl CfTPL -lO'ft* lB 1-„Y 6»'3» CRADRO T O l 7 CftAftNL M ‘>1 CftADRl 73.70 li f s oI K,bb CseiHi^ li e „ dI 61.66 li e „ o T 46 . * 0 CRAftT 135'31 123 Appendix Table 2. Energy balance values for Compana - G o l d e n C o m p a n a . J u l y 2 8 , 1 9 7 6 . C o n t . TlMf &+0* f T M O •*o o I TML A P A O N D •71 3 6 3 I 6 - 3 6 1 I(T 22 2 1 d 1 Id H • U A S e l H O • 01 AgeIML •01 BML 296.1* HMD 1 8 6.8* AMAD? •51 TlMf 6*0* C f T M p • * 0 7 C f TML • * 0 9 C M A D N O l * 'l# l 6 3 - 6 I l 6 1 -(T a v v v a »a. l 6 1 I d H a =O l o s „ Y .BI CeeiMi • i« C I f N N D 13 8 l s A „ o T ■ a , v2 CMADT 10*27 TlMf 6&o* C TMO *•0 0 C TML A M A D N Q •71 A M A D M O A M ADNL •11 'BI 1 d 1 IM H •2* A e e i N O • 03 AieiMi •01 BML • 3 1 3 . 3 8 • MO 4 2 1 . 6 2 AMADT I'll TlMf 66o* C f TMO •'ll C f TML •*oi C M M D N D 2 8 * 8 4 l 6 1 I 6 - l 6 1 -(T 8 H 2 6 I A d 1 I d H 9.7 1 C e e i N D l'l8 CeeiML •3» C g f N N D 2 7 . 6 7 C l fNNL 28» 7* l u 1 I y b*aP ■ TlMf 7O O i f T M O •'01 I T M L •00 A M A D N D '•1 3 6 1 I6 I 1 6 1 I(T •16 •87 AMAD R L I 7 A e e i M O • 0 8 AieiMi '0# BML • 2 3 8 . 7 9 BMD 1 8 0*10 A M ADT 1*24 TlMf 7OO* C f TMO ••tl C f T M L 'O4 l 6 1 - „ Y * 8 * 6 l u 1 I 6- l 6 1 I(T v a a=a v » a = a l 6 1 I6T lB.0 9 C e e i M O # 2 7 CeeiML 8* C g f N N 0 *2 98 CIfNML 38 2 l u 1 - y ’2,zK TlMf 7 * o e f T M O •00 CTM L • •oo 3 6 1 - (- • 1 1 3 u 3 I 6 - 1 z 1 -(T 2 8 TZi.. 3 6 1 - d H •*7 A i e i M D • O 7 AieiML '04 BRL 3 2 1 5.41 BRD M I I f P f A M A 0 T 1*32 T l ? 4 0 * C f T M O ••2 0 C f TML 'O4 l 6 1 I „ Y 6 3 * 6 9 l 6 3 I 6 - l 6 1 I (T = = = = O *7 l 6 1 -9T *. 7 * C e e i M O 3 88 CieiML 1*74 C g f N H P 5 9 . 9 o C g f N H L 5 g 9 l u 1 I y 8 9 *99 TlMf •fo* f T M O *•0 0 C TML •'03 A M ADNO •9| 3 6 1 I6 - 1 a 1 -(T '»• *7* A4 ADWL *8 A i e i M O •0* AieiML '0* BML 26 *7 BMO 5 8 8 * 3 8 A M A O T 1*33 TlMf «*o* l s y d Y •23 C f T M L ••+7 l 6 1 I „ — 8 2 I* l 6 1 I6 - l 6 1 I(T *v 7= K 7 n = . l 6 1 I9T 2* 03 C e e id Y = ava CeeiMi 2 86 C g f N H D 7 6 .7? CgfNNL 66*16 l u 1 I y 110*63 TlMf 8 * 0 e C T M O ••o o C TML • • o o 3 6 1 - (- •90 3 6 1 -6 - 1 0 1 - (T /*7 n2= A " ADWL • * 7 A i eiMO •07 AieiML •0* BML 180.75 B R D * 4 9 . » B AMADT I'll TlMf a*0* A s y d Y 2» C f T M L ••88 l 6 1 - (- 1 0 0*12 l u 3 I 6 I l 6 1 I(T 28 9 8 I * ' * * l 6 1 I9T 1 1 1 * C e e i M O 6 . 4 Q CgeiML ♦ •o 7 C g f N N D 9 1 . 2 5 CgfN M L 7 9 . 8 2 A d 1 I y 136.79 TlMf = = J a f T M O • •oo C TML •00 A M A D N Q 8* A R A D M O A M ADNL *19 •?.*. AMAD W L * 7 Aiei M O •07 AgeiML ' 0 6 B RL • 3 * 7 . 6 8 IMD 2 2 6 . 7 9 A M A 0 T 1*29 1 1 M 0 - C f TMQ ••33 C f T M L •'81 C M A D N Q I l l ' l l l u 3 I 6 I l u 1 I ( T 33 9 8 99 26 C R AOML 36.81 Ciei M L 8.1 7 C I f N H U 1 0 8.69 C g f N N l 93 38 C M ADT 162*53 TlMf *00» f T M O ••oi I TML •'01 3 6 1 I (- •82 A M A D M O A M i D N L •2* '70 A4 ADWL • |7 A M l H O • 06 AieiML •O 7 BML 102.42 BRO 112.86 A M A 0 T 1*25 TlMf *00* C f TMO ••♦* C f T M L '63 l 6 1 - (- vbb ba C M i D M Q _ C » A 0 N L 3 8 . 8 8 Ill'll l 6 1 - 6T 6 2 * 1 » cwI ^ l CgeiML 6*68 C l f N H D 123*67 C g fNHL 1 0 6*9o l 6 1 Im 187.58 TlMf I T M O *•02 C TML •'01 A M A 0 n D •77 3u3I6-,, 1 6 1 I(T,, • 1 8 '6* A M A ° M L •I 7 1 M s o f •0» AieiML •07 BML 5 2 * 2 2 BWO 36*07 A M A 0 T !•20 T,»L* CfkT MO 8+ C f T M L #8 l 6 1 I „ Y 1*8 68 % A i f s o f to-e» CgeiML 7.99 C g f N H D 137 28 C g f N H L ll 7 » I* l u 1 I y 211* 6 2 TlMf C TMO • • o o ITM L • 02 1 d 1 I „ Y •72 1 6 1 I 6 - 3 K3 . (T /*K ■ «1 0 1 - a H •26 A i e l H B .07 AIOIML * 0 6 BML 3 0 .87 B RO H i . 86 A M A 0 T 1 1 6 TlMf »*o* C f T M O *•»1 C f T M L 4 I eIt l 6 1 I( - 1*1*11 l 6 1 I 6 - l 6 1 I „ ■ * 7 m 9 isf«*** C s e i H B 1 1 - I * C,T , . C g f N N D lBo»3l C g fNHl 1 2 8*l5 l 6 1 Y y 234* 8 5 TlMf ” o* f T M O • • o o I T M L •oo A M A D N O '62 3 6 3 I 6 I 1 0 1 I(■ •22 *84 A4 ADML •28 AfeiHfl •0* AgeiML • 0 8 BML • 2 5 6 . 2 7 B MD v ’ O z r = A M A 0 T I'O* TlMf " o ' C f TMO • 38 C f TML • l ' l 7 l 6 1 I (I l76* * 7 l 6 1 I 6 - l 6 1 -(T Bi 8 9 1 4 9 * 6 7 l 6 1 I6T ' 1 7 . 8 1 CietHfl l l -O* CgeiMi 10'I* C g f N H D 1 6 1 * 3 C g f N M L 138. 0 * l u 1 I y 2 5 6 . 6 3 TlMf C T M O • • o o CTM L • • o o A M A D N D •56 3 6 3 I 6 - 1 a 1 I (T •tt »80 AMAD M L 24 AieiHfl -OB AgeiML 'O4 BML 1 3 2 1 5 B MD 2 0 2 * 2 6 AMADT • 98 TlMf 1000' C f TMr • l . Ol C f TML • l ' | l l 6 1 I „ — l 8 * ' * 0 l 6 1 -6 - C M a ONL B T . T I ll9.*i Cgei M L H i : C g r N H D 1 7 1.49 C g f N M L 1 * 7 . 0 8 l 6 1 I y 275 .17 TlMC 10*0' C T p O • • o o C T M l •00 A M A D N O •Bo 3 6 3 I 6 - 1 6 aD NL •10 " *43 AMAD W L • 23 AieinBg AgeiML •0* BMl • • • • • • • B R D „ 116. 3 5 AMADT •9C TlMf »0*0' C f TMO • I 'll C f T M L • l '|3 l 6 1 I (I 118 63 l u 1 I 6 I l 6 1 -(T 89 .82 l6B*o9 l 6 1 I9 T 6 7 . fl CieiHfl ! « .11 CgeiML 11*96 C g f N H O l80*54 cW X l u 1 I y293*21 TlMf IO 4 O' f T M O • •00 C TML ••00 3 u 1 I (I *2 3 6 3 I 6 - 1 0 1 5(T •18 38 AMADML •21 AieiHfl -0 « AgeiML 'O4 BML I IO7 •33 BRD 1 2 6.#0 AMADT •83 124 Appendix Table 2. Energy balance values for Compana - G o ld e n C o m p a n a , J u l y 2 8 , 1 9 7 6 . C e n t . TIME C t f O CtTML l61-(I *.7nv. CMAOMD l61-(T l6 1 -6T Csesd- CeeiHi CflENHO I**.16 CflENHL 1* 1 . * 0 CRAOT 10*0' '1.1? "1*3 63*81 178.78 71.81 ie.7t 12.71 307.71 TlMC ET'O ETML 361-(- AMAOMD AMADNL AMAOML Ate ■o - AfBIML FPL BRD A8ADT 10*0' '•Ot ••oo '30 •19 •2* •1» •01 •03 31*.3* 16.27 65 TIMC C t f O le m6T l61I„Y CMAOMD 66.8A l61-(T l61-dH 78.0 1 CeeIHO CseiMi CflENMO CflENHL 1*6.*2 CRAOT Io8O i •l»4* •!•29 211*0* 1*1**8 !*•39 13 3f 183*20 322**1 TlME CTMO ETPL 1 d 1I„Y AMADMO AMaONL 1 d 1IdH Ate ■ oY ASBIHL BML BRD AMAOT 1200' ••oi "'00 •23 'I* •21 I* •03 •oi 37.33 22.31 *•7 TIhC ItOOi leyd Y •1.66 CtTPL $!•3* ld 1 -„- 2l*«T0 l61I6- *f 32 lu1-„T 1*9.67 lu1-dH 7* 2* CseioY t * . j j CfBIMLl*'Ol CflENHO l87.lt CflfNHL IT0'11 l61Iy 33**14 TlMC CTMO ETML AMADND AMAOMD 19 1-(T A8AOML 3wP■o - ASBIHL BML BRD AMADT Ittoi •00 "'00 M T •It •18 'I* • 02 ' d 61.32 "127.Ul •*8 TlMc CtTMr CfTPL l61I(- 2l»'l* l61I6I lu1-(T lu1-d T •0»*7 Cse IHO CsBlHL CflfNMD CflfNHL lu1-y IttQi •1'63 •l'*f m s ,mb I** 87 17* 33 1*'97 200*1* l72.*l 3*3*74 ysde ETPD ETPL AMADNO AMADMD 361-„T 361-dH ASBIHO ASBIHL BML BRD AMADT 12*0' '00 -o * 'll M O M O •12 •01 '02 3.61 •6 1 . 0 2 *37 ysde CCTMD CfTPL l61I(- l61-6I l61-(T l61I6T CeeioY CfBIHL CflENMO CflENHt 173.7* A d 1 r y 12*0' •!•if "I 'Tl 221 3* T3'*l IfO'*8 *3 30 l7.9f l9»o3 202*17 351.«7 TIME ETMO ETML AMAONO AMAOMD 1u1I(T 1u1-d T 3wP■o- AfBIHL BBL BRD ARADT 12*0' •'00 •00 •08 •0* •0* •Of '01 '02 35 27 51.06 •30 ysde CCTMD CfTPL l61I(- l61I6I lu1-(T l61-6T A i f s o Y CfBIHl CflENHO CflENML l|1-y 12*0' •I'6l *!•#* 222*1* Te f Ifl't* *8.i* l7.7B 18*61 202*7* 176.1* 357*59 ysde ETMO ETML AMAOND AMADMD A8ADNL A8ADML ASBIHD ASBIMl BML URD AMAOT 12*0' •00 ••oo "'00 •06 ••01 .07 •00 •ot •6.07 A f S *22 TIME A A yd— CfTPL l61-(- l61-6- lu1I(T l61-dH li f s o Y 17.86 CSBIHI CflENHD CflENHL 17J.6* lu1Iy 12*0' •l'6l •l»T* 222'12 76 76 H I M * *6 88 18.71 202.** 361*70 TIME ETMO ETML 361-(- 1u1-6I 3a1I(T 1=n1 IdH ASBlMO AfBIHL BPL 9R0 AMADT 1300' •00 •Ot ••o* •A* ..••08 '0* .00 • 0 1 3.29 152.36 *13 TIME CETMD CfTML l61 I(- CMACWD 77.99 lu1-(T A d 1-dH # 63 CfBlMO 17.** CflBlHL CflENHD CflENMt 172,6* CPAOT 1300* •1.6o •!•*7 221*11 IfO'OT 1 8 .fj 201.67 364.51 TIME ETMO ETML 361-(- AMADMD ARADNL A8ADML AfBlMD AflBIHL BML BRD APADT 1320' •00 •01 " M O •01 • 00 • 01 • 01 •»09 •11.67 6366.86 "*10 TIhE 1320 ' le m 6— el'6o l61I(- 21* 20 CMADMD 7 *2 l61I(T Ifl'07 Cse I no 1**00 CeeiHL 1 8 * 0 0 CflCNHD iff.61 CMADT 362*52 ysde ETMO ETML AMAONO AMADMD ARADNL 3=3-dH 3wP■o - ASBIHl RML HRD AMAUT 13*0' •00 •00 " M l •'00 ••ot - ".»00 "•01 • 0 0 20*91 367.82 *00 TIME 13*0' A e y d — •!•if CfTML •i'20 l61 -(- *lT'02 l61-6- 77.7f l61I(T l**'l* C8 AOWL •7*fO CflSIHL lB'10 lwl(o I 177.57 = ; ; # o l61-y 362.55 ysde ETMU ETML 1 d 1-„Y AMADMO ARAONL 3=3-dH ASBlHD ASBIHl BML BRD APAOT 13*0' •00 *'0l ••of "'00 ••of "•01 "•01 •00 "13.71 476,03 "*02 y s d e 13*0' le y d — •!•if CfTPL •!•S3 l61-„Y 21#M* l61-6- 22,2▲ lu1-(T 1*7.67 l6 1 -6T J t TB li f s o Y l7.*3 CflBIHL iB'n CflfNMD itB.tJ CflfNHL l7|.01 l P 1 - y 362*10 TIME ETMO ETML 361-(I AMAOMO 301I(T A8ADML ASBIHO ASBIHL BML BRD A8AOT 13*0' •00 "•00 ••of "'00 ••0* "•00 "•01 "'00 32 0* 698,89 " *03 ysde l e y 6 — CfTPL l61-„Y CMAOMO l61I(T A d 1IdH li f s o Y CflBIHL CflENMD CflENHt l 6 1 Y y 13*0' •!•if I 3* «13*30 77.** 1*8 *8 V f T 0 1 7»3* tB'U 1 8 6 37 1*7,1# 3*1*5* TIME ETMO ETML 1 d 1I„Y AMADMD 3a1I(T 1 d 1-dH AfB IMO AflBIHL BPL BMD APAOT 1*00' •00 ••oi ••of "'00 -"'0* "•00 "•02 • • 0 0 "11*20 500*77 • *02 TIME A e yd— CfTPL l61-„Y l61 I6I 77.66 lu1-(T I**'** l61I6T a2 O= CflBIHO CflBIML CflfNMD CflENML l| 1 - y 1*00' •1.9* I 99 211*8 l*.t* l5*0* 172*83 1*7.60 3*1*13 TIME ETMO ETML AMAOND AMADMD A8AONL 1 d 1-+H ASBIHO AflBIHl RPL HMD 1*20' .00 ••01 ••0* •.00 • •0* .00 ••02 ••01 •15.23 153.73 AMAOTo TIME CCTM0 CETPL CMAONO ld 1 Y d Y l61I(T CMAOML CfBIHO CflBIHL CflENHD CflENHL CRAOT 1*20' •1.9* •1»6* 20*'*T 77,63 1*2 30 *7.6* I* 88 16.fO lfl.7* 1*5.78 36o*66 TIME ETMO ETML AMADNO ARADMO AMADNL AMAOML ASBIHD AflBIHL BML HRD ARAUT 1**0' .00 •*oo ••0* ••00 • •0* • 00 ••02 • • 0 1 •25.27 1*3.71 •*02 TIME ttTfO CfTML l61-„ - *.a ** l+ 1 -dY l61 -(T 1R0'76 l61 -6T *7 6f li f s o Y CflBIHL CflfNMO A i e „ o H CMAOT 1**0' •1.17 •I'Tl 77.87 1 6 . 1 1 16.73 170.56 164.30 360*21 125 A p p e n d i x T a b l e 2 . E n e r g y b a l a n c e v a l u e s f o r C o m p a n a - G o l d e n C o m p a n a . J u l y 2 9 , 1 9 7 6 . C o n t . TiMr *0' ETPO • 00 ETML ARADNO ••os ARAlWD ••00 ARAONL • oi ARiDRL ••00 AtalHD ••02 AteiHL BRL ••01 22.91 BRO 328.93 ARAOT ••07 TlMC gOt CFTMO CfTPL •0* l-1 I(I •1»B* lu 1 -u- ••oi lu 1 I(T • l »94 l(1 -uT 02 cseI o Y ••46 CseiHl ClfNHD ••22 e IeQ7 li e „ o T / v,*= CRAOT • 1 3 4 TIME *0* ETPO ETML 3u1 -(- ••0« ARADRO ••oo ARADNL 3u 1 I+ H AietHO ••03 AteiHl BRL ••01 34.50 BRD 211.39 ARAOT ••02 TIME ♦o' CETMf '01 CfTML •o9 lu1 -(- • 3 2 1 l u 1 Iu- ••oi lu 1 -(T • 3 1 2 CM*ORL ••00 Cte I o Y /va.v CseIHL A i e „ o Y '49 *2.19 li e „ o T 2 64 lu1 - y •1*72 y s d e 6O e ETPO •00 E T ML •0* ARAOND O 8 ARADRO •00 A8ADNL • •o® 1 = 1 I + H AtelHO ••03 AteiHL BRL ••01 2 93 BRO 231.65 ARAOT ••02 TlM[ *0' l e y d Y •01 CfTML • »* lu 1 - „ Y / Ka22 lu1 Iu- '01 lu1 I(T .4 66 C8 ADRL •03 CteiHD •!•SB CteiHL CSENwD • 8 -S.El li e „ o T •3 * 3 lu 1 - y • 2 1 * y s d e •o« ETMO •00 ETML • •oi 3u1 I(- ••07 ARADRO ••00 3u1 -(T / /-7 A8 ADRL AtetHD ••03 AteiHL BRL ••02 •5*77 BRO 211.39 A8AOT TImE •o* le m 6- /.* CfTML M 9 lu 1 - „ Y * 26 lu1 -u- •'01 lu 1 -(T 6 6 lu 1 IuT n.7 C t e io Y /*nv. CteiHL CtENHO •I'D8 eAelS ls e „ o T K O2 lu 1 - y 2 SB y s d e 100* ETPO •00 ETML ••oo ARAONO eeO7 ARAORO •'00 1 0 1 -(T' A8 ADRL Aieiwo • 03 AteiHL IRL ••02 eRieAO BRO 227.44 A8AOT TlME 100' le y d Y •02 CfTML M 7 lu 1 I(- /2» 2J lu 1 Iu- ••oi lu 1I(T / 2,7* l6 1 -uT •0* Cte ■o Y • 2 67 CteiHL CSENHO •I•4I eBeQl li e „ o T ’ 7K lu 1 - y * 7* TIME 1?0* ETPO •00 ETML •0* ARAONO ••08 ARADRO ••00 A8 ADNL • •07 ARiDRL • 00 AtelHO • 03 AteiHL BRL ••02 *00 BRO 259.92 ARADT ••02 TIME 120' CETMO •02 CfTML 1*32 lu 1 I(- 7 ** lu 1 -uI •»03 l u 1-(T • t'Ol l 6 1 -uT •0* ClIIHD •3 2* lf f s d H A i e „ o Y •!•75 eBetB l i e „ o H /Pa 7K lu 1 I y b *= TIME t*0* ETPO ETML ••oo ARAOND ••07 ARADRO •00 3u1 I(T ••07 A8 AORL Ate Iwo ••03 AteiHL BRL ••02 eSieBl BRO 382.69 ARADT • •02 TIME 1*0' A e y d d / .b CfTML 1*30 CRADNO • 10*49 CRADRD ••02 lu 1 I(T • lO'Si lu 1 I+ H 'O7 Cte ■o — 3 i* CteiHL CtENHO •2»16 e6 •B2 A i e „ o H •6.93 CRAOT •3*63 TIME l&O' ETPO ETML ARAONO ••Oi ARADRO ••00 A8 ADNL A8 ADRL ••00 AtetHO ••03 AteiHl BRL ••O8 33*20 BRD 200*91 ARAOT ••02 TIME 1*0' CETMO •03 le m6H 1*33 lu 1 I„ - 2 26 CRADRO ••03 lu 1 I(T •ll'iB lu 1 IuT •0* CteiHD •4.44 CtBlHL CtENHD 2 5 * *7.77 A i e „ o H •7.96 CRAOT 3 98 TIME 1®0* ETMO • 00 ETML ••00 ARADNO ••07 ARADRO ••00 A8 ADNL • •07 3=3-+ H / .. Ate I wo ••03 AteiHL BRL ••02 "27«03 BRD 499.68 A8ADT ^ TImE I8O' l e y d Y •03 CfTML i*29 l+ 1 I „ Y •13*74 lu 1 Iu- ••OB l= 1I(T •l»'2i lu 1 -uT 'O9 CgeiwD • B»o* CgeiHL CtfNHO #2 97 -Se67 li e „ o H •9.02 lu 1 I y •4.34 y s d e 2*0' ETMO • 00 ETML ARAONO •*07 ARADRO ••00 A8 AONL ••06 3u1 -uT ••00 Ate Iwo ••03 AteiHL BRL • 0 2 te.to BHO 352.76 A8 AOT ••02 TImC 2*o' CE T MO •0* Cf TML i'll lu1 -(- • ! ■ • O i lu1 Iu- "'O7 lu 1 I(T K P lu1 -uT •09 CteiHO B 47 CieiHL A s e „ o Y 3 49 e9.37 CtfNHL •9.69 CRAOT •4*69 TlMt 5*0' ETMO • • o o ETML • • I 9 ARADNO •36 ARADRD 'I* A8ADNL 'I7 A8 ADRL '»• AteiwD " 0 1 AtetHL BRL ••02 *00 IRO 91.66 A8 ADf • 44 TImE 8*0' le y d Y • • o * CfTML •••49 lu 1 I(- ••'14 lu1 Iu- >•1* lu 1 I(T •9'0B lu1 I + H 3 7 4 cteiwo •Be to CseiHL CSENHO •3 Bi 2 30 li e „ o T •9.69 lu 1- y • •60 TIME 8*0' ETMO • •o o ETML ••00 ARAONO '36 ARADRO 'I7 A8AONL •10 3u1 -+ H / *. Ate IHO ••01 AteiHl BRL ••01 509.71 BRO 162 12 ARADT •71 TIME B8O' CCTMn "'0* CtTMl •4» 47 CRAONO •'*1 l + a-u- 6 66 CRADNL •3 0* CRABRL 7.66 cteiwo •*•01 cseIHL l■) „ o - •4*o9 S 32 lP) „ o T •3.44 CRAOT 22*74 TIME 7O O e ETPO • • o o ETML ••oi ARADNO •74 ARADRO •23 A8ADNL •*o 1 = 1 I+ H / 2* AteiHO '0* ASBIHL #RL •Ot 66.93 BRD 25o.*7 A8ADT 1 1 3 TImE 7OO' le y d Y / d f CfTML •444 lu 1 -„ Y 1**20 lu 1 Iu- ll'tl l u 1 I(T' lu 1 IuT lt'76 Cte I o Y 6 26 CgeiHL CtfNHO 3 S 1•» 30 l i e „ o H 7.97 l u 1 I y KO *’ TImE 7* 0 ' ETMO • • o i ETML • • o o ARADNO •77 ARADRO 'I* A8ADNL *2 A*AORL •26 AteiwO •09 AteiHL BRL '02 ll**l BRO 133»78 ARAOT I'll 126 Appendix Table 2. Energy balance values for Compana - Golden Compana . July 2 9 , 1 9 7 6 . Cont. TI m I 7*0. CfTMp -.*9 le y d H • *.7l l| 1 -(- *1 *7 lB 1 -6- I*.Ol l| 1-(T / v /$a l > 1I|T |7,*7 CseiHD .*.** CseiWL •i.ii CtENHO 11.B7 CgfNHL 11.19 lu 1 I y *7.90 TlHt 7&o* ETmo ••oo ETPL • o i 1 B 1 — „ J •** APADPQ •** AMAQNL '71 AHAQPL *7 AteiHO • 0* Ateiwl •c) §«L 1*6.11 BRD *l*.*7 ARAOT I**7 Ti"; 7*0' CETMO ••)) l e y d H ••'•l l| 1 - „ Y * 19 CPAOPQ *i't* l 6 1-(T 19 ** l0 1-|T a$/ ■a Cse ■o Y •!•Ql CteiHL •*•** CtfNHO A».7l CsfNHL 1 1 1 ) lu 1 - y i* it TIME 7»0* ETMU ••oo ETML "'Ol APAONQ •■* APADPQ •»* 3a 1-(T *9 APfOPL '*• AteiwO •07 AteiWL •o* BRL 99 *A BRO l*A.e» AMfDT 1 * 1 ''!I.. le y d B ••*) Ct TML e9'0) l|1 -(G **'l# CPADPO **•*9 l61 -(T 3an7J l| 1 -|T *■•*• Ct e iwo • 1.79 CgetHL •!•79 A i e „ M — 5 9) li e „ o T AB *6 lu1 - y vva,Oz Tl^t *00' ETMO ••oo ETML •'00 AMAONO ')* APADPO 'I* 1 0 1 -„ H 'SI APfOPL • 19 Ate Iwo •0* AteiML '0* BML 1*1.79 BRO B.7* AlfOT 'BI y s d e *00' le y d Y ••ii Cf TML •e.07 l6 1 I(G 7l'19 l| 1 -|- ** I* l6 1 I(T 63 a2 CMfOPL ll'OM c* e Iwo ••BA CgeiML •»** Ctf NMO 7*.ot CttNML P J a a3 l| 1 - y ill'll TIME **0' ETMU ••oo ETML • o) APADNQ ')* APAOPO 'I* 3a1 -(T 'I* APfDPL 'I* AteiwQ • 09 AteiHL •0# BPL 5 It BRD BB 17 AMfOT 6* T I Mf **0' le y d d ••*o Cf TML •9 ) l| 1 -(- 71'o* l61 -|- ii'ie l6 1 I6, a.a72 l6 1-|T $a a. CitiwD •17 CteiML •A* ls e „ o - 71.o» li e „ M T 7 1 ,a. l | 1- y 1 * * * 1 TIME **0' ETMU ••oi ETML ••** AMADNQ '11 AMADPQ 'I* 1 6 1 -(T •(* AMfDPL 'I* Ateiwo •0* AttIML '0* PPL • 00 BRD 50.91 AMfDT 9* TIME **0' A e y d B ••70 Cf TML •lO'O* l| 1 -(G *9 #) l| 1 I|- ))'*7 l6 1 -(T *9 7* CMfOPL !*•70 Cte Iwo I'** CgtIHL l'«7 l s e „ o - I) *7 ls e „ o T P 1 • *o l| 1 - y 9* 97 TIME iooo* ETMU •.01 ETML ••00 36 1-(G *o AMAOPQ • 09 3a1-(T 'I* AMfDPL .01 Ateiwo • 01 AteiML • 01 B L 77.77 BRO it.*0 AMfOT •SB TIME 1000' A e y d H •lO'O* c,; n . CPAOPL IM*** ' " I r ? . " S M , l s) „ o T 97.00 CPAOT 160*00 TIME ETpW ETPL 36 1-(G AMAOMD 1 0 1 -(T AMfOML Ateiwo AteiML BMD AMfOT 10*0' ••00 ••oo •10 •0* '17 • 0» •o) • 0) *72.11 BI,#0 • 16 TIME 10*0' CE T PP • 1 0 ) CfTpL •IQ'10 l | 1-(- 1)'l7 CMAOPO I*.11 l6 1 -(T Tl'*) CMfDPL *0.1» Cte Iwo * *9 CgeiHL *•)» CtENHL 9 1 . D CPfOT 1*7.1) TIME 10*0' ETMU ••oo ETML ••00 APADNQ 'I* APAOPO 'I* AMADNL •»* APfORL •1* AttlHD •01 AItlML •0* BRL 1)11.0* BRD B *1 AMAOT •*) y s d e 10*0' le y 6B •I'll Cf TML •10*10 lB 1 -„ G 100')* CMAlWO )# *9 l6 1 -(T 7I'7) CP A OPL *)')• c" i r s . CgeiML * MB ClENHO »*•** lf e „ o T BB I CMfOT 171.97 TIME 11*0' ETMO • 00 ETML • 00 AMADNQ '01 AMADPO •0* A"AONL •01 AMfOPL •0* Ateiwo • 01 Ate IML •0* BML *8.1* BMD •71.*1 AMfOT •07 TIME 1**0' le y d Y •i'll CfTML •10*10 l| 1-(G 100'*! l61 -|- *0'0* l6 1G(T Tl'OO CMfOPL • !.MB CttIMO I'll CteiML I'l* CIENMO IB. *1 ls e „ o T BB.7A CMfOT 1*1•I* TIME 1**0' ETMO •o* ETML 'CO APAONQ '0* AMADMQ •0* AMAONL •0* AMfDML •09 At#IMO •01 AtIIML •01 BML •tl* B* BMO • 00 AMfOT •to y s d e 1**0' A e y d B•*••* Cf TML • i O M O l| 1 I(G I0*'** l|1 -6G *0'** l6 1-(T *0 I CMfOPL A*.77 CetiMO to* CeeiML I I* CttNHO16.(1 l s e „ M H 97.*o CMfOTlM9'l7 TIME 1**0' ETMW ••oi ETML • 00 AMAONO '01 AMADMO '0* AMfDNL •01 AMAONL •0* Ateiwo •01 AteiML •ot BRL 9111*9) BRD AMfOT •0» TlMf 1**0 CETMP •*•*7 Cf TML •10*10 l6 1 I „ Y v. a'7• l6 1-6-•l')l l6 1-(T •O'1© l6 1 G|T *9 *) Cttiwo I t CteiML I 97 C'K1. CtfNHL*7,1* l6 1 - yit*.I* TIME 1)00' ETMO ••oo ETML • oo 361 - „- '00 AMAOPO '0* AMfONL '00 1a1-BH •0* Ateiwo •01 AttIML• oo PPLAO**96 BPO"91.91 AMfOT•07 TlMt 1)00' le Th** I* CfTML• I O M O W l|1 -6G *1'*# ceI6e:'.* CMfOMLA# BQ C' T . r "C. c,$¥:t0 ysde 1)*0' ETMO ••oo ETML "'00 AMAONO '01 AMADMQ '0* AMfONL •00 AMfOML •0* AttIMO •00 AteiHL 'Ot BML AB IB BMO *7.9* A"AOT •07 TIME l)*0* le y d J* ** Cf TML• I O M O l6 1 -(- i o r t i l6 1 -6- *l'0* CMfDNL ■ O'** CMfDPL 9 I* CteiMD I * CieiML)'M| ls e „ d - BB.** CtfNML BB 17 l6 1 - y 111.*7 Appendix Table 2, Energy balance values for Compana - Golden Compana. July 29,1976. Cont. 127 TIME U * 0 ' ETMO ••00 KTML AMAOND ••03 AMAOMO • 01 AMADNL ••01 ArfAOML •01 AIIlHO • 00 AieiHL • 00 " IM 31 BRD Il I ARAOT •01 TIME 13*0» CtT^D •J.QI CfTML '10*10 l6 1 -„ — toff* CMAOMO Mt' I* lu 1-(T *0*38 lz 1 .uT M8*o# ClIlHO I Il ClIIHL 3 *3 CIENHO ie.ee ClENNl 66.14 CRADT 1#3 17 TlMt 13*0* ETMU ••00 ETML • oo AMAONO AMADMO AMADNL • »0M ArfAlML • 00 All ■o - //.. A161HL RRL •lliB3 BMO •113.11 ARAOT ••01 TIME 13*0» le y mO •1.01 CfTML •10'09 l» 1 -(- IOl'*0 CMAOMO *l'tf l6 1-(T 2b =b CMAORL M i M l C M i 1 . CeeiHL f it ^ M ClENHL 66.9M l u 1 - y !•3.76 TlMt 13*0 « ETMU •o* ITML "'00 AMAOND • •o* 361 -6- ••00 ArfAONL ••OM ArfAOML 3■■■o - ••00 AieiHL • oo I L It I BMO ARAOT • Ot Tl"* 3*o le TM* •I'll Cf TML •10'0B l61 -(- 100*87 l6 1 -6- *••11 lu 1-(T 7# #Q lz 1 .uT M i M l l s Y s o — I'lO CieiHL I 13 ClENMO #M M ls e „ o T Il It l u 1 Y y !•••Mi TIME 1*00' ETMO • 00 ETMl •00 AMAONO ••0» AMADMD •00 ArfAONL ••0® AMAOML • 00 AIItHO ••01 A16IHL • oo BMl 13.13 BMO till.MO 3u 1 - y • Ol TImE 1*00' le y mO i f * CfTML •3.V l 6 1 -(- **'#& CMADMO *•••3 l 6 1 I(■ 7 8# lu 1 -uT M i l l A s s s o Y ■ ■- CieiHL I 83 cn r . t l s e „ o H 88 Ii lu 1 - y Ie f M O TImC 1**0' ETMO ••oo ITMl •'00 AMAONO ••o* 361 -6- • oo ArfAONL ••0# A A l M L •oo AlllHD ••01 AIIlHL ••oo RrfL I t Al BMO •tti.ft ArfADT Ot TlME 1**0' A e y d d •*•13 CfTML •3.39 l6 1 -„ Y 3# Al lu 1 -6- t t# CrfADNL 78 #7 lu 1 -uT d ■ d s ls s s o Y s Ls s CieiHL t i l cn r . M l s e „ o T IM Ii CrfAOT # 78 TIME 1**0' ETMO *»00 ETMl *00 AMAONO • • 0* AMAOMO ••00 ArfADNL ••OM ArfAORL • 00 3■■■o I ••01 AieiHi ••oo RrfL Mi 03 BRO •183.77 ArfADT • Ol TIME 1**0' Ctfrfr •*•*3 CfTrfL 9 3# l6 1 -(- b2 =b CRADMO **• I* l6 1 I(T 78*11 lu1 -uT Ml*f I A d ■ o — ■a ■a CieiHL I si CtfNHO *t i A s e „ o H =b #2 CrfAOT !•••Ml 128 Appendix Table 2. Energy balance values for Compana - Golden Compana. August 3,1976. Cont. TlHC ETHU • • o o 2 h i 0 • • o l •8 * 6-6 • * ♦ AHADHO • I # • M* 6-■ S I AH46 i 0 • i t ASOIHO •01 ASOIML ••01 BHL 45.94 BHD 10*1 #1 AHAOT • a * T lHC * 40' 7 7 h i # ••01 ?— h i 0 s 8 ?8 * "-6 11 ## CHAOHO I I t ?8 * 6-■ 10**7 ?8 * "8■ I S # CseiMO • |S CsOIML • • I t CSCNMD i i . t o C lfNM L 10»*1 CHAOT 7.|1 TlHC • • o * CTHO • • o o CTHL ••01 •8 * " ' # • * * AHADHO M t • o * 6-■ #4 AH4OHL • I t AM lM O •01 ASOIML • • o i SRL SS 70 SHO 1911.14 AHAOT S I TlMC • • o * CCTHD ••01 CcTHL • *1 ?8 * " ' # ! • • I S CHADHO * 7* ?8 * "-■ 11 *87 ?8 * 68■ *•74 ? J 2 J # s s# C lS lM L • •J O CSCNNO I * I ? 9 7 ' J 0 • i « » t ?8 * 6= 11o4 2 TlHC TOO* CTHO • • o o CTHL • • o o •8 * 6-6 s 77 AHADHO •41 * 8 * 6 ' ■ •4 * i * 6 i 0 • 41 •46< J 6 •04 ASOIML •01 SHL 101.41 4 i 6 « 117.14 AHAOT • 77 TlHC 700' ? 7 h i # O l C fTHL • • ♦ • ?8 * " « ! !•♦7 ?8 * "86 14*#4 ?8 * " ' ■ ! ♦ • ♦ s CH4DH l ~ 14.17 ? J 2 J 6 1*10 CSSML • • o * ? 97 ' J 6 O S * ? 97 ' J ■ 14.05 7 i * 6 h «9.17 TlHC 7* 0' CtHO ETH l • • * # * 8 * 6 '# • S I AHADHF • 41 A H iW C •71 AHADHl • 41 • r < i 6 s 0* ASSfML •O l OHL 4 i 6 H M iM f AHAOT 91 tX ? 7 h i # ,01 C ftH L. l * . l l ?8 * 6-6# 7. 7* ?8 * " i #I S . * ! ?8 * 6 ' ■4**4 c e e K i o CSOIML• s i teISTi, Ce$ S * o , ?8 * 6 h47.55 T lHE 7* o * C tHD •00 CTHL • • o o AHADHD • # * AHAOHb 4* A H A O f • 7: utkbm. • 44 ASSIMO •o * A s s i f • o i 4 i # • 574.71 AHAOT 94 T I f 7* o ' CCTHO •01 CfTHL •!♦•10 ?8 * 6-6 7 4 SS CHADHO S I * # ?8 * "-■ * S '1I CT4OHL 11 1# CM IMO i s : CtSTML I 'O l CiCNMO 7i» S * C tfNM L 47.09 7 i * 6 h * * • J5 T l f 7* 0' CTHO •00 CTHC •o o •8 * u o *1 * 8 * 686 • 4* AHADNL • 7* * 1 * " i ■ • 4* AM lM O • 0* ASSIML •04 SSL • 114.71 •HO S M 17 •8 * " h 1*01 TlMC 7* o * e r r He •01 CfTHL . e I V l t ?8 * 6-6 #1 * * ? i * 686 4i . 7: CH4ONL 7# 17 CH46 i 0 41.41 ? 9 # 2J 6 4 .*0 CSOIML I t * ?4?- J 6 SS 41 7 9 7 ' J 0 *1 * ? i * 6 h 04.74 129 Appendix Table 2. Energy balance values for Compana - Golden Compana. August 4,1976. Cont. TlMt 7+0* f TMO ■m»T z» 1 I„ - ••01 *»0 AMADNO • 38 36 1 -(T •71 36 1 I d H .33 A B O IMO • 07 AOOIHL •08 BML 1*3.33 OMO AMAOy 1.17 y s d e 7*o. CfTMO Cct"! l» 1 .z. • I I !»•». CMADMO 7.41 l6 1-(T l + ' + l l61 I6T 7.7* Cee ■o Y ■,N2 CeeiHL 1*00 CifNHO 14.+4 COfNHL 13.33 CMAOy *3 38 y s d e 7#0* ITMO •*oo IT"! »»»D"0 ••ol *»» AMADMO I* AMADNL 7# AlADML 33 ABOIHD •04 A40IHL •04 BML 73.70 OMD 338.14 AMAOy !•33 T % CfTMO •'0+ C[T"L C*«ONO ••«« V * l l l6 1 I6- 18.37 CM*DNL 30'08 l6 1 Id H 8 S3 l f Y s o I 3.0* COOINL * I* CifNHD 3+.0* COfNHL *7.41 CM+oy 81.14 Tl"! M o * fTMU •*oo lm0T »z»-„ - •00 •*. AMADMD '*0 36 1I(T '•« AlADML •*0 Aeeid Y /0# 4 40 IML •07 BML •340.87 OMD 844.43 AMADy 1 * 8 Ct ^ „ " C ' CMADMOe #3 ## l6 1 I(T Nan N 1 ci6 K i . COOIHL 3 4 CitNHO Bi.i* CMADy 74.fo TlMt M 0 * fTMO •00 IT"! A.A.NO ••00 7. AMADMD •*0 AMADNL I »»»">! •40 AS. I ND •o. AiOIHL •07 BHL *13 83 OMD *48 3 AMADy I *4 TlMt ••o' CfTMO 0* Ct T"! la 1 -„ I ••»* "I'*. l6 1-6- 1 1 '1# l6 1 -(T 4* 8 # C*i6m. U M Cs.I NO .•40 CeeiHL ♦•31 CBfNHO 46*80 CifNML 87 38 A d 1 - y 101*44 TlMt t*o* ITMO ••** ■m0t 3z 1 .0O ••0 ? I. AMADMD •1 * A"ADNL *0 «*«6«. •14 ASSIHO •o. AiOIHL •07 •ML 3.44 BMD * 87 AMADy !•*7 TlMt **o* CfTMO • + •So CtT"! 6 1 I(- •!•TO •»•*» CMADMD 3# #4 l6 1 I(T 7# 8* C 1DeL * . * 1 A i i s „ — 2 »1 CeeiHL 4'33 CifNMO 77.03 CifNML 70*+3 A d 1 I y 1*7.31 TlMt M 0 * fTMU *•00 IT"! A»AONO •00 M l AMADMO •t» AMADNL •It « * « M ! • 10 ASSlNO •0» AiOIHL •0* BML " I + + + OMD 81 8 AMAOy •31 CfTMO * 8 ) CMADMD +•*73 l 6 1I(T 40 #* ( " . W L 41.11 C" K ? 4 c" i % . eiW f , . cM r i , CM+oy 133.40 TlMt 10+0 * fTMO •00 ETML AMADSD •00 '0+ AMADMD •1» A"ADM. '01 . . . I* ASSINO •01 AiOIHL •03 •ML *11.** BMO «+7.03 AMAOy •14 TlMt 1Q+0 * CfTMO * 8* CfTML l6 1-(I •1*41 •**•+ CMADMO +8.4+ l■1 I(T Si'*+ C l D . ! 4..0* CSSlNO 1.70 CiOlHL • •10 CifNMO 74.41 A i e „ o H 71,73 CRADT 137*11 y s d e 10*0 * fTMO •00 fjML AMADNO **00 '0* AMAlMD •11 AlADNL •01 A"*..! • H ...!HO OS AiiIHL •03 BML «13.31 BMO 18.38 AMADy •1* TlMt 10*0 ' CtTMO + 8 * CfTML l 6 1 I(- *1*43 #3*1? CNAOMD ♦i'll l6 1 -(T Si •#! C.SIMO I O M l CeeiHL • 4 * CBtNHD 74 8* CifNML 71.38 CMAOy 133 41 TlMf io*o* fTMO ••o* ETML AMADNO •00 'OT ANAlMO •1* AM4DNL •04 301 I,t I* A SS I HO •01 AiilHL •0* •ML "31.7+ OMD AMADy •17 TlMf ICeO' CfTMO •*•*1 CfTML l6 1 I„ - •1.41 # + 8 3 CMAOMO H ' l O l61 I ( T , #* *1 l 1 -,t M > 4 * Cs.I NO 10‘1. CiOIHL 3.@7 CifNMO 74.Bt COfNHL 7**13 CMADy I * 35 TlMf 1*0 0 ' ETMO •00 ETML AMAONO *•00 'I* AMADMO • I* AgADNL •It A» A*.! .»* ASSlwO •01 AiiIHL •0* B L 4+ *4 OMD "+*,34 AMADy •*+ TlMf iioo' CryML l6 1 -(- • 1 4 + #7*11 % l■1 I(T 48 *3 l 1 |,t 6 d s l i i s „ Y to*st C' T . . ci r , . c,e . lu1 - y 1*7.73 TlMt i**o. fTMO .00 ■m6T 361 -(- •00 "'00 AMADMO 'll AlAlML ••oi A"!*.! M l ASSlMO • 01 AiOlHL •0* BML 3 3 + 0 OMD 14.41 AMADy •08 TIMt 1**0 CfTMO 8 8* CfTML l 6 1 I(- 1 4 # #7*10 CMAOMO If'll l ■ 1 I(T 88 It l 1 6 T Sl.io C.SIMO 10*74 CiOIHL 3 74 CifNHO 40.73 lY )„ o T 73,7+ l u 1 -m 1 + 4 4 1 TlMf 1**0 * ETMV •.oi fTMU AMADNO •00 ••O* AMADMO 'I* AlADNL ".03 A.AO.I • 11 ASSIHO • 00 A M l H L •el e*L 10.83 BMD "7,00 ARADy ••01 TlMf 1**0 ' CtTMO B *# CfTML l6 1 -(- "1 .8* #*•*• l61 I6- *0 '8 I l■ 1 I(T 4+ +# l i i s d - lO'SO CiOlHL 3 33 CBfNMD 73.37 CifNHL CMADy 7a,P s vN.,== TlMf 1**0 ' ETMO •00 fTML 36 1 I(- •*00 eeO* 361 I6- 'I* AlADNL • •0* 16 1 -d H I* ASSlMO ••01 AiOIHL •01 BML * + 1.7o BMD +4.4+ AMADy ••0* TlMf 1**0 ' CfTMO •B.ft* CfTML l6 1 I(- •l#43 #+'7l l61 I6- *1*00 c'i$o l6 1-6T *8 Ol c,; ^ 7 CiOIHL I0'l3 cT i . ld 1 - y vNK.*6 TlMf 1«*0 * fTMO •00 ETML AMADND •00 eeO* 361-6- •11 A"AONL • *03 A"AilL • U ASBIHO ••01 AOOXHL •DO •ML 13.0+ BRD **.+0 AMAOy ••01 TlMf »**0 ' A e y d Y •b.*3 CfTML CMADND "1*40 #+'|8 CMADMD 48**7 l■1 I(T Ka,a2 A d 1 Id H 4*.*3 l i i s o Y 1 0 1 . CeeiHL to* 18 CifNHD 74.1 + CifNHL 70 .+* A d 1 - y 1+4*0+ 130 Appendix Table 2. Energy balance values for Compana - Golden Compana„ Aug. 5,1976. Cont. TI *£ (TTPU ETPL 1 B 1-„Y ARADRD ARAONL 1z 1I+H A98IM0 ASOIWL RRL opn APAOT 7V0* "'Cl -•r? •77 •1» •75 •19 •05 •m3 3C.97 58 * 8 1*07 T I hE CETMf CrTPU lu1-(l CRADRD lu1-(T l•1-uT A i Y s o Y CseiML CSENWD CSENWL CRAOT 700' • • 4 6 15'90 3 6 9 l6'9t 3.76 1*07 • 5 9 19.19 13.»1 Pl'50 Tl»E FTPU ETPL ARAOND APADRD ARAONL 3•1IBH Aseiwo ASOIWL ORL BRD APADy 720* "'Cl • • 0 6 I •90 •75 • 3* • 0 6 '03 10.78 84.68 1'06 TImE ??0' Cet: : „ lu1-„Y 31*99 lu1IuI 11*63 lu1-(T 9 3 lu1I+H 11*59 CseiwO p Pt CsOIWL I'l* li e „ MI ▲7, g. li e „ MT P6.97 lu1 — y 9|* 71 TlMt PTPU ETPL ARAONO ARADRD 3u1-(T AMAORL ASOlwD ASOIWL BRL BRD AHAOy 7*0' ••0* •00 •ep •91 • 79 • 41 •0* • Q9 ■398.38 11*11 I MO TlMf lh m dd CfTPL lu1-„Y CRAORD lu1-(T CRADRL CiOiHO liYsMH CSfNWD li e(6T lu1-y 7*0' "1.69 •1*63 9 6 . 3 5 19.74 45 58 19.79 3*4o 1*9« 93*37 41.99 64.66 TImE ETPV ETPL 1u1-„ - ARADRD 1u1I(T 10 1-+H ASiIHO ASOIWL ORL BRD ARADT •in' "'Ot '00 •94 •38 *80 • 3 8 •07 •0* •345. 1 8 156.65 I *30 TIM1 leydd CfTPL l|1-(I O2,▲2 lu1IuI lu1-(T lu1-+H |7.4» CiOIHD CsOIWL CiENWO li e „ „ T lu1-y 8?n' •1 .T9 •j.«9 17.43 6|*49 9.81 3'03 60.57 56.07 90.58 T I ETPU ETPL ARAONO ARADRD 1u1-(T 1u 1-+H 3w-■o I ASOIWL BRL BRD ARAOy "'Cl • oo •94 • 48 '81 . 4 6 • 0 8 • 0 6 •190.13 47.18 1 2 3 T I mE leyBd CfTPL lu1-(- CRADRD lu1-(T lu1-uT CiOlHO CSOIWL CSENwD CifNWL lu1-y •*0' eF' I* *5'9| 36*95 77*59 3 6 . 9 3 6.36 9'gO 77.40 71.05 115.17 TlME ETPU ETPL APADND ARADRD 1u1-(T 3u1-+H Aseiwo ASOIWL BRL BPD ARADy 7?0' ••OP ••c? 49 •90 •74 •40 •07 •07 35.16 44.78 !'PO TIME CfTMr CfTPL lu1I„— CRADRO lu1-(T lu1-+H 9 6 . 0 0 CiOtwD 2,2J CgOIWL CSENWD Aie„ „ H lu1-y 9?0' "if.S0 103*73 •5*oP 9|«47 5.59 93 Sg =’,YB 139.18 TIME ETPU ETPL ARAONO ARAORO 1u1-(T A"AORL Aioiwo ASOtWL BRL BRO ARADT 960' "'Cl ••19 •76 • 98 •70 • 48 • 06 •07 3.39 8|.69 1*11 TIME 960' CKTKr CfTPL l|1-„Y tli'M CRADRD lu1-(T lu1IuT CiO IWD CiOIWL CifNwD CifNWL lu1Im "K'67 9 PO 54*63 106*9C 54.58 • •96 6.90 107.35 94*81 161*45 TImE ETPU ETPL ARAONO ARAORD 3»1-(T 1 + 1I+H AfO I HO AiOIWL BRL ORD ARAOy 10*0' "'CO ••OP •49 '90 •90 • 41 • 03 •09 18.68 139.69 •80 TImE U 1O' lhydd "id'Tt CfTPL •5» j7 lu1-„— I 7# CRADRD 6* 67 lu1-(T U 4 » 8 o lu1IuT 61.6» CSOIWL 7*60 CifNwO 116*90 li e „ dT IOl'7! lu3Iy 177.64 TIME ETPO ETPL ARAOMD ARADRD 3u1-(T ARAORL i.esoY ASOIWI BRL BRD ARAOT IPCO' "•90 ••oi '91 •38 •36 •3« • Oi •03 19.70 196.43 • 7| H mE leydd CfTPL l|1-(- 117'09 CRADRO lu1-(T l(1-+H 7o»l9 Cf.IMD CsOlWL 8* 13 CBENHD CSfNWL CRAOT IPUO' •*•79 5 9 7o*PP 191*71 IO1O1 119.IZ 1 0 8 * 0 1 1*1•94 ysde ETPU ETPL APAOND APADRD ARAONL ARADRL ■ oY ASOIWL BRL BRD ARADT 1?20' "'CO /Y B 3# '36 '33 •37 1Oi '03 •17*0« 494.33 •69 TImE IPP0 * lh m 6- * o CfTPL "5.it lu1-(I 144*74 lu1 -uI 77.47 lu1-(T IP* 3# lu1IuT 77.58 Cl. I HO IO1.. c,,r,. CifNWD 131.95 CifNWL 119.50 lu1-y 131 Appendix Table 2. Energy balance values for Compana - Golden Compana. Aug. 5,1976. Cont. Tl^t ! M n * E T f U ETf L Cl 1 P 1 - 1 - M APADPft eIl A8 AftTt t* ANlftPL r AteiNft •01 AteiML os BPL "7.7* WPft • 7 * | . * S APADT •81 ri*r I M O * CiTfn * ft LfTfL • A .*S l | 1 I „ Y SAl'lft CPADPft ■ ! •At l | 1 -|T I l S eIO CPAftPL Rf tl CseiNft 1 0 *77 CteiML I* so C I fNMO I l f S S C f fNWL Iltl f t A B 1 I y t i s t t TlfE l?*rV ETP U 'CO ETPL " eOl A P ADWO •It APAftPO •SO A8 ADNL IS A8 AftPL • SO AteiMft •01 AttIML •of IPL !**7f WPft • M f tt APAftT •»1 Tlft *?*(V C E T f f Cf TPL • A .*1 l | 1 I(- SI 9# l | 1 I|I #1 97 C8 AftNL H S At C8 AftPL PA 17 CteiMft 10*17 ceeK1 eS K i . C t f N M LH f i* CRAftTtt * 8 TlfE It8 O e fTP U eOft ETPL " eOl APADNft •ft! APAOPft t? A8 AftNL • 07 ANlftPL t' AteiMft •01 AtelML eOt DPI t.97 BPD " 1 1 7 . 7 1 A 8 AftT •10 TlfE IP8 O e CtTfr " * .77 C f TPL " A . 11 CPADNft I t t eAf CPAftPO A t f C 8 ADNL l V « o 7 C8 AftPL I * . ft CteiMft I l M O CteiML IO eO 8 CtfNWft l i f t s C t f N M L Itt'lO CRAftT H O * 8 1 TlfE U V O e ETP U ETK L •01 APAONft " eOA APAftPO •It A8 AftNL^ 3 ( 1 -|T It AteiMft •00 AItIML Ol BPL 1.10 WRft tt tt APAftT •Ot TlfC U o o • ClTfr • * .7* C f TPL " A . *6 CPADNft SA SA CRAftPft 1# At C8 AftNL I l A t t l | 1 I|T v 2 , ■3 CteiMft I l M 8 CttIML IOeSt C t E N M O 1«0.SS C t f N M L l i f t s C P ADT t i t * II Tl-f I l P O e ETP U ".Oft 3 | 1 I „ I ••OS APAftPO •|7 A8 ADNLft A8 AftPL • 17 A t e i M D "•Oft AtttML •01 WPft SSt I APAftT •00 TlfE IlPfte CfTfr •*.7* C f TPL A Sf CPADNft SI s# CPAftPft I O t eO 8 C 8 AONL 1*0* 1 0 l | 1 I|T I f t f l 8 CteiMft Ifftt CteiMi IOe8O CtfNMft 1S1.7I C t fNML I f o e I1 CPAftT It S Tlft »!*fte f TPU •00 ETPL Ol APADNft • eftB APAftPft • IA A8 AftNL ••os A8 AftPL •|A AteiMft "•01 AftlML eOl BPL I M S SPft 7 * .77 A 8 AOT • • 0 0 Ti^E I M f t e CtTff * 79 C f TPL " A . Al l u 1 I „ I I S f S A CPAftPO IP8 • f A C 8 AONL I S f t t C8 AftPL ift**Sl CteiMft 10»*1 CttIML IOe8 * CIfNMft lit . ■■ C t f N M L I l M t CPAftT l it ft* Tlfl I M f t e ETP U •00 ETP L eCO APADNft ••ft? APAftPft I8 A8 AftNL^ APAftPL •|S AteiMft •*oi AttIML ee O8 BPL "I.ftt BPD S S A 8 AftT ••oi Tlf( ! M o ' C E Tff W l CfTPL "A*+ft CPADNft iSl'fl CPAftPft IO8 e SS l | 1 I(T lit t# l | 1 -|T Ift7 *!1 C t e i M O I O e7I CteiML I s * C B E N M O 1S7.7S C f f N M L I I t t S CPAftT I S f t O T l H U 8 O e fTP U ETPL "•00 APADNft • e0 7 APAftPft I' A8 ADNL ••OA APlftPL •l8 AttlMft ••oi AttIML eOO IPL • SB BPftlies es APAftT • Ot Tl eeE H 8 O e ClTff W l CfTPL / 3 a 1 2 l u 1 -(- A* t CPAftPO I l l t t C8 AftNL I l t elO l | 1 -|T s s Y »1 i CttIMft io**t eeK. CtlNMft1SS.71 eIfrir CPAftT H f * 0 TlfE 1*00* f TPU ••Oft ETPL •0« APADNft ••ft* APAftPft I8 A 8 AftNL • •OA A8 AftPL I 8 AttIMft Ot AteiML ••00 BPL • Oft WPft•sit.es APAftT• • 0 1 Tlft IAVfte Clfff W l L t TPL • 1 1 7 CPAONft I 8 9 CPAftPft I l S e I8 l | 1 I(T ISO*88 l | 1 I|T H S . t * CteiMft I O M S CteiMi ••SI CIENMft ISS • C t fNML Il7 *87 CPAftT I S f O O Tiff M t f t e ETPU •00 ETfL "•ft! APADNft ftS APAftPft •IS A8 AftNL^ AP AftPL • |9 AteiMft • Ot AteiML ••oi BPL •|.7* WPft * 1 7 . * 0 APAftT • Ol TlfC IAPfte C l Tff • * .7l C f TPL " 1 1 1 l | 1 I (- |A7. * f CPAftPft I l t t 8 e e e W , c , e r „ CtfNMft 115*11 cKK. CPAftT H O SB TlfE M A f t e fTP U kTPL "•00 APADNft "•ftp APAftPO I8 A8 AftNL^ ANAftPl •11 AteiMft "•01 AteiMi • O I BPL • 1 7 . ft WPft 7 * 1 * . tft APAftT ••01 TlfE IAAfte CETff "*• 7 J CfTPL " A eOO l | 1 I „ — I A f l S CPAftPft I t l e* 8 l | 1 I(T IP tt l ( 1 -|T 11»« « A teeKr CtfNMftI l f i O C f f N M L ns.to C P ADT Ilfte JS 132 Appendix Table 3. Energy balance values for Liberty - Golden L i b e r t y . J u n e 2 4 , 1 9 7 7 . T h i s b e c o n t i n u e d t h r o u g h A u g u s t 2 t a b l e w i l l , 1 9 7 7 . TIME 510' ETP O «.?9 FTP L • • l 9 AQAO' P «16 Ap ADRD • 00 Ap ADNL • 03 Ap A O p L .00 A S B I w O • I 4 A SOIHL " 1 3 A S E N W D .00 1 i e „ o H 1 + 1 — y -•03 .73 T I m E SlO- C FT PP . #. ?7 A e y B H - 5.74 C R A D N D 4.7Q C PA DR D •00 l u 1 -(T • 96 C p AORL • 00 l i f iMD - 4.07 A i Y s o H /K, J * l w e „ d I .00 C SE NH L C RA DT -•3 6 2 ?. 05 TIME ETP O E T p L ••37 A RADND .28 A PA DR D • 00 A p ADNL •16 Ap AORL .00 A SB IM O ••14 A SOIHL "•13 A S E N H D •.0 3 A S E N H L AR AO T ••07 .98 TIME C ET PP LB %,b2 A e y B H -16.81 C R A D N D 13.17 C P A D R D • 00 l u 1 I(T 5.7 7 l u 1 P + H •00 C s e i M D "8.14 C seiHL • 8.0 4 C S E N M D • .96 C SE NH L C RA OT • 3. 00 * 9. 58 TIME * 7 0 . F T P O -.53 E T p L -.42 A R A D N D • 38 A RA DR D •00 A p AON L • 22 Ap A O p L •00 A SB XM D • •14 A SOIHL - 1 3 A S E N W D -.02 A SE N H L A R A D T ••07 1.00 TIME « 7 0 . C ET PO -38.?! C E T p L - 29.56 C R A D N D 2 4. 45 Cp AORD • 00 l u 1 -(T 12'50 l u 1 P + H / .. C se I MD •12*21 C seiHL " 12.06 A i e „ M — / v,’K C SE NH L C RA OT - 4. 99 79.58 TIME *00' ETP O -.67 E T p L -.41 A R A D N D «53 Ap ADRD • 00 Ap ADNL • 38 Ap ABR L .00 A S B I m D " ' I 4 ASOIHL ••13 A S E N W D .00 A SE N H L A R A D T '11 I . IS TIME 600' C ET PO - 5S.?7 A e y B H -41.96 C R A D N D 4 0* 44 C p ADRD • 00 l u 1 I(T 2 4* 04 l u 1 PuT / 00 CSBI MD - 16*28 C se iH L • 16»09 C S E N W D • 1.54 C SE NH L C RA OT -I-SA 11*.9* TIME 630' ETP O - .6* F T p L A R A D N D .47 A PA DR D • 00 A p AONL •3? Ap AORL •oo A se lM D " * 1 4 3 w - ■ o H " 1 3 A S f N W D • •08 A SE N H L A R A O T ••1 0 1.10 TIME 630' C F T P P - 78.7* C E T p L • 58.66 l u 1 I (I 5 4 . 55 l l 1 -uI / .. l u 1 -(T 3 3'65 l u 1 P + H •00 cseI MD • 20 *3 5 C seiHL •20*11 A i e „ M — • 3.85 C S E N H L C RA DT - 4. 90 1 *7.83 TIME 6 ^o • ETP O -.65 c Tp L - .84 A R A O N D '60 3 l 1 IuI •00 Ap ADN L • 45 Ap ABRL • 00 A SB IM D " ' I 4 ASOXHL "•13 A S E N W D .08 A SE N H L A R A D T -•8 6 1.85 TIME 6 & 0 ' C F T P r' - 9 * . I* A e y B H - 83.82 C R A D N D 72.41 C R A D R D •00 C p AONL 47.12 Cp ABRL •00 Cse I MD • 2 4 •42 l i Y s o H • 24.13 C S E N W D •1.31 C SE NH L C R A DT - 18 *5 7 185.48 TIME 6*0' E T P D -.*6 E T p L -. 58 A R A D N D .63 A PA DR O • 00 Ap AONL • 45 Ap ABRL .00 A SO IM D • • 14 A SOXHL - 1 3 A Sf NW D ••09 A S E N H L AR AD T .00 1.85 TIME 6 q 0* C ET PO - 1 ? 3. * 3 A e y B H - 101.30 C R A D N D 9 1 . 2? C r A D p D • 00 C p ADNL 6 0 * 58 C p ABR L .00 C s e i M D • 28.49 C SOIHL 28 5 C S E N W D •4.11 C S E N H L C RADT • 18 .5 7 8 83.01 TIME 7?o. E T P D -,*8 F T p L - .58 A R A D N D • 69 Ap ADRD • 00 A p AON L 54 Ap ABR L • oo A s e i w D • ' I 4 AgOIHL - 1 3 A S E N H D • •06 A S E NH L AR AO T >10 1.36 TIME 7?C • C E T PD • 15 0. 7 5 A e y B H •118.71 C R A D N D 111.91 l B 1 Iu- •00 C p AONL 7 6. 92 l u 1 - + H / 00 cseI MD • 32*56 C seiHL • 32 *1 7 A i e „ M — • 5 . 7 7 C S E N H L C RAOT -9.61 8 8 3 . 8 6 TIME 750' E T P D -.97 F T pL -.71 A R A D N D • 69 A CA DR D • 00 A p ADNL .58 Ap ABRL .00 A SO IM D • • I 4 ASOXHL "•13 A S E N H D •.1 5 A S E N H L A R A O T •00 1.40 TIME 75Q* C E T pO - 179.4* A e y B H e I9O eO 4 C R A D N D 1 32.60 C P A D pD •00 C p AON L 9 4. 23 Cp ABR L •00 C s e i M D - 36.63 l i Y s o H • 36.19 C S E N H D • 1 0 . 2 4 C S E N H L C Rg DT -9.6l 3 05.78 TIME 7*0' E T P O • 1.01 E T p L -.#2 A R A D N D • 72 Ap ADRD • 00 A p AONL «61 Ap ADRL .00 A se iM D • •14 3i Y s o H - 1 3 A S E N H D ..15 A SE N H L A R A D T -.07 I . *6 TIME 7*0' C E T pO - 209.78 l e y B H • 164.54 C R A D N D 1 54.?3 C C A D R D '00 C p AON L 1 12.50 Cp A D pL • 00 C s e f M D •40*71 l i Y s o H • 4 0*2l C S E N H D • 14 .8 4 C S E N H L C RA DT - 1 1 - 8 8 3 *9 .5 8 TIME aio* E T P D E T p L -.33 A R A D N D .25 A RADRD • 00 A p AONL .19 Ap ABRL .00 Ase I wD • • 14 1 i Y : o H - 1 3 A S E N H D -.07 A SE N H L A R A O T •00 .81 TIME #10' C FT PP -?2 3. * 8 C f T p L • 17 4. 3 3 C R A D N O 1 61.76 C R A D R D • 00 C pADN L 1 18.27 l u 1 I + H •oo C s e i w D • 44.78 l i Y s o H • 44.24 C S E N H D - 1 7 . 0 5 C SE NH L C RA OT • 1 1 . 8 8 3 73 .7 3 TIME **0' E T P C - 1 . 1 3 F T p L -.71 A R A D N D •T2 A P A D p D • 00 A p AONL 58 Ap A B p L .00 A SO IM D • • I 4 A SOJHL ••13 A S E N H D .28 A S E N H L AR AO T • 00 I.*3 TIME **0' C FT PP .?e;7.F(, C fT PL -19 5. 6 6 CRACK'D 1 63.39 C R A D p D •00 C p ADNL 1 35.58 l u 1 - + H .00 C s e i w D .48*85 l i Y s o H .48*g6 A i e „ M — • 2 5 . 3 3 C S E N H L CRAOT • 11 .8 8 * 16 .7 5 133 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. June 27,1977. Cont. TIME 7 *0 e E T 0 O -.83 E T p L ^ 1 + 1 - „ — / O7 Ap ADR D • 00 Ap AON L • 58 y s d e 7*o. C E T pD - 2 » . 7 6 A e y B H • 1 4 . 3 0 C R A D N O 2 0. 69 C p A D pD •00 l u 1 - (T 17.31 TIME #10' E T P O 83 E T p L ••5 7 A R A D N D • 69 A p ADRD • 00 Ap AONL •61 y s d e eiO' C E T pO • * 9 . S ? C E T p L • 3 1 . 4 4 C R A D N D 4 1. 38 C R A D R D •00 l u 1 I „ H 3 5 . 58 TIME s*o« E T P O -.7 9 E T p L ••71 A R A D N O • 66 A R A D R D • 0 0 A p AON L • 58 TIME 8*0' C E T PD - 7 3 . 3 4 C E T p L • 5 2 . 7 6 C R A D N D 6 1 . 1 3 C R A D R D • 00 C p ADNL 5 2 88 TIME 8 7 0 . E T P O -•9C E T pL " 6 2 A R A D N D • 66 A R A D R D • 00 A p ADNL •58 TIME #7o. C E T p O • 1 0 0 ' 4 2 C E T p L • 7 1 . 2 9 C R A D N D 8 0 * 8 8 C p A D R D l u 1 I „ H 7 0' 19 TIME 900' E T P O - . 69 E T p L 52 A R A D N D • 47 Ap A D R D • 00 A p ADN L • 38 TIME 900' C ET PC . 12 1. 2 6 C E T p L • 8 6 . 8 5 C R A O N O 9 4 . 98 Cp ADR D •00 l u 1 I(T 8 1 . 7 3 TIME 930' E T P O -.76 E T pL ••76 A R A D N D •53 Ap ADRD • 00 A p AONL 8 y s d e 930' C E T p O • 1 4 4 . 0 3 l e y B H • 1 0 9. 5 4 C R A O N D 1 1 0 . 9 7 Cp A D p D •00 l u 1 -(T 9 6* 15 Ap ABRL • 00 A SB IM D ••14 A SOIML ••13 A S E N M D • 00 3 w ) ( > 4 3 u 3 - y •23 !.Al l u 1 PuT / .. C s o I M D • 4.07 C SB IH L • 4. Q2 C S E N H D .00 C SENML 7.03 C R I D T ♦ 2. 29 Ap ADR L • 00 A S B I M D • •14 A SOIHL ••1 3 1 i e „ o — ,.. A SE N M L A R A D T •17 1.46 l u 1 P + H / .. l i f s d — • 8.14 C SB IM L • #•0* C S E N H D .00 CSENML 12*18 C R I DT 8 6 . 02 Ap A B p L •oo A S O I M D •14 A SBIML ••13 A S E N H D .00 A SE N M L A R A D T •00 1.42 l u 1 P + H / .. C S B I M D • 12» 21 C SB IM L • 12*06 C S E N W D .00 C SENHL 12*18 C R I DT 1 28.67 A p A B p L • 00 A SB IM D ••14 A SB IH L ••1 3 A S E N w D ••11 A S E N M L A p ADT •09 1.43 Cp A B p L • 00 C S B I M D • 16.28 l i f s o H - 16 .0 9 A i e „ M — / b,* O C SE NH L 14.98 C R| DT 1 71.69 Ap A D p L • 00 A S B I M D • 1 4 A SOIML • • 13 A S E N W D • .09 A S E N M L A p ADT •00 1.18 Cp A B p L • 00 C S O f M D • 20« 35 A i f s d H -20.11 C S E N w D - 5 . 92 C SE NM L 14.98 C RI DT 207.11 Ap A B p L •oo A SB IM D ••14 1 i f s d H • 1 3 1 w e „ M I L,.7 A S E NH L AR AD T -•14 1.30 Cp A B p L • oo C S B I M O 24 2 A i f s d H • 24 .1 3 A i e „ M — • 8.63 C SENWL 10-7A CRlDT 2 4 6 . 1 4 134 A p p e n d i x T a b l e 3 . E n e r g y b a l a n c e v a l u e s f o r L i b e r t y L i b e r t y . J u n e 3 0 , 1 9 7 7 . C o n t . - G o l d e n TtME 720' £ T » - r r » L • •FO • « A = A O N O •SO A = A O = O •86 A = A O N L 73 A = A S = L «31 A S S l N O •04 A ie iH L •03 A SE N HO .36 A SE N M L A * A D T •22 1.35 TIME 7?0' C E T = C C j T = L C = A O N O 1 7 . 68 C = A O = O 7 * 7 9 C = A = N L I l - O t C = A S = L 9 . 3 1 C s e i N O U l * C ee iH L 88 C S J N H D 10.84 l i : „ o H 8 5» C RA DT 4 0. 48 TIME 750' E T = " E T = L ••* 4 e i4l A = A O N O • 94 A = A O = O ... 17 A = A = N L • 78 A = A l = L , H A S S l N O •05 A 80IHL •03 A l J N H O .»* A SJ N H L A = A = T •17 1.41 TIME 750' C E T P B C E T = L ■*»•68 - E 9 . g 4 C = A O N O S S so C = A O = O . J»_*»* C = A O = L 4 5. 48 C s e i H O 1 7 3 C SO lH L !•89 C i J N H = 1 3. 91 C S E N H L I f S i C RA DT 8 2. 77 TIME 7f 0' E T = " E T ffL • • 6 ! 5: A = A O N O . ...SM. A = A O = O ____ 8 9 _ A = A O = L •81 A = A l = L • 3» A i e i N O •os A te iH L •03 A l J N H = .33 A S E N H L A = A = T IS _ 1.47 TIME 7§0' C E T = B C j T ffL • »* •« » « 4 » . 7 8 C = A O N O 8S .}1 C = A O p o t».Sg_ C = A = = L A » i «l C = A l = L *».36 C e e i H = » • 3 1 C s e i H L ft* l w : „ o - 3 3 . 96 C SE NH L 2 2 1 3 C =A =T 1 *6.87 TIME #;o. ET=B E T ffL ■ • 7 8 ••» § A = A O N O •»t A = A O = O •88 A =A O= L •SO A = A l = L •3» A s e i N O ,os A SS IH L •03 A l j N H = • It A S J N H L A = A O T IS 1.46 TfMf SlQ' C E T = B C j T ffL •7ri«61 - S S . * * l W 3 - „ - J l i l * * C = A O = O J i l O A C = A O = L S i s C =A D= L 39.61 cnK0U l w ) „ o - 3 7 . 5 0 C sE NH L J0«s» C =A DT j 70 *6 0 TIME 8*0' E T = " E T = L . . 7 * ,88 A = A O N O ... 'SC A = A O = O ill A = A O N L •79 A = A l = L •33 A s e i M D •OB A SS IH L •03 1 i : „ o — / It A SJ N H L A = A = T •11 1 4 1 TIME 8*0" C F T = C . C jT =L ■ 9p .* 6 . 7 5 . 8 3 C = A O N O 1 40*68 C = A D = O « V I*. C = A = = L l l7.»0 C = A = = L • 9.44 cseI MD 7*25 C s e IHL »•99 l w : „ o - ♦ l - i s C SJ NH L 36.78 C = A =T 1 1 3 ' l S y s d e 87Q' E T = " E T = L ..8 1 - . S 7 A = A O N O .84 A = A O = O •1" A = A = = L .77 A =A == L •ii A 9 6 I M 0 •0» A SO IH L •03 3 w e (>- ,.. A S j N H L A = A = T •17 1-39 y s d e = 2 J # C E T = B C jT =L • 1 1 6 . =T . 7**98 C = A O N O I4 6 . SS C = A D = O • 9.6 6 C = A = N L 140*77 C =A==L 5 9 . 5 0 c se IM D 8'* 3 C eeiHL 5-91 l w : „ o I 4 1. 15 C SENHL 4 i . e e C =A=T * 3 4 . 8 1 y s d e 930' J T = " E T ffL ..5 5 ».4 9 A = A O N D .7» A = A D = O •17 A = A = N L • 67 A = A l = L • 91 A se IM D •04 A SOIHL •03 A i J N H = .15 3 w ) ( > T 1 u 1 I y '15 1 2 # y s d e "30' C E T = O C j T = L • 1 3 4 . 6 C - 1 8 7 . 6 0 C = A O N O 8 8. 8» C = A O = O 5 7. 6« C = A = N L 1 60*77 cnKl3 C seiHL 4.76 A i : „ o Y A S . T l C SENHL 44'4j C =A =T 1 * 3 . 1 3 TIME 960' J T = B E T ffL ..S S ».4 5 A = A O N O • 66 A = A O R O • 16 A = A = N L •61 A = A O = L .30 A se iN O •03 A SO IH L •03 A i J N H = .08 A SE N H L A S A D T •12 1.13 m■ d ) 7 O J n C E T = O C ET PL - I S - - B i - I l l - I i C = A O N O 1 0 » ' = 9 C = A D = O 6 5- 36 C =A == L 178.94 C ffA==L 7 7. 75 cse1 oY v.a’» C SOINL 7*56 Aw:„o- 48.01 C SJ NH L 5 0 - 15 C =A OT 3 18.9* 135 Appendix Table I3. Energy balance values for Liberty - Liberty. July 1,1977. Cont. Golden T I hT 600' • •tc F T e U - 0? 1 u 1 | „ - -Tl 3 | 1 -|I / *K A PADNL • 58 A Rl OR L • Z? A W I M D *03 A seiNL •03 A l f N M O .11 A S f N H L A R l O T •53 I.Ol T I mF 600' A h y c — e I 1 M O C f T P L - • I Z l u 1 - 1:I Z l . ** l | 1 I |I 2 " . 2 l | 1 I(T l 7 ' 5 0 l u 1 I + H v , .. C se IMD •85 C s e j M L •92 C S f N H O 5 9 C Sf NH L l + 1 - y v ’,2’ b b, ’b TIMF 630' E T P 0 • •i6 F T P L A R A D N O «*l A P A D P D *3 AftADNL '54 1 u 1 ,uT .Zt A s e i M D •01 ASOIHL •01 A l f N M O .31 A S f N H L l R A O T •09 1 0*.03 TIME 63o* l ) y — . 2 « 81 C f T P L - 1 3 . 1 * l + 3 - „ I * 1. 7* l B 1 I |- I S ' I* C PA DN L 3 3 . 75 l u 3 - + H 1 8. 73 CsefHft 1*30 CSO N i !•33 l w ) „ o - IA.** l i ) „ o T l u 3 -m l l. *t 3 31 3. 3 5 TIMf 66o« e y " E,b , F T P L - 3* A R A O N OSI A P A O P D•19 AftADNL'46 1 » 1 - + HZZ AseiHft•08 4 8 0 IML •08 AS f N M O .17 A Sf N H L A R A O T•0* 9 1 . 57 TIME O O J » CET °D • 37 *3 0 C f T P L ZS 3* C R A O N O S 1 . 1 S C P A D P O 19 *54 CftAONL 4 7 . 6 0 l u 1 - + H Z » . f9 c $ e IMD I *99 A i Y : d H 1*93 C l f N o - l 9. lt C S f N H L l u 3 I y b .L bv ’ 7 a .L b a TIME 6*0, E T P D • • *5 F T P L -.3 » A R A O N O -Si A P A D P D '18 AftAftNL ,44 A »A *R L .Zl A s e i H D •03 A SOJML •08 A l f N M O .01 A I f N H L A R l O T -OS It. 75 TIME 640' C F T P 0 - S g * 8 * C f T P L - S t llS l + 1 Y „ Y 7 5 . 3 3 C P A 0 PO 2 4 . 9 6 CftAftNL 6 0 ' 67 l u 3 - + H z l . so C s e i N 0 2 85 C S O I ML 2.61 C l F N H O 3 1 . 1 * C S f N H L C RAOT 3 1* *1 3 5 * 3 *» y s d e 720' E T P r ..54 F T e L-•*» A R A O N O7 3 A P A D P D'23 AftAftNL•41 A R l S R L- Z 7 A S B I N 0 •03 A SO JM L •08 AS E N HO .1* A If N H L A R l O T •09 i l l . AS y s d e 720' C E T °D " 6 7 ' 0 & C f T P L - S 0 -Ii C R A O N O V T i f t - C P A O P D 3 1 * 94 CftADNL 7# 94 l u 1 P + H b# a» C s e iMD 3 7 9 C se jM L 3» 34 l w e „ o - 3 4. 30 C S f N H L C RlOT Z * ' 7 * M l M R I TIME 750# E T P ° 54 E T e L ••*3 A R A O N D .17 3 | 1 I |I / *2 AftADNL •71 A R l B R L • 32 A s e i N D •04 A SO JM L •03 A l F N H D .39 A If N H L A R l O T •Z* 13.35 TIME 7*0' C CT PO 8 3 34 l ) m B H - * 3 . 7 * C R A O N 0 1 Z 3 . M C * A 0 * D 40*11 l + 3-( r 1 00 *2 9 l + 3 Pu H 3l . 11 C s e i M 0 4 88 l w - ■ 6 H 4.1 0 C l F N M O 3 5. 07 C S E N H L C RA DT 3 f< »* M l M M TIME 780' E .'51 F T P L ••« 3 A R l O N B *3 APAD^ft •26 A R l O N L • 49 3 + 3 P + H 31 A s e i M 0 • 04 A SOJML •03 A l F N H O .31 A IE N H L A R l D T •23 1 2 . IZ y s d e 7*0' C ET PD " 9 # ' 6 9 C f T P L - 7* .& , C R l O N O 1»"'ZI CPADPft 4 7 * 9 3 l u 1 - (T 1 20*87 l u 1 P + H S S. ;9 C s e i M 0 6 * 1 9 l i Y : d H 4.95 l i e „ o - a b , b b l w ) ( > T l u 3 - y 3 9« ZT M l M M TIME 810' ETP0 -.50 F T eL -.5 0 A R l D N O 1*00 A P A D P O '31 AftADNL •83 A RlORL • 3* A s e I M 0 •04 ASOJML •03 A SE NMO • A* A SE N H L A R l O T •30 I*.SZ TIME 810' C F T = D • 1 1 3 ' 7 4 C f T P L -Sl-tz l u 1 I „ - 1 71.31 CPAftPD 5 7 . 2 5 l | 1 I(T 1 45.77 C R l B R L * 1. 31 C s e i w O 7*41 A i Y : d H 5*79 l w e „ o - 5 7 . 1 * C S E N H L C Rl OT 4 3 - 3* M l M M y s d e 8*0. E T P - ..31 F T e L - . * 9 A R l O N O .37 APAftPD AftADNL • 77 A =A OR L .3» A s e f N D •04 A SO JM L • 09 1 w e „ o - ,?? A S E N H L A R l D T .25 13.3» TIME **0' C F T o 0 • 12 »' ° 6 C f T P u • 1 0 * . 3 0 C R A O N O 1 9 5 . 3 3 l B 1 . |I 6 5 . 8 6 CPAftNL 1 68.75 l u 3 I + H 7 1. 3* C s e i H 0 8 55 cse iHL 6 6 4 l w ) ( o - * 3 IZ C S E N H L C RA OT 5 5. 31 M l M M TIME 870« E 55 F T P L ••S O A R l O N O .19 APAftftB • 28 AftAOtL .75 1 u 1 P + H / bb A s e t M 0 •04 A SOJHL •03 1 w) (>- ,bv A SE N H L A R l O T ZZ 13.31 m m d ) 8 7 0 ' C ET nD 1 30 .3 5 C f T P L • I Z l *35 l u 1 - (- Z Z Z ' 1 3 l | 1 I | . 74.21 CftADNL 1 91 *1 5 l u 1 P + H w ■ , b 7 C s e i H 0 9.7 3 l i Y : d H 7.52 l w e „ o - 7 3. 0» C S E N HL C Rl OT tz-zi M M R M 136 Appendix Table 3i. Energy balance values for Liberty - Liberty. July 5,1977. Cont. Golden TIPf *60. M P O - . 4 7 TTPl -.5 5 6 ** 06 0 • 71 A R A D R O .24 A RAONL .67 A R A O R l .26 A SOTHO -.01 ASOIHl - . U O A S F N H O .24 ASENMl A8 ACT .13 I . Ii TIPf 660 • c i r p n - 1 4 . 1 * C f T P L - 1 6 . 4 6 C P A O N O 2 1. 25 C R A O R O 7.11 C RA ON L 2 0. 10 C R A O R l 7.6# C S O I H O - . 1 6 C S O I Hl -.1 2 C S E N i m 7.77 C SFNMl 3.76 CPAOT 33.75 TIPf 640. f TPO *9 FTPl - .66 A R A O N O .80 A RA OR O • 23 A RA ON L .79 A R A O R l .76 A S O I H D .07 ASOIHL .07 A S F N H O .18 A S F N M l A8A0T .11 1.19 TIPf 690. C f T P O - 31.81 C ET Pl - 3 6 . 1 7 C R A O N O 4 5. 14 C R A D R O 1 4. 04 C RA ON l 43.65 C R A O R l 1 5. 50 C S O T H O .57 C SOIHl .52 C S E N H O 12.76 C SfNMl 6.96 CRAOT 64.1 4 TIPf U Q . M P O -.*2 FTPl - . 5 7 A RADNO .8* A RA OR D .24 A RA DN l • Si A RA DR l • 27 A SOIHO .03 ASOlHL • 03 A S f N H O • 29 ASFNHl ARAOT .24 1.75 TIPE 720. C fT PO - 4 7 . 5 * C EI Pl - 5 1 . i l C R A O N O 70.72 C R A O R O 2 1. 11 C RA ON l 6 1 . 9 6 C R A O R l 73.71 C S O I H O 1.99 C SO IH L 1.33 C S E N H P 71.58 C SENHL 14.10 C RA PT 106.6? TIPf 7*0. ETPO - . * 9 ETPl - . 6 6 A R A O N O .91 A RA OR O .24 A RA ON l • 87 A R A O R L .29 A S O I H O • 05 ASOIHL .04 A SFNHO .78 ASENHl AR AOT .17 1.75 TIPE 7*0. C ET PU - 6 9 . 1 9 C FT Pl - 7 1 . 0 4 C R A O N D 9 8. 09 C R A O R O 2 1. 21 C R A O NI 94.71 C R A O R l 3 2. 32 C S O I H O 3.05 C SO IH L 2.45 C S E N H O 2 9. 85 C SFNHl 19.21 CRAOT 147.11 TIPf 780. FTP O -.7* FTPl - . 1 3 A R A O N O .88 A R A D R D .22 A RAONL .87 A RAORl .77 A SOIHD .05 ASOIHL .04 A SE NH D .07 A SFNHl AR APT .05 1.79 TlPf TOO. C CT PO - 8 7 . 8 3 CFTPl - 94.91 C R A O N O 124.47 C R A D R O 3 4.89 C RA ON l 1 19 .2 3 C R A O R l 4 0. 50 C S O T H O 4.6 0 C SOIHl 3.70 C S C N H O 3 1. 99 CSFNHl 70.62 C r AOf 165.76 TIPf 810. ETP O - . 7 6 FTPl -.6 6 A RA DN O 88 A RA OR O .23 ARAONL .78 A RA OR l .27 A SOIHO .35 ASOlHl • 04 A S t N H O • 07 ASfNHl AR AO T •07 1.24 TIPf 810. C FT PU -111'.54 C ET Pl - 1 1 4 . 8 4 C R A P N O 1 *0.75 C R A O R O 4 1.64 C R A O N l 1 42.60 C R A O R L 4 8. 68 C S O I H O 6.07 C SCIHl 5.03 C S C N M O 34.10 C SCNHl 2 2. 73 CRAPT 223.01 TlPE 460. FTPO -.6 4 ETPL - . 6 7 A RAONO .87 A RAORO .2* A R A O N L .74 A R A O R l .30 A SOIHO .02 ASOIHl .97 A S f N H O .16 A SF N M L A R A O T .10 1.76 TIPf 960. C ET PO - 12 9. 7 8 CfTPl - 1 3 3 . 3 4 C R A O N O 1 75 .3 0 C R A O R O 4 9 . 14 C RA ON L 164.71 C R A O R l 57.61 C S O l M O 6.76 C SO IM l 5.67 C S E N M D 38.76 C SENHl 7S.70 CPAPT 2 61.37 TIPf 990. M P O - . 6 0 F m .43 A R A O N O .62 A RAORO • 19 A RA ON l .49 A RADRL • 23 A SOIHO • 02 ASniML .02 A S f N h O .00 ASENHL AR APT .OS .9? TlPf 940. C fT PO - 1 4 7 . 6 7 C fT Pl - 1 4 6 . 1 3 C R A O N O 1 93 .9 2 C R A O R O * 4 . 89 C R A O N l 1 7 9 . 5 7 C R A O R l 6 4. 36 C S O I H O 7.49 CSOlML 6.27 C S f N H O 38.76 C SF NM l 27.11 CRAOT 2 89.88 TIPf 10*0. ITP O -.1 6 ITPL -.1 1 A RA ON O .44 A RAORO .16 ARAONL .37 A RAORL .18 A S O I H D .02 ASniML .02 A SE NM O •05 A S E N H l A R AD7 .04 .76 TIPf 10*0. C ET PO - 1 5 8 . 5 8 CFTPl - 1 * 5 . 5 * C R A P N O 207.08 C R A O R O 9 9 . 68 C R A O N l 1 90.67 C R A O R l 6 9. 89 C S O I H O 8.14 C SOIHL 6.8 0 C S E N M O 40.36 C S F N H l 2 8. 33 C RAOT J 12.65 TIPf 1080. ETP O -.3 5 ITPl -.3 1 A RA ON O • 44 A RA OR D .10 A RAONl .36 A RAORL .21 A SO tH O .07 ASOIMl .01 A S C N M O .07 A SENHl AR A UT .03 .83 TXPf 1080. C E T PO - 1 6 9 . 1 0 C ETPl - 1 6 4 . 8 6 C R A O N O 2 20 .3 4 C R A O R O 6 5. 07 C RAONl 2 01 .3 5 C R A O R L 7 6. 07 C S O I M O 8.75 C SOIML 7.24 C S C N H P 4 2 . 4 9 C SfNHl 2 9. 25 CRACT 3 37.59 TIPf 1100. FTPO .01 FTPL .01 A RA ON O .01 A RA OR O .01 AR AONL .01 A RA OR l .02 A SO IM O .02 ASOIHL .01 A SE NM O • 00 PSPNMl AR APT .00 .17 TlPf 1100. C E T PO - 1 6 8 . 8 4 C ETPl - 1 6 4 . 5 9 C R A O N O 2 20.72 C R A O R O 6 5. 50 C RA ON l 2 01 .5 4 C R A O R l 76.57 C S O l M O 9.36 C SOIHL 7.6* C S f N H O 47.52 C SENMl 79.27 CPAOT 341.70 TIPf 1130. ETPO -.01 ETPL - . 0 1 A RAONO .02 A RA DR D • 02 A RA ON L • 02 A RA OR l .02 ASOIHD • 01 ASOIHl • 01 ASf NMO • 00 A S E N M l AR AO T •00 .11 TIPf 1130. C ET PO -16 9. 0 5 C ET Pl - 1 6 4 . 7 7 C R A O N O 2 21 .3 8 C R A O R D 66.00 C RA ON l 2 0 2 . 1 2 C R A O R l 77.11 C S O I M O 9.81 C SO IM L 8.04 C S f N M O 42.52 C SFNHl 29.30 CkAOT 344.4b TlPf 1160. FTPO -.11 ETPL - . 1 0 A R A P N P • 13 A R A D R O .11 A RA ON l .13 A RA OR l .11 A SO lH O .01 A SO IH l .01 A SC NH P .01 A S F N H L AM AOT .03 .4? TIPE 1160. C E T P O - 1 7 2 . 4 4 C FT PL - 1 6 7 . 7 0 C R A O N O 2 25 .4 2 C R A O R O 69.29 C R A O N L 2 0 6 . 1 5 C R A O R L 8 0. 54 C S O l H O 1 0. 09 CSOIHL 8.2* C S E N M O 4 2. 89 C SFNMl 30.17 C RApf 1*7.41 TtPf F T P D CTPl A RA ON O ARAORO A RADNl A RA OR l A SPIHO ASPIHl A SC NH O A S F NM l AR AP T 1190. .01 .00 .00 .03 .00 .03 .01 .01 . UU -.00 • It TIPf 1140. C fT PD - 1 7 2 . 2 4 C FT Pl - 1 6 7 . 6 6 C R A O N O 2 2 5 . 4 2 C R A O R O 70.25 C RAONl 2 06 .2 5 C RA CM l 81.50 C S O I M O 10.36 C SP IH l 8.45 c s iN im 4 2. 89 CSCNMl 30.14 CR API SitJt .17 137 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. July 6,1977. Cont. T I mF 600' fTP * ••?c F T p L ••3 9 * R « D N D •41 3 | 1 I|- '20 A p ADNL 5* m g d ) 600' C FT iO • «.9 3 ^ E T PL • 1 1 ' 5 6 l u 1 I „ — C P A D P D 6» 11 C p ADNL l6'l5 TIHf 6 30 • p TP" 35 E T p L ** A R A O N D •71 A PA DP D 22 A p ADNL • 65 TIHE 630' C E T PO •16'31 l e y B H - 2 6 . iO C R A D N D 3 9. 59 l | 1 I|- I2'7l C p ADNL 3 5. 67 TIHE 750» E T P O • .56 E T pL ••*8 A R A O N O • 99 1 | 1 I|I •26 A p ADNL •88 TIME 2 ’ J n C ET eD C f T PL • * C * 5 l u 1 - „ - 4 8 . 0 9 C f A D P D 2 0' 5* C p ADN L 6 2- 02 TIHE 7 8 0 ' ETP O -•51 F T p L ••** A R A O N D •9; 3 | 1 -|I /*’ A p A D pL • 85 TIME 7*0' C ET PD • *P '5 7 C fT PL • 5 3 . 5 2 C R A O N D 9 5 . 59 C P A D P D 2 8 * 07 l » 1 I ( H / 7.So TI"? SlO' E T P ^ .•*8 E T p L ••* 2 3 u 1 - ( I /7. A p ADPD • 25 A p ADNL •8* TIME 810' l ) m B I - 63*95 C fT PL • 6 6 . j 6 l u 1 - „ I 1 K - 4 J C P A D P D 3 6*68 C p ADNL I l 2'69 TIHf 8*0' ETP O -•30 E T p L ••*! 3 u 1 - (- / 27 A p ADPO •23 A p A D pL •73 TIMf 8*o • C CT rD 7 85 A e y B H • 78 .5 0 C R A O N D ! *» •? « l | 1 I |I a* 3 l | 1 - „ H 1 3 * 6 2 » u » - + H ASOImD A SO IH L 1 we „ o - 3 w ) ( > T 1 u 1 - y •13 •01 •01 • 41 • 15 • 9* l u 1 - + H CseiHD l i Y s m L l w e „ o I C S E N H L C PA DT 8.9 3 '16 •16 12.25 *•43 2 8. 19 1 + 1 - + H A S O I m D A SOIHL 1 w e „ o - A SE N H L A P A D T • H •01 •02 .35 • 15 !•OS l u 1 P + H cseI no A i Y s o H l w e „ o I C SE NM L C PA DT 14.50 •61 •6* 2 2 . 47 8 93 # 0 . 7 2 1 u 1 P + H A S O I mD A SO IH L 1 w e „ o - A SE N H L A P A D T • 3? •0* •03 .34 • 37 1.41 l L 1 - + H l i Y s m D C SO IH L l w e „ o I C SE HH L C PA DT 1 * 1 1 !•95 1.57 3 2 . 93 2 0 * 00 103.01 3 + 3 P + H A S O I H D A SO IH L 1 w e ( o - 3 w ) ( > T 1 u 1 - y •31 •0+ •03 .34 •38 !•14 l= 3 P + H C s O I N D A i Y s o H l w e „ o - C SE NH L C RA BT 3 1. 43 3 1 8 2 45 4 3. «0 31*52 1 43 .8 4 3= 3 - + H A S O I mO A SO lH L 1 Sc ( o - 3 w ) ( > T 1 u 1 - y • 11 •0* •03 .18 • 39 !•35 l u 1 P + H Cso I HO A i Y s o H l w e „ o - C SE NH L C R A D T Al 5 ♦•*% 3 3 4 5 9. 25 4 3 20 184.34 3= 3 P + H A S O l w O A SOIHL 3 w e ( >- 1 i e „ o T 1 + 1 - y • 1» •0* •03 .49 19 1 . 19 l= 3 - + H CSOIHO A i Y s o H l w e „ o I C SE NH L l + 1 - y SI.gA 5'7 o a/ : = 4 9 . 4 9 9 1 . 94 2 1 0 . Il 138 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. July 7,1977. Cont. TIMF 6 *0 • E » .•33 E T p L ••37 A p AON P .77 6 * 4 0 * 0 A p AONL • 61 m ■ d 8 6*0« C f T r O Cf Tp L • U » l * l U 1 -(- 1 3 - 3 3 C PA DA D 7 ' 11 l 1 - „ H l«.«8 TIMt 6*0' ETP » • •37 E T p L A p ADN O •81 3 3 1 -3- *5 A p ADNL •70 TIMf C f T P O C E T p L C p AON O C P A D » D C p AONL 6*0' • *1'0C » 7. 77 I * '5.4 3» SI TlHt 7*0' E T P " -•*1 E T p L A p A O N O . 3* A A A D A O M A p A O p L •77 TIMt 7*0' l e y bO • 3* .0 * Cf T p L • 37 .» « C p A O N O 7 3 . St C P A D A D * t't« C p AON L S l tSfl TIMt 7*0' E T p n ••37 E T p L ••♦1 A p AON O ... *»0 A AA DA D _ ...-IS A p AONL . -IO TIME 2 ’ J z C ET =P * 6 « M 5 C f Tp L *0 S3 C p A O N O i oo -S i l 3 1 I3I 3 0 - U l 1 I(T I l- St TIMf 7*0' E T p L S A p AON O SS A A A D A D _ _ «87 A p AONL -13 m ■ „ l z 2a.n c t T or Cf TPL • «T .J » C p AON O I l . * II l - 1 I3I b = n vv C p A=N L l i f t * Ap A O p L A S I I H O A SI IH L A w) ( o I A B E NM L AR AD T ■ 18 •01 •01 . 1 • 83 1.23 Cp A O p L CS!I HO C SO IH L c I e „ o - C SE NM L C RA DT 1 . 3 » •IB •10 1 1. 70 6*86 36.87 Ap A O p L A S ! ! * = 3 ■■ ■6 H A l f NMO A S E N M L A p ADT • 30 •03 •03 I 13 1-30 C p A O p L C s l I H I C sl IH L l ■ e „ d - C SE NH L C p AOT I tf fS 1*3» V t l 1 3 . 1 » 13-11 73. »0 Ap A l p L A M I H O A SI IH L A SC N MO A S E N H L A p AOT Jll _ _ Sfli •03 • 38 •30 1,3 7 Cp A l p L l i s s o Y C M IHL C l E N M O C SE NH L C p ADT list* IMl f M 3 1. 71 I! Si 117.11 Ap A » p L A S O I h O A SIIHL A l E H M O A S f N H L A p AOT .31 ... "OS. •03 * Tl* J . t t Cp A l p L C S I I H O C siIHL l w e „ o - C SENHL C p A=T 3 *. IJ > • 1 7 3-3» S l - I C SI I l 3* .7 * Ap A O p L A S I I H O A SIIHL 3 w e ( 6- A S E N H l A p AOT • 33 '01 •03 .80 • 3» V t S Cp A l p L C S I I H O C lO IH L l w e „ d I C SE NM L C p AOT A l - O 7 S S t *•3» 1 1. 31 * !•»* 1 03 -1 3 139 Appendix Table 3. Energy balance values for Liberty - Liberty. July 1 1 , 1 9 7 7 . Cont. Golden T!*E f TP^• •37 ET*L #3* A**0N0 .T0 ApAOpD •11 ApAONL 5* ApA=pL I* AS=INO TOl AS=IHL •01 A=ENHO .31 1 i e „ d H 1a1Iy /to 1«0» TJ*r 6&0* CfT "0 eI I#?* CfTpL•1C#21 CpAONO *1'0T CpAOpO » • » * CpADNL 1*«7! CpAlpL I' c»ei„Y •*i Cs=IHL •*» ClENHO * » 1 CSfNHL CpADT ••OS 11.81 TIMf 6’0* ETPfk • #*# ETpL#49 ApADNO .7» ApAOpO •13 ApAONL *1 ApAlpL I' AS. I MO •01 AS=IHL •01 A=ENMO .11 AMNHLApAOT I* I.I* TlMf A«0* CfTnO CfTPL "23 62 CpAONO *».*7 CpAOpO 13«07 CpAONL J5.S6 Cp AlpL I I* Cs. IHO !•0* CSSIHL 1 0 * C=ENHO I*.It CSENHL CpAOT IO'*7 **.51 umdn 72c • fTPM •#3C fT"L #3* ApAONO .57 ApAOpO •l* ApADNL • »* ApA M L •1* ASOINO •01 AieiNL •ol AtfHMO I* AMNHtApAOT •o* .at TI"E 720# CfT*D •3i#9l CfTpL ■39*42 CpAONO *!•7» CpAOpO !»•00 CpADNL *1 11 CpA=pL I M I CseiNO I.SS CS=IHL i n ClfNMO I* 31 l e „ o H l>1Iy 1 1 * 1 It-I7 T l t 7<0. E?Pn • #?9 ETeL 35 ApAONO •** ApAOpO I* ApA=NL .11 ApA M L .•»7 AS=INO •01 AS=IML •01 3W)(d- .11 AMNMLAp 3-y •00 .71 T l t 7Sge CfTeD •*••*7 CETpL •49 . 9 2 CpAONO 75.*1 CpADpO * 1 1 * ^ * CselNO i n teT r i lW)(o - 11.Si CstNHL CpADT 1 1*1 11».11 T l t 7*0# ETerk • #* I CTPL ".A# ApADNO •63 ApAOpO •15 ApA=NL .71 ApAlpL • 10 At=IHD •01 AS=IHL •01 ASfNMO .*» AStNHLApAOT •07 I.IS T l t 7*0# CfT*" *93#»# CpAONO 103-5* Cp1OpD **•»* CpA=NL 61 I* CpA M L 15 15 CseiND 1 * 7 CseiHL !•SO CfNMO «*.3» CstNMt CppOr 1*0* I=A-7O TIMf **o# rrnL ".70 ApAOND I.** ApAOpO •11 ApA=NL 1.01 ApA M t .17 ASSlNO •07 ASSIHL • 08 1 d d Y a ASfNHLApAOT •I7 |.*T TlMf s*o# CfTnD 6* *3 le y B H •67•g3 CpAONO 1*0.Il CpAOpD 11«67 CpA=NL ll»'*l CpAlpL *5.50 CseiNO * 0 1 ‘"ft, c,t* r „ CSENHL CppOT It-I7 10**» T l t *70 . ETerk . 4 9 ETpL ••St ApAOND •61 ApAOpO • 15 ApAONL •71 ApAlpL " O O ASSINO •0» ASSIHt •03 16 „ o- .17 AMNHtAppOT I* I.I* T I t *70 . CfTPC •To.*9 CtTpL •10*.** CpAONO 1*7.30 CpAOpO *«.»* CpA=NL 117.11 CpA M t 55.»» cseiNo 7'20 CseiHt = 11 CSfNHO »0.51 CSfNHl CppOT I* 51 1*5.0« T I Mf *co# f TPM • #47 ETpL S* ApAONO • 63 ApAOpO •I* ApAONL • A* ApA=pL • 1» AS=INO •0» AS=IHL •03 A=ENMO .31 pM N H L ppAOT •1* 1.1« TlMf 900# CfTeD «91.71 CtTpL •116*0* CpADNO Ilf-3* CpAOpO 51.1* c: r * 5 CpA=pL *♦.11 CseiNO *•1$ CseiHL * * i l■e „ o - *0 Il CSfNHL CRAOT 33'»* lit.11 T I t 930# ETPfk .#«? ETpL •>* s ApAONO • 7» ApAOpO • 11 APADNL •At ApAlpL I 7 ASSlHO •0* ASSlHL •03 A.fNMO .11 AlfNHLApADT •13 1*1* TIMf 910# CfT°D •10*#*6 C f T pL •131.*« CpAONO *1*'5| CpAOpO *0'75 Cp A=pL TI. 2» CsslHO ! • » • CiOJHL* V v CSfNML CpAOT *7.*4 si*.11 TIMf s*C# ETPfk • •«# ETpL •.57 ApADNO • 71 ApAOpO I* 3|1I(T •60 ApA=pL I* ASSINO •01 AI=IHL •03 1we „ o- .11 ASfNHLApAOT •00 I.IS TlMf 9&0# CfTeD •l?f#53 CtTpL •1»*.Tl CpAONO * !» • 1 1 CpAOpO *7.1* CpA=pL 1«.** CseiHO I=T=O c e e T l c H ^ 0IO CMNHL CpAOT I T. ** S=!.»| T|Mf "~0# [TPfk ..iC ETpL • * 1 ApAONO •37 ApAOpO • 1» ApA=NL •ii ApA=pL "I* AS=INO •01 A==IHL •0= AMNHO .0* ASfNHLApAOT 03 .*7 T I t •90 . CfTpD *I3"#63 CtTpL •!»5.77 lU 1-„- *» »3 CpAOpD I 15 CpA=NL 10» I CpA=pL •1.5» CseiND 1 1 1 * CseiHL lO'll C M NHDtoo.** CSfNHL CppOT SS »» S I * = T l t ie?o# E T P fk ..I* tTpL • 1 * ApAONO • 16 ApAbpD • 06 ApA=NL I* ApA=pL • 0» AseiNO •01 AieiHL •01 AMNHO • 00 pSfNHLppADT ••0 5 .»0 T X t 10?9" C ET PC •14 n. 8 9 CtTpL •1*1.51 l|1-„- *53.** CpADpO 7*.7| CpA=NL * 0 » * n C=A=pL • l . l t CseiNO 11*71 Cs=IHL 10*7* C M NHOtoo.** CMNHL CpAOT 37*OS Si*.Si TlMf 10*0# ETP M • .?# ETpL ••** ApAONO *6 ApADpD •1A ApA=NL •** ApA=pL .1« A se iH O •01 ASOlHL •01 A M NHD • 00 AMNMLApADT ••07 .*0 TIMf IO5 O e CfTPD "14 «# l 9 CtTpL "I 7 O " ! * CpAOND ***•01 CpADpD 78 «2 CpA=NL * 1* » B * " S G , CseiNO ll' |7 CseIHL IlM= C M NHOloo.** CfNML lu1-yw o * »01 *= TlMf 10*0# E T P fk • • I # ETpL ••*3 ApAONO *3 ApADpO • 11 ApA=NL «1! A A=pL • H AselNO •01 AS=IML •01 16 „ o- .01 AlfNHLApADT • -05 .51 TlMf 10*0" CfTeO •19fi #67 CtTpL•lTT.)6 CRAONO 2*8.76 CpADpO 8* 15 CpA=NL *** *1 c , i i : i * CseiNO l i e * CseiHL 1 1 1 # cH r = 7 CfNML CpAOT IS »5 »|S.|* 140 Appendix Table 3I. Energy balance values for Liberty - Liberty. July 12,1977. Cont. ■Golden TIME *50' ETPO••10 ETPL• *oi APAOND • 13 APADPD • 09 APADPL*12 A*A»PL•09 AteiMo•01 ASSIML•01 AiENHO.02 ASENHLAPADT•10 *18 ysde *5o» CET PO -3.0» A e yB H ••39 CPADND 3*86 CPADPD 1*18 l|1IuT 3*65 lu1,uTVt» cseidY*29 cseidH•36 CSENHO SE CtENHL lu3Iy *a7. ’,7* TIME *8 0 « ETPO •»08 ETPL ••It APADNO • 12 APADPD • 05 APADPL•10 ARA.RL.08 Ate i dY • *oi AteiHL••00 AtENHD • 09 AtEPMLAPADT•00 *20 ysde *8o* CETPO • 5**3 le y B H3 55 CPADND7*3* CPADPO 2 69 l|1I|T6*7$ A + 1»+H*•»* cteidY•ot cseiHL•28 CStNHL CRADT 8>»0 11*87 ysde 510* ETPO*1Z ETPLe*t6 APAONO • 18 APADPD•08 ARAORL • te 1a1> H•0» Ate%wo• *oo ASSIML••00 AtENHO *07 AtENHLAPADT ••01 *39 TIME 510* CETPO 8 96 A e y B H l|1I(I 12*79 CPADPD 5*07 lu1-wT ▲v ba ="1%7 cseIMD••09 CseiHL•29 CtENHD3.87 CtENHL CPADT 2 9 Ei.69 TIME 5*0* ETPD E* ETPL•* |3 APADNO • 97 ARAORO•l* APADPL • 38 A*A»PL • 20 AteiMO•*oo ASSIHL • 00 AtENHD *23 AtENHLAPADT 25 .77 ysde 5*0* CET PO •1»»0» A e yB H •12*31 lu1I(- *»•«0 CPADPD 10*87 lu1-wT»*•»» la1=uTIt.** cseIMo•«08 CSBlML•32 A f e „ d Y10.7» CSENHL CRADT I C O * »* 82 ysde 570* ETPO 2* ETPL *39 APADND 56 APADPD • 20 APADPL • 98 3a1=|T • 22 Ate ■dY /.. ASSIHL • 00 AtENHD.32 AtERMLAPADT•05 .92 TIMES^ o* CET PO •23*30 A e yB H CPADNO93*73 CRABROl*i*» l|1-|T36*06 lu1»uTll.I* Cse!MD ••09 cseiHL• 99 A f e „ d Y =.,z2 CStNML CRAOT 11.8» 72.25 ysde 6 0 0 * ETPO • 2 6 ETPL 26 APADND •61 APADPD •20 APADPL• So ARAPRL•** ASSIMD •01 AseiML•01 ASENHD 35 AtENHLpPADT •23 98 TIME 600* CETPD •31*21 A e yB H •31*88 CPADNO 62*63 CPADPD 22*68 l|1-|T 51*06 CRAiRL 88.3» cteiHo •33 CteiHL • 80 A i e „ o —31*10 CtENHL CPlDT 18*37 10L57 ysde 630* ETPD • 28 ETPL •*37 APADND *71 APADPO 22 ARAONL.8? APAtPL25 AteiMo • 02 AteiHL • 02 ABtNMO.♦l AtENHLAPADT•18 1*07 TIME 630* CETPD •39.56 le y B H l|1I(- 83*98 lu1-u- * ».*s lu1-(T » a>i? "ir1.. CseiMD1*02 CseiHL1*95 CtENHD 93*90 CtENHL CRlOT 8 3 7 » 133.73 TIME B B R p ETPO *39 ETPL * 3 6 APADND • 77 APADPO•23 APADPL • 69 ARA.RL* ASBIMO •03 AteiHL • 03 AtENHD .35 AttNHLARAOT •85 1*12 ysde 66o* CETPD •51*29 A e y B H •53*70 CRAONO 107'M CPADPO 36*19 lu1-wT 87*31 lu1-uT »0 8.CsBIHO cseiHL 2 25 CBtNHD83.87 CStNHL CRAOT 31*35 1*7.38 ysde »7. • ETPO **56 ETPL • *53 APADND • 8* APADPD • 29 APAONL • 69 1u1,uT.88 AS* I MO • 0» ASSIML•03 AtENHD *23 AtENHLAPADT •13 1.29 TIME 6#0* CETPD •68*ll A e y B H e •69**8 lu1P„ Y vbb ba CPADPD 93*32 lu1-uTIo7*** lu1,uT ». 38 cseiMO*!1* cseiHL 3 88 CBtNHO *1.08 CtENHL CRlDT 38*28 209.58 ysde7P0* ETPO•*67 ETPL *33 APADNO • 89 APADPD •28 APpDPL *79 APAtPL • 29 ASSIMO • 09 ASSIHL •09 AtENHD *18 AtENHLARADT •37 1*33 ysdeTPo* CETPD88 29 CRAONO lB»*03 lu1Iu-5o»7* CPpDNL130*10 "iVk* Cse I dY 7abO CsSJHL9.30 CtENHD 66.93 CSENHL CRADT «»•32 2«*.3* IAl Appendix Table 3. Energy balance values for Liberty Liberty. July 14,1977. Cont. - Golden TIMC 570# ET P O 25 ET'L -.J7 1 8 1 -(- «»7 A R AORD 13 A R AORU 3* A*A»RL 3# AS8IHD ••01 ASOIHL • •00 3 w e (>- .83 ASENHLARAOT '00 .83 TfMC 5 7 0 . CETPO .7.49 CETFU •lQe.1 lu 3 - „ - ■ a , )- CFAORO 8.33 CRAONU 10*37 l u 3 - + r f-00 CRB I "0 3» cBOIHL — 12 l w ) „ o - 0 a bb l i ) „ o T l + 3Im /.. ■ a,b= TIME *00# ET p D 2* ETFL ••31 A R AONO • 33 A R AORO •80 3 u 1 -uC .«« 38 1 6 HEE ASOI MO •00 ABOIHL • 00 3 w e ( d - ,bz ASENMLARADT I* •»» y s d e *00# CETPO «14.55 l e y h r a. )a C R A O N O 31.30 C R AORD II'EI l u 1 -uT 3 » . B( l u 1 ,uC 11.71 C R . I M O • •*♦ A f Y s o H •#oo lw e „ o - 17,30 CSfNHU CRAOT »•»0 »8.77 y s d e 630# ET P O #39 ETFU ••l* A R AONO .*7 ARAORO 31 AFAORU .84 1 u 1 ,uC .*♦ A S S I MO •01 ABOIHL •01 ASENHO ,87 ASfNHLARAOT '33 I *07 TIME *30' CETPD "2* 2* A e y h r •E*«l7 C R A O N O Bi *63 C R AORD l7.*| l | 1 I(T K . 'SI l u 1 , + r =.,.. c s e i d Y ■ 0 8 l f Y s o H •3* C S ENHO 83.37 C S ENHL CRADT 1**0» 6».3» TIME 6*0' ET P D •#0* ETFU ••3? ARAONO .7* AFAORO EE APADNL •60 1 » 1 > H .»* ASStMD •08 ABOIHL •02 ASfNHO • 6* 3 w ) ( > T 3 u 3 - y El I.I* y s d e 6*0' C E T p D **7.97 l e y h r • 3 » M * C R A O N O 73 3* l h 1 -u- =a,bb l | 1 I(T ’a ’a l 8 1 6 C 87-73 ' . . , H O , l f Y s o H #97 CSfNMO »3.1* csfNHU A + 1 Y y 88 *3 ll».f8 TIME **0' ETPD •0* ETFU ••«1 A R AONO «31 A R AORO • 8» APADNL • 67 38 1 ,uC .7 A S .IHO • 03 ABBIML •01 1 w e „ d - .8* ASENHUARAOT •8» 1.33 y s d e **o* CETPD •t*#ii A e y h r •*T.»» C R AONO 33.0» l u 1 -uI 31.33 enT u c s » IHO 1,3» A f Y s o HI'Bl C S fNHO 70.33 C S ENHL CRIOT 3».»0 1»*<1» TIME 720' ETPD #32 ETFU ••53 A R AOND • 87 A F AORD ES AFADRU .73 1 8 1 , + r .»* ABSt H D •0* ABOIHL •01 ASfNMD .31 ASENHLARAOT IS 1.31 y s d e 720' CETPD •35.77 A e y h r ■*3.»Z l u 1 -(- ■) a , )w l u 1 -u- 38.73 l 8 1 -uC 100*77 l u 1 P h r ♦ *.37 C s e !Mo 8 73 A f Y s o H 2 8* CSfN H O 8 3.73 A i e „ o H A + 1 Y y b b a » ■»’,’» y s d e 750# ETPD •#51 ETFU •••» A R AONO • »» AR A ORO ES AFAORU .77 A*».FL .30 ASSI H O •03 ASOIHL •04 ASfNMD .3* ASENHLARAOT ES 1.36 TIME 7 5 0 . CETPD •si.oi A e y h r ,2 b , w) C R ADNO 1»1.*» l u 1 IuI »*.33 l u 1 -uC 1 3 3 * » l 8 1 6 T 3 1.30 CS. I HO a d f A f Y s o H 4*02 CSfN H O »*.51 CSENHL CRAOT *1.*0 E S * . 33 y s d e 7*0' ETPO *.4S ETFU ••3» A R A O N O • 33 ARAORO • E* AFAORU '30 A F A M U • 30 A S SIHO •0 8 ABOIHL •0* ASfNHD • 45 ASENHUARADT •*0 1 » 1 TIME 7*0' C E T pD •64.62 A e y h r »3 E l u 1 - „ Y 30 E3 CRAD R O 3 * . OO l 8 1 -uC 1* 8 . 0 8 l 8 1 P8C *t.*l C.s I HO S 73 A f Y s o H ’ ab C S f N H O 10».88 CSENHL CRAOT 3 3 * 3 378.67 TIME *10# ETPD • 9 2 ETFU ••*7 ARAO N O .37 ARAORO .8« AFADRL .81 A F A M u .31 A S SIHO •03 ABOIHL • 04 A SE NHO .00 ASENHLARAOT .30 l.»E TIME *10' CETPO 9 2 0# C E T F u •103.3* CRlO N O E0» ES = T S s A + 1 Y u H 178.31 = " % % * l w w ■ o — 7.33 " % 3 C S fNHO los.se A i e „ o H A + 1 Y y 68.31 3*1.38 TIME 8*0' ETPO •#91 ETFU ••«» A R AONO • 38 A R AORO E* AFAORU >31 A R A M L ■ 31 ASBIHD •03 ASSIHL • o* 1 w e „ o - ,.. ASfNHLARAOT ES l.»l y s d e 8*0' CETPO •119.24 A e y h r •113.38 C R AONO 837.8» l h 1 IuI * 3 . Bo l 8 1 IuC vba,ab l 8 1 , + r 3 7 . 0 7 CSS I HO 8.71 CsstHU 7.68 C S fNHD los.se CSEN H L CRAOT 70**0 3*3.61 TIME ETPD ETFU ARAONO ARAORD AFAORU 38 1 ,uC ASStMO AeeiHu ASfN M O ASfNHUARAOT =2J , • . 88 ..*0 .33 .ES • 80 30 'OS •6* .00 •It 1,33 TIME 87()e CETPO •145.61 A e y h r • 1 3 3 3 » C R AONO 3*3. * 7 CRAORO 77.1» l 8 1 -uT E E C ’** l 8 1 ,uC » 0 1 * c s siHo 1 0 , 1 8 cseiHu 8*33 CSfN M O 10 » . SB C S ENHL CRAOT 78-36 «»5.18 y s d e 900' ETPO •.85 ETFU ••» 7 ARAO N O .83 ARAO R O ES AFAORU • 7« A F A M L .30 ASSlHO ,03 ASSlHU • 0* A S fNHO .00 ASENMUARAOT 33 1«33 y s d e *00' C E T pD •170'** A e y h r •iSfl.** C R A O N D 838.»8 CRAORO 3 ».73 l 8 1 -uC 8 * 8 7 3 l u 1 6 C »»•11 Css IMO i:'*o CSSIHU 1 0 M 3 C S fNHO lo».«e C S ENHL CRAOT IE-It ««5.66 TIME 960. ETPD .28 ETFU • 3* 1 + 1 - „ — .** 3 8 1 -uI .83 AFAONU .3* AFA.RU E* ASSIMO • 0* ASSlHU • 03 ASEN M O ^ ASENHLARAOT •1* 1.10 TIME 9*0# C ETPD •179.43 CETFu •1*1.*3 l + 3 - ( Y 311>** l + 3-u- • l •♦* CRAONL 888.83 C S SlHO I E t7O CSSlML 11" 1» c n ^ 3 lw)(>C l + 3-m = a,=z »2=,b’ y s d e 77J a ETPO • •27 ETFU • 3 * A R AONO .3* ARAORO EO AFAORU • »7 3 | 1 ( (T 24 ASSIMO 103 AS. I Hu •03 A SE NHD .8« ASfNHLARAOT -OS I,OO TIME 77J , CETPO •187.42 A e y h r 6 2) d a C R AONO 387.7» l u 1 -u- 3 7.*l l 8 1 -(T 373.88 "M i* Css I MO1 3 * 3 CsSIHL| 8 l » C S f N H O 18*.*5 CSEN H L CRAOT IS-SS 5»8 S3 142 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. July 15,1977. Cont. TIMf E T M O E T P L 1 B 1 - d Y A P A D P O A l A O N L 66Q. «'20 • o s • 73 • 23 .9» TIME C E T P O A e y B H C A O N O l B 1 Y B — C N A O N L 6&0* • 5.8 7 2 1. 01 6.1 2 ( 7 . 6» TIME ) m B - E T P L A P A O N O A P A O P O A l A O N L 6*0* ••26 ••1 * •81 26 •63 y s d e CET MO l e y B H C P A O N O l + 1 -|- l ( 1 - (T 37'1169o« • 1 3 5 6 • 1 9 . f J 4 6. (8 1 6*00 y s d e E T P O ETP L A P A O N O A P A D P O 1 ( 1 I(T 720' • ? 5 »1 • 25 .78 TIME C E T PD A e y B H C P A O N O C R A D P D l ( 1 -(T 720' "21 I* • * » • 3 0 7 3 . 3 9 2 1* 66 8 » 61 TIME E T p D ETP L A P A O N O A P A D P D 3 ( 1 - (T 750# • 2 9 ••♦1 ,34 • 26 • 78 y s d e C ET PD A e y B H C P A O N O C P A D P D l ( 1 -(T 75o» 2 * 86 • M . 6 E 1 01 .4 7 2 9* 39 1 1 .8 8 y s d e E T P O ETP L A P A O N O A P A D P D A l A O N L 780« .31 •.« 3 .»9 26 .7» TIME C ET PO A e y B H C P A O N O C P A O P O l ( 1 -(T 78o« • 39 .0 0 • 9 4. 3 8 1 1 » . » 7 37.21 1 06.44 y s d e E T P O E T ' L A P A O N O A P A D P D A l A D N L 810' • 3 6 • 3 3 »4 • 16 .7» TIME C ET PD l e y B H l | 1 I (- 1 98 .0 » l | 1 -|- l ■ 1 -(T 810* • 69 .1 8 • 69 .3 2 6 B . Q0 1 30*00 TIME E T P D E T P L A P A O N O A P A D P D A l A O N L 8*0' ••38 ••41 .8» • 2 6 ,77 y s d e C ET PO l e y B H C P A O N O C P A O P O l ■ 1 -(T S t Q e • 60 .6 0 « * 3 1 14 .7 0 5 2 5 192 »3 A * « » 1 L A.etoY A Se iH t A l E N H O A t E N H L A R A O T I* •01 •02 .32 22 I'll l 1-„H C s e i H O CteiML l■)„ o I li)„ oT C N A D T 7.7» 68 • 66 11.4* 6.*1 13.29 1n 1,sH A l B I H O A te iH L A w e (>- AtENHLARADT I* 703 •03 .Si •46 L I * l „,sH C l B I M O C seiHL A s e „ o I CSE NM L i e.»9 C NI DT i».0» 1«9» 1*69 1 1 . 0 » »»•04 Al6 . l L A S B I H D A te iH L 1 i e „d Y A S E N H L A N A D T • 30 704 •06 .61 .24 I.39 C lA O l L C « 8 | H 0 C se iH L C BE NHD C SE NH L C N» OT *♦•»6 *!» » 2*61 4».26 27.7o ie».s 2 A l A . I L A l B I H O A teiHL A l E N H D AtENHLARADT .30 •o* •06 .61 .32 1.19 lv1,vT C lB I H O C teiHL C l E N H D C tE NH L C Nl OT 38.07 »': » 3 86 67.44 37*61 1.1.08 1v1,sH ! . . ( M O A te iH L A l E N M D A tE N M L A P A D T .31 •06 .60 •31 1.41 la1P„H C S N I A® 1*94 C se iH L C I E N H O C lE NH L l(3-y 41.2» 5. i5 88.43 66*72 113-37 AlA . I L A S B I H D A te iH L 1 i e „o — A SE N H L A N A D T .31 >08 •05 .95 .36 1*40 C lA .l L C l B I H O C tO lH L A s e „ o — C SE NH L C Nl DT Bi.90 7.04 6.51 101.16 87.87 2.5.30 AlAlNL A lB I H O A te iH L 1■e „ o I ASE N H L A N A O T .30 "09 • 06 .46 .31 1.37 l(1P(T C lB I H O C se iH L C I E N H D C SE NH L C N l DT 61.64 I 59 7.86 119.36 64-88 274.91 143 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. July 18,1977. Cont. TIME E T P O E T M L 3 u 1 - ( - A R A D R D A P A D P L 5*0 • "12 " I * *1 •18 TIME CE T MO CE T PL l u 1 - „ — C R A O R D l | 1 IuT 970' » 3 6 1 "#'69 12 *1 #29 1 1 'Tl TIME E T P O E T M L A R A D N D A R A D R D A PA DR L 600' - 1 7 »,30 ,90 •to • 4? y s d e C E T P O C f T P L C R A O N D C R A D R D l | 1 IuT 600' • 8e70 » 1 3 . 6 6 27,99 1 1 1 * * 5. 8? y s d e E T P O E T M L A R A D N D A R A D R D A P A D R L 66o* " I * • •o* 6# •23 I* y s d e C E T M O l e y h r C R A D N O C R A D R D l | 1 IuT OOJ n " 1 * 1 * '15 3* *7.96 1 7, 96 1 5. 48 y s d e E T M O E T ' U A R A D N D A R A D R D A P A D R L 6*0' " 1 1 • 7* • 2* ■?l TIME C E T P D l e m|C C R A D N D C R A D R D l | 1 IuT 6*0* "17,90 • z i « 0 0 7 0 * 2 9 2 9- 11 58.81 y s d e E T P O E T P L A R A D N D A R A D R D A P A B N L 7?0« 2* .1» • 80 • 2* • 78 y s d e C E T MO Ct T PL C R A D N O C R A D R D l u 1 -uT 7?o* " 8 * ' 6 0 • K ' Z * 9 * . i # 3 2 * 3 Till TIME E T P O E T P L 3 u 1 I „ — A R A D R D A P A D R L 790' #29 ■ 84 29 >80 y s d e C t T P O Ct T PL C P A D N O C R A D R D l | 1 IuT 790 . " 32 ' l f l l' "Z S 39'93 1 0l «* T 3|1P+H .I' ASOIMD "'00 ASdIHU "'00 A»ENHD .30 ASENHUARADT •2* .78 lu1PBH 5.88 C$81 HO " 1 2 CsdIHU ••o* CStNHO 8.5* CSENHU 7*12 CPADT 13.48 APABPL .11 ASdIMD •00 ASDIHU • 00 AltNHD .13 ASfNHUARADT •17 89 A B 1PBH 11.04 Cse I MD »*08 csdiHu '08 CStNHD 11.54 ClENHU 12*12 CRADT |0 «2* APABPL 15 ASdIMD •02 A88IHU •02 AltNHD .48 ASENHUARADT •2* 1 1 2 l|1PuT I?.88 c s e iwo •41 CSDIHU •68 CStNHO 11.40 CSENHU 1 9* * CRADT 83.16 APABRL .I? AseiMo ro* ASDIHU •03 AltNHO .81 ASENHUARADT •*9 I*20 A B 1PBH *7.75 Cie Ino 1T0* CldIHU 1 * 9 CStNHO Bi.Tl CSENHL 15.15 CRADT IEO*00 ARpBPL *8 AeeiMD • 01 ASDIHU •03 AltNHO SI AltRHLAPAOT .88 I.*8 l|1PBH 1 *1 1 li f s d — 1*7* CSDIHU 2 $7 CStNHD 47.78 CSENHU *0*69 CRIDT I* 31 ARABRL *5 ASBIMO •01 ASDIHU •0* AltNHD .58 AltNMLARADT "50 1.33 l|1P|T 44.75 cseiMD *•71 CSDIHU 3.46 CStNHD 84.40 CSENHU 7S*60 CRlDT 1*8.0? 144 Appendix Table 3. Energy balance values for Liberty Liberty. July 20,1977. Cont. - Golden TIME * 6 0 e F T P O ••C7 ETM L •'ll A R A O N O •14 A R A D R D •12 3 | 1 -(T •17 A HA DP L •11 A g e i H D ••01 ASOIMl "•Cl RRL 1 1. 87 BR D 2 4. 13 APAOT .4b TIME 4*0* C ET MO *«<•16 T e m|T • 3 . ‘ E C R A O N O 4 33 l u 1 I uI 3.4 6 l u 1 - „ H 5*1 0 l u 1 IuT 3.3 9 C s e i w n •41 CseiwL •32 l w ) ( o - 2.5 7 C SENuL 2»U0 CRA')T 13.37 y s d e 5*0* E T P O " 1 2 ETM L " I ? A R A D N D •35 A RA DR D •16 3 u 1 -(T •33 3 > 1 I + H •17 A s e i w o ••01 AS9IWI " T l RRL l9.«0 BRO 38*16 ARAOT •71 y s d e 5*0' CE T Mr' • 5. 89 L fT PL • 8.56 l u 1 I(- 1 4* 86 l u 1 I u- 8.J 9 l u 1 -(T 15*10 l u 1 I + H 8.4 3 C s e i w o "•61 C s e iwi 4* C S f N w n 9 . ',M l i e „ o T 7*02 l | 1 - y 3 ** 7o y s d e 5 7 0 . E T P O "'I * ETP L 1 u 1 I „ - ‘66 A R A D R O •1* 3 u 1 I(T *41 A HiDRL •1' A s e i w o ••00 AseiwL '00 RRL 24 *6 BRD 31 •** A PA OT•83 T I mE 5 7 0 . C ET Mn • 11*34 L fT PL - 1* '0 * l | 1 - (- 2« 78 l u 1 -u- 13*82 l u 1 -(T 2 7* 40 l > 1 -uT !♦•!A C s e i w O "•69 CseiwL -•48 C S f N H P 1 8. 13 A i e „ o H 13.79 l | 1 Y y 5 9 . f 4 TIME 63o» E T P U •*io ETM L •■3 3 A R A O N D •61 A RA DP D •22 1 > 1 I (T •97 3 u 1 I + H 2* A s e i w o • 01 Aseiwi. 'Cl BRL 14.02 BRD 100*84 A RA DT l*r5 TIME 6 3 0 * l e T Pt) • 1 4 . 3 3 l e y B H • * < • 0 3 C R A O N O 4 7* 02 l u 1 I|I 2 0* 39 l | 1 -6T 4 2 l > 1 - + H 2 1* 29 C g e 1 wo • 33 Cseiwi * * I * l i e „ M I 33*01 l i e „ M T 2 0* 65 C R A nT 9 1* 08 TlME 6&0* E T P O e *l7 E T M L ••* 5 3 | 1 -(- '72 A R A D R D *23 3 u 1 -(T •99 1 > 1 I + H •25 A ge iw P •02 Aseiwi •c* 9RL 2 6 . 9 Q BRO 6 5 . 4 0 APAOT !•13 TIME 6 6 0 * C fT PL • 3 1 ' 3 ’ l u 1 I (| 68 • 56 l u 1 I|I ? 7* 3P l > 1 -(T 6 2* 21 l > 1 IuT > 8.82 C ge iw D • ?6 Csei Ni.*40 C S E N W O 4 8. 98 C SE Nw L 30»4? l u 1 - y I25*r6 TIME 6*0' E T P O ••21 ETM L *•* * A R A O N D •79 A R A D R D 24 1 u 1 I(T •66 A HA DR L • 27 A SO lw D •02 Aseiwi *03 BRL 3 2* 26 BRD 5 3. 09 3. 3 - y I*?? TIME 6 9 0 . C E T M pi • 25 *6 8 C fT PL - 38.71 l u 1 C (- * 2 35 l + 1 I|I 34*94 l u 1 I(T » 1* 92 l > 1 I + H 36.79 C g e i w O .98 CseiwL I * I 7 CSENW')6 5. 69 C Sf NW L4 2 * U5 C HA DT1 61**7 TIME 8*0' ETP U -.86 ETM L . . 0 7 A R A O N D •90 A RA DR D •26 A HA ON L •75 1 o 1 I + H / *7 A se iw o •04 ASOIML •O'* RRL 173.31 BRO .UO A0 AOT l*?7 Ti"e •‘ O' C ET Pn • 51 *4 0 C fT PL •<0'S< l u 1 I (- l l * e25 C R A D R D 2 29 l u 1 -(T 1 0**52 l > 1 I + H 4 9. 54 c s e i w o 2 • 16 CseiwL 2 45 C S E N H P 6 5 . 6 9 C $E NW L 61.12 C PA OT ? 0? «7 7 TIME ••o' E T P O "•17 ETP L •"3 0 A R A D N D *62 A R A D R D •23 1 u 1 -(T •6C A HtDRL 25 A se iw o •0* AFOIML *0* BRL 1 7.49 BRD 4 9 . U7 A 0 AUT 1*14 TlMr ” 0' C ET PO • 5 6 . St L fT PL • 5 0 ' 0 3 l u 1 I(- 1 37*96 C R A D R D 49.14 l u 1 -(T 122*60 l > 1 I + H 93.11 c s e i w o 3*30 C se IH 3*42 C S f N W D 7 8* 13 C SfNwL 6 8 . 95 C °A OT 2 37 .4 7 y s d e >0*0' E T P O ••0 7 ETM L ••1 * A R A O N D 94 A R A D P D •22 A RA ^N L •53 A H A D R L 2* A seiwo •04 Aseiwi * c* RRL 33.9(j 3RD 130*55 A°AOT 1*06 TIME 10*0' l e y B Y 5 # 7 C f T PL • 55 .5 3 l u 1 I(- l 54 ., 4 C R A D R D 99.7, l > 1 -(T 138*37 l u 1 IuT 6 0* 29 C s e l h D ‘ .*0 Cse iwi. 4*71 A i e „ o Y 7 ■ / ■ 2 C SENWL 7 8. 13 C P A OT ? 6 9 * ? 8 TIME 10*0' E T P O ••0 3 ETM L *•1 » 1 + 1 - „ — *28 A RA DR O *14 A HA DN L •27 A HA DR L •1* » S8 IH 0 "03 Aseiwi. •c3 PRL 1 3* 62 BRO 161.88 A0 AUT .65 TlMr 10*0' CETPr * 5 9 .*o C fTPL -5».8l l u 1 I(- 162*51 l u 1 I uI 5 9. 79 l u 1 -(T 146*44 l > 1 -uT 6 4. 54 l i i ■d - 5"3 3 Cseiwi 5*6 3 r SE NwP 9 7. 78 l i h „ M T 8 l» U0 l | 1 - y ? 8R .7 9 y s d e M l O ' E T P O •o* E T P L '01 1 u 1 I „ - *11 A R A O R D •61 1 u 1 - (T •10 3 a 1 -uT •06 ‘ 8 5 IMD «03 Aseiwi •03 PHL • l l 5 . 6 u BRO • 39.74 1 u 1 - y •33 T I m E 1 1 1 0 ’ C E T Pn • 56 .9 9 L fT PL - 55 .3 7 l u 1 -(- 165*7! l u 1 IuI 7 8* oo l u 1 - „ H 1 49*33 l > 1 IuT 66.39 C s e i H D t.* 3 Cseiwi 6*43 C R E N W D 1 02 ** 9 A i e „ r H 83.33 l » 1 - y % 7 = .55 TIME 11*0' E T P O .02 ETP L •0* A R A D N O •01 A RA DP D •20 A H A O N L •00 A HA OR L • 02 iseiiio .0* Aseiwi •P2 RRL .OC BRD • 4.3? A0 AUT •16 y s d e l l ‘ o' C ET Pn • 5 6 . g9 C fT PL - 5 8 . 6 ‘ l u 1 - „ Y l 65 '8 9 l u 1 I|- 8 4 . 0 7 l u 1 -(T 1 49*33 CH A DRL 6 7 . o* Cse I o Y & ,it cseiwi 7* j 6 C S E N W V 1 02 *6 4 l i e „ M T 83.33 C0 A1-jT 3 0i*?5 145 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. July 2!7,1977. Cent. TlHC ♦ao‘ 8m|C e y 6T ■•o* "eCl 1u1-„— * 1® AOADOD•It AOaOML •IS 1u1-YH • in ASOlMD •*oi ASSlML ORL *92*31 non *1.13 AH4Iy •*0 T i ♦®o# le y 6na CfTPL - W l lY aONO*2 lu1I-I3 ZS COAnNL» * Z CH4DOL3*00 li-■d I-.AS Cs0IMl-•AC DSfNHO3.65 CsfKiHl A.63 l'1n■y 11 e0I TlHE Sloe ETMU ETPL ■•01 eeOP 1»1-„B *31 AOADOD • I s A8AnML 29 AH4DOL *13 3w-■o I •Cl ASOIML • ? ORL P6A.97 HOP 632*2* A8A0T TIME Sloe CFTMn CfTPL -I.*9 -»77 l-1-(- 1373 A Y 1IY— 2,O* lu1|6T I SeO8 l>1-YH 6.26 C80IMD "12 CsOIML• c* CSENMO 12*36 CSfKt-L12.2? COADTZ0eI8 TIME 6*oe )m|C e y6T ••19 -.16 1 B 1-„— •*o APADPD eI7 ARAPML •3* 3>1IYH / 16 3w-■d| •Cl ASOIMl eCl ■HL 19.68 won22.*o AH4DT • 73 TIME S*oe leydB Ah yBH -/•13 "5» 67 lu1I„ I Zb*77 lu1I-I12**6 lu1I6TPSeI7 lu1I+H 11*61 li Y s d — •0* Cs*IMl 52 CSfNMD 1 8 * * 0 li h „dH 16.98 C U D r TIME wmJ a ETPU ETPL L/J w -•I* 1-1 -(- »9 ARADOD •20 1 u1-„H •*o AH4DRL •l8 ASOlMP •01 ASQIMl •rl AOL 20*38 HWD 159.7A 1Y1ry *•1 TImE s'o* le m6- CfTPL-*•?* "11 Sg COADMD*0*3* lu1I-II8e7S lu1I6T35*2» CR4DRLI7eH li Y s d — • ?8 CsO I Ml*2 CSfNMO31*32 li h „ dT ?2»8* CR4Or 74. AA TlME *00* E TPU ETPL"•?* AOAPMD•96 AOADOD•11 3u1|(T• ♦7 AR4DRL • 21 ASOlMO•01 ASOIML•d POL15.A2 OOP32**5 AO40T .PO ysde *00* CETMO CfTPL *lb,10 -I8eSS lY 1I„Y S7eI8 lu1Iu- ZSeU lu1.(T *9**2 la 1 IuT 23 Z8 li Y s d — **i CSOIMl I*?8 CSENMD Al**7 li h „ d T *=,‘7 CO4Iy IOleZP TIME tlo* ETPU ETPL "•10 2* AOAPMp •63 AOAORD *23 A8AONL •8* AW4DRL • 2? ASOlMD•02 ASOIMl • 0? POL23.21 HOP lo3**n AO4DT I T P TIME * 3o e CE TMP CfTPL -I8tIl -Z*e*l lY aDND 7**08 lu1IuI 3193 l-1-(T 69e*8 CH4DRL 30*00 A i Y s d — !•i* CsOIML I*77 CSfMHD 56.83 li e d oT 37.10 CO4Iy 13i*f 0 ysde 6*Oe ETPU ETML ••11 eeI7 ApAPMD 69 ARADRO 2* A8ADNL 2 AO4ORL 2* 3w-■d l •02 ASO IM|. •D? *0L So* I* HOP IO7 U 7 1u1-y le°7 ysde 6*0* CETMn CfTPL -ZltZ8 -Sle77 l-1|6I 7O» ^ 7 lu1Iu- b7a ■a lu1I(T R**0* l>1-uT 37el* Cse IMD 1*87 CsOlML 2 5 CSfNHO73.*z A i e „ d H *9 8? CO4CT 16;4.37 ysde *®o* ETPU ETPL •00 "ePS AOADMD •75 ARADOD 25 3u1.(T / O2 AH4DOL 25 ASO IMP •03 ASOIML •C3 PRL 31.83 HOD KY K—y 1*19 TIME **0* CETMn CfTPL "PleI8 -39.i* l-1-(I Il8 S* lu1Iu- *6 #Z lu1.(T io**o* l>1I+H **•6* Cse ■dY ? O S CseiMi 3» 38 CSfNHD 95.52 li e „ d T 6i»*7 COAnT 199.1* TIME ETPU ETPL 3-1-(I ARAORD ARaDNL AH4DRL 3w-■d I ASOIML AOL HOD AO4DT »30* ••06 -e27 •S7 •21 •51 • 20 • C* •C* 15.5A 165*29 • 98 ysde 330* le y U | CfTPL •2**93 -*7ep7 lu1I6I 13**36 CRADRD S3ei8 lu1I6T ll8**2 CH4DOL 90e78 A i Y s d B 3*70 AiYsdH **«o CSfMHD 108*73 li e d d T 67.65 CO4PT 22*•*3 TIME »*0" ETPU ETPL *•06 -eIO AOADND *20 ARADRD .09 3>1I6T •1* AH4-YH ASOIMD *03 ASOIML •03 PRL 9.68 BRO 3 2 3 2 AH4UT .Ag TIME •*0* le y 6| CfTPL2* 8* -SQePl l-1I(- 1*2*?8 lu1IuI 55*75 lu1I(T 1Z**81 CW4DRL 93 Z8 li Y s d — A.6S liYsdH 5*55 li e „ oI Il?*77 li e „dH 69*1)5 l-15y ?*1eO8 fTPU ETPL -•O8 "eC8 3-1C6I tPS ARADRD•10 1u1-„H22 AH4DRL•10 ASOlMD•03 ASOIMl•03 PRL 20* 7Z ORP32.61 AOA0T•91 T,» o * CfTMp CfTPL -P7eI8 -S3eo3 lu1I(I 1*9*25 l|1I-I 7a aO CRaDML 131*** l>1IuT 96.1* CSOI MD 5.5* AiYsdH6*A7 CSfMMD116.53 li e „ d H7Ie8J CO4-y? S6 e?6 TIME IO8O e fTPU ETPL "•0? " eI8 AOADMD *32 ARADRD eI8 A8ADNL 'Z8 AH4DRL eI7 ASSIMD •02 ASOlMl • O8 POL 9.if BRD 2 2 * e77 4040T •75 ysde IoeO' CETPP CfTPL*2 7.9l -SB »61 lu1-d— l58e7S lu1Iu- aa b* lu1I(T U O * ? 8 CH4DRL 8 IeZ 8 Cse I oY a *b C,T , . CSfNHD 12**1 li e „ d T?*•** CO44y278.67 ysde Illoe ETPU ETPL ••0* " I 8 AOADMD "I* ARADOD •is 301I(T *20 AH4-+H •13 ASOIMD •02 ASOIML *03 POL • 00 HRD 31.37 3M 3Iy • 58 TIME !Ho* le y |- CfTPL "Z8e8S "*3e80 lu1-(-1***28 lu1I-I6* 6* lu1I(T1***35 CR4DRLASeZ8 CSOI MO6 88 AiYsdH8e00 li e d dI IZ7eS8 li e „ d H 21 ,33 lu1Iy ?96»r2 TIME 11*0* ETPU ETPL "e0* - i 8 AOADND *10 ARADRD •13 ARaDNL *12 AW4DOL•11 3w-■d - •02 ASOlMl •c? POL -9.35 HRD 18.15 AOADT * AR TIME 11*0" CETPn CfTPL -SleIZ -88eM lu1Id— 1*7*30 l-1 IuI 7Z**8 lu1I(T 150*00 CHaDRL 6S.6* CsOI MO 7.AS liYsdH88 li h „ o I 128.7* CgfMML 7I .Sn CO4-y 31V • * 8 TIME Il7O e ETPU ETpL TtO8 -eO7 AOADND *03 AOADOD *08 ARaDNL •oS AH4DRL •O7 ASOIMO •02 ASOlMl •D? POL "10*32 BRD -17.71 AH4UT •33 CfTM'' CfTPL •33*92 -7IeS8 l-1C6I 1*8*l5 lu1-uI7*.9S lu1I6T v’va’a CR4DOL7Oe78 A i Y s d — c,er „ CSENMD 126*29 A i e „ d H 7Oe8O Co4OT 320«?* 146 Appendix Table 3 . Energy balance values for Liberty - Golden Liberty. T l t E T M O ETP L A R A D N D A R A O R D 3u1 IuT 400» .41 • •4# •51 • *3 • 49 TIME 600' C E T P O 1**31 A e yBH - 1 4.47 C R A D N D 15.33 C P A D R D 6.7 3 lu1IuT 14*71 TIME ETP O FTPL A R A D N D A R A O R O 3»1-uT 4So« • •0# • • I s '53 *4 . 5 5 TIME C E TPO le m|T C R A D N D 3* 3* A + 1I+— lu1IuT 630* •13. # 7 -1# 3# 14'07 3 1 * 5 TIME E T P D E TPL A R A O N O A R A D R O A R ADRL 460. -.11 .13 .65 *6 .41 TIME 46(j. cIS i,. C * A D W O5 * * 3 cnHX TIME E T P O E TPL A R A D N O A R A D R D A R A D R L 7*0' -.71 ••*6 • 74 *7 • 63 TIME C E T P O -jl' O C A e yBH A + 1-„Y 7 4 . 3 3 lu1Iu- lu1IuT 7*0' • l O ' l l *3 36 7 0 *10 TIME E T P D E TPL A R A O N O 3u1IuI A R ADRL n o . -•** ••1 5 'I* • 83 • 7# TIME C ET PD A e yBH 34 57 l+3-(I l+3-uI C R A O N L 9 3 *46#10* 45 9* 3 3 . Q 3 ii'7| T IME E T P O E T M L A R A D N O A R A D R O A R A D W L #40* -.0# '54 *1 5* TIME C E TPO leyB H lu1I(I 115* 3 0 C R A D R O lu1I(T @*o* • 4 # ' 0 l 3# 65 4 #3 10#*34 TIME E T P O FTP L A R A D N D A R A D R D 1u1-+H #70' *3 •01 •71 *7 *70 TIME #70' CE T PO -56.75 C E TPL - 3 3 . g3 l+ 1I„— 136.55 lB 1IuI 5 3 * 0 0 July 29,1977. Cont. ARADRL ASBIHD ASBIHL 1 w)(>I ASENHLARADT *1 •01 '01 ■ .03 .00 • 32 lu 1 P+ H Cso ■o Y A i f ■>T l e „ o I CSENHL CRADT *7.47# 1 ' *2# • *4 * 7 3 "00 1 u 1 -uT ASBIHO ASBIHL 1 #e „ d I 3we (>T 1u 1 - y *3 •0* *01 .SI .3* I-Ot lu 1 - + H l i f ■>I A i f s o H l e „ o I l i e „ „ H ClsOT »•-1»1**36 •4# !#•*7 Il-SS 1 » 1 - + H ASBIHO ASBIHL 1 w e „ o — AStNHLASAOT *6 • 0* •0* .50 • 45 M t C SB IMp# ctaIX " S Z , lw)(> H 85*17 CIlDT U - M ARABRL ASBIHO ASBlML AStNMO AStNHLASAOT *6 •01 •03 .00 •41 I - M lu 1 PuT *••0* CfOIHO A i f s d H CStNMO CSENHL 37*55 C H O T * *6 *•41 31.18 ii».*o ARABRL ASflIHO ASBIHL AltNMO ASENHLARAOT B# • 04 'OS 8* *5# 1 3 * . cnTno CSBlHD3*4* CSBlML3*i* cH r 0* A i e „ o H 55*07 ClIDT U Q - i * R B R L ASBIHO ASBIHL A#ENHO AStNHLAlAOT •*o !04 •06 • 4* . ?10 • 94 lu 1 PuT l i f s o — CSBIHL CSENHD CSENHL CRNDT 4*.3* 4*64 B.fl 42.43 64*07 l}#»43 ARABRL ASBIHO ASflIHL 3we „ o - ASENHLARAOT *6 • 04 • 04 .3# *67 1.20 lu1 - + H 50*11 C‘T L„ tH r * . csE. r o t H K i . . 147 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. August 1,1977. Cent. TIME 9*0. ETPO -•C7 CTPL 3# 3| 1 -(- *6 APADRO *23 1 » 1 -uT / b= 1a 1 -+ H .20 ASBIMO ASBIHL ASENHD .38 .31HHL...OT TImP 5*0* CETPO * 2* A e y B H •ll'*7 CPADND 13'7J CPAORO 6.82 lu1 -(T vvnvb la 1 P + H #.0T l i f id Y /.# CsOIML •0# lwZ(o I vv,Ov CSENML CRgDT •00 19*30 TI": 970» ETPO -•*3 ETPL • •1* ARADNO 99 ARADRO 29 ARADNL • *9 ARAlRL 23 ASBIMO •01 ASBIML •01 AlENHD 28 1 i e „ • 1 + 1 I y •29 .SB TIME 97(). CETPD .9.88 A e y B H •13.92 A h 1 - „ Y b.n.a CRADRO !♦•32 CF,OFL it.»6 l i f s d Y •*9 cseIHL •*o CSENHD 19.72 C l E N K l 1- y z/»b # b v z TIME 600. ETPO ••19 PTPL ••10 ARADNO • 61 ARADRO 17 ..FDFLo .....Ls ASBIMO '02 ASOIHL •0* ASENHO .64 . I E N K A. AO? Tl l.o* TIME 600' CETPC •1*.91 A e y B H •18.98 lu 1 I(- ♦8.91 CRADRO 22 16 lu 1 P+ H 1 * 1 1 csei d Y v v O C 1NL7 % % y s d e 630' ETPO ^ ETPL • •o* ARADND • 67 ARADRD •18 . . , D ^ AfBIMO •01 AfOIML Ol .TtHNOt " K7)(>TauS.«y •4* I*16 y s d e 630' CETPD •16.** CRADRO 10 #2 C'-&X c,e!:s, A d ■ ' y y s d e 66g. ETPD -•1* ETPi.,. AFAONO .Tl 1 + 1 I+ Y / > " H o ‘" ^ T ASBIMO •01 ASSIHL •01 j s w S r y s d e 66Q. CETPO -f0'69 CRADND S0'*7 CRADRD 11.64 % z , A "y ," % % ^ % M TIME 6*0 • ETPD -•*1 ARADNDiff ARADMO•lo ASSIHL.. • 06 TIME 6*0' CETPO *6 87 CtTFL •JO-13 CFADNO ■■g,mJ l + 1 IuI 4#.7i lu 1 I6T 91*17 CiitoL ♦*•»1 Cse ■d Y I 6 CfBIHL 6*0* c' C . I E N K C l D T 11.3» if*.3o TIME 7:0' ETPO ••21 ETPL " ••1# ARADNO • 81 ARADRD •11 A R A O * •66 1 u 1 Id H 19 ASBIMO •0* ASSIHL •06 AiiNHLARlDT •♦4 1 1 3 y s d e 7*0' CtTFD -JJ.O* A e y B H e •33.63 CRADNO 11# !♦ l+ 1 IuI 91.0* " I R , c m ^ . c" & . I R ^ T CStNHL C R g T 71 29 213.66 y s d e H O ' ETPO • 01 ETPL ••O# APAOND •SI ARADMD • 12 A t O M L •71 16 1 I + H / v. ASBIMO •0* ASSIHL •os 1 we „ o - ,2v ASENHLARADT I |.33 y s d e #10' le y B H 36 98 lu 1 I„ - t##«3l l + 1 I6- 67.9* lu 1 I6T C a , 7a A d ■ d i C M n . lt w z y CSENML CRlDT I l M O 279 *2 TIME 8*0' ETPO PTPL 'I* ARADNO • 79 ARADRO • H ARADNL •69 AMAlRL 19 ASBIMO •0* ASSIML • 09 ASENHO • 60 3wl(6T 1 u 1 I y •49 1.30 TIME 8*0' CETPO -33'76 CtTFL - ♦ t o * CRADNO 189.o# lu 1 -uI 76 88 lu 1 I(T 1 9 3 1 9 lu1 P + H 7|.oT cseid Y 7,6l C M I H L ' «« l s „ o - 1.3.«: C t C N K C.10T :o..3i it.*.* 148 Appendix Table 3. Energy balance values for Liberty - Golden Liberty. August 2,1977. Cent. TIME 600* ETPU •*2C ETML • 28 3u1 I(- 43 APADRD 24 AmAONL *42 • 21 a’7■o -• 0 0 aw7▲dH■00 gRL10.03 Her23.10 ARiDT•*7 TIME 600' CfTMn -a.93 CfTPL •8.*4 lu1 I(- 12*79 lu1-u- 7*21 CM*ONL 12*69 l(1-+H 6.3? CpftlMD •12 CsejHL* n8 CSENMO6.74 li e „ o T4.17 CRAUT 26*C2 TlMf ObJ a ETPU •.96 ETML -•20 ARADND *92 • 2 6 ARADNL *50 AM AOoL *23 a’=■o - •Cl ASM IMt • 0 1 BRL 29.33 «RP -I .99 1»a—y *98 TImE 63fl* le y mO 2* 68 CfTPL * 14*40 lu1 -„ -2* * 31 lu1 Iu-19*0* CRaONL*maOY CM4ORL 13.27 CseiHD•53 CseiNi•40 CSENHD5*10 li e „dH12*79 lu1-y5 5 . 3 0 TIME 660 * fTPU 2* ETML •'25 ARADNQ •9» 3u1IuI2* APiDNL•57 361I+H•25 ASftIMD•02 ASSIHl• 0 2 BRL 24.32 Hflp19.»0 ARiOT1*0* TI660. le y d d•31*21 CfTPL•21*9? lu1-„Y49*69 lu1 -u-23*36 CRaONL 44 • 7 : CRADRL PO**? CgeiHO1*22 CgeiHLIeOl CSfNHD13.46 CgfNML21*79 lu1 Y y87.63 '‘So' ETPU*•31 ETPL 2* ARADNO*66 APADRD•2* ARAONL•64 361-+H•?7 *58 I MD *03 AgeiHL•03 BRL22 0* HRO20*57 ARiOT I' 17 TImE6V le ymO•♦u*92 CfTPL•30'68 lu1 -(- ’ ’ CRADRD32*14 CRaONL 63 65 lu1-+H?* 86 Cse ■d— *a.K CgeiHL1*85 CSENHO22**0 CjfNHL31*3? lu1-y122*89 TImE 720' ETPD ••34 ETmL 35 ARADNQ '71 ARADRO •31 3u1I(T •69 ARiDRL •2» 3w-■dI •03 AgeiHL '05 RRL l7.fS BRO 20*22 ARiOT 1*25 TImE 720' A e y d YarlpIK CfTPL•41*32 lu1I(-86*7, lu1-uI41*32 CRaONL64*62 CRADRL 37.?9 CgeiHO2.89 CsetHL2 94 li e „ o-33*0* cSENHL40*36 lu1 Y y1 6 0 * 4 8 TIME ilfl' ETPU • 62 ETmL S* ARADNQ '66 ARADRO •27 ARaONL •63 ARiDRL 25 Age ■d I •04 AR8IHL *05 BRL BRO 1 u1-y 1*14 TIME *10' A e y d Y •6*.27 CfTPL •56*72 lu1-(- 106*46 CRADRD 49*46 CRaONL 103**6 lu1I+H 4 4 . 9 3 CgeiMD 5*11 CgmiHL 4 . 3 8 li e „ o- 33*0* cSENHL 40*36 lu1-y 194.Ag TIME *00' ETPU ••04 ETPL ••l7 3u1-(- *73 ARADRD •32 ARaONL •72 3u1I+H •30 AgeiHD •04 AseiHL '05 BRL 58.87 BRO 303*52 ARADT 1*30 TIME *00' A e y d — •70.97 CfTPL * 3 9 3 lu1I„Y 12**46 CRADRO 56.93 CRADNL 125*19 lu1-uT 7b 7O CseiHD 5*17 CgeiHL 5 7 9 A i e „ o Y * * li e „ o H 5 5 . 4 7 C» ADT 233 86 TlME 93fl* ETPU •*09 ETKL • 1 2 ARADNQ • 57 ARADRO •26 ARADmL •55 ANAORL 25 AgeiMO • 04 AseiHL •05 BRL 65.43 HRO 203*90 ARAOT !•08 TI*J0' CETmD •72*00 CfTPL -67.53 lu1I„Y 146*4* lu1IuI66*66 CRaONL 141*83 A o 1-BH61*50 CgeIo I O,OK CgeiHL7*?0 CSENMD66.85 li e „ dT67*13 lu1Iy266.39 TIME ETPU ETmL ARADNO ARADRO ARaONL AWiDRL AseiMO AseiHL BRL BRO ARAOT 9*0* •*oi '12 •44 •22 •21 •04 • p4 44.23 vv’Y ar’ •90 yv>., CCTMD•72*20 CfTPL •7f23 CRADNQ 15**56 lu1--- 73*50 CRaDNL 194*90 lu1I|T 47.75 CseiHD 7.86 C,T „ CSfNHO2=,’Y CgfNkL 75*15 lu3-y ?93.A9 149 Appendix Table 4. Reflected radiation / total radiation for Compana - Golden Compana. 1976. Time July 2 C. G.C July 3 July 4 C., G.C. C. G.C. July 5 July 6 C. G.C. C. G.C. July 7 July 8 C. G.C. C. G.C. 360 .40 .40 380 .25 .25 .40 .40 400 .29 .29 .33 .33 420 .30 .30 .30 .30 440 .26 .29 .28 .28 .26 ; 29 .33 .33 460 .28 .31 .25 .27 .25 .27 .35 .25 480 .26 .29 .25 .26 .25 .27 .27 .30 500 .25 .27 .25 .28 .23 .25 520 .24 .25 .20 .24 .22 .25 .17 .25 540 .22 .25 .37 .78 .22 .23 .24 .26 560 .23 .25 .23 .23 .25 .27 .21 .21 580 .22 .24 .35 .31 .22 .25 600 .22 .23 620 .21 .23 .27 .27 640 .21 .23 .23 .24 .20 .21 .24 .22 660 .21 .22 .18 .20 680 .20 .21 .20 .22 .19 .21 .20 .21 700 .20 .21 .21 .23 .20 .21 .20 .22 " .40 .42 720 .20 .22 .22 .23 .20 .21 .38 .40 740 .19 .21 ' .20 .21 .20 .23 .19 .21 760 .18 .21 .17 .23 .19 .20 .38 .39 780 .20 .22 .20 .21 .19 .20 800 .19 .20 .15 .22 .39 .34 820 .19 .20 .19 .21 840 .19 .21 .19 .20 .20 .21 860 .21 .19 .19 .21 .39 .41 880 .19 .21 .18 .19 .19 .21 .19 .20 .41 .42 900 .20 .21 .22 .23 .19 . .21 .20 .22 .38 .33 920 .20 .21 .22 .22 .41 .43 940 .20 .22 .20 .21 .21 .19 .22 .20 .21 .43 .45 960 .21 .22 . .21 .24 .20 .21 .24 .24 980 .16 .20 .23 .23 .21 .23 .20 .23 .22 .24 1000 .20 .23 .22 .23 .25 .25 .21 .23 .22 .25 .47 .43 1020 .23 .25 .21 .23 .21 .23 .25 .25 1040 .22 .24 .22 .24 .22 .22 1060 .21 .24 .24 .19 .22 .22 .21 . .25 1080 .22 .25 .20 .20 .23 .26 .24 .28 .22 .27 1100 . .23 .26 .23 .23 .25 .25 .22 .26 1120 .25 .26 .23 .25 .25 .27 . .25 .25 .24 .27 1140 .25 .27 .21 .26 ,24 .27 .25 .25 .24 .28 1160 .25 .28 .24 .26 .29 .29 .24 .15 1180 .27 .30 .28 .28 .26 .32 .22 .22 .25 .31 1200 .29 .29 .29 .29 .20 .20 .26 .30 1220 .29 .29 .25 .30 .33 .33 .33 .33 1240 .29 .29 .25 .25 1260 1280 1300 Mean .22 .23 .23 .24 .24 .27 .23 .24 .22 .23 .23 .22 .34 .35 150 Time July 13 July 14 July 15 July 20 July 22 July 23 C. G.C. C. G.C. C. G.C. C. G.C. C. G.C. C. G.C. Appendix Table 4. Reflected radiation / total radiation - Golden Compana. 1976. Cont. 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 .19 .21 700 .40 .42 .19 .21 720 .38 .40 .18 .21 740 .19 .20 760 .38 .39 .19 .20 780 .17 .19 800 .39 .34 820 .18 .19 840 860 .39 .41 .19 .20 880 .41 .42 .18 .20 900 .38 .33 .19 .20 920 .41 .43 .19 .21 940 .43 .45 960 .20 .22 980 .20 .23 1000 .47 .43 .24 .28 1020 1040 1060 .21 .25 .23 .27 1080 .22 .27 .23 .27 1100 .22 .26 1120 .24 .27 .28 .31 1140 .24 .28 1160 .25 .15 1180 .25 .31 .34 .38 1200 .26 .30 1220 .33 .33 1240 1260 1280 1300 Mean .34 .35 .21 .22 .44 .48 .45 .47 .40 .43 .32 .34 .36 .40 .36 .40 .35 .37 .55 .58 .20 .22 .47 .50 .20 .22 .32 .34 .46 .49 .20 .21 .32 .34 .44 .47 .53 .55 21 .23 21 .24 23 .25 23 .27 23 .27 25 .28 25 .29 .40 .44 26 .31 .41 .44 27 .30 .42 .47 27 .32 .45 .50 31 .31 .49 .53 33 .33 ,24 .27 .49 .51 .39 .43 57 .54 45 .50 40 .46 34 .43 34 .39 41 .46 for Compana July 25 C. G.C. .28 .28 .23 .27 .23 .24 .22 .24 .33 .24 .39 .41 .36 .37 .33 .40 .31 .31 .27 .32 .29 .33 .26 .48 .40 .47 .30 .34 151 Appendix Table 4. Reflected radiation / total radiation for Compana - Golden Compana. 1976. Cont. Time July 28 C. G.C July 29 Season C. G.C. C. G.C. 360 380 400 420 440 460 480 500 520 540 560 .24 .27 580 .24 .28 600 620 640 .44 .45 660 .20 .23 680 .20 .22 700 .20 .23 720 .20 .21 .22 .23 740 760 .19 .20 780 .20 .22 800 820 .19 .21 840 .19 .20 860 880 .19 .21 900 .22 .24 920 .21 .23 940 .21 .22 .23 .23 960 980 1000 .22 .25 1020 1040 .22 .25 1060 .22 .25 1080 1100 1120 1140 1160 1180 1200 .25 .28 1220 .25 .29 1240 .26 .31 .29 .29 1260 .27 .30 .20 .25 1280 .27 .32 .22 .22 1300 .29 .29 Mean .24 .26 .23 .25 28 .30 152 Appendix Table 5. Reflected radiation / total radiation for Liberty - Golden Liberty. 1977. Time June 30 Li. G. L, July 5 L. G.L. July 6 L. G.L. 390 420 450 400 510 540 570 600 .21 .24 630 .20 .23 660 .22 .23 690 .19 .22 720 .19 .23 .19 .22 750 .19 .23 .10 .21 .10 .23 700 .20 .23 .17 .21 .10 .23 010 .19 .23 .19 .22 .19 .23 040 .20 .23 .19 .24 070 .20 .24 .19 .24 900 .21 .24 .19 .23 930 .22 .25 .20 .24 960 .20 .23 .21 .24 990 .20 .24 .21 .23 1020 .21 .21 1050 .21 .24 .23 .25 1000 .22 .25 .24 .27 1110 .25 .27 1140 .10 .10 .27 .20 1170 .26 .26 .26 .20 1200 .19 .19 .27 .27 1230 .10 .10 1260 .25 .13 Mean .20 .24 .20 . 22 .22 .24 July 7 L. G.L, July L. 11 G.L. July 12 L, G.L, July 14 L. G.L. 27 .27 26 .30 20 .31 .22 .22 25 .27 .25 .25 25 .26 .24 .26 23 .26 .23 .26 22 .25 .22 .24 .22 .24 21 .24 .20 .23 .21 .23 .21 .23 .20 .22 20 .23 .20 .23 . .21 .24 .19 .23 19 .23 .20 .23 .19 .23 .20 .22 10 .23 .19 .22 .19 .22 .19 .22 10 .23 .19 .23 .10 .22 19 .23 .19 .22 .10 .21 .10 .22 .19 .22 .10 .22 .19 .22 .10 .22 .19 .23 .19 .22 .20 .23 .20 .24 .20 .24 .21 .24 .20 .24 .20 .23 .23 .25 .23 .25 .22 .25 .20 .23 .22 .24 .19 .23 153 Appendix Table 5. Reflected radiation / total radiation for - Golden Liberty. 1977. Cont. Time July 15 L. G.L. July 18 L. G.L. July 20 L. G.L. July 27 L. G.L. July 29 L. G.L. Aug. I L. G.L. 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 1020 1050 1080 1110 1140 1170 1200 1230 1260 Mean .27 .24 .28 .25 .23 .23 .28 .24 .23 .24 .23 .22 .27 .24 .23 .24 .22 .23 .25 .22 .26 .24 .22 .24 ' ,24 .24 .25 .23 .25 .24 .21 .22 .21 .23 .23 .22 .29 .23 .24 .22 21 .23 .20 .23 .20 .22 .22 .22 .23 .21 .24 .22 20 .24 .19 .22 .20 .22 .21 .21 .22 .21 .23 .22 19 .22 .19 .22 .20 .21 .20 .20 .21 .21 .23 .22 19 .22 18 .22 .19 .21 19 .22 .21 .21 .22 .21 .24 .23 19 .22 .19 .21 .23 .22 .24 .22 .22 .22 .23 .22 .20 .22 .21 .20 .21 .20 .20 .22 .21 .19 .21 .23 .20 .20 .21 .22 .22 .22 .24 .23 .24 .23 .26 .22 .27 .23 .24 .21 .19 .23 .19 .22 .20 .22 .23 .23 .22 .24 .23 Liberty Aug. 2 L. G.L. .26 .24 .27 .23 .26 .23 .25 .23 .25 .22 .24 .22 .24 .22 .24 .22 .23 .22 .24 .23 .25 .23 ,24 .23 .24 .23 .25 .23 154 Appendix Table 5. Reflected radiation / total radiation for Liberty Golden Liberty. 1977. Cont. Time Aug, L. , 5 G.L. 390 420 450 460 510 540 570 .28 .23 600 .27 .24 630 .27 .24 660 .24 .22 690 .25 .24 720 .26 .25 750 .26 .23 780 .25 .23 810 .24 .23 840 870 900 .25 .23 930 960 990 1020 1050 1080 1110 1140 1170 1200 1230 1260 Mean .26 .23 Season L. G.L. .22 .23 155 Appendix Table 6. Linear regression for net radiation vs. reflec­ ted radiation, 1976. Compana Golden Compana 2 2 Date r a_____b .________r" a b July 2 .92 -.14 3.67 3 .94 -.06 3.33 4 .96 -.07 3.43 5 . 86 -.07 3.44 6 .98 -.10 3.97 7 .96 —. 05 3.63 8 .85 -.64 5.90 13 .97 -. OS 1.96 14 .92 -.40 5.18 15 .96 -.13 . 3.55 20 .94 -2.65 6.69 22 .83 -1.29 5.30 23 .94 - .2 7 2.54 25 .95 -.13 3.34 26 .87 - .0 8 1.45 28 .98 -.37 4.86 .97 -.11 2.92 .95 -.07 2.76 .89 -.03 2.39 .96 -.10 3.12 .97 -.03 2.89 .97 -.05 2.91 . .98 -.47 4.44 .96 -.05 1.63 .91 -.32 4.12 .94 -.12 2.81 .96 -1.84 4.63 .88 -.78 3.34 .98 -.21 ' 1.78 .88 -.15 2.67 .90 -.07 1.32 .95 -.34 3.92 156 Appendix Table 6. Linear regression for net radiation vs. reflect ted radiation, 1976. cont. Compana Golden compana Date_______ r2 a_____b____________ rf;____a_____b July 29 .98 -.07 3.36 .97 -.06 2.50 Mean -.39 3.86 -.28 2.95 157 Appendix Table 7. Linear regression for net radiation vs. refIec ted radiation, 1977. Liberty Golden liberty Date r^ a b r2 a b July I .98 -.11 3.57 .99 -.11 2.61 5 .93 -.12 3.89 .92 -.11 3.10 6 .89 'COI-HI 3.86 .93 -.13 2.90 7 .95 -.20 3.97 .97 -.16 2.81 11 .95 -.24 4.51 .97 -.18 3.09 12 .96 -.07 . 3.58 .96 -.04 2.45 14 .97 -.69. 6.35 .96 -.49 4.21 15 .90 -.73 6.42 .96 -.53 4.29 18 .98 -.72 6.21 .61 -.42 4.03 20 .93 -.48 5.10 .97 -.09 2.73 27 .91 -,27 3.84 .93 -.17 3.25 29 .82 -.17 3.21 .93 -.19 3.36 Aug. I .97 -. 46 4.04 .98 -.33 3.44 2 .87 COCOI 3.44 .94 -.26 3.36 5 .98 -.10 2.76 .99 -.04 2.37 Mean -.32 4.32 -.22 3.20 158 Appendix Table 8. Evapotranspiration / net radiation for Corapana - Golden Compana. 1976. 4 Time July 4 July 5 July 6 July 7 July 8 C. G.C. C. G„C. C. G„C. C. G.C. C. G.C. July 13 July 14 C G.C. C. G.C. 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 93 .94 28 .07 .00 .02 .03 .16 .00 .33 .00 .95 .00 .06 .00 .13 05 .92 04 .04 .00 .10 08 .12 .03 .24 .00 .50 .00 .10 .02 .08 .04 .13 .02 .07 .03 .16 .01 .02 .25 .08 .01 .95 .02 .30 .00 .42 .37 .12 .01 . .01 .00 .04 .01 .03 .02 .12 .00 .03 .03 .02 .00 .07 .01 .94 .96 .37 .00 .16 .04 .10 .11 .13 .23 .00 .02 .02 .05 .18 .23 .02 .00 .02 .02 .05 .08 .05 .00 .03 .04 .15 .03 .26 Mean ■ 28 .42 .01 .24 .03 .44 .21 .16 .02 .12 .07 .03 .02 .06 159 Appendix Table 8. Evapotranspiration / net radiation for Compana - Golden Compana,. 1976. Cont. Time July 15 C. G.C. July 28 July 29 Aug. 3 C. G.C. C. G.C. C. G.C. Aug. 5 C. G.C. Season C. G.i 640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 Mean .00 .02 .00 .02 .00 .02 .01 .03 .01 .00 .00 .96 .01 .08 .07 .00 .02 .05 .00 .01 .00 .02 .00 .04 .01 .00 .02 .19 .01 .01 .00 .02 .00 .11 .02 .03 .00 .03 .03 .85 .01 .20 .01 .01 .01 .02 .00 .05 .02 .09 .09 .01 .00 .06 .88 .14 ' .15 .20 .00 .02 .01 .14 .00 .25 .02 .06 160 Appendix Table 9. Evapotranspiration / net radiation for Liberty - Golden Liberty. 1977. Time June 24 June 27 June 30 July I July 5 July 6 July 7 420 450 480 510 540 570 600 630 660 690 720 750 780 010 040 870 900 930 960 990 1020 1050 1080 1110 1140 1170 1200 1230 1260 Mean L. G.L. L. G.L. L. G „L. 1.81 6.33 1.61 2.31 1.39 1.91 1.26 1.08 1.45 1.75 1.08 1.87 1.37 1.29 1.28 1.07 1.41 1.22 1.40 1.34 1.04 1.74 1.57 1.22 .56 .67 1.20 .83 .49 .62 .62 .64 1.20 .93 .82 .60 1.20 1.22 .01 .70 1.36 1.07 .95 .74 1.47 1.37 1.43 1.58 .74 .73 .03 .74 1.46 1.93 1.31 1.17 73 .68 L. G.L. L. G.L. L. G.L, L. G.L. 2.00 3.00 . .82 1.18 .48 .56 .28 .36 .26 .44 .07 1.00 70 .05 .33 .72 .36 .78 53 .81 .49 .74 ,66 .83 .66 .82 .43 .60 83 .62 .74 .84 .45 .63 74 .80 .61 .69 .50 .57 ,62 .80 .65 .76 .59 .55 .41 .54 ,61 .62 .85 .89 .55 .52 .41 .54 50 .60 .66 .85 .53 .50 ,54 .64 .38 .56 ,62 .67 .75 .11 .91 .71 .74 .31 .78 .84 .70 .48 .97 .88 .73 .81 .69 1.21 .82 .84 .77 1.25 .80 .86 .76 .86 1.00 1.00 .64 .80 .50 .50 .57 .90 .85 .77 .64 1.00 .60 1.17 1.25 2.25 .64 .66 .78 .81 .60 .81 .54 .85 1 161 Appendix Table 9. Evapotranspiration / net radiation for Liberty - Golden Liberty. 1977. Cont. Time July 11 July 12 July 14 July 15 July 10 July 20 July 27 L. G.L. f d oLfL L. G.L. L. G.L. L. G.L. L. G.L. L. G.L 420 450 .77 .00 .50 .65 480 .67 1.10 .11 .46 .27 .07 510 .67 1.07 , .34 .52 .03 .07 540 .51 .34 .39 .44 .98 .47 570 .43 .87 .53 1.03 .29 .41 .10 .48 600 .41 .52 .41 .67 .34 .64 .16 .58 .38 .55 630 .39 .65 .58 .24 .24 .42 .16 .44 660 .53 .61 .51 .56 .08 .62 .27 .59 .26 .19 .27 .36 .16 .27 690 .56 .71 .67 . .77 .07 .61 .32 .25 .15 .27 .10 .41 .00 .37 720 .53 .85 .75 .45 .37 .75 .27 .63 .30 .21 .31 .38 750 ' .54 .92 .55 .64 .31 .53 .30 .33 780 .44 .87 .47 .45 .33 .54 .35 .33 810 .95 S .36 .48 .16 .42 840 .31 .68 .96 .60 .43 .53 .96 .09 870 .54 .65 .96 .64 .19 .45 900 .57 .75 .44 .67 .16 .40 930 .70 .73 .50 .77 .23 .45 .11 .53 960 .79 .95 .30 .56 990 .81 .74 .27 .50 .35 .41 1020 .95 1.19 .13 .34 1050 .97 1.21 .09 .40 .30 .70 1080 .78 1.21 .11 .52 .06 .66 1110 .73 .10 .33 .90 1140 .40 1.50 1170 3.00 1.40 1200 1230 1260 Mean .64 .86 .58 .64 .56 .64 .33 .51 .27 .34 .31 .41 .39 .55 162 Appendix Table 9. Evapotranspiration / net radiation for Liberty Golden Liberty. 1977. Cont. Time July 29 L. G llL u Aug. I L. G.L. Aug. 2 L. G.L. Aug. 5 L. G.L. Season L. G.L. 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900 930 960 990 1020 1050 1080 1110 1140 1170 1200 1230 1260 80 .98 08 .27 20 .21 96 .35 ,'27 .19 15 .33 ,41 .01 ,23 .44 15 1.00 45 .31 25 .20 ,47 09 .16 1.08 19 .15 .47 27 .33 .48 26 .27 .48 . .31 .49 ,01 .04 .94 ,04 .28 .30 .04 .05 .09 .02 67 1.17 . 0 0 40 .24 .25 44 .34 .11 45 .64 .11 51 1.74 .25 2 2 .18 .09 25 .59 .07 ,92 03 .17 25 . 2 0 . 0 0 ,16 .63 .05 ,24 , 2 2 ,27 .3" .35 .19 .30 ■ .40 ..Mean 38 67 .10 .60 .67 Appendix Table 10. Biweekly soil water use (in) for Compana and Golden Compana. Bozeman farm (1975). June_____ _____________ ________:_________ __________ July Depth (In.) 25 C. G.C. 30 C. G.C. 3 C. G.C. CO JO G.C. 10C. G.C. 14C. G.C. 17C. G.C. 21C. G.C. 24C„ G.C. 28 C. ' G.C. 6-12 .06 .07 .15 .16 .15 .15 .03 .02 .05. .06 .02 .00 -.01 -.03 -.02 .01 .06 .05 -.26 -.21 12-18 .07 .05 .09 .07 .26 .19 .06 .08 .10 .13. .00 .03 .03 .01 .00 -.01 .03 .04 .01 .00 18-24 .07 .06 .05 .02 .20 .20 .11 .03 .17 .23 .02 .05 .03 .01. .00 .00 .03 .05 .03 .01 24-30 .03 .06 .04 .01 .09 .05 .10 .08 .19 .17. .09 .06 .04 .08 .02 .01 .06 .08 .03 .01 30-36 .04 .02 .02 .04 .05 .02 .05 .04 .12 .06 .09 .14 .09 .04 .06 .04 .10 .14 .03 .05 36-42 .04 .04 .03 .02 .02 .00 .01 .03 .09 .04 .03 .03 .08 .08 .07 .03 .17 .16 .02 .02 42-48 .03 .05 .01 .01 -.02 -.01 .06 .04 .02 .00 .03 .03 .05 .04 .02 .02 .12 .09 .06 .04 48-54 .04 .06 .01 .01. -.01 -.03 .04 .04 .02 .00 .00 .03 .03 .00 .02 .04 .07 .03 .02 .03 54-60 .03. .02 .01 .00 -.02 .02 .05 .00 -.01 .02 .01 .00 .01 .00 .02 .03 .04 .01 .03 .05 60-66 .01 .01 .03 .01 -.02 -.03 .02 .05 .03 .00 -.01 .00. .00 -.02 .04 .04 .02 .02 .02 .02 66-72 .05 .02 .01 .01 .02 —. 04 .03 .04 -.01 .00 .00 .01 .02 .00 .00 .02 .05 • .00 .00 .01 Total .46 .44 .47 .48 .66 .53 .57 .46 .78 .70 .28 .37 .39 .21 .23 .22 .76 .68 .00 .06 R F* .56 .56 .00 .00 .00 .00 .00 .00 .06 .06 .37 .37 .42 .42 .28 .28 .00 .00 1.39 1.39 Use** 1.02. 1.00 .47 .38 . 66 .53 .57 .46 .84 .76 .65 .74 .81 .63 .51 • .50 .76 .68 1.39 1.45 D U .204 .200 .157 .127 .132 .106 .285 .230 .210 .190 .217 .247 .2025 .1575 .170 .167 .190 .170 .3475 " .3625 _ _ ________ ' August I ______ 5____________ 7__________11_________ 14 18___________25 6-12 .19 . .14 .04 .06 .00 .02 .02 .00 .02 .02 -.08 -.05 .03 .03 12-18 .01 .00 .00 .02 -.02 -.02 .02 .01 .01 .03 - .06 -.01 .05 .03 18-24 -.01 .02 .03 • 02 -.02 -.02 .02 .02 -.01 .02 -.01 -.01 .00 .01 24-30 -.01 . .03 .00 -.02 .01 .01 .01 .02 .00 .02 -.01 -.03 .01 .02 30-36 .00 -.01 .01 .03 .00 . .00 .01 .03 .01 .03 -.01 -.03 .01 .01 36-42 .02 .03 .03 .04 .00 .04 .02 .04 .02 .01 -.01 -.02 .00 .01 42-48 .01 .02 .05 .03 .02 .05 .04 .04 .04 .03 -.01 .00 -.01 -.01 48-54 .03 .03 .04 .03 .03 .02 .06 .03 .03 .05 -.02 -.01 .00 .00 54-60 .02 .01 .04 .03 .01 .01 .04 .02 .02 .02 .00 -.01 .00 .01 60-66 .02 -.01 .03 .03 -.01 .02 .03 .00 .03 .03 .00 .00 -.02 -.01 66-72 .02 .02 .01 .01 .00 .01 .03 .01 .02 .00 .01 .02 -.01 .01 . Total .31 .27 .26 .25 .05 .15 .27 .24 .18 .27 -.19 -. 16 .08 .08 R F .00 .00 .00 .00 .48 .48 .22 .22 .35 .35 .51 .51 .00 .00 Use .31 .27 .26 .25 .53 .63 .49 .46 .53 .62 .32 .35 .08 .08 D U .0775 .0675 .130 .125 .1325 .1575 .163 .153 .1325 .155 .046 .05 .027 .027 *Rain factor **Daily use 163 Appendix Table 11. Biweekly soil, water use (in) for Compana and Golden Compana. Kamp's farm (1976) . .Timft J u l y Depth 27 31 3 7 10 21 24 28 I 6 fin.) C. G.C. C. G.C. C. G.C. C. G.C. C. G.C. C. G.C. C. G.C. c: G.C. c. G.C. C. G.C. 6-12 .03 .02 .07 .05 .14 .08 .12 .08 -.22 -.18 -.17 -.11 .13 .12 .20 .21 .19 .18 .09 .09 12-18 .04 .02 .06 .04 .07 .03 .08 .08 -.05 -.06 -.10 .-.-05 .05 .04 .15 .13 .16 .21 .07 .13 18-24 .00 .02 .04 .01 ■ .03 .06 .02 .05 .07 -.02 .00 -.06 -.03 .01 .09 .13 .12 .19 .11 .14 24-30 -.01 .00 .04 .01 -.04 .02 .04 .04 .07 -.00 -.01 <02 -.02 -.02 .07 .10 .07 .12 .12 .14 30-36 .02 .03 . -.01 .00 .01 .02 .00 .00 .02 .01 .02 .00 -.01 -.01 .04 .02 .08 .17 .04 .06 36-42 .00 .01 .01 .07 -.03 .01 .02 -.01 .04 .03 .00 -.02 .00 -.02 .01 .04 .03 .03 .05 .09 42-48 -.02 -.01 .00 .01 .01 -.02 -.03 .00 .05 .05 •Q1 -.01 -.03 -.01 .01 .01 .03 .02 .01 .02 48-54 -.05 -.05 .04 .02 -.04 -.02 .04 .02 .00 .00 .02 .01 -.05 -.03 .06 .01 -.02 .01 .01 .01 54-60 .02 r. 03 .02 .00 -.04 .01 .00 -.02 .03 .03 -.03 -.01 .00 -.02 .02 .01 .02 .01 .00 -.01 60-66 -.02 -.03 .01 .02 -.04 .00 .05 .05 -.02 .01 .00 .00 -.03 -.01 .02 ,03 .01 -.01 .02 -.01 Total .02 -.03 .27 .18 .06 .17 .35 .23 -.02 -.14 -.24 -.28 ..01 .06 .66 .70 .70 .88 .51 .66 R F* .15 .15 — — — — — — ’ - — - - - - - - — — — 1,60 1.60 .85 .85 — --- _L_ - — - — — «• — Use .17 .12 .27 .18 .06 .17 .35 .23 1.58 1.46 .61 .57 .01 .06 .66 .70 .70 .88 .61 .66 D U** .0425 .030 .09 .06 .015 .0425 .117 .077 .144 .133 .203 .19 .0025 .015 .220 .233 .14 .176 .17 .22 Julv Aueust 9 12 15 20 23 27 30 2 5 9 6-12 .05 .05 .00 .03 -.27 -.21 .16 .14 .14 .10 .07 .05 -.09 -.09 .00 .02 .05 .01 .00 .00 12-18 .07 .06 -.01 .02 -.11 -.04 .07 .02 .06 .03 .03 .03 -.01 -.02 -.01 .02 .03 -.01 -.01 .01 18-24 .07 .09 .01 .03 -.07 .01 .05 .01 .10 .01 -.01 .02 .02 .00 .00 .01 .02 .00 -.02 .01 24-30 .09 .13 . .00 .03 - .,06 .04 .03 .00 .06 .02 .06 .01 .01 .02 .02 .01 .00 -.01 .02 -.01 30-36 .09 .13 .03 .04 -.06 .07 .05 .00 .08 ' .01 .04 .04" .03 " .02 -.oi <02 .00 .01 <01 • .00 36-42 .07 .07 .00 .03 -.03 .08 .03 :oo .09 .05 .05 .01 .03 .04 -.02 -.02 .02 .01 .02 -.01 42-48 .03 .04 .00 .00 -.04 .06 .02 ■ .01 .05 .04 .02 .04 .06 .02 -.02 -.02 .02 .01 -.01 .01 48-54 .02 .02 -.02 -.01 -.03 .02 .02 .03 .01 .01 .07 .01 -.02 .04 -.01 -.01 .03 .00 .00 -.01 54-60 .02 .02 -.06 .00 -.01 .02 .02 -.02 .02 .01 .01 .03 .03 .01 .04 .02 -.02 .00 .04 -.01 60-66 -.02 .02 -.06 -.02 -.01 .01 .04 -.02 -. 06 -. 06 .10 .08 -.03 .00 .02 .00 -.02 .02 .00 .02 Total .48 .61 -.12 .15 -.67 .05 .49 .17 .52 .23 .46 .32 .03 .05 .01 .00 .12 .01 .03 .00 R F .40 .40 — — — — — — 1.00 1.00 - - - — — — - - - — — — — — - - — — 1.20 1.20 — • - — - — — — - - - — — - — — — Use .88 1.01 -.12 .15 .33 1.05 .49 .17 .52 .23 .46 .32 1.23 " 1.25 .01 .00 .12 .01 .03 .00 D U .293 .337 -.04 .05 .066 .21 .163 .057 .13 .0575 .153 .107 .41 .417 .0033 — .03 .0025 .01 .00 *Rain factor **Daily use 164 Appendix Table 12. Biweekly soil water use (in) for Liberty and Golden Liberty. Kamp1s farm (1976). Depth 27 May 31 3 7 10 June 21 24 28 I July 6 (in.) L. G.L. L. IG.L. L. G.L. L. _ G.L. L. G.L. L. G.L. L. G.L. L. G.L. L. G.L. L. G.L. 6-12 .04 .06 -.03 .02 .12 .06 .12 .09 -.20 -.15 -.15 - 10 .16 .09 .17 .16 .20 .23 .12 .11 12-18 .05 .04 .02 .01 .06 .03 .06 . .07 -.05 -.05 -.11 .09 .07 .07 ' .19 .05 .17 .27 .12 .13 18-24 ■ .02 .02 .05 .03 .03. .04 .05 .02 -.01 .00 .01 -.01 .02 -.01 .06 .11 .17 .15 .15 .15 24-30 .01 .04 .05 .01 .03 .02 .03 .01 .00 . .01 -.01 .01 -.02 -.04 .06 .08 .00 .12 .25 .07 30-36 .04 .05 .04 .00 -.02 .00 .03 .01 .05 .00 .01 .02 .00 -.05 .03 .04 .05 .08 .08 .08 36-42 .04 .05 .05 .06 -.01 .00 .00 .01 .01 .03 .02 -.01 -.05 -.03 .05 .01 .02 .05 .04 .01 KqCKg .14 .05 -.04 .01 .04 .00 -.05 -:oi . .05 .03 .03 -.01 -.04 -.03 .02 .03 .00 .01 .08 -.01 ■ 48-54 .03 .04 .01 .02 .02 .00 .00 .00 .00 -.01 .03 -.01 -.01 -.06 .01. .03 .00 .03 .02 .01 54-60 .03 .04 .04 .02 .00 .00 -.05 -.02 .03 -.04 .04 .00 -.02 -.03 .00 .00 .00 .05 .04 -.01 60-66 .04 -.02 -.02 .06 -.03 .01 -.02 .01 .00 .00 .05 :.o3 -.04 -.03 .01 .02 -.01. -.03 .03 .03 Total .45 .34 .16 .20 .22 .15 .18 .20 -.24 -.20 -.08 -.24 .07 -.10 .61 .54 .61 .95 .91 .57 R F* — — — 1.20 I.20 — — — — — — — — — — — — 1.60 1.60 .85 .85 - - - — — — — — — — — — — — — — ' Use .45 .34 1.36 I.40 .22 .15 .18 .20 1.36 1.40 .77 .61: .07 -.10 .61. .54 .61 .95 .91 .57 D .150 .113 .453 .467 .055 .0375 .06 .067 .124 .127 .257 .203 .0175 .025 .203 ,180 .122 .190 .303 .190 - July . Aueust q 12 I5 20 23 27 30 2 5 9 6-12 .03 .06 .03 .03 -.29 -.24 .18 .18 .12 .09 .04 .06 -.03 -.02 .00 .03 .00 .00 .01 .01 12-18 .02 .06 ,03 .03 -.10 -.07 .05 .04 .04 .06 ' .05 .04 .02 .01 -.02 .00 .01. .02 .00 -.01 18-24 .07 .07. .02 .04 -.09 -.05 .03 .03 .04 .06 .02 .02 .05 .03 -.02 -.04 .01 .04 -.01 .02 24-30 .09 .15 .02 .06 -.04 -.04 .08 .03 .01 .05 .01 .04 .05 .01 -; 01 .00 .00 -.01 -.02 .00 30-36 .10 .09 .04 .03 .01 -.01 .01 .03 .05 .06 .04 .05 .04 .00 .01 .01 .00 .00 .01 .00 36-42 .02 .07 .03 .00 .06 . .00 ■ ,01 .01 .05 .07 .04 .05 .05 .06 .02 -.03 -.01. .02 -.01. -.01 . 42-48 .00 .05 -.01 .01 . .07 . -.01 .03 .02 .01 .06 .14 .05 -.04 .01 .00 .00 .00 .04 .02 . -.01 48-54 .03 .00 .00 • .00 .00 -.03 .04 .03 -.01 .03 .03 .04 .01 .02 .03 .02 .02 .02 -.04 .00 54-60 .00 .02 -.01 .00 .01 -.03 .00 .00 -.02 .04 .03 .02 .04 .02 .01 .00 .00 .04 -.02 .00 60-66 .03 .05 .01 -.04 -.07 -.05 -.01 .00 .01 • .02 .04 -.02 -.02 .06 .03 .00 -.03 .01 -.01 .00 Total .40 .64 .16 .12 -.43 -.52 .42 .37 .29 . .53 .45 .34 .16 .20 .05 .00 .02 .18 -.09 .01 R F .40 .40 ••• ■ ■ • 1.00 1.00 — — — — — — — — — — — — — — — 1.20 1.20 — — — — — — - - - — — — Use .80 1.04 .16 .12 .57 .48 .42 .37 .29 .53 .45 .34 1.36 1.40 .05 .00 . .02 .18 *-.09 .01 D U .267 .347 .053 ,040 .114 .096 .14 .123 .0725L .1325 .150 .113 .453 .467 .017 .00 .005 .045 -.03 .003 *Rain factor **Daily use 165 Appendix Table 13. Biweekly soil water use (in) for Liberty and Golden Liberty. Kamp1s . farm (1977). June Julv Depth 4 7 13 16 20 24 27 30 5 8 (in.) L. G.L. L. G.L* L. G.L. L. G.L.. L. G.L* L.. G.L. L. G.L. L. G.L. L. G.L. L. G.L. 6-12 .07 .06 .01 .05 .01 -.02 .11 ■ .08 .18 .18 .22 .20 .13 .15 .05 .05 .04 .03 .01 .02 12-18 .05 .05 .03 .04 .04 .02 -.07 .02 .16 .19 .20 .16 .12 .15 .09 .10 .01 .05 .06 .01 18-24 .05 . .07 .07 .06 .00 .00 .04 .01 .13 .10 .16 .13 .17 .16 .10 .13 .04 .08 .03 .04 24-30 .02 .03 .04 .04 .03 .02 -.03 -.02 .10 .08 .09 .09 .13 .09 .15 .13 .06 .08 .02 .07 30-36 .01 .02 .03 .04 -.01 .01 .04 -.02 .01 .04 .05 .05 .07 .04 .08 .10 .05 .10 .04 .06 36-42 -.01 -.02 .01 .02 .04 .00 -.02 . .00 .04 .03 .02 .02 .02 .00 .02 .06 .05 .03 .05 .08 42-48 .02 -.02 .00 .01 -.01 .01 .00 -.03 .01 .03 .01 .00 -.01 .02 .03 .04 .05 .03 .03 -.02 48-54 -.05 -.02 .04 .02 -.02 -.01 -.01 .00 .02 .01 -.01 .01 .02 -.03 -.02 .03 .05 -.01 .02 .01 54-60 -.01 -.01 .02 .00 .00 -.01 -.03 -.01 .02 .00 .02 .02 -.03 .00 -.01 -.05 . .04 . .05 .01 .01 Total .15 .16 .26 .28 .07 .02 .17 .04 .67 .64 .75 .70 .64 .57 .48 .58 .39 .44 .27 .27 R F* .00 .00 .75 .75 .30 .30 .00 .00 .00 .00 .00 .00 .00 .00 .40 .40 .00 .00 .35 .35 Use .15 .16 1.01 1.03 .37 .32 .17 .04 .67 .64 .75 .70 .64 .57 .88 .98 .39 .44 .62 .62 D U** .05 .05 .17 .17 .12 .11 .04 - .01 .17 .16 .25 .23 .21 .19 .18 .20 .13 .15 .21 .21 Julv August 11 14 18 21 25 28 I 4 8 HC\ 6-12 .04 .03 .05 .06 .01 .01 .01 .03 .03 .01 .01 .01 .05 .03 -.02 .00 .01 .02 12-18 .02 .04 .01 .03 .01 .03 .01 .00 .01 .00 .01 .02 .02 -.01 -.01 .01 .02 .01 18-24 .04 .02 .01 .05 .02 .02 .01 .03 -.01 -.03 .02 .02 .01 .00 -.01 .00 .03 .01 24-30 .06 .05 .01 ’ .06 .01 .02 .03 .02 .01 .01 .03 .02 .03 -.01 -.01 .00 .00 .01 30-36 .07 .06 .04 .07 .05 .05 .02 .02 -.02 .02 .05 .02 .00 -.02 -.02 .03 .00 .00 36-42 .05 .06 .03 .07 .00 .09 .06 .03 .02 .04 .01 .01 .04 .01 -.03 .03 .02 .01 42-48 .02 .09 .01 .00 .01 .03 .02 -.02 .02 .04 .01 .08 .00 -.01 .03 .00 .01 .07 48-54 .01 .06 .00 -.02 .00 .01 .03 --.01 -.01 -.01 .01 .01 .00 .02 .02 .05 .02 .00 54-60 .03 .02 -.03 .01 .02 -.04 -.02 -.01 .01 .03 .00 -.02 .00 .02 .02 .00 .01 .01 Total .34 .45 .14 .31 .12 .24 .15 ' .07 .04 .09 .08 .17 .13 .03 -.04 .12 .11 ,13 R F ' .00 .00 .00 .00 .00 .0 0 . .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 . 00 . .00 Use .34 .45 .14 .31 .12 .24 .15 .07 .04 .09 .08 .17 .13 .03 -.04 .12 .11 .13 D U .11 .15 .04 .08 ■ .04 .08 .04 .02 .01 ■ .03 ,02 ..04 .04 .01 -.01 .03 .02 .02 *Rain factor Appendix Table 14. Cultivar number, name, and number of rows in head. Cultivar Name Row I Marie 2 2 Titan 6 3 Betzes 2 4 Vantage 6 5 ■ Compana 2 6 Glacier 6 7 Dekap 2 8 Traill 6 9 Freja 2 10 , Trophy 6 11 Ingrid 2 12 Barker 6 13 New Moravian 2 14 Atlas 46 6 15 Piroline 2 '16 Harlan 6 17 Frontier 2 168 Appendix Table 14 . Cultivar number, name, and number of rows in head. cont. Cultivar Name Row 18 Hiland 6 ■ 19 Hienes Hanna 2 20 Otis 6 21. Horn 2 22 Trebi 6 23 Haisa II 2 24 Gem 6 25 Haanchen 2 26 Bonneville 6 27 Munsing 2 28 Liberty 6 29 Spartan 2 30 Galt 6 31 Firlbecks III 2- 32 Steptoe 6 33 Vanguard 2 34 Beecher 6 169 Appendix Table 14. Cultivar number, name, and number of rows in head. cont. Cultivar____ _ _ _ _ _ _ _ _ _ Name______________ Row 35 Hector 2 36 California Mariout 67 6 37 Klages 2 38 Steveland 6 39 Erbet 2 40 Dickson 6 41 Maris Mink 2 42 Montcalm 6 43 Vireo 2 44 Primus II 6 45 Zephyr 2' 46 Nordic 6 47 Georgie 2 48 Briggs 6 49 Herta 2 50 Onitan 6 170 Appendix Table 15. Osmotic potentials (bars)I for the morning (A.M.) , afternoon (P,M.) and the difference (P.M. - A.M,), 1975. CulLivar July 14 Aug. 12 A.M. P.'M. P.M.-A.M. A.M. P.M. P.M.-A.M. 1 2 -13.8 -18.0 - 4.2 -16.3 -26.3 -10.0 3 -15.0 -16.0 - 1.0 -13.0 -21.0 - 8.0 4 -13.8 -16.9 .- 3.1 -18.0 -19.8 - 1.8 5 -14.0 -21.7 - 7.7 -12.4 -20.1 - 7.7 ' 6 -12.4 -21.5 - 9.1 -15.5 -24.3 - 8.8 7 -13.2 -27.0 -13.8 -14.6 -19.5 - 4.9 0 -16.2 -19.9 - 3.7 -12.7 -21.8 - 9.1 9 -12.9 -23.9 -11.0 -12.5 -21.1 - 8.6 10 -10.2 - 17.2 - 7.0 -14.6 -24.7 -10.1 11 -12.5 -15.8 - 3.3 -14.4 -19.9 - 5.5 12 -16.4 -17.4 - 1.0 -12.1 -24.8 -12.7 13 -12.3 -22.0 . - 9.7 -10.8 -17.4 - 6.6 14 -10.5 -23.9 -13.4 -14.9 -23.5 - 8.6 15 -12.4 -22.5 -10.1 -14.0 -25.2 -11.2 16 -12.3 -14.2 - 1.9 -14.4 -24.7 -10.3 17 -11.9 ' -22.3 -10.4 -10.6 -26.4 -15.8 18 -10.2 -16.9 - 6.7 -13.7 -24.2 • -10.5 19 -15.0 -18.9 - 3.9 -15.4 -23.3 - 7.9 20 -16.7 -19.9 - 3.2 -13.6 -19.7 - 6.1 21 -11.3 -22.8. -11.5 -11.5 -14.7 - 3.2 22 -14.2 -22.3 - 8.1 -16.4 -25.9 - 9.5 23 -11.5 -20.8 - 9.3 -11.3 -14.0 - 2.7 24 -17.9 -20.6 - 2.7 -14.4 -25,2 -10.8 25 -12 ;5 -19.6 - 7.1 -13.4 -17.8 - 4.4 26 -13.. 3. -17.5. - 4.2 -13.1 -18.8 - 5.7 27 -22.0 -22.8 - 0.8 -12.5 -18.4 - 5.9 28 -14.2 -20.4 - 6.2 -15.3 • -23.9 - 8.6 29 -15.6 -19.8 - 4.2 -14.7 -22.4 - 7.7 • 30 -12.0 -16.0 - 4.0 -15.0 -23.5 - 8.5 31 -14.4 -18.4 - 4.0 -13.6 -23.0 - 9.4 32 -11.9 -18.9 - 7.0 -14.4 -23.9 - 9.5 33 -11.9 -20.6 . - 8.7 -12.6 -15.8 - 3.2 34 -17.2 -23.3 . - 6.1 -16.3 -21.5 - 5.2 35 -13.6 -19.4 - 5.8 ■ -14.7 -21.2 - 6.5 36 -14.6 -23.0 - 8.4 -14.0 -22.7 - 8.7 37 -18.4 -18.7 - 0.3 -13.3 -19.3 - 6.0 38 -12.0 -14.2 - 2.2 -14.5 -22.4 - 7.9 .39 -.16.0 -18.5 - 2.5 -15.1 -20.2 - 5.1 40 - 9.9 -16.0 - 6.1 -13.1 -17.5 - 4.4 41 -11.2 -21.3 • -10.1 -11.6 -16.5 - 4.9 42 -12.7 -20.4 •• 7.7 -13.7 -19.4 - 5.7' 43 -13.7 -15.9 - 2.2 -13.1 -22.3 - 9.2 44 -14.0 -18.1 - 4.1 -11.6 -18.3 - 6.7 45 -15.2 -14.2 1:0 -14.5 -21.4 - 6.9 46 - 9.7 -13.9 - 4.2 - 9.4 -19.7 -10.3 47 -16,5 -19.5 - 3.0 -16.4 -21.1 - 4.7 48 - - - - 49 -14.5 -24.1 - 9.6 -12.7 -21.2 - 8.5 50 -16.6 -19.7 - 2.9 -14,7 -21.0 - 6.3 171 Appendix Table 16. Osmotic potential (bar) for the morning (A.M.), afternoon (P.M.) and the difference (P.M. - A.M.). 1976. Cultivar July 14 Aug. 10 A.M. P.M. P.M.-A.M. A.M. . P.M. P.M.-A.M. I -10.2 -14.7 -4.5 -17.0 -17.3 -0.3 2 -10.4 -14.7 -4.3 -19.5 -22.7 -3.2 3 -10.7 -15.0 -4.3 . -15.0 -21.8 -6.8 4 -10.4 -12.7 -2.3 -15.6 -20.7 -5.1 5 -11.3 -16.7 -5.4 -19.3 -24.4 -5.1 6 -11.0 -15.6 -4.6 -17.5 -19.3 -1.8 7 -12.2 -15.6 -3.4 -18.7 -18.4 0.3 8 -10.2 -14.4 -4.2 -19.3 -24.1 -4.8 9 -11.3 -17.0 -5.7 -15.0 -21.0 -6.0 10 - 9.9 -14.1 -4.2 -17.5 -23.5 -6.0 11 ■ -10.4 -13.9 -3.5 -16.7 -21.0 -4.3 12 - 9.9 . -15.6 -5.7 -11.9 -23.2 -11.3 13 -11.9 -14.4 -2.5 -16.7 -24.7 -8.0 14 - 9.9 -15.3 -5.4 -15.0 -21.2 -6.2 15 -11.0 -14.7 -3.7 -19.0 -24.9 -5.9 16 -10.2 -16.7 . -6.5 -17.3 -23.8 -6.5 17 -12.2 -16.4 -4.2 - -25.5 - 18 - 8.2 -16.1 -7.9 -17.3 -23.8 -6.5 19 -10.4 -15.8 -5.4 -18.7 -23.2 -4.5 20 -11.0 -15.8 -4.8 -18.1 -23.2 -5.1 21 -10.7 -18.4 ■ -7.7 -20.7 -23.8 -3.1 22 -11.0 -17.3 -6.3 . -16.7 -21.0 -4.3 23 - 9.9 -15.3 -5.4 -15.6 -22.9 -7.3 24 -11.0 -16.4 ■ -5.4 -15.8 -22.1 -6.3 25 -10.4 -13.0 -2.6 -18.1 -20.7 -2.6 26 - 7.9 -17.3 -9.4 -18.7 -16.1 2.6 27 -11.9 -21.2 -9.3 -18.1 -24.1 -6.0 28 - 9.6 -13.9 -4.3 -17.5 -22.7 -5.2 29 ' -11.3 -18.7 ' -7.4 -21.0 -26.9 r5.9 30 - 9.9 -15.8 -5.9 -17.0 -21.8 -4.8 31 - 9.3 -15.3 -6.0 -17.5 -21.5 -4.0 32 -11.0 -16.1 -5.1 -13.3 -23.2 -9.9 33 -10.7 -13.9 -3.2 -17.5 -20.1 -2.6 34 -11.3 -16.7 -5.4 -16.4 -13.9 2.5 35 - 9.3 -14.7 -5.4 -18.4 -22.4 -4.0 36 -11.9 -18.1 -6.2 -22.4 -21.8 0.6 37 -11.0 -16.4 -5.4 -17.3 -15.8 1.5 38 -10.4 - 9.6 0.8 -17.3 -21.0 -3.7 39 - 9.3 -17.3 -8.0 -16.7 -20.7 -4.0 40 - 8.2 -14.7 -6.5 -13.6 -19.5 -5.9 41 -10.4 -13.3 -2.9 -17.5 -19.3 -1.8 . 42 - 8.7 -15.0 -6.3 -16.4 -24.4 -8.0 43 -12.2 . -13.9 -1.7 -14.4 -21.8 -7.4 44 -10.7 -16.4 -5.7 -16.4 -22.9 . -6.5 45 -11.0 -17.0 -6.0 -14.4 -22.7 -8.3 46 - 9.6 -13.0 -3.4 -16.1 -23.2 -7.1 47 -12.2 -16.7 -4.5 -19.8 -17.3 2.5 48 -11.0 • -16.4 -5.4 -17.0 . -26.4 -9.4 49 - 9.6 -13.9 -4.3 -16.4 -19.5 -3.1 50 -11.0 -13.9 -2.9 -18.7 -21.0 -2.3 172 Appendix Table 17. Osmotic potential (bar) for the morning (A.M.), afternoon (P.M.) and the difference (P.M. - A .Mo). June 22, 1977. Cultivar Rep. Rep. 2 A.M. P.M. P.M.-A.M. A.M. P.M. P.M.-A.M. I - 9.7 „ _ - 9.7 -14.6 -4.9 2 - 8.9 -12.6 • -3.7 - -11.6 - 3 - 9.7 -11.9 -2.2 - 9.0 -12.6 -3.6 4 - 8.3 -11.2 -2.9 - 8.9 -13.0 -4.1 5 - 8.9 -14.0 -5.1 ' - 9.3 -13.9 -4.6 6 -10.5 -13.4 -2.9 - 9.6 -12.9 -3.3 7 . -11.0 -13.9 -2.9 - 9.6 -12.3 -2.7 8 - 7.6 -11.6 -4.0 - 9.5 -11.6 -2.1 9 - 9.5 -11.4 -1.9 - 8.7 -13.7 -5.0 10 -10.2 -10.5 -0.3 - 7.6 -10.9 -3.3 11 - 8.9 -14.1 . -5.2 - 8.5 -12.6 -4.1 12 - 8.7 -10.6 -1.9 -10.2 -11.4 -1.2 13 - 8.6 -12.4 -3.8 - 8.5 -14.6 -6.3 14 -10.5 -12.0 -1.5 -10.5 -12.3 -1.8 15 - 9.0 -11.4 -2.4 -11.0 -12.7 -1.7 16 - 6.0 -14.4 -8.4 - 8.8 -11.4 -2.6 17 -10.2 -11.2 -1.0 - 8.5 -11.3 -2.8 18 - 9.7 -12.9 . -3.2 -10.9 -14.1 • -3.2 19 ' - 9.5 -11.4 -1.9 - 8.7 -16.5 -7.8 20 - - -10.0 -10.6 -0.6 21 -11.6 -13.7 ' -2.1 - 8.9 -11.9 -3.0 22 - 9.0 -13.0 -4.0 -10.2 -13.6 -3.4 23 -10.3 -11.6 -1.3 - 9.0 -13.0 -4.0 24 - 9.7 ' -12.6 ’ -2.9 -10.2 -13.2 -3.0 25 -11.2 -13.3 -2.1 -10.0 -14.3 -4.3 26 -10.2 -13.0 -2.8 - 8.9 -15.1 -6.2 27 - 9.9 -13.9 -4.0 - 9.6 -13.4 -3.8 28 -10.2 -11.9 -1.7 - 9.5 -11.3 -1.8 29 - 9.7 -14.0 -4.3 - 8.9 -14.6 -5.7 30 - 8.0 -13.7 -5.7 ' - 8.6 -14,9 -6,3 31 - 8.5 -14.9 -6.4 - 8.0 -13.4 -5.4 32 -10.9 -13.7 -2.8 - 9.0 -12.7 ■ -3.7 33 -10.5 -11.2 -0.7 - 7.9 -14.3 -6.4 34 -10.9 -13.2 -2.3 - 9.2 -15.7 -6.5 35 -11.2 -11.4 -0.2 - 8.5 -13.2 -4.7 36 - 8.9 - * ' - -12.6 -14.0 • -1.4 37 -10.6 -12.9 -2.3 - 8.2 -14.7 -6.5 38 -10.2 -12.9 -2.7 - 6.7 -12.9 -4.2 39 -10.0- -14.1 -4.1 -13.0 -11.3 1.7 40 . - 8.7 -12.7 -4.0 - 8.2 -14.7 -6.5 41 - 9.3 -13.4 -4.1 - 8.5 -14,0 -5.5 42 - 9.0 -13.2 -4.2 - 7.9 -11.7 -3.8 43 - 9.3 -13.2 -3.9 - 9.3 -12.6 -3.3 44 . - 9.3 -13.0 . -3.7 - 7.6 -11.7 -4.1 45 -10.3 -11.7 -1.4 - 9.0 -13.0 ■ -4.0 ■ 46 -10.3 -11.3 -1.0 - 8.7 -13.4 -4.7 47 -.8.7 -10.5 -1.8 -11.2 -10.6 . 0.6 48 -10.2 -13.2 -3.0 - -14.0 " 49 - 8.6 -14.0 -5.4 - 8.6 -10.3 -1.7 50 - 8.6 -11.9 -3.3 - 8.6 -10.5 -1.9 173 Appendix Table 18« Osmotic potential (bar) for the morning (A.M.)afternoon (P.M.) and the difference (P.M. - A.M.). July 20, 1977. . CulLivar Rep. I Rep. 2 A .M . P .M . P .M . -A .M . A .M . P .M . PiM. - A .M . I - 2 1 . 1 - 2 1 .5 ' - 0 . 4 - 2 0 . 8 2 - 1 8 . 7 - 2 2 . 9 - 4 . 2 ■ - 2 0 ,I - - 3 - 2 2 . 9 - 2 2 . 1 0 . 8 - 1 9 . 8 - - 4 - - 1 6 . 7 - - 2 0 . 2 - - 5 - 2 0 . 7 ' - 1 9 . 5 1 . 2 - 2 0 . 2 - 2 5 . 9 - 5 . 7 6 - - 2 1 . 5 - - I - 2 0 . 4 - 2 0 . 8 - 0 . 4 - 2 0 . 1 - 1 6 . 6 3 . 5 8 - 1 9 . 1 - - 2 0 . 4 - 1 0 . 3 2 . 1 9 _ - - 2 2 . 5 - - 10 - 2 3 . 9 - - 1 8 . 4 - 2 6 . 8 - 8 . 4 11 - 2 2 . 8 - - 1 8 . 1 ' - 1 8 . 8 - 0 . 7 12 - 2 0 . 1 - - 2 2 . 4 - 2 3 . 2 - 0 . 8 13 - 2 1 . 1 - 2 4 . 1 - 3 . 0 - 2 1 . 5 • - 2 4 . 8 - 3 . 3 14 - 2 1 . 2 - 2 3 . 4 - 2 . 2 - 2 1 . 2 - - 15 - 2 0 . 2 - 2 0 . 2 0 . 0 - 2 0 . 0 • - 2 0 . 7 - 0 . 7 16 - 1 9 . 5 - 2 5 . 6 - 6 . 1 - 1 8 . 4 - - 17 - 2 5 . 8 - - 2 2 . 9 - 1 7 . 5 5 . 4 18 - 2 2 . 1 - - 2 3 . 0 - 2 2 . 5 0 . 5 19 - 2 0 . 1 - 2 0 . 1 0 . 0 - 1 9 . 5 - - 2 0 - - - 2 2 . 9 - 21 - 2 5 . 2 - 2 2 . 4 2 . 8 - 2 0 . 1 _ 2 2 - 2 2 .7 . - 2 2 . 9 - 0 . 2 - 2 2 . 9 - 2 4 . 1 - 1 . 2 2 3 - 2 5 . 2 - 2 2 . 4 2 . 8 - 1 9 . 4 - - 2 4 - 2 0 . 7 - - 2 0 . 4 - " 25 - 1 9 . 2 - 2 0 . 1 - 0 . 9 2 6 ■ - 1 8 . 4 - ■ - 1 8 . 4 - - 2 7 - 1 8 . 4 - - 2 1 . 0 " - 2 8 - - 2 2 . 1 - - 1 9 . 3 - 2 2 . 4 - 3 . 1 29 - 2 2 . 4 , - 2 2 . 7 - 0 . 3 - 2 0 . 1 - 2 2 . 5 - 2 . 4 30 - 1 9 . 8 _ - 2 0 . 1 " - 31 ' - 2 2 . 1 - 2 4 . 5 - 2 . 4 - 2 0 . 1 - 2 0 . 7 - 0 . 6 32 - 1 8 . 7 - 2 0 : 1 - 1 . 4 - 1 9 . 0 - - 33 - 1 7 . 0 • - 2 1 . 3 - 2 3 . 4 - 1 . 9 3 4 - 2 3 . 2 - 1 7 . 5 - 2 0 . 2 - 2 . 7 35 - 1 8 . 1 _ - 1 9 . 5 - - 36 - - - - 2 2 . 7 -'4 5 . 1 - 2 . 4 37 - 2 0 . 5 - 2 1 . 2 . - 0 . 7 - 1 8 . 8 - - , 38 - 2 1 . 5 - - 2 0 . 8 - . - 39 - 1 6 . 4 - _ - 2 0 . 1 - - 40 - 2 2 . 7 - - 2 1 . 5 - 2 5 . 1 - 3 . 6 41 - 1 5 . 0 - - 1 7 . 8 - - 42 - 1 8 . 7 _ - 1 9 . 3 - 2 6 . 8 - 7 . 5 4 3 - 2 3 . 5 - 1 8 . 5 5 . 0 - 2 0 . 1 - 2 2 . 1 - 2 . 0 44 - 2 0 . 4 - 1 6 . 1 - 2 1 . 5 - 5 . 4 45 - 2 0 . 1 - 1 9 . 2 - 1 9 . 8 - 0 . 6 46 - 1 8 . 4 - 2 3 . 2 - 4 . 8 4 7 - 2 4 . 2 - 2 1 . 5 2 . 7 - 1 9 . 8 - 2 2 . 9 - 3 . 1 4 8 - 2 0 . 2 - 2 1 . 0 - 0 . 8 - 1 9 . 0 - 49 - - 1 9 . 1 - 2 1 . 5 - 2 . 4 50 - 2 2 . 7 - 2 5 . 4 • - 2 . 7 - - 2 2 . 5 ■- 174 Appendix Table 19« Soil water content (%) at 6 in intervals for the drought line. Bozeman farm. 1976» Cultivar 0 - 6 6 - 1 2 1 2 - 1 8 1 8 - 2 4 2 4 - 3 0 3 0 - 3 6 3 6 - 4 2 4 2 - 4 8 4 8 - 5 4 5 4 - 6 0 6 0 - 6 6 6 6 - 7 2 I 2 1 . 5 1 9 . 8 1 2 . 1 1 0 . 1 9 . 5 9 . 5 9 . 4 1 0 . 8 1 2 . 2 1 3 . 1 1 3 . 3 1 5 . 3 2 2 2 . 7 1 7 . 8 1 1 . 4 9 . 1 8.5 8 . 5 9 . 3 1 1 . 3 1 2 . 4 1 3 . 9 1 5 . 1 1 6 . 2 3 2 2 . 5 1 7 . 7 1 3 . 3 9 . 8 8 . 6 8 . 4 9 . 1 9 . 0 11. '0 1 3 . 0 1 5 . 3 1 6 . 6 4 2 2 . 4 1 8 . 3 1 1 . 6 9 . 9 9 . 2 1 0 . 8 1 2 . 0 1 3 . 9 1 4 . 1 1 4 . 4 1 4 . 9 1 6 . 2 5 2 2 . 9 1 8 . 4 9 . 9 8 . 4 7 . 8 8 . 5 9 . 0 1 0 . 4 1 1 . 8 1 3 . 0 1 4 . 3 1 4 . 0 6 2 2 . 5 2 0 . 0 1 3 . 1 1 0 . 4 9 . 3 9 . 1 9 . 5 1 0 . 3 1 2 . 4 1 2 . 9 1 3 . 3 1 4 . 4 7 2 2 . 1 1 8 . 5 1 0 . 5 9 . 9 8 . 5 8 . 7 8 . 3 9 . 4 1 2 . 4 1 4 . 0 1 5 . 6 1 6 . 5 8 2 2 . 5 2 0 . 2 1 1 . 6 ■9 . 5 9 . 0 8 . 5 8 . 8 9 . 2 1 1 . 3 1 3 . 3 1 4 . 7 1 6 . 5 9 2 2 . 9 1 8 . 8 1 2 . 7 9 . 6 8 . 8 8 . 6 8 . 8 9 . 4 1 1 . 1 1 2 . 1 1 4 . 3 1 7 . 3 10 2 2 . 0 2 0 . 0 1 4 . 6 1 0 . 3 8 . 5 .8 . 2 9 . 2 9 . 2 1 0 . 7 1 2 . 5 1 3 . 8 1 5 . 0 11 2 1 . 6 1 8 . 8 1 0 . 8 9 . 5 7 . 9 8 . 2 8 . 3 9 . 9 1 1 . 9 1 3 . 9 1 4 . 6 1 6 . 5 12 2 1 . 7 2 0 . 7 1 2 . 8 9 . 6 8 . 5 8 . 2 8 . 9 1 0 . 1 1 2 . 0 1 3 . 1 1 3 . 8 1 5 . 3 13 2 1 . 3 1 9 . 5 1 1 . 6 9 . 4 8 . 2 8 . 3 8 . 2 9 . 6 1 1 . 9 1 3 . 0 1 4 . 1 1 5 . 3 14 2 2 . 3 1 7 . 8 1 1 . 3 9 . 6 9 . 0 9 . 5 1 1 . 0 1 2 . 2 1 3 . 2 1 3 . 9 1 5 . 0 1 5 . 4 15 2 2 . 5 1 8 . 8 1 1 . 2 9 . 6 9 . 2 8 . 5 1 0 . 2 1 1 . 4 1 3 . 1 1 4 . 7 1 5 . 5 1 6 . 6 16 2 2 . 1 1 7 . 4 1 2 . 8 9 . 6 9 . 1 8 . 9 8 . 8 9 . 7 1 2 . 1 1 3 . 4 1 5 . 0 1 5 . 9 17 2 2 . 4 2 0 . 6 1 0 . 8 9 . 2 8 . 2 8 . 4 8 . 2 9 . 2 1 2 . 4 1 3 . 6 1 5 . 2 1 7 . 1 18 2 3 . 3 2 0 . 9 1 1 . 0 9 . 5 8 . 5 8 . 8 1 0 . 0 1 0 . 3 1 1 . 9 1 2 . 6 1 4 . 4 1 5 . 8 19 2 2 . 9 1 9 . 1 1 1 . 7 9 . 7 6 . 7 8 . 8 8.3 8 . 9 1 1 . 1 1 2 . 6 1 4 . 5 1 6 . 1 2 0 2 3 . 8 2 0 . 0 1 1 . 3 1 0 . 1 9 . 2 9 . 0 8 . 7 9 . 4 1 0 . 9 1 3 . 2 1 5 . 8 1 6 . 6 21 2 1 . 7 1 9 . 9 1 2 . 5 1 0 . 6 9 . 0 8 . 7 9 . 0 9 . 6 1 1 . 6 1 2 . 0 1 4 . 1 1 6 . 4 22 2 2 . 4 2 0 . 3 1 2 . 0 9 . 3 8 . 6 6 . 7 9 . 0 1 0 . 6 1 2 . 2 1 3 . 2 1 4 . 7 1 6 . 5 2 3 2 2 . 1 1 8 . 9 1 2 . 0 1 0 . 2 9 . 0 9 . 0 9 . 3 1 0 : 6 1 2 . 5 1 3 . 6 1 4 . 6 1 6 . 8 2 4 2 1 . 9 1 8 . 4 1 1 . 0 1 0 . 1 9 . 1 9 . 0 9 . 7 1 1 . 8 1 3 . 0 1 4 . 6 1 4 . 6 1 5 . 3 25 2 1 . 4 1 8 . 1 1 0 . 8 9 . 5 8 . 4 8 . 5 • 8 . 4 1 1 . 1 1 3 . 1 1 3 . 6 1 6 . 2 1 5 . 8 26 2 2 . 5 1 8 . 4 1 0 . 8 9 . 1 8 . 0 8 . 0 8 . 3 6 . 7 1 1 . 5 1 2 . 4 1 3 . 5 1 5 . 4 2 7 2 3 . 1 2 0 . 1 1 2 . 2 1 0 . 1 8 . 6 8 . 3 8 . 6 9 . 5 1 1 . 4 12; 7 1 3 . 9 1 6 . 2 2 0 2 2 . 6 1 9 . 7 1 2 . 6 9 . 5 8 ; 6 8 . 6 8 . 4 9 . 4 1 1 . 5 1 2 . 6 1 3 . 5 1 4 . 9 2 9 2 3 . 1 1 7 . 0 1 0 . 4 9 . 0 8 . 9 9 . 0 1 0 . 6 1 3 . 5 1 3 . 0 1 4 . 6 1 6 . 7 1 5 . 7 30 2 2 . 9 2 1 . 3 1 0 . 8 .9 . 6 8 . 9 9.6 1 0 . 2 1 1 . 4 1 3 . 2 1 2 . 9 1 3 . 5 1 4 . 8 31 2 2 . 6 1 9 . 0 1 0 . 7 9 . 8 8 . 9 8 . 5 8 . 7 9 . 9 1 2 . 0 1 3 . 5 1 4 . 9 1 6 . 1 32 2 3 . 0 1 8 . 6 1 0 . 4 9 . 2 8 . 6 6 . 8 9 . 1 1 0 . 2 1 1 . 9 1 3 . 0 1 5 . 6 1 6 . 3 3 3 2 2 . 2 1 9 . 9 1 3 . 7 1 0 . 5 8 . 9 8 . 9 8 . 9 9 . 4 1 1 . 5 1 3 . 0 1 4 . 7 1 7 . 2 34 2 2 . 7 2 0 . 2 1 1 . 0 9 . 8 8 . 9 8 . 8 9 . 3 1 2 . 1 1 3 . 2 1 4 . 0 1 5 . 3 1 6 . 7 35 2 2 . 2 1 8 . 9 1 1 . 2 1 0 . 1 1 0 . 2 1 1 . 9 1 2 . 8 1 3 . 6 1 4 . 1 1 4 . 1 1 5 . 4 1 6 . 1 36 2 1 . 1 1 9 . 7 1 2 . 0 1 0 . 8 9 . 7 1 0 . 4 1 0 . 5 1 1 . 3 1 2 . 7 1 3 . 2 1 4 . 3 1 6 . 1 37 2 1 . 6 1 9 . 9 1 0 . 5 9 . 2 8 . 0 8 . 2 8 . 0 8 . 0 9 . 8 1 2 . 1 1 3 . 8 1 5 . 9 38 2 2 . 7 1 8 . 5 1 0 . 8 9 . 4 8 . 5 8 . 8 9 . 7 1 1 . 3 1 2 . 2 1 3 . 3 1 4 . 1 1 4 . 8 39 2 3 . 6 1 9 . 7 1 2 . 2 9 . 4 8 . 3 8 . 8 9 . 3 1 1 . 4 1 3 . 1 1 4 . 0 1 5 . 6 1 7 . 4 40 2 2 . 4 1 9 . 6 1 2 . 5 9 . 9 9 . 1 8 . 3 3 . 7 9 . 9 1 2 . 5 1 3 . 5 1 4 . 2 1 5 . 3 41 2 3 . 6 1 9 . 1 1 0 . 6 9 . 6 8 . 5 8 . 2 8 . 1 8 . 2 9 . 5 1 1 . 5 1 3 . 5 1 4 . 6 42 2 3 . 0 2 1 . 5 1 2 . 5 9 . 4 8 . 5 8 . 2 9 . 2 1 1 . 5 1 2 . 9 1 4 . 0 1 5 . 3 1 6 . 5 4 3 2 3 . 0 2 1 . 0 1 6 . 3 1 0 . 3 8 . 2 8 . 5 8 . 8 1 1 . 6 1 4 . 0 1 3 . 7 1 5 . 4 1 6 . 1 44 2 3 . 2 2 0 . 4 1 1 . 7 9 . 3 8 . 8 9 . 5 1 1 . 5 1 3 . 4 1 3 . 5 1 3 . 8 1 5 . 7 1 5 . 6 4 5 2 2 . 0 2 1 . 2 1 3 . 4 9 . 8 8 . 8 8 . 6 8 . 2 8 . 0 9 . 1 1 0 . 9 1 3 . 1 1 5 . 2 46 2 3 . 9 2 1 . 7 1 3 . 8 9 . 2 8 . 3 8 . 4 3 . 6 9 . 2 1 1 . 2 1 2 . 4 1 3 . 0 1 5 . 0 4 7 2 2 . 0 2 1 . 2 1 6 . 8 1 0 . 8 9 . 2 6 . 7 8 . 6 8 . 8 1 0 . 4 1 1 . 2 1 3 . 9 1 6 . 4 48 2 2 . 8 2 1 . 2 1 4 . 9 9 . 8 8 . 6 9 . 0 8 . 7 8 . 6 9 . 3 1 1 . 3 1 3 . 5 ' 1 4 . 8 49 2 1 . 7 2 1 . 2 1 4 . 1 9 . 8 8 . 6 8 . 5 8 . 8 9 . 8 1 1 . 3 1 2 . 2 1 4 . 3 1 5 . 6 50 2 2 . 6 1 8 . 2 1 0 . 8 9 . 4 9 . 0 9 . 2 8 . 4 1 0 . 1 1 1 . 8 1 2 . 4 1 5 . 1 1 5 . 8 175 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line.* Depth June July August Inches 13 20 27 5 11 1 8 25 I 8 16 6 - 12 . 0 9 . 1 9 . 6 4 Atlas 4 6 . 7 9 . 7 8 . 8 4 . 8 7 . 8 2 . 8 4 . 8 9 12 - 18 . 1 2 - . 1 5 . 5 4 . 7 2 . 7 2 . 7 9 . 7 8 . 7 6 . 7 5 . 7 6 18 - 24 . 1 1 . 1 2 . 4 0 . 6 5 . 6 4 . 6 5 . 7 0 . 6 5 . 6 5 . 6 6 2 4 - 30 . 0 3 . 0 4 . 2 1 . 4 2 . 5 4 . 5 7 . 5 9 . 5 7 . 5 6 .58 3 0 - 36 . 0 0 - . 0 5 . 0 9 . 2 1 . 2 8 . 4 0 . 5 0 .4 7 . . 4 9 . 4 3 3 6 - 4 2 - . 0 2 - . 0 2 . 0 5 . 0 8 . 1 2 . 2 0 . 2 2 . 2 6 . 2 2 . 2 2 4 2 - 4 8 - . 0 5 . 0 1 . 0 3 . 0 7 . 0 8 . 1 1 . 1 8 . 1 6 . 1 8 . 1 6 4 8 5 4 . 0 3 - . 0 3 . 0 4 . 0 5 . 0 3 . 1 2 . 2 0 . 1 2 . 1 5 .2 0 . Total ■ . 3 0 . 4 1 1 . 9 9 2 . 9 9 3 . 1 8 3 . 6 7 4 . 0 3 3 . 8 0 3 . 8 3 3 . 9 0 6 - 12 . 0 5 . 1 5 . 5 4 Beecher . 6 7 . 7 0 . 7 9 .11 .7.8 . 8 1 . . 84 12 - 18 , 0 6 ■ . 1 1 . 4 5 . 6 2 . 7 0 . 7 6 . 7 4 . 7 2 . 7 1 . 7 6 18 - 24 . 0 9 . 1 3 . 2 9 . 6 0 . 7 3 . 8 1 . 8 2 . 7 8 . 8 1 . 7 9 , 2 4 - 30 . 0 4 . 1 1 . 2 3 • . 4 5 . 5 8 . 6 7 . 7 0 . 6 9 . 6 8 . 6 7 30 - 3 6 . 0 4 • . 0 4 . 1 6 . 2 2 . 4 1 . 5 6 . 6 2 . 5 9 . 5 7 . 5 6 36 - 4 2 . 0 1 . 0 3 . 0 4 . 1 2 . 2 8 . 4 0 . 5 0 . 4 9 ■ . 5 2 . 5 0 4 2 - 4 8 . 0 0 - . 0 2 - . 0 3 . 0 2 . 1 1 . 1 4 . 2 6 . 2 7 . 3 0 . . 3 4 4 8 - 54 . 0 0 - . 0 4 . 0 1 - . 0 5 . 0 1 . 0 2 . 1 1 ■ . 1 3 . 1 4 . 1 5 ■ 5 4 - 60 . 0 3 - . 0 6 . 0 3 . 0 0 . 0 3 . 0 6 . 1 0 - . 0 2 . 0 5 . 0 5 60 - 66 . 0 2 . 0 0 . 0 2 . 0 0 . 0 4 ■ . 0 2 . 0 2 - . 0 1 .0 3 . . 0 3 Total . 3 3 . 4 4 1 . 7 3 2 . 6 5 3 . 5 8 4 . 2 1 ' 4 . 6 1 4 . 4 0 4 . 5 9 4 . 6 6 6 - 1 2 . 1 3 . 2 8 . 6 9 Betzes . 8 3 . 8 2 . 8 9 . 9 2 . 9 0 . 8 7 . 9 2 12 - 18 . 0 9 . 2 5 . 5 9 . 7 4 . 7 5 . 8 0 . 8 0 . 7 7 . 7 5 . 7 8 18 - 24 . 0 8 . 1 0 . 3 9 . 6 0 . 6 1 . 6 7 . 6 7 . 6 7 . 6 4 . 6 3 2 4 - 30 . 0 0 . . 0 0 . 2 2 . 4 6 . 5 1 . 6 0 . 6 0 . 6 1 . 5 6 . 6 2 3 0 - 36 . 0 1 •. 03 . 1 0 • . 2 1 . 2 4 . 4 6 . 4 9 . 4 5 . 4 3 43 3 6 - 42 . 0 1 - . 0 6 . 1 1 . 1 5 . 1 7 . 2 6 . 2 9 . 2 9 . 3 2 . 3 6 4 2 - 48 - . 0 2 . 0 2 . 0 2 . 0 6 . 0 9 . 1 8 . 2 5 . 2 4 . 2 9 . 2 9 4 8 - 54 . 0 8 - . 1 1 - . 0 7 . 0 1 . 0 1 . 1 4 - . 0 6 . 0 4 . 1 4 . 1 4 Total . 3 9 . 5 2 2 . 0 6 3 . 0 6 3 . 2 1 4 . 0 2 4 . 0 0 4 . 0 1 4 . 1 0 4 . 2 1 6 - 12 . 0 5 . 2 3 . 6 3 Bonneville . 7 9 . 8 1 . 8 8 . 9 3 . 9 3 . 9 4 . 9 4 1 2 - 18 . 1 4 . 1 8 . 5 8 . 7 5 . 7 8 .8 2 . . 8 7 . 8 3 . 8 3 . 8 4 1 8 - 24 . 1 1 . 1 4 . 4 1 . 65 . 7 1 . 7 1 . 7 4 . 7 7 . 7 7 . 7 5 2 4 - 30 . 0 6 . 1 1 . 2 6 . 4 6 . 5 3 . 6 0 . 6 5 . 6 7 . 6 2 . 6 5 3 0 - 36 . 0 1 . 0 4 . 0 8 . 2 9 . 3 4 . 4 4 . 52 . 5 0 . 5 1 . 4 8 3 6 - 42 - . 0 6 - . 0 3 . 0 0 . 1 1 . 1 9 . 3 1 . 4 0 . 4 2 . 4 4 . 4 7 4 2 - 4 8 - , 0 6 - . 0 2 - . 0 3 . 0 2 . 0 9 ■ . 1 5 . 1 5 . 2 1 . 1 9 . 2 4 4 8 - 54 - . 0 3 - . 0 2 . 0 1 • . 0 1 . 0 1 . 0 5 . 0 9 . 0 6 . 0 6 . . 0 8 5 4 - 60 . 0 1 - . 0 3 . 0 4 . 0 3 . 0 3 . 0 2 . 0 6 . 0 3 . 0 3 . 05 6 0 - 66 - . 0 5 - . 0 2 . 0 1 . 0 3 . 0 1 - . 0 2 . 0 1 - . 0 1 . 0 0 . 0 4 Total . 1 7 . 5 6 1 . 9 7 3 . 1 2 3 . 4 7 3 . 9 5 4 . 3 9 4 . 3 6 4 . 3 7 4 . 5 8 * These values do not include the addition of the rain factor. 176 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. Cont. Depth . June July August "Inches ' 13 20 27 5 11 18 25 I 8 16 6 - 1 2 . 1 0 . 2 3 . 6 2 . 7 4 , 7 6 . 7 3 . 7 5 . 7 6 12 - 18 . 1 0 . 1 7 . 5 3 . 6 7 . 6 7 . 7 2 . 7 0 . 6 7 , 6 9 . 7 0 18 - 24 . 1 0 . 1 5 . 5 2 . 6 6 . 6 8 . 7 4 . 7 5 . 6 8 . 7 1 . 7 5 24 - 30 . 0 6 . 0 8 . 3 0 . 5 0 . 5 8 . 6 4 • . 6 5 . 6 4 . 6 3 . 6 2 30 - 36 . 0 1 . 0 7 . 1 0 . 4 0 . 5 3 . 5 6 . 5 9 . 5 5 . 5 9 . 5 8 3 6 - 42 - . 0 1 - . 0 1 . 0 8 . 1 9 . 3 2 . 4 0 . 3 9 . 3 9 . 4 2 . 4 1 42 - 5 8 - . 0 4 - . 0 4 . 0 1 - . 0 1 . 1 0 . 1 7 . 2 3 . 25 . 2 7 . 3 1 4 8 - 54 . 0 3 . 0 0 . 0 5 . 0 2 . 0 4 . 0 8 . 1 4 . 1 1 . 1 4 . 1 5 5 4 - 60 - . 0 3 - . 0 3 - . 0 3 - . 0 2 - . 0 2 . 0 1 . 0 4 - . 0 1 . 0 0 . 0 0 60 - 66 . 0 1 . 0 0 . 0 5 . 0 0 . 0 5 . 0 4 . 0 3 . 0 0 . 0 0 . 0 0 Total . 3 1 . 6 0 2 . 2 1 3 . 0 5 3 . 5 8 4 . 0 7 4 . 2 7 3 . 9 9 4 . 1 5 4 . 2 4 California Mariout 67 6 - 1 2 . 0 5 . 1 5 . 4 9 . 6 3 . 6 7 . 6 8 . 6 9 . 7 2 . 6 9 . 7 2 12 - 18 . 0 8 . 1 5 . 4 5 . 5 9 . 6 0 . 6 5 . 6 3 . 6 1 . 6 1 . 6 3 18 - 24 . 0 6 . 1 3 . 4 1 . 6 1 . 64 . 6 5 . 6 5 . 6 5 . 6 4 . 6 6 2 4 . - 30 . 0 3 . 0 5 . 2 8 . 4 8 . 5 4 . 6 1 . 6 2 . 5 7 . 5 6 . 5 8 3 0 - 36 . 0 1 . 0 0 . 0 2 . 2 7 . 3 4 . 4 2 . 4 3 . 3 9 . 4 4 . 4 5 3 6 - 4 2 - . 0 3 - . 0 3 - . 0 3 . 0 5 . 1 9 . 3 0 . 3 2 . 3 5 . 3 8 . 3 8 4 2 - 4 8 - . 0 1 - . 0 6 - . 0 9 - . 0 2 . 0 4 . 1 4 . 1 7 . 1 5 . 2 1 . 1 9 4 8 - 5 4 . 0 4 .Ii . 0 7 . 0 1 . 1 1 . 0 9 . 0 8 . 1 2 . 0 7 . 1 0 5 4 - 60 . 0 1 - . 0 2 - . 0 2 . 0 4 - . 0 7 . 0 2 - . 0 2 - . 0 2 -. 06 ■ - . 0 2 60 - 66 . 0 0 . 0 2 . 0 2 . 0 1 . 0 4 . 0 5 . 0 6 . 02 . 0 1 . 0 2 Total . 2 3 . 4 9 1 . 6 1 2 . 7 5 3 . 1 2 3 . 6 3 3 . 6 5 3 . 5 4 3 . 5 6 3 . 7 2 Compana 6 - 12 . 1 4 . 2 7 . 6 4 . 7 4 . 7 8 . 7 9 . 8 1 . 7 9 . 7 9 . 8 1 12 - 18 . 1 2 . 2 5 . 6 4 . 6 8 . 6 9 . 7 0 . 7 3 . 6 9 . 7 1 . . 7 3 18 - 24 . 0 8 . 1 7 . 4 6 . 5 9 . 6 4 . 6 5 . 6 4 . 6 2 . 6 4 . 6 3 2 4 - 30 . 0 4 . 0 6 . 2 7 . 5 0 . 5 7 . 5 8 . 6 1 . 5 7 . 5 8 . 5 7 30 - 36 . 0 2 . 0 3 . 1 1 . 3 2 . 5 2 . 5 3 . 5 6 . 5 3 . 5 7 . 5 4 3 6 - 42 - . 0 3 - . 0 4 . 0 3 . 1 4 . 3 3 • 34 . 4 4 . 4 2 . 4 2 . 4 3 4 2 - 4 8 . 0 0 - . 0 1 . 0 3 . 0 7 . 1 7 . 1 8 . 1 9 . 2 4 . 1 8 . 2 2 4 8 * 54 . 0 2 - . 0 4 . 0 3 . 0 3 . 0 7 . 0 8 . 1 0 . 0 9 . 0 3 . 0 7 5 4 - 60 . 0 0 . 0 2 . 0 1 . 0 5 . 0 8 . 0 9 . 0 8 . 05 . 0 5 . 0 7 60 - 66 . 0 2 . 0 1 . 0 3 , 0 4 . 0 4 . 0 5 . 0 1 . 0 2 . 0 5 . 0 5 Total . 4 2 . 7 5 2 . 2 7 3 . 1 8 3 . 9 1 4 . 0 0 4 . 1 8 4 . 0 3 4 . 0 8 4 . 1 5 DeKap 6 - 12 . 0 7 . 2 3 . 6 0 . 6 8 . 7 2 . 8 1 . 8 1 . 7 9 . 8 7 . 85 12 ' 18 . 0 8 . 1 8 . 5 7 . 6 7 . 7 0 . 7 3 . 7 4 . . 7 3 . . 7 5 . 7 4 18 - 24 . 0 6 . 1 3 . 5 0 . 6 9 . 7 3 . 7 7 . 8 0 . 7 7 - 77 . 7 7 2 4 * 30 . 0 9 . 1 2 . 3 4 . 5 7 . 6 4 . 6 9 . 72 . 6 9 . 7 1 . 7 1 3 0 - 36 . 0 8 . 0 7 . 2 1 . 3 6 . 4 9 . 5 5 ■ . 6 1 . 5 8 . 5 8 . 5 8 3 6 - 46 . 0 2 . 0 5 . 0 8 . 2 0 . 3 1 . 3 8 . 43 . 4 4 . 4 7 , 4 6 4 2 - 4 8 - . 0 1 - . 0 2 . 0 1 . 0 4 . 0 8 . 1 9 . 2 3 . 25 . 2 9 : 29 4 8 - 54 - . 0 4 - . 0 5 ' - . 0 2 - . 0 7 . 0 0 . 0 5 . 0 8 . 0 6 . 1 1 . 0 9 5 4 - 60 . 0 2 . 0 2 . 0 1 . 0 0 . 0 4 . 0 4 . 0 3 . 0 2 . 0 2 , 0 0 60 - 66 - . 0 2 - . 0 1 . 0 1 . 0 0 - . 0 1 - . 0 1 - . 0 7 - . 0 8 - . 0 8 - . 0 6 Total ' . 3 5 . 7 1 2 . 3 0 3 . 1 2 3 . 6 8 4 . 1 8 4 . 3 7 4 . 2 5 4 . 4 8 4 . 4 3 177 Appendix Table 20. Cumulative w a t e r use (in) at 6 inch intervals for the dr o u g h t line. C o n t . Depth June July August Inches 13 20_______ 27 5 11 1 8 25 I 8 16 Dickson 6 - 12 . 0 6 . 1 5 . 5 6 . 7 6 . 7 4 . 8 2 . 8 3 . 8 5 - . 8 5 . 8 7 12 - 18 . 0 8 . 0 9 . 3 7 . 6 1 . 6 5 . 7 1 . 7 4 . 7 3 . 7 2 . 7 3 18 - 24 . 0 7 . 1 1 . 2 5 . 5 3 . 6 1 . 6 7 . 7 2 . 6 9 . 6 9 . 7 3 2 4 - 30 . 1 3 . 1 3 . 1 9 . 4 3 . 5 2 . 6 5 . 6 8 . 6 8 . 6 7 . 6 7 3 0 - 36 . 0 6 . 0 0 . 1 0 . 1 9 . 2 5 . 3 6 . 4 4 . 4 4 . 4 4 . 4 7 3 6 - 42 ' . 0 1 - . 0 6 . • . 0 0 . 0 5 . 1 2 . 1 8 . 2 6 . 23 .3 2 . . 3 5 4 2 - 48 . 0 2 - . 0 1 . 0 1 . 0 7 . 0 6 . 1 0 . 1 4 . 1 4 . 1 8 . 1 9 4 8 - 54 . 0 0 . 0 2 . 0 4 . 0 5 . 0 5 . 1 1 . 1 3 . 0 9 . 0 9 . 0 8 5 4 - 60 . 0 0 - . 0 3 . 0 2 . . 0 3 . 0 2 . 0 2 . 0 5 . 0 1 . 0 1 . 0 4 60 - 66 - . 0 3 - . 0 7 . 0 1 - . 0 1 . 0 1 . 0 0 . 0 0 - . 0 5 . 0 1 - . 0 6 Total . 4 0 . 3 6 1 . 5 8 2 . 7 5 3 . 0 9 3 . 6 8 4 . 0 6 3 . 8 9 4 . 0 7 4 . 1 1 Erbet 6 - 12 . 0 6 . 1 5 . 4 9 . 6 5 . 6 9 . 7 4 . 7 5 . 7 6 . 7 5 . 7 6 12 - 18 . 1 5 . 1 5 . 4 8 . 6 0 . 6 3 . 6 9 . 7 1 . 7 0 . 6 9 . 7 1 18 - 24 . 0 3 . 0 8 . 3 1 . 5 4 . 5 6 . 6 3 . 6 2 . 6 3 . 6 5 . 6 6 2 4 - 30 . 0 5 . 1 0 . 2 1 . 4 0 . 4 7 . 5 5 . 5 6 . 5 2 . 5 7 . 5 4 3 0 - 36 - . 0 2 - . 0 2 . 0 5 . 2 2 . 3 1 . 4 1 . 4 7 . 4 5 . 4 4 . 4 7 3 6 - 4 2 - . 0 2 - . 0 4 . 0 1 . 0 9 . 1 2 . 2 4 . 2 8 . 3 1 . 3 1 . 3 1 4 2 - 48 . 0 1 . 0 0 . 0 2 . 0 5 . 0 8 . 1 1 . 1 5 . 0 9 ; 13 . 1 3 4 8 - 54 - . 0 3 - . 0 1 . 0 2 - . 0 3 • 02 . 0 6 . 0 8 . 0 0 . 0 5 . 0 2 5 4 - 60 - . 0 1 . 0 1 . 0 1 . 0 2 . 0 6 . 0 7 . 0 6 . 0 4 . 0 6 . 0 5 60 - 66 . 0 2 . 0 0 . 0 1 . 0 2 . 0 5 -.01 . 0 2 - . 0 3 . 0 2 . 0 4 Total . 2 5 . 4 2 1 . 6 1 2 . 5 8 3 . 0 2 3 . 5 0 3 . 7 1 3 . 4 8 3 . 6 8 3 . 7 0 Firlbecks III 6 - 12 . 0 6 . 1 9 . 6 0 . 6 9 . 7 4 . 7 9 . 8 3 . 8 2 . 8 5 . 8 5 12 - 18 . 1 0 . 2 0 . 5 4 . 6 8 . 7 0 . 7 6 . 7 9 . 7 8 . 8 1 . 7 9 18 - 2 4 . 0 6 . 1 3 . 3 3 . 5 9 . 6 1 . 6 7 . 6 9 . 6 8 . 6 6 . 6 7 2 4 - 30 . 1 1 • . 1 2 . 2 6 . 5 0 . 5 4 . 6 1 . 6 3 . 6 2 . 6 1 . 6 4 30 - 36 . 0 4 . 0 4 . 1 2 . 3 2 . 4 6 . 5 3 . 6 3 . 5 9 . 6 2 . 6 7 36 - 42 -.01 . 0 2 . 0 6 . 1 6 . 2 8 . 4 3 . 4 7 . 55 . 5 7 . 5 6 4 2 - 48 -. 06 . 0 1 . 0 1 . 0 6 . 1 1 . 1 9 . 3 0 . 3 8 . 3 9 . 35 4 8 - 5 4 . . 0 0 - . 0 3 . 0 0 . 0 4 . 0 7 , 0 8 . 1 0 . 1 4 . 1 4 . 1 5 5 4 - 60 - . 0 1 - . 0 4 . 0 0 - , 0 3 . 0 2 . 0 3 . 0 3 ■ . 0 1 ' . 0 4 . 0 5 60 - 66 . 0 0 - . 0 1 . 0 1 - . 0 1 - . 0 1 . 0 2 . 0 4 . 0 0 . 0 4 . 0 5 Total . 2 9 . 6 2 1 . 9 2 2 . 9 9 3 . 5 1 4 . 1 1 4 . 5 0 4 . 5 5 4 . 7 2 4 . 7 7 Freja 6 - 12 . 0 8 . 2 2 . 5 9 . 6 9 . 7 0 . 7 9 . 8 1 .78. . 8 0 . 8 2 12 - 18 . 0 5 . 1 4 . 4 5 . 6 1 . 6 3 . 6 5 . 6 6 . 65 . 6 9 . 6 6 18 - 24 . 0 6 . 0 9 . 3 8 . 5 8 . 6 0 . 6 7 . 6 7 . 6 5 . 6 5 . 6 5 2 4 - 30 . 0 9 . 0 6 . 2 7 . 5 8 . 6 4 . 6 5 . 7 3 . 6 9 • 71 . 6 8 3 0 - 36 - . 0 1 . 0 3 . 1 4 . 3 5 . 4 7 . 5 7 . 6 2 . 6 1 . 6 3 . 5 8 3 6 - 42 . 0 1 . 0 3 . 1 0 . 2 1 . 3 0 . 3 9 . 4 7 . 4 9 . 4 7 . 4 9 4 2 - 4 8 - . 0 5 - . 0 2 - . 0 3 . 0 3 . 0 5 . 0 9 . 1 8 . 2 1 . 2 3 ’ . 25 4 8 - 54 - . 0 5 - . 0 2 - . 0 5 . 0 1 . 0 0 . 0 8 . 0 7 . 0 8 . 0 7 . 0 8 5 4 - 60 - . 0 3 . 0 1 . 0 0 . 0 2 . 0 5 . 0 4 . 0 8 .04 . . 0 4 . 0 7 60 _ 66 . 0 0 - . 0 1 . 0 2 . 0 2 . 0 3 . 0 0 - . 0 6 - . 0 5 - . 0 2 . 0 0 Total . 1 6 . - 52 1 . 8 6 3 . 0 9 3 . 4 7 3 . 9 7 4 . 2 9 4 . 2 0 4 . 3 1 4 . 3 2 178 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. Cont. Depth June July August "Inches 13 20 27 4 11 18 25 6 - 12 . 0 8 . 2 7 . 6 1 Frontier . 7 6 . 7 5 . 8 5 , , . 8 5 . 8 5 . 8 9 12 - 18 . 1 3 . 2 3 . 6 8 . 7 7 . 8 1 . 8 3 . 8 7 . 8 5 . 8 6 . 8 4 18 - 24 . 0 7 . 1 7 . 5 2 . 7 5 . 7 2 . 8 3 . 8 1 . 7 9 . 8 0 . 7 9 2 4 - 3 0 . 0 3 . 0 7 . 3 3 . 5 7 . 6 1 . 6 6 . 6 9 . 6 9 . 7 0 . 6 7 3 0 - 3 6 . 0 0 . 0 1 . 1 6 . 4 0 . 4 6 . 6 0 . 6 1 . 5 8 . 6 1 . 5 9 3 6 - 4 2 - . 0 4 . 0 4 . 0 8 . 1 9 . 2 4 . 3 5 . 3 5 . 3 8 . 4 2 . 4 3 4 2 - 4 8 . 0 1 - . 0 4 . 0 2 . 0 4 . 0 5 . 1 8 . 1 9 . 2 2 . 2 5 . 2 6 4 8 - 54 . 0 3 - . 0 3 . 0 5 . 0 1 . 0 7 . 0 9 . 0 5 . 0 7 . 1 0 . 1 0 . 5 4 - 60 - . 0 3 . 0 2 . 0 2 . 0 0 . 0 1 . 0 0 . 0 2 . 0 2 . 0 3 . 0 3 6 0 - 66 - . 0 3 - . 0 2 . 0 1 . 0 1 . 0 2 - . 0 4 - . 0 2 - . 0 9 - . 0 4 - . 0 2 Total . 2 5 . 7 2 2 . 4 6 3 : 5 1 3 . 7 5 4 . 3 6 4 . 4 1 4 . 3 3 4 . 5 5 4 . 5 6 6 - 1 2 . 1 1 . 3 9 . 6 6 Halsa U . 7 1 . 7 9 . 8 0 .8 ? . 8 7 . 8 7 . 8 8 12 - 18 . 1 2 . 2 2 . 5 6 . 6 6 . 6 6 . 6 8 . 7 2 . 7 0 . . 6 8 . 7 1 18 - 24 . 0 8 . 1 5 . 5 5 . 7 0 . 7 1 . 7 2 . 7 4 . 7 3 . 7 3 . 7 5 2 4 - 30 . 0 9 . 0 9 . 4 1 . 6 1 . 6 6 . 6 8 . 6 9 . 6 8 . 6 6 . 6 8 3 0 - 36 . 0 3 . 0 7 . 1 9 . 4 3 . 5 0 . 5 9 : 61 . 5 8 . 5 9 . 6 0 3 6 - 42 - . 0 1 ; 0 1 . 0 8 . 2 0 . 2 9 . 4 2 . 4 4 . 4 5 . 4 4 . 4 8 4 2 - 4 8 - . 0 4 - . 0 3 - . 0 2 . 0 4 . 1 3 . 2 5 . 2 6 . 2 8 . 3 7 . 3 4 4 8 - 5 4 - . 0 5 - . 0 4 ' - . 0 2 . 0 2 - . 0 1 . 0 7 . 1 2 . 0 7 . 1 1 . 1 3 5 4 - 60 ; 01 . 0 0 . 0 0 . 0 2 - . 0 1 . 0 2 . 0 6 . 0 0 - . 0 2 . 0 4 6 0 - 66 i00 . 0 2 - . 0 5 . 0 1 - . 0 1 - . 0 1 . 0 1 - . 0 4 - . 0 1 . 0 1 Total . 3 4 . 8 4 2 . 3 5 3 . 3 8 3 . 6 9 4 . 2 1 4 . 4 5 4 . 3 3 4 . 4 1 4 . 5 9 6 - 1 2 . 1 3 . 1 6 . 5 3 Hannchen . 7 2 . 7 1 . 7 6 ■ ; 79 . . 8 2 . 8 4 . 8 6 12 - 18 . 0 8 . 1 7 . 4 6 . 6 8 . 7 0 . 7 8 . 7 9 . 7 7 . 7 7 - . 7 9 1 8 - 2 4 . 0 7 . 0 7 . 2 9 . 5 6 . 6 2 . 6 7 . 7 1 . 7 0 . 6 8 . 6 7 2 4 - 30 . 0 8 . 1 0 . 2 2 . . 4 9 . 5 9 . 6 3 . 6 7 . 6 5 . 6 9 . 6 7 3 0 - 36 . 0 3 . 0 8 ; 12 . 3 1 . 4 4 . 5 4 . 5 9 . 5 9 . 5 6 . 57 3 6 - 4 2 - . 0 3 - . 0 4 . 0 1 . 1 2 . 2 5 . 4 1 . 4 6 . 45 . 4 6 . 4 8 4 2 - 4 8 - . 0 3 - . 0 3 - . 0 2 . 0 4 . 0 7 . 1 3 . 2 3 . 2 7 . 2 8 . 3 1 4 8 - 5 4 - . 0 3 . 0 1 . 0 2 . 0 2 . 0 3 . 0 5 . 0 8 . 0 5 . 0 9 . 1 0 5 4 - 60 - . 0 1 . 0 0 - . 0 1 . 0 1 . . 0 3 . 0 3 . 0 5 - . 0 2 . 0 0 . 0 5 60 - 66 - . 0 3 . 0 0 . 0 0 . 0 2 - . 0 2 - . 0 4 . 0 2 - . 0 5 . - . 0 4 - . 0 3 Total . 2 5 . 5 2 1 . 6 2 2 . 9 9 3 : 4 5 3 . 9 9 4 . 4 2 4 . 2 6 4 . 3 6 4 . 4 9 6 - 1 2 . 1 2 . 2 7 . 7 1 Harlan . 7 8 . 8 5 . 9 1 . 8 9 . 9 0 . 9 0 . 9 3 12 - 18 . 1 3 . 2 0 . 5 4 . 7 2 . 7 0 . 7 7 . 7 8 . 7 6 . 7 5 . 8 2 18 - 24 . 0 2 . 1 0 . 2 9 . 5 4 . 6 1 . 6 5 . 6 8 . 6 6 . 6 7 . 6 7 2 4 - 36 . 0 2 . . 0 2 . 1 8 . 4 0 . 4 5 . 6 1 . 6 7 . 6 5 . 6 8 . 6 9 36 - 4 2 . 0 1 , . 0 3 . 1 0 . 2 1 . . 3 0 . 4 0 . 4 7 . 4 7 . 4 9 ■ . 4 8 4 2 - 4 8 - . 0 4 - . 1 0 - . 0 3 . 0 1 . 0 6 ; 14 . 1 6 . 1 3 . 1 3 . 1 6 4 8 - 5 4 . 0 2 . 0 0 . 0 7 . 1 1 . 0 8 . 1 3 . 1 3 . 0 9 . 1 3 . 1 8 5 4 - 60 Total . 2 8 . 5 2 1 . 8 5 . 0 5 2 . 8 0 . 0 5 3 . 0 9 . 0 5 3 . 6 4 . 1 0 3 . 8 6 . 0 5 3 . 6 9 . 0 9 3 . 8 2 . 1 1 4 . 0 2 179 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. Cont. Depth June July . August Inches. 13 20 27 5 11 Iti . 25 ' I .8 16 6 - 12 . 0 6 . 1 5 . 5 5 Klages . 7 7 . 7 9 . 9 0 . 9 1 . 9 5 . 9 7 . 9 9 12 - 18 . 0 9 . 1 0 . 3 8 . 6 4 . 6 9 . 7 1 . 7 8 . 7 9 . 7 9 . 7 8 1 8 - 24 . 1 2 . 1 4 . 3 3 . 5 6 . 6 6 . 7 1 . 7 0 . 7 2 . 7 4 . 7 5 2 4 - 30 . 0 4 . 0 6 . 1 5 . 3 3 . 4 0 . 5 5 . 6 2 . 5 9 . 6 1 . 6 0 3 0 - 3 6 . 0 6 . 0 7 . 1 0 . 1 9 . 2 4 . 3 7 . 4 8 . 4 9 . 4 9 . 5 4 36 - 42 . 0 0 . 0 6 . 0 6 . 0 7 . 1 4 . 2 1 . 3 0 . 35 . 3 8 ' . 4 2 4 2 - 4 8 . 0 1 - . 0 4 - . 0 3 . 0 1 . 0 7 . 1 1 . 1 4 . 1 5 . 1 7 . 2 4 4 8 - 54 - . 0 3 . 0 1 - . 0 2 . 0 3 . 0 4 . 0 6 . 0 6 . 0 1 . 1 1 . 1 0 54 - 60 - . 0 1 . - 0 4 - . 0 2 . 0 4 . 0 7 . 0 3 . 0 4 . 0 0 . 0 0 . 0 1 60 - 66 - . 0 1 . 0 2 . 0 5 . 0 8 , 1 0 . 0 4 . 0 4 . 0 1 . 0 6 . 0 8 Total . 3 3 . 5 4 1 . 5 5 2 . 7 2 3 .2 1 . 3 . 7 1 4 . 0 9 4 . 0 7 4 . 3 0 4 . 5 0 6 - 12 . 1 0 . 2 6 . 5 8 Heines . 6 8 Hanna . 7 2 . 7 7 . 8 1 . 8 1 . 8 1 . 8 3 12 - 18 . 1 8 . 1 9 . 5 3 . 7 2 . 7 1 .7 8 . . 8 1 . 7 8 . 7 7 . . 7 6 18 - 24 . 1 2 . 1 5 . 3 9 . 6 4 . 6 9 . 7 6 ' . 7 7 . 7 4 . 7 8 . 7 5 2 4 - 30 - . 0 3 . 0 6 . 2 2 . 4 9 . 5 6 . 6 5 . 6 5 . 6 2 . 6 5 . 6 7 30 - 36 . 0 0 . 0 3 . 1 6 . 3 3 . 4 5 . 53 . 6 2 . 5 9 . 6 1 . 6 4 3 6 - 42 . 0 1 . 0 5 . 0 8 . 1 6 . 2 7 . 3 5 . 3 9 . 4 3 . 4 6 . 45 42 - 48 . 0 1 . 0 0 . 0 0 . 0 2 - . 0 1 . 0 8 . 11 - . 0 9 . 1 0 . 17 4 8 - 5 4 . 0 0 - . 0 2 - . 0 5 . 0 3 - . 0 4 . 0 0 . 0 4 - . 0 1 . 0 2 . 0 1 5 4 - 60 - . 0 3 - . 0 6 . 0 0 - . 0 1 - . 0 4 - . 0 7 . 0 0 - . 0 3 - . 0 1 . 0 0 60 - 66 - . 0 2 - . 0 3 - . 0 1 . 0 0 . 0 2 . 0 0 - . 0 1 - . 0 2 - . 0 6 . 0 0 Total . 3 4 . 6 4 1 . 9 1 3 . 0 7 3 . 3 5 3 . 8 7 4 . 2 2 4 . 0 2 4 . 1 6 4 . 2 9 6 - 12 . 1 2 . 1 8 . 5 4 Herta . 7 3 . 6 8 . 8 0 . 8 5 , 8 1 . 8 6 . 8 5 12 - 18 . 0 9 . 1 4 . 4 0 . 6 0 . 6 6 . 7 1 . 6 9 . 7 1 . 7 1 . 7 0 18 - 2 4 . 0 5 . 0 9 .2 2 ' .4 8 . . 4 9 . 5 9 : . 6 4 . 6 2 . 6 0 . 6 4 2 4 - 30 . 0 3 . 0 0 . 1 1 . 3 3 . 3 6 . . 4 8 . 5 8 . 57 . 5 7 . 5 9 30 - 36 . 0 2 ■ . 0 3 . 0 8 . 1 4 . 1 7 . 3 5 . 4 5 . 5 1 . 5 7 . 6 0 3 6 - 42 . 0 6 . . 0 9 . 1 0 . 1 2 . 1 6 . 3 1 . 3 8 . 41 . 4 8 . 5 2 4 2 - 4 8 - . 0 3 . 0 4 . 1 1 . 0 7 . 1 0 . 1 6 . 2 1 . 1 9 . 3 0 ' . 2 4 4 8 - 54 - . 0 5 - . 0 2 - . 0 2 - . 0 1 . 0 1 . 0 5 . 1 0 . 0 7 . 1 1 . . 1 5 5 4 - 60 - . 0 1 . 0 0 . 0 4 . 0 8 .08 . 1 0 . 1 3 . 0 8 . 1 2 . 1 0 60 - 6 6 . 0 1 - . 0 1 . 0 3 . 0 3 . 0 7 . 0 8 . 05 - . 0 3 . 0 5 . 0 3 Total . 3 0 . 5 5 1 . 6 2 2 . 5 9 2 . 8 0 3 . 6 3 4 . 0 8 3 . 9 2 4 . 3 4 4 . 4 3 6 12 . 0 5 . 1 6 . 6 1 Hlland . 7 5 . 7 5 . 8 6 . 8 9 . 9 0 . 8 9 ' . 9 2 12 - 18 . 1 0 . 1 7 . 5 3 . 7 2 . 7 7 . 8 1 . 8 2 . 8 1 . 8 1 .8 2 . . 18 - 24 . 0 4 . 0 7 . 4 0 . 6 1 . 6 8 . 7 2 •73 . 1 4 . 7 2 . 7 6 2 4 - 30 . 0 4 . 0 7 . 2 4 . 5 4 ■ . 6 1 . 7 0 . 7 1 . 6 8 . 6 9 . 6 7 3 0 - 36 . 0 3 . 0 6 . 1 6 . 3 9 . 5 0 . 5 8 . 6 0 . , . 5 8 . 5 8 . 6 0 36 - 42 . 0 1 . 01 . 0 3 . 1 4 . 27 . 37 . -37 . 3 8 . 4 1 . 4 2 4 2 - 4 8 - . 0 5 - . 0 1 . 0 1 . 0 3 . 0 6 . 1 8 . 2 2 . 2 3 . 2 5 . 2 5 4 8 ■ “ 5 4 . 0 7 . 0 2 . 0 4 . 0 7 . 0 9 . 1 2 . 1 5 . 1 0 . 1 7 . 1 7 5 4 - 60 . 0 2 - . 0 2 . 0 1 . 0 0 . 0 1 . 0 3 . 0 3 . 0 0 . 0 4 - . 0 1 6 0 “ 66 . 0 4 . 0 2 . 0 1 . 02 . 0 3 . 0 5 . 0 7 . 0 3 . 0 5 . 0 3 Total . 3 6 .5 6 2 . 0 6 3 . 3 0 3 . 8 0 4 . 4 4 4 . 6 1 4 . 4 6 4 . 6 2 4 . 6 4 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. Cont. Depth June July August .Inches 13 20 27 5 11 18 - 3T I 8 16 6 - 1 2 . 0 4 . 1 7 . 5 1 Hector . 6 3 «66 . 6 8 . 6 7 . 6 7 . 6 9 . 7 1 12 - 18 . 1 6 . 2 7 . 6 2 . 7 2 . 7 3 . 7 4 . 7 6 . 7 2 . 7 3 . 7 4 18 - 24 . 0 9 . 1 9 ; 5 5 . 7 2 . 7 6 . 7 6 .7 7 . 75 . 7 7 . 7 6 24 - 30 . . 0 4 . 0 9 . 3 4 . 5 6 . 6 3 . 6 5 . 6 8 . 6 5 . 6 6 . 6 5 30 - 36 . 0 6 . 0 7 . 1 9 . 4 3 . 5 0 . 5 8 . 5 8 . 5 8 . 5 9 . 5 9 3 6 - 42 . 0 0 . 0 2 . 0 6 ■ . 1 8 . 2 8 . 3 6 . 4 0 . 4 1 . 4 1 . 4 4 4 2 - 4 8 -. 0 6 - . 0 3 - . 0 5 . 0 3 . 0 5 . 2 4 . 2 7 . 2 5 . 2 6 . 2 6 4 8 - 54 . 0 5 . . 0 2 . 0 5 . 0 8 . 0 7 . 0 8 . 1 5 . . 1 1 . 1 4 . 1 2 5 4 - 6 0 . 0 3 . 0 2 . 0 5 . 0 4 . 0 5 . 0 5 . 0 8 . 0 8 . 0 7 . 0 9 60 - 66 . 0 1 . 0 0 . 0 5 . 0 7 . 0 7 . 0 5 . 0 3 . 0 3 . 0 6 . 0 6 Total . 4 2 . 8 1 2 . 3 6 3 . 4 4 3 . 7 8 .4 . 1 7 4 . 3 6 4 . 2 2 4 . 3 6 4 . 3 8 6 - 12 . 0 4 . 2 0 . 6 3 . 7 4 Galt . 7 3 . 8 2 . 8 3 .8 9 . . 8 9 . 9 0 12 - 18 . 1 2 . 1 9 . 5 0 . 6 2 . 66 . 7 2 . 7 3 . 7 3 . 7 3 . 7 6 1 8 - 24 . 0 6 . 0 9 . 3 1 . 5 1 . 5 4 . 6 1 ' . 6 0 . 5 9 . 6 1 . 6 1 ' 2 4 - 3 0 - . 0 1 7 . 0 1 . 1 2 . 3 5 . 4 2 . 5 2 . 5 2 . 5 5 . 5 5 . 5 4 3 0 - 36 . 0 0 - . 0 1 . 0 3 . 1 7 . 2 9 . 4 5 . 4 6 . 4 8 . 5 0 . 5 2 3 6 - 42 - . 0 1 - . 0 3 . 0 3 . 0 9 . 1 5 . 3 3 . 4 2 . 4 9 . 4 7 . 4 8 4 2 - 4 8 . 0 2 - . 0 2 -. 0 6 . 0 3 . 0 9 . 1 5 . . 2 1 . 2 9 . 2 7 . 3 0 • Total . 2 3 . 4 1 1 . 5 8 2 . 5 3 2 . 9 0 3.62 3.78 4 . 0 3 4 . 0 2 4 . 1 1 6 - 12 . 0 7 . 2 3 . 5 9 . 7 0 Gem . 7 4 . 7 9 . 81 . 7 8 . 8 2 . 8 3 12 - 18 . 1 4 . 2 2 . 6 0 . 7 8 . 7 7 . 8 0 . 85 . 8 1 . 7 7 . 8 1 1 8 - 24 . 1 3 . 2 1 . 4 8 . 7 0 . 7 5 . 7 7 . 7 8 . 7 4 . 7 6 . 7 6 2 4 - 30 . 0 7 . 1 5 . 3 9 . 5 7 . 6 2 . 6 6 . 7 1 . 6 7 . 6 6 . 6 4 30 - 36 - . 0 2 . 0 2 . 1 4 . 3 1 . 3 4 . 4 8 . 4 9 . 4 5 . 4 7 . 47 36 - 42 . 0 3 . 0 4 . 0 4 . 2 0 . 3 0 . 4 0 . 5 3 . 4 9 . 5 2 . 5 4 4 2 - 4 8 . 0 3 . 0 3 . 0 6 . 0 7 . 1 3 . 2 7 . 3 6 . 3 7 . 3 6 . 3 8 4 8 - 5 4 . 0 2 . 0 2 . 0 3 . 0 9 . 1 0 . 1 3 . 2 1 . 1 8 . 1 4 . 1 8 5 4 - 60 . 0 2 - . 0 1 . 0 3 . 0 3 . 0 5 . 0 4 . 0 7 . 0 7 . 0 3 . 0 7 60 - 66 - . 0 1 - . 0 2 - . 0 1 . 0 4 - . 0 2 . 0 3 - . 0 2 . 0 0 - . 0 4 . 0 0 Total . 4 8 . 9 0 ' 2 . 3 4 3 . 4 9 3 . 7 8 4 . 3 6 4 . 7 7 4 . 5 4 4 . 5 3 4 . 7 1 6 - 12 .0 4 . . 1 7 . 5 8 Geopgle . 6 7 . 6 8 . 7 6 . 7 8 . 8 0 . 7 9 . 7 8 12 - 18 . 0 7 . 1 8 . 5 4 . 66 . 7 3 . 7 2 . 7 4 . 7 4 . 7 4 . 7 4 18 - 24 . 0 4 . . 1 1 . 4 4 . 6 2 . 7 0 . 7 1 . 7 4 . 7 0 . 7 3 . 7 2 24 - 30 . 0 3 . 1 1 . 3 1 . 5 3 . 6 5 . 6 4 . 6 6 . 6 3 . 6 3 ' . 6 5 3 0 - 36 . 0 4 . 0 5 . 2 1 . 4 3 . 5 3 . 6 2 . 6 3 . 6 3 . 6 2 . 6 0 3 6 - 42 . 0 2 . 0 6 . 0 4 . 2 5 . 3 7 . 4 6 . 5 2 . 5 1 . 5 0 . 4 9 4 2 - 4 8 . 0 0 . 0 0 . 0 0 . 0 3 . 1 0 . 1 5 . 2 0 . 2 5 , 2 8 . 2 4 4 8 - 5 4 . 0 2 . 0 0 . 0 6 . 0 2 . 0 8 . 07 . 0 6 . 0 8 . 1 1 . 1 1 5 4 - 60 . 0 1 - . 0 1 . 0 0 . 0 0 . 0 8 . 0 5 . 0 4 . 0 0 . 0 4 . 0 5 60 - 66 - . 0 2 . 0 1 . 0 8 . 0 0 . 0 3 . 0 5 . 0 2 - . 0 1 - . 0 1 . 0 0 Total . 2 6 . 7 0 2 . 2 9 3 . 2 2 3 . 9 0 4 . 2 2 4 . 3 8 4 . 3 2 4 . 4 4 4 . 3 9 131 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the d r ought line. C o n t . Depth June July August ■Inches 13 2,0 27__________ 5 11 18 25__________I__________8 16 6 - 12 . 0 5 . 2 5 12 - 18 . 0 7 . 1 6 18 - 24 . 1 0 . 1 7 2 4 - 30 . 0 5 . 1 0 3 0 - 36 . 0 3 . 0 4 3 6 - 42 . 0 5 . 0 0 4 2 - 4 8 - . 0 2 . 0 1 4 8 - 5 4 . 0 2 . 0 3 5 4 - 60 . 0 2 - . 0 3 6 0 ■- 66 . 0 0 - . 0 3 Total . 3 8 . 7 1 6 - 12 . 0 1 . 1 4 12 - 18 . 0 8 . 1 9 18 - 24 . 0 8 . 1 1 2 4 - 30 . 0 1 . 0 7 3 0 - 36 . 0 5 . 0 5 3 6 - 42 . 0 4 . 0 1 4 2 - 48 - . 0 4 - . 0 1 4 8 - 54 . 0 1 - . 0 2 5 4 - 60 - . 0 1 . 0 1 60 - 66 - . 0 4 . 0 2 Total . 1 9 . 5 3 6 - 12 . 0 9 . 2 3 12 - 18 . 1 0 . 1 4 18 - 24 . 0 8 . 1 5 2 4 - 30 . 0 4 . 0 8 30 - 36 - . 0 2 . 0 1 3 6 - 42 - . 0 5 - . 0 3 42 -■ 4 8 - . 0 3 - . 0 4 4 8 - 54 - . 0 2 - . 0 2 54 - 60 - . 0 7 - . 0 6 60 - 66 . 0 0 ' - . 0 3 Total . 1 3 . 4 4 6 - 1 2 . 0 4 . 1 3 12 - 18 . 0 9 . 1 6 18 - 24 . 0 1 . 0 1 2 4 - 30 - . 0 2 - . 0 3 30 - 36 . 0 9 . 0 5 36 - 42 - . 0 3 . 0 1 42 - 48 . 0 1 . 0 3 4 8 - 54 . 0 1 . 0 5 5 4 - 60 - . 0 2 . 0 0 Total . 1 8 . 4 0 Liberty . 5 8 . 7 1 . 7 2 . 7 6 . 5 4 . 6 6 . 7 0 . 7 1 . 4 5 . 7 0 . 6 9 . 7 7 . 3 1 . 5 5 . 6 2 . 7 0 . 1 6 . 3 2 . 3 7 . 4 6 . 0 2 . 1 1 . 1 7 . 2 7 . 0 1 . 0 4 . 0 9 . 1 6 . 0 5 . 0 2 . 0 8 . 0 8 - . 0 5 . 0 0 . 0 2 .0 2 , . 0 0 . 0 2 . 0 0 . 0 6 2 . 0 8 3 . 1 4 3 . 4 5 3 . 9 8 Marie . 6 9 . 6 4 . 6 6 . 7 3 . 4 9 . 6 7 . 7 6 . 8 0 . 3 1 . 64 . 7 1 . 8 0 . 2 1 . 5 0 . 6 0 . 6 7 . 0 4 . 3 0 . 4 4 . 5 2 . 0 8 . 1 6 . 2 8 . 4 0 - . 0 1 . 0 5 . 1 1 . . 2 3 . 0 2 . 0 3 . 0 2 . 0 7 . 0 5 . 0 3 . 0 1 . 0 4 - . 0 2 . 0 3 . 0 2 . 0 1 1 . 8 4 3 . 0 5 3 . 6 1 4 . 2 7 Horn . 5 9 . 6 9 . 7 0 . 7 7 . 5 0 . 6 3 . 66 . 6 9 . 4 4 . 6 1 . 6 5 . 6 7 . 27 . 4 7 . 5 5 . 5 8 . 0 6 . 2 6 . 3 3 . 4 3 . 0 2 . 1 3 . 2 7 . 4 1 - . 0 1 . 0 1 . 1 0 . 2 2 . 0 3 . 0 5 . 0 5 . . 0 7 - . 0 2 - . 0 4 - . 0 4 . 0 1 . 0 1 . 0 0 . 0 1 . 0 2 1 . 9 1 2 . 8 1 3 . 2 8 3 . 8 7 Ingrid . 4 5 . 66 . 6 5 . 7 8 . 4 5 . 6 3 . 6 4 . 6 9 . 1 6 . 3 6 . 4 8 . 5 4 . 0 2 . 2 2 . 3 3 . 4 6 . 0 3 . 1 3 . 1 8 . . 3 4 . 0 9 . 1 0 . 1 1 . 1 3 . 0 4 . 07 . 0 5 . 1 2 . 0 4 . 0 4 . 0 6 . 0 6 . 0 2 . 0 4 . 0 6 . 0 5 1 . 2 9 ' 2 . 2 5 2 . 5 6 3 . 1 7 . 7 7 . 7 9 . - 77 . 7 6 . 7 1 . 6 9 . 7 4 . 7 3 . 7 6 . 7 5 ■ . 7 3 . 7 5 . 7 0 ■ . 6 8 . 6 8 . 6 7 . 5 2 • . 4 8 . 4 9 . 5 0 . 3 4 . 3 4 . 3 3 . 35 . 1 9 . 2 4 . 1 9 . 2 4 . 0 9 . 0 8 . 0 8 . 1 1 • . 0 0 - . 0 2 . - . 0 1 - . 0 1 . 0 1 . 0 0 - . 0 3 - . 0 4 4 . 0 7 3 . 9 8 3 . 9 2 4 . 0 7 . 7 5 . 7 2 . 7 4 . 7 7 . 7 9 • . 7 6 . 8 1 . 8 1 . 8 2 . 8 1 . 8 0 . 7 8 . 7 0 . 6 8 . 7 2 . 7 1 . 5 8 . 5 6 . 5 7 . 5 9 . 4 8 . 4 8 . 5 0 . 5 0 . 2 7 . 3 4 . 3 1 . 3 2 . 1 0 . 0 7 . 1 1 . 1 3 . 0 6 . 0 6 . 0 7 . 0 7 00 . 0 3 . 0 0 . 0 2 4 . 5 3 4 . 4 2 4 . 5 3 4 . 6 7 . 7 8 .83 . 8 0 . 8 4 . 6 9 .67 .69 . 6 5 . 7 0 . 71 ■ . 7 2 . 6 8 . 6 2 . 5 9 . 5 8 .57 . 4 4 . 4 6 . 4 3 . 4 4 . 4 5 . 4 6 . 4 8 . 4 9 . 2 7 . 2 7 . 3 0 • . 3 5 . . 1 0 . 0 7 . 1 3 . 1 6 - . 0 5 -; 03 .01 - . 0 4 :o3 - . 0 1 . 0 4 . 0 0 4 . 0 3 •4 . 0 1 4 . 1 8 4 . 1 4 . 7 9 . 7 8 . 7 8 . 8 0 . 7 1 . 7 3 . 7 3 . 7 2 . 5 8 . 5 8 , 5 6 . 57 . 5 2 . 5 1 . 5 2 . 5 3 . 3 9 . 4 1 . 4 4 . 4 1 . 2 2 . 1 8 . 2 7 . 2 3 . 1 2 . 12 . 1 7 . 1 8 . 1 0 . 1 0 . 1 3 . 1 5 . 11 . . 0 9 . 0 7 . 1 2 3 . 5 4 3 . 5 0 3 . 6 8 3 . 1 0 182 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. C o n t . Depth June July August Inches 13 20 27 5 11 18 25 I 8 16 6 - 1 2 . 0 9 . 2 0 . 5 9 Marls . 6 9 Mink . 7 1 . 8 4 . 8 3 . 8 6 . 8 6 . 8 4 12 - 18 . 1 3 . 1 7 . 5 1 . 6 8 . 7 3 . 7 6 . 7 8 . 7 7 . 7 7 . 7 8 12 - 24 . 1 0 . 1 2 . 3 8 . 6 0 . 6 7 . 7 1 . 7 0 . 6 9 . 6 8 . 7 2 2 4 - 30 . 0 3 . 0 7 . 2 6 . 4 7 . 5 3 . 5 6 . 5 5 . 5 7 . 5 5 . 5 7 3 0 - 36 . 0 3 . 0 5 . 1 1 . 2 9 . 35 . 5 0 . 5 3 . 5 1 . 5 2 . 5 3 3 6 - 42 . 0 2 . 0 0 . 0 6 . 1 8 . 2 2 . 3 7 . 4 8 . 4 7 . 4 9 . 5 0 42 - 48 - . 0 4 - . 0 9 - . 0 6 . 0 3 . 0 4 . 1 5 . 2 2 . 2 5 . 2 7 . 27 4 8 - 54 - . 0 1 - . 0 3 - . 0 4 - . 0 2 . 0 2 . 0 8 . 0 9 . 12 . 0 7 . 0 8 5 4 - 60 - . 0 3 . 0 0 . 0 4 . 0 3 . 0 3 . 0 7 . 0 7 .01 . 0 2 . 1 0 60 - 66 - . 0 1 - . 0 1 . 0 1 . 0 2 . 0 0 . 0 0 . 0 1 . 02 . 0 3 . 0 4 Total . 3 0 . 4 9 1 . 8 8 3 . 0 1 3 . 3 5 4 . 0 9 4 . 3 3 4 . 3 4 ■ 4 . 3 2 4 . 4 5 6 - 12 . 0 2 . 1 8 . 6 7 Montcalm . 7 1 . 7 4 . 7 7 . 8 1 . 8 1 . 8 5 . 8 4 12 - 18 . 0 8 . 1 3 . 5 0 . 6 4 . 6 7 . 7 3 . 7 4 . 77 , 7 3 . 7 6 18 - 2 4 . 0 8 . 1 1 . 4 5 . 5 5 . 6 6 . 7 1 . 7 1 . 7 4 . 7 2 . 7 4 2 4 - 30 . 0 3 , 0 3 . 1 0 . 3 4 . 4 1 , 5 3 . 5 6 . 5 2 . 5 7 . 5 5 3 0 - 36 . 0 3 . 0 3 . 1 0 . 2 4 . 3 4 . 4 4 . 5 1 . 4 9 . 5 1 ' . 5 1 3 6 - 42 - . 0 2 - . 0 2 . 0 3 . 0 5 . 1 0 . 2 2 . 2 4 . 3 0 . 3 1 . 3 0 42 - 4 8 - . 0 2 - . 0 5 - . 0 3 . 0 0 . 0 1 .0 9 ' . 1 2 . 1 0 . 1 2 . 1 3 48 - 54 . 0 1 . - . 0 2 . 0 1 . 0 3 . 0 1 . 0 2 . 0 7 . 0 5 . 0 4 , . 0 5 5 4 - 60 - . 0 4 - . 0 4 - . 0 3 - . 0 1 . 0 1 . 0 1 - . 0 2 ' - . 0 1 - . 0 3 . 0 0 Total . 1 7 .36 1 . 8 0 2 . 5 5 2 . 9 6 3 . 5 4 3 . 7 5 3 . 7 6 3 . 8 1 3 . 8 8 6 - 12 . 0 2 . 2 0 . 5 9 Munslng . 7 1 . 7 2 . 8 0 . 8 3 . 7 9 . 7 9 . 8 4 12 - 18 . 1 2 . 1 6 . 6 1 . 7 2 . 7 6 . 7 7 . 7 9 . 7 8 . 7 7 . 7 8 18 - 2 4 . 1 3 . 1 9 . 5 4 . 7 3 . 77 . 7 9 . 8 0 . 7 9 . 7 8 . 8 1 2 4 - 30 . 0 9 . 1 0 . 3 3 . 5 7 . 6 4 . 6 8 . 7 2 . 6 8 . 6 7 ' . 6 7 3 0 - 36 . 0 5 . 0 7 . 1 8 . 4 1 . 5 4 . 6 5 . 6 3 . 6 1 . 6 0 . 6 2 36 - 42 . 0 0 . 0 3 . 0 6 . 1 5 . 35 . 4 2 . 4 6 . 45 . 4 4 . 4 7 4 2 - 4 8 . 0 2 - . 0 1 . 0 5 . 0 2 . 1 1 . 2 0 . 2 7 ' . 2 9 . 3 0 . 3 1 4 8 - 54 . 0 3 - . 0 3 . 0 0 - . 0 1 . 0 3 . 0 4 . 1 1 . 0 8 . 0 0 . 1 0 5 4 - 60 - . 0 2 - . 0 1 - . 0 4 - . 0 1 . 0 0 . 0 1 . 0 2 . 0 0 - . 0 2 . 0 2 60 ~ 66 - . 0 2 - . 0 3 . 01 - . 0 3 . 0 0 - . 0 1 . 0 0 - . 0 4 -. 06 - . 0 2 Total . 4 0 . 6 5 2 . 3 0 3 . 2 3 3 . 8 8 4 . 3 0 4 . 5 8 4 . 3 8 4 . 3 5 4 . 6 0 6 - 12 . 0 6 . 2 2 . 6 2 Larker . 6 9 . 6 9 . 7 8 . 7 7 . 7 7 . 7 8 . 7 9 12 - 18 . 0 7 . 1 8 . 5 3 . 7 0 . 7 5 . 7 3 . 7 8 . 75 . 7 4 . 7 3 18 - 2 4 . 0 8 . 1 3 . 4 1 . 6 6 . 7 2 . 7 6 . 7 7 . 75 ■ - 7 6 . 7 8 2 4 - 30 . 0 8 . 1 2 . 2 7 . 5 2 . 6 1 . 7 2 . 7 6 . 7 6 . 7 2 . 7 6 3 0 - 3 6 . 0 5 . 1 4 . 1 7 . 3 4 . 4 4 . 5 5 . 5 8 . 5 8 . 6 1 . 6 2 36 - 4 2 . 0 2 . 0 5 . 0 4 . 1 5 . 2 7 . 3 7 ■ 42 . 43 . 4 4 . 4 9 42 - 4 8 - . 0 3 - . 0 3 . 0 0 . 0 1 . 0 8 . 1 5 . 2 0 . 1 9 . 2 0 . 21 4 8 - 54 - . 0 3 - . 0 3 - . 0 4 . 0 1 - . 0 1 . 0 5 . 0 7 - . 0 1 . 0 0 . . 0 0 5 4 - 60 - . 0 3 - . 0 3 - . 0 2 . 0 0 . 0 1 . 0 1 - . ' 01 - , 1 1 - . 0 7 - . 0 1 ' 60 - 66 - . 0 2 - . 0 2 - . 0 2 . 0 2 - . 0 1 . 0 0 - . 0 4 - . 0 3 ’ - . 0 7 - . 0 2 Total . 2 4 . 7 3 1 . 9 7 3 . 1 1 3 . 5 6 4 . 1 2 4 . 3 0 4 , 0 7 4 . 0 8 4 . 3 3 183 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought l i n e . C o n t . Depth June • July August Inches lj 20 27 5 11 18 25 I 8 TiT 6 - 1 2 . 0 6 . 2 2 . 5 7 Traill . 6 8 . 7 1 . 7 7 . 7 8 . 8 0 . 7 9 . 8 3 12 - 18 . 1 1 . 2 1 .5 5 . . 7 1 . 7 3 . 7 7 . 7 8 . 7 5 . 7 8 . 7 5 1 8 - 24 . 0 3 . 1 4 . 4 5 . 6 6 . 6 9 74 . 7 4 . 7 7 . 7 8 . 7 7 2 4 - 3 0 . 0 1 . 0 8 . 2 7 . 5 0 . 5 5 . 6 1 . 6 3 . 6 2 . 66 . 6 2 3 0 - 36 . 0 3 . 0 4 . 1 3 . 1 8 . 2 9 . 4 1 . 4 8 . 4 7 . 4 9 . 4 8 3 6 - 42 - . 0 1 . 0 0 . 0 2 .06 . 2 1 . 3 2 ' . 4 2 . 4 3 . 5 0 . 4 2 4 2 - 4 8 . 0 4 . 0 0 . 0 1 . 0 2 . 0 8 . 1 9 . 2 2 . 2 8 . 2 8 . 3 1 4 8 - 5 4 - . 0 1 - . 0 1 . . 0 1 . 0 7 . 0 6 . 1 0 . 1 2 . 0 8 . 0 7 • . 1 5 54 - 60 . 0 1 . 0 0 . 0 1 . 0 5 . 0 8 . 0 7 . 0 6 . 0 4 . 0 7 . 0 9 60 - 66 . 0 4 . 0 4 - . 0 2 . 0 7 . 0 1 . 0 8 . 0 7 - . 0 2 . 0 2 . 0 5 Total . 3 2 . 7 2 2 . 0 0 3 . 0 3 3 . 4 1 4 . 0 6 4 . 2 9 4 . 2 0 4 . 4 1 4 . 4 7 6 - 12 . 0 6 . 2 5 . 6 2 Trebl . 7 3 . 7 6 . 8 2 . 8 5 . 8 2 . 8 5 . 9 0 12 - 18 . 1 1 . 2 2 . 6 0 . 7 1 . 7 7 . 7 7 . 8 1 . 7 9 . 8 0 . 7 9 1.8 - 24 . . 0 8 . 1 1 . 4 4 . 6 1 . 6 8 . 7 2 . 7 4 . 6 9 . 7 6 . 7 4 2 4 - 30 . 0 5 . 0 7 •31 . 4 8 . 5 5 . 6 0 . 6 3 . 6 0 . 6 1 . 5 8 ' 3 0 - 36 . 0 5 . 0 8 . 1 4 . 3 7 . 4 9 . 5 4 . 5 9 . 5 8 . 5 7 . 5 7 ■ 3 6 - 42 . 0 1 - . 0 3 . 0 9 . 1 5 . 2 2 . 3 7 . 3 9 . 4 0 . 4 3 . 4 2 42 - 48 ..00 . 0 0 . 0 3 . 0 2 . 1 7 . 22 . 2 0 . 2 6 . 3 1 . 2 7 4 8 - 5 4 - . 0 2 - . 0 1 - . 0 3 - . 0 5 . 0 2 . 0 5 . 0 6 . 05 . 0 9 . 0 6 5 4 - 60 - . 0 2 . 0 2 - . 0 1 . 0 0 . 0 2 . 0 3 . 0 4 - . 0 2 . 0 0 . 0 2 6 0 - - 66 - . 0 7 - . 0 3 - . 0 4 - . 0 4 . . 0 1 . 0 0 . 0 3 - . 0 3 - . 0 2 - . 0 4 Total . 2 4 . 6 8 2 . 1 5 2 . 9 7 3 . 6 8 4 . 1 2 4 . 3 4 4 . 1 3 4 . 3 9 4 . 3 0 6 - 12 . 0 4 . 1 7 . 5 6 Trophy . 6 7 . 6 7 . 7 3 . 7 4 . 7 5 . 7 3 . . 7 8 12 - 18 . 0 6 . 1 3 . . 5 5 . 6 9 . 6 9 . 7 4 . 7 6 . 7 3 . 7 6 . 7 5 1 8 - 24 . 1 2 . 1 4 . 3 8 . 6 8 . 7 4 . 7 8 ■ . 7 8 . 7 6 . 7 9 . 7 7 2 4 - 30 . 0 6 . 0 9 . 2 9 . 5 6 . 6 5 ' . 7 4 . 7 5 . 7 7 . 7 7 . 7 6 . 30 - 36 . 0 4 . 0 7 . 1 6 . 3 3 . 4 8 . 5 7 : 66 . 6 3 . 6 7 . 6 3 3 6 - 42 . 0 0 . 0 1 . 0 5 . 1 4 . 2 6 . 4 0 . 4 6 . 4 8 - . 4 8 . 4 9 4 2 - 4 8 - . 0 3 - . 0 2 - . 0 2 . 0 1 . 0 4 . 1 8 . 2 5 . 2 6 . 2 9 . 2 9 ' 4 8 - 5 4 . 0 1 - . 0 1 . 0 0 . 0 4 . 0 3 . 0 6 . 0 8 . 1 0 • . 1 2 . 1 1 ■ 5 4 - 60 - . 0 2 - . 0 6 - . 0 6 - . 0 2 . 0 1 . 0 1 . 0 0 - . 0 4 . 0 2 - . 0 1 . 60 - 66 . 0 4 - . 0 2 . 0 1 . 0 1 . 0 5 . 0 3 . 0 2 . 0 2 - . 0 3 ■ - . 0 5 Total . 3 1 .4 8 . 1 . 9 0 3 . 0 9 3 . 5 9 4 . 2 3 4 . 4 9 4 . 4 5 4 . 5 8 4 . 5 2 6 - 12 . 0 2 . 1 8 . . 6 2 Steptoe . 6 9 . 7 0 . 7 8 . 7 9 . 7 9 . 8 2 . 8 0 12 - 18 . 0 8 . 1 4 . 3 2 . 6 3 . 6 7 . 7 1 . 7 2 . 6 9 . 6 8 . 7 0 18 - 24 . 0 7 . 1 3 . 3 1 . 62 . 6 7 . 7 4 . 7 8 . 7 5 . 7 5 . . 7 4 2 4 - 30 . 0 6 . 0 7 . 2 2 . 4 2 . 5 4 . 6 2 . 6 9 . 66 . 6 6 . 6 8 3 0 - 36 . 0 5 . 0 7 . 1 6 . 2 5 . 4 1 . 4 6 . 5 3 . 5 3 . 5 3 . 5 2 3 6 - 42 . 0 2 . 0 2 . 0 6 . 1 3 . 1 8 . 2 7 . 2 6 . 3 3 . 3 3 . 4 0 42 - 4 8 - . 0 2 - . 0 6 - . 0 3 . 0 2 . 0 2 . 1 0 . 11 . 1 7 . 1 2 . 1 9 4 8 - 54 - . 0 1 . 0 4 . 0 2 . 0 3 . 0 4 . 0 6 . 0 7 . . 1 0 . 1 1 . 0 8 5 4 - 60 - . 0 3 , 0 0 . 0 5 - . 0 3 . 0 0 . 0 3 . 0 4 . 0 3 . 0 4 . 0 2 bU - ■ bb - . 0 3 - . 0 1 - . 0 2 . 0 2 . 01 . 0 1 . 0 0 - . 0 4 - . 0 5 - . 0 2 Total . 2 2 . 5 8 1 . 8 5 2 . 7 6 3 . 2 2 3 . 7 7 . 3 . 9 7 3 . 9 7 3 . 9 6 4 . 1 3 Appendix Table 20. Cumulative water use (In) at 6 inch intervals for the dr o u g h t line. C o n t . Depth June July August Inches l3 20 27 5 11 . l8 25 I 8 16 6 - 1 2 . 0 6 . 1 4 . . 5 2 Steveland • . 7 1 . 7 4 . 8 0 . 8 4 . 8 1 . 8 1 . 8 2 12 - 18 . 1 0 . 1 7 . 4 1 . 6 8 . 7 4 . 8 0 . 7 9 • . 7 6 . 7 9 . 7 7 18 - 24 . 1 0 . 1 3 • . 3 1 . 5 8 . 6 7 . 7 7 . 7 5 . 7 7 . 7 8 . 7 5 2 4 - 30 . 0 3 . 0 5 . 1 6 . 3 9 . 5 0 . 5 9 . 6 0 . 5 7 . 6 3 . 6 3 ‘ 30 r 36 - . 0 5 . 0 8 . 1 2 . 2 9 . 3 8 . 5 6 . 6 1 . 6 3 . 5 9 . 6 0 3 6 - 42 - . 0 1 . 0 0 . 0 3 . 1 1 . 2 0 . 3 0 :41 . 3 8 . 4 0 ’ . 4 1 4 2 - 4 8 - . 0 3 - . 0 1 - . 0 6 . - . 0 4 . 0 2 . 0 6 . 0 3 . 0 6 . 0 6 . 1 2 4 8 - 54 O - . 0 2 . 0 0 . 0 1 . 0 1 . 0 2 . 0 4 . 0 1 . 0 2 . 0 0 5 4 - 60 - . 0 4 . 0 0 - . 0 3 . 0 1 - . 0 1 - . 0 1 - . 0 3 - . 0 1 - . 0 1 ' . 0 0 60 - 66 . 0 3 . 0 6 . 0 3 . 0 7 ' . 0 5 . 0 6 . 0 8 . . 0 1 . 0 2 - . 0 3 Total . 2 7 . 5 8 1 . 4 6 2 . 7 8 3 . 3 0 3 . 9 1 4 . 0 9 • 3 . 9 7 4 . 0 9 4 . 0 6 6 - 12 . 0 4 . 2 0 . 5 9 Titan . 7 3 . 7 2 . 7 6 . 7 6 . 7 5 • 74 . 8 0 12 - 18 . 1 0 . 1 9 . 5 6 . 6 6 . 7 0 . 7 1 . 7 1 . 6 9 . 7 0 . 7 1 1 8 - 24 . 0 3 . 1 3 . 4 2 . 6 1 . 6 1 . 7 0 . 7 0 . 6 6 . 7 0 . 7 0 2 4 - 30 . 0 5 . 1 2 . 2 6 . 4 9 . 5 7 . 6 3 . 6 3 . 6 3 ■ . 6 3 . 6 2 30 - 36 - . 0 2 . 0 0 . 0 7 . 2 4 . 3 2 . 4 2 . 4 4 . 4 6 . 4 5 . 4 4 36 - 42 . 0 0 - . 0 1 ■ . 0 5 . 1 1 . 1 9 . 3 3 . 3 3 . 3 5 . 3 6 . 3 6 4 2 - 4 8 - . 0 4 - . 0 4 - . 0 1 . 0 6 . 0 8 • . 1 5 . 1 9 . 1 7 . 1 6 . 1 4 . 4 8 - 54 - . 0 3 , 0 6 . 0 5 . 0 6 . 0 5 . 0 5 . 0 4 . 0 4 . 0 4 . 1 0 5 4 - 60 - . 0 2 . 0 0 - . 0 1 . 0 3 - . 0 2 - . 0 2 . 0 1 - . 0 2 . 0 2 . 0 2 60 - 66 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 1 . 0 0 . 02 - . 0 2 . 0 1 Total . 1 5 . 5 9 1 . 9 1 2 . 9 8 3 . 2 4 3 . 7 6 3 . 8 6 3 . 7 5 3 . 7 9 3. .91 6 - 12 . 0 3 . 1 9 • 5 2 , Piroline . 6 9 . 7 6 . 8 0 . 8 4 . 8 5 . 8 4 . 8 4 12 - 18 . 1 1 . 1 6 . 4 5 . 6 5 . 7 2 . 7 4 . 7 8 . 7 7 . 7 5 . 7 7 18 - 24 . 0 7 . 0 9 . 3 0 . 5 9 . 6 8 . 7 6 . 7 5 . 7 7 . 7 3 . 7 0 2 4 - • 3 0 . 0 0 . 0 6 . 2 1 . 4 5 . 5 7 . 6 6 . 6 8 . 6 8 . 6 7 . 6 6 30 - 36 . 0 0 . 0 7 . 1 3 . 3 0 . 4 1 . 5 4 . 6 0 . 5 7 . 5 9 • . 6 3 36 - 42 ' . 0 2 . 0 2 . 0 8 . 1 4 . 2 4 . 3 3 . 4 3 . 4 3 . 4 4 . 4 3 4 2 - 4 8 . 0 1 . 0 1 . 0 2 . 0 5 . 0 8 . 0 8 ' . 1 4 . 1 4 , 1 9 , . 2 1 4 8 - 54 . 0 0 - . 0 3 - . 0 2 - . 0 3 - . 0 2 , 0 3 . 0 1 . . 0 0 . 0 2 . 0 3 5 4 - 60 - . 0 2 . 0 0 . 0 6 . 0 3 . 0 1 . 0 7 . 0 5 . 0 4 . 0 1 . 0 0 60 - 66 . 0 0 . 0 1 . 0 1 . 0 0 . 0 1 - . 0 1 . 0 2 . 0 1 . 0 3 - . 0 1 . Total . 2 3 . 5 9 1 . 7 6 2 . 8 6 3 . 4 3 3 . 9 9 4 . 2 8 4 . 2 5 4 . 2 6 4 . 2 5 . 6 - 12 . 1 3 . 2 7 . 6 6 Primus II . 7 9 . 8 0 . 8 7 . 8 6 • . 8 4 . 8 3 12 - 18 . 0 9 . 2 0 . 5 3 . 6 8 . 7 0 . 7 6 . 81 . 77 , 7 5 . 7 7 18 - 2 4 . 1 3 . 1 5 . 4 0 . 6 4 . 6 8 . 7 7 . 7 6 . 7 4 . 7 5 . 73 2 4 - 30 - . 0 1 . 0 2 . 1 4 . 3 4 . 4 5 . 5 1 . 5 1 . 5 4 . 5 3 . 52 30 - 36 . 0 4 . 0 3 . 0 9 . 2 6 . 35 . 4 4 . 5 1 . 4 8 . 4 9 . 5 0 36 - 42 - . 0 3 - . 0 2 - . 0 2 . 0 7 . 1 3 . 2 8 . 3 1 . 3 3 . 3 3 . 3 1 4 2 - 4 8 . 0 0 • . 0 2 . 0 8 . 0 6 . 1 3 . 1 2 . 2 0 . 1 9 . 1 9 . 1 9 4 8 - 54 . 0 3 . 0 2 . 0 6 . 0 3 . 0 8 . 0 8 . 05 . 0 3 . 0 3 . 0 9 5 4 - 60 - . 0 2 - . 0 1 . 0 0 - . 0 3 . 0 0 . 0 3 - . 0 1 - . 0 1 - . 0 1 . 0 4 60 - 66 - . 0 2 - . 0 2 . 0 2 . . 0 6 . 0 1 . 0 4 . 0 0 • . 0 1 O . 0 0 'Total . 3 3 . 6 3 1 . 9 4 2 . 8 8 3 . 3 1 3 . 8 8 4 . 0 0 3 . 9 3 3 : 9 3 3 . 9 8 185 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the d r ought line. C o n t . Depth . June July August lacttee 20 . 27 18 .■ 25 ’ I 8 16 . 6 - 12 . .09 .20 .51 Spartan .68 .77 ,85. .85 ■ .86 .87 .85 12 - 18 .11 .18 ,45 .65 . .75 .77. . .78 .78 .80 .79 18 - 24 .10 .. 10 • 29 .51 .65 . .68' ■' .73 .70 .70 .73 24 - 30 .04 .03 .15 .31 .41 .51 .51 .49 .53 .53 30 - 36 -.02 ■ .03 .03 .15 .26 ,39 . ,42 .43 .43 .44 36 - 42 -.01 -.02 -.01 .01 .09 .15 .24 .19 .18 .21 42 - 48 . - .01 -.03 -.04 -.04 .01 .06 .09 .05 .08 .06 48 - 54 .00 .00 .00 -.05 .00 .05 .08 .04 .00 .02 54 - 60 -.01 .00 .03 -.02 -.02 .05 -.02 -.05 -.05 .00 60 - 66 -.01 -.02 .01 .00 .01 -.01 .03 -.02 -.02 -.04 Total .28 .46 1.40 2.22 2.97 3.49 3.62 3.43 3.49 3.56 6 - 12 .03 .18 .54 New Moravian .64 .66 .76 .79 .81 .83 .82 12 - 18 .08 .21 .48 .67 . 66 .74 .78 .74 .74 ,74 18 - 24 .04 .10 .29 .53 .59 .65 .68 .63 .64 .66 24 - 30 .11 .11 .21 .38 .51 .58 .58 .63 .64 .66. 30 - 36 .02 -.01 .10 . .23 .33 .45 .55 .53 .56 .56 36 - 42 -.03 -.05 .04 .07 .15 .32 .33 .40 .41 .49 42 - 48 .02 .01 .04 .09 .12 .20 .26 .25 .30 .30 48 - 54 -.01 .01 -.01 .03 .08 .10 .14 .11 .12 .13 54 - 60 -.05 -.01 .01 .02 .06 ■ .02 .00 .02 .01 .08 60 - 66 .01 -.04 .02 .04 .00 .06 .10 .04 .04 .04 Total .23 . -SI 1.73 2.71 3.16 3.88 4.22 4.18 4.31 4.49 6 - 12 .06 .21 .57 Nordic .68 .71 .76 .84 .77 .79 .80 12 - 18 .07 .15 .50 .66 .70 .72 .75 .70 .71 .73 18 - 24 .07 .14 . .45 ,66 .70 .72 .76 .73 .73 .72 24 - 30 .04 .11 .21 .47 .54 .56 .59 .59 .61 .60 30 - 36 .01 .09 .13 .36 .45 .56 .57 .51 .57 .53 36 - 42 .00 .05 .06 .19 .28 .38 .45 .41 .45 .47 42 - 48 .00 -.01 -.03 .02 .07 .12 .14 .18 .14 .20 48 - 54 .02 .02 .03 .07 .07 .07 .07 .05 .08 .03 54 - 60 .01 .03 .03 .03 .01 .01 .01 .01 -•03 -.01 60 - 66 .01 .02 .02 .03 .04 .08 .05 .03 .00 .06 Total -.29 .BI 1.96 3.15 3.55 3.96 4.21 3.97 4.03 4.10 6 - 1 2 .10 .18 .61 .76 Otls .83 .89 .88 .86 .87 .92 12 - 18 .09 . 1 9 .58 .78 .80 .82 .84 .83 .81 .84 18 - 24 ill .17 .52 .75 .83 .86 .89 .86 .89 .89 24 - 30 .05 .06 .22 .49 .58 .65 .71 .69 .67 .67 30 - 36 .02 .06 -.17 .33 .45 .48 .55 .54 .53 .50 36 - 42 -.01 -.02 -.02 .09 .16 .20 .25 .26 .27 .27 42 - 48 -.01 -.05 -.04 -.03 .05 .03 .08 .05 .09 .09 48 - 54 .02 -.05 .02 -.01 .01 .01 .oi .05 -.02 .00 54 . 60 -.05 -.03 -.06 -.02 -,02 .04 -.03 -.04 -.01 .01 60 - 66 -.05 -.06 -.10 -.07 -.05 -:o5 -.02 -.12 -.08 -.08 Total, .28 . .45 1.89 3.06 3.63 3.93 4.16 3.87 3.99 4.11 186 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. Cont. Depth June. July August Inches' . 13 20 27 5 11 18 25 I 8 16 6 - 1 2 . 0 4 . 1 8 . 5 8 Glacier . 7 1 . 7 0 . 7 9 . 8 2 . 8 0 . 8 2 . 8 3 12 - 18 . 0 7 ;io . 4 5 . 6 2 . 6 9 . 7 0 . 7 3 . 7 0 . 7 2 . 7 1 1 8 - 2 4 . 0 5 . 1 0 . 3 7 . 6 3 . 7 3 . 7 6 . 7 7 . 7 4 . 7 8 . 7 7 2 4 - 30 . 0 5 . 1 0 . 2 6 . 5 0 . 6 8 . 7 4 . 7 7 . 7 2 . 7 1 . 7 6 3 0 - 36 - . 0 2 - . 0 1 . 1 2 . 2 3 . 42 . 5 1 - . 5 5 . 5 4 . 5 6 . 5 7 3 6 - 42 - . 0 3 . 0 0 . 0 7 . 1 4 . 1 8 . 3 0 . 3 5 . 3 5 . 4 0 . 4 1 42 - 4 8 - , 0 6 - . 1 1 . - . 0 6 - . 0 5 . 0 4 . 0 9 . 1 1 . 1 6 . 21 . 2 1 4 8 - 5 4 - . 0 2 - . 0 1 . 0 2 - . 0 4 . 0 3 . 0 6 . 0 3 . 0 0 . 0 8 . 0 6 5 4 - 60 - . 0 7 - . 0 7 - . 0 1 - . 0 3 - . 0 3 . 0 0 . 0 2 - . 0 7 - . 0 1 . 0 0 6 0 - 66 - . 0 2 - . 0 1 - . 0 4 - . 0 1 - . 0 2 . 0 0 . 0 1 - . 0 6 - . 0 5 - . 0 3 Total . 0 5 . 3 1 1 . 7 9 2 . 7 3 3 . 4 6 3 . 9 9 4 . 2 0 3 . 9 0 4 . 2 5 4 . 3 1 6 - 12 . 0 8 . 2 5 . 6 3 Unltan . 8 1 . 8 1 . 9 2 . 9 1 . 9 1 . 9 0 . 9 3 12 - 18 . 1 0 . 2 2 . 5 6 . 7 0 . 7 6 . 8 2 . 8 0 . 7 7 . 8 0 . 7 8 18 - 2 4 . 1 0 . 1 2 . 4 4 . 6 3 . 6 9 . 7 5 . 7 6 . 7 7 . 7 4 . 7 4 2 4 * 30 . 0 0 . 1 4 . . 2 9 . 4 9 . 6 0 . 6 5 . 6 7 . 6 6 . 6 4 . 6 3 3 0 - 3 6 . 0 4 . 0 5 . 1 2 . 2 8 . 3 5 . 4 6 . 4 7 . 4 9 . 4 9 . 4 8 3 6 - 42 . 0 0 . 0 1 . 0 6 . 1 1 ' . 1 8 .3 3 . : 39 . 4 3 . 4 1 . 4 2 42 - 4 8 . 0 4 . 0 4 . 0 8 . 1 0 . 1 3 . 2 0 . 2 6 . 2 6 . 2 8 . 3 1 4 8 - 5 4 . 0 6 . 0 1 . 0 3 . 0 5 . 0 9 ' . 1 2 . 0 9 . 0 6 . 0 4 . 1 0 5 4 * 60 . 0 1 , 0 1 . 0 2 . 0 5 . 0 2 - . 0 2 . 0 4 . . 0 1 ' . 0 1 . 0 1 60 - 66 .0 6 , . 0 2 . 0 6 . 0 8 . 0 6 . 0 7 . 0 4 . 0 2 . 0 5 . 0 3 Total . 4 9 . 8 5 2 . 2 8 3 . 2 9 3 . 6 7 4 . 2 9 4 . 4 2 4 . 3 6 4 . 3 3 4 . 4 3 6 - 12 . 0 3 . 1 3 . 5 7 Vantage . 6 8 . 6 7 . 7 6 ' . 7 7 . 8 1 . 8 3 . 8 5 12 - 18 . 1 0 . 1 5 . 5 1 . 6 8 . 6 9 . 7 6 . 7 4 . . 7 4 . 7 7 . 7 6 18 - 24 . 0 1 . . 1 1 . 3 7 . 6 1 . 7 1 . 7 6 . 7 6 . 7 9 : 7 5 ' . 7 7 2 4 ' 3 0 . 0 9 . 1 5 . 3 4 . 5 4 . 6 3 . 7 5 . 7 6 . 7 3 . 7 7 . . 7 7 3 0 " 36 . 0 7 . 0 5 . . 1 2 . 2 7 ■ . 4 4 ' . 5 2 . 5 8 . 5 5 . 6 1 . 6 1 3 6 " 42 . 0 3 . 0 4 . 0 7 . 1 1 . 2 5 . 3 4 . 3 9 . 3 9 . 3 9 . 4 0 S 4> Oo . 0 0 - . 0 7 - . 0 2 . 0 2 . 0 4 110 . 1 5 . 1 7 . 1 8 . 1 9 4 8 - 5 4 . 0 0 . 0 4 . 0 2 - . 0 5 . 0 0 . 0 3 . 0 5 . 0 4 . 0 5 . 0 4 5 4 - 60 - . 0 4 - . 0 2 . 0 0 - . 0 2 - . 0 1 . 0 3 - . 0 2 . . 0 5 - . 0 2 . 0 3 6 0 - 6 6 - . 0 1 - . 0 6 . 0 3 - . 0 5 - . 0 3 . 0 4 . 0 2 - . 0 3 - . 0 2 . - . 0 5 Total . 2 8 . 5 2 2 . 0 1 2 . 7 9 3 . 4 0 4 . 1 0 4 . 1 9 4 . 1 2 4 . 2 9 4 . 3 5 6 - 12 - . 0 2 . 1 5 . 5 2 Vanguard . 6 3 . 6 5 . 7 2 . 7 1 : 72 . 7 2 . 7 4 12 - 18 . 0 3 . 1 1 . 4 7 . 6 2 .64 . 6 8 .69 . 6 8 . 6 8 . 6 5 18 - 2 4 . 0 6 . 1 3 . 4 5 . 6 5 . 6 9 . 6 8 . 7 3 . 7 3 . 7 0 . 6 9 2 4 " 30 . 0 4 . 1 0 . 3 1 . 5 5 . 5 9 . 6 7 .6 8 ' . 6 7 . 7 0 . 7 0 3 0 - 36 - . 0 3 - . 0 1 . 1 0 . 3 0 . 4 1 . 4 8 .5 2 . . 5 0 . 5 0 . 5 0 3 6 " 42 . 0 4 . 0 5 . 0 6 . 1 9 . 2 6 . 3 7 . 4 3 . 4 3 . 4 5 . 4 4 4 2 - 4 8 ; 01 - . 0 3 . 0 1 . 0 0 . 0 5 . 1 0 . 1 9 . 2 3 . 2 4 . 2 8 . 2 6 4 8 - 5 4 - . 0 3 . 0 2 . 0 0 - . 0 1 . 0 2 . 0 2 . 0 4 . 0 6 . 0 9 5 4 - 60 . 0 1 . 0 0 . 0 1 . 0 2 . 0 0 . 0 7 . 0 5 - . 0 1 . 0 0 . 0 5 6 0 - 66 . 0 3 . 0 0 - . 0 2 - . 0 3 - . 0 1 . 0 2 . 0 1 - . 0 2 - . 0 1 - . 0 1 "total . 1 5 . 5 1 1 ; 0 4 3 . 0 0 3 . 3 4 3 . 9 3 4 : 1 0 4 . 0 0 4 . 1 1 4 . 1 1 187 Appendix Table 20. Cumulative water use (in) at 6 inch intervals for the drought line. Cent. Depth June July August Inches. 13 20 27 5 11 18 25 I 8 16 6 - 1 2 . 0 3 . 1 4 . 5 9 V l m o . 7 7 . 7 2 . 7 8 . 8 2 . 8 3 . 8 3 . 8 5 12 - 18 . 0 4 . 1 1 . 4 3 . 6 3 . 6 5 . 7 2 . 7 3 . 7 0 . 7 3 . 7 2 18 - 2 4 . 0 5 . 1 0 . 2 4 . 4 5 . 5 4 . 5 8 . 6 1 . 6 1 . 6 4 . 6 0 2 4 - 30 . 0 5 . 0 3 . 0 7 . 2 0 . 31 . 4 2 . 5 0 . 4 6 . 4 6 . 4 6 3 0 - 36 . 0 3 - . 0 2 . 0 3 . 1 4 . 1 1 . 2 1 . 3 0 . 3 2 . 3 3 . 3 1 Total . 2 0 . 3 6 1 . 3 6 2 . 1 9 2 . 3 3 2 . 7 1 2 . 9 6 2 . 9 2 2 . 9 8 2 . 9 4 6 - 12 . 0 5 . 1 7 . 5 4 Zephyr . 6 4 . 6 6 . 7 4 . 7 7 . 7 7 . 7 6 . 7 9 12 - 18 . 0 0 . 0 9 . 3 7 , 6 0 . 6 1 . 7 0 . 7 0 . 7 0 . 7 3 . 7 3 18 - 2 4 . 0 9 . 1 0 . 3 2 . 5 7 . 7 2 . 7 6 . 7 9 . 7 8 . 8 0 . 7 8 2 4 - 3 0 . 0 7 . 1 2 , 2 0 . 3 7 . 5 4 . 6 4 . 7 0 . 6 9 . 7 1 . 6 9 3 0 - 3 6 . 0 4 . 0 5 . 1 1 . 1 7 . 3 4 . 4 5 . 5 5 . 5 6 . 6 0 . 5 8 3 6 - 4 2 . 0 5 . 0 7 . 0 7 . 1 1 . 2 0 . 3 3 . 4 0 . 4 1 . 4 8 . 4 5 4 2 - 4 8 - . 0 1 - . 0 4 . 0 3 - . 0 2 . 0 5 . 0 8 . 1 2 . 1 0 . 1 0 . 1 5 4 8 - 5 4 . 0 1 - . 0 1 . 0 2 - . 0 1 - . 0 1 . 0 5 . 0 4 . 0 2 , 0 4 . 0 5 5 4 - 60 - . 0 4 - . 0 7 - . 0 1 - . 0 7 . 0 2 . 0 3 . 0 3 - . 0 2 . 0 1 - . 0 1 60 - 66 . 0 4 - . 0 1 - . 0 1 - . 0 4 . 0 1 . 0 0 . 0 5 - . 0 5 - . 0 2 . 0 1 Total . 3 0 . 4 7 1 . 6 4 2 . 3 2 3 . 1 5 3 . 7 7 4 . 1 3 3 . 9 5 4 . 2 0 4 . 2 1 188 Appendix Table 21. Cultivar 6 - 1 2 1 2 - 1 8 ■Total soil ’ tervals for farm. 1977 1 8 - 2 4 2 4 - 3 0 water use (cm) at the drought line, . 3 0 - 3 6 3 6 - 4 2 42-48 6 in in- Kamp1s 4 8 - 5 4 I 5 . 8 5 6 . 1 6 5 . 8 6 4 . 8 7 3 . 7 0 2 . 9 3 1 . 5 7 0 . 5 3 ' 2 6 . 0 9 5 . 4 3 5 . 2 6 4.63 2 . 8 2 2 . 0 7 0 . 8 6 0 . 4 6 3 7 . 2 5 6 . 3 2 5 . 0 6 4 . 1 8 2 . 9 0 1 . 9 0 1 . 4 2 0 . 3 2 4 6 . 1 0 5 . 9 0 5 . 6 4 5 . 5 3 3 . 8 2 • 2 . 4 1 0 . 7 6 0 . 2 2 5 6 . 5 6 5 . 9 4 5 . 1 2 4 . 3 5 3 . 7 3 2 . 4 8 1 . 2 7 0 . 4 8 6 6 . 2 7 5.49 5 . 7 0 5 . 2 9 3 . 4 7 . 2 . 1 7 0 . 5 4 0 . 2 5 . 7 6 . 4 3 5 . 8 9 5 . 9 9 5 . 2 8 4 . 1 1 2 . 8 4 1 . 3 5 0 . 2 1 8 6 . 2 1 6 . 1 4 5 . 7 7 4 . 5 5 3 . 0 0 2 . 4 0 1 . 4 3 0 . 6 4 9 6 . 2 6 5 . 1 9 . 5 . 0 0 5 . 1 0 3 . 9 9 2 . (96 0 . 9 4 0 . 2 7 10 5 . 8 4 5 . 8 6 . 5 . 9 4 5 . 4 4 4 . 2 4 . 2 . 7 7 1 . 2 5 0 . 5 4 11 5 . 8 6 5 . 5 5 3 . 8 5 3 . 0 6 2 . 4 7 1 . 3 1 0 . 9 1 0 . 7 4 12 6 . 1 7 5 . 9 6 5 . 8 2 5 . 3 2 4 . 0 8 2 . 6 8 0.88 0 . 0 1 13 6 . 0 6 5 . 8 4 ’ 4 . 8 1 . 4 . 4 1 3 . 3 2 2 . 1 3 1 . 5 9 0 . 7 0 14 6 . 7 5 6 . 0 9 5 . 2 3 4 . 1 1 2 . 8 2 I .' 33 .0.93 0 . 9 1 . . . 15 6 . 3 6 5 . 9 0 5 . 4 4 4 . 6 4 3 . 8 4 .2.56 0 . 9 3 - 0 . 0 1 16 7 . 2 6 6 . 1 7 4 . 8 9 4 . 3 7 ■ 2 . 9 6 0 . 6 2 0 . 9 4 0 . 5 0 17 6 . 7 8 6 . 8 7 6 . 2 5 5 . 0 2 4 . 0 2 2 . 4 4 1 . 1 8 0 . 4 9 18 6 . 7 8 6 . 3 6 5 . 6 7 4 . 9 5 4 . 0 8 2 . 4 1 1 . 1 7 1 . 0 0 19 6 . 3 7 6 . 2 3 5 . 7 9 4 . 5 4 3 . 9 6 2 . 6 5 . 0 . 5 7 - 0 . 0 2 2 0 6 . 9 0 6 . 5 8 6 . 7 7 4 . 7 9 3 . 6 3 1 . 4 5 0 . 2 6 - 0 . 0 6 2.1 6 . 3 2 5 . 4 2 5 . 4 1 4 . 3 5 2 . 8 4 2 . 6 3 1 . 4 4 0 . 6 2 22 6 . 6 6 ■ 6 . 3 7 5 . 5 7 4 . 4 8 3 . 9 8 2 . 4 5 1 . 4 8 0 . 2 2 2 3 6 . 9 0 5 . 7 1 5 . 8 6 5 . 2 5 4 . 1 9 ■ 2 . 6 0 1 . 5 8 0 . 4 0 2 4 6 . 3 6 6 . 5 5 6 . 0 8 5 . 1 4 3 . 1 5 3 . 0 9 2 . 0 6 - 2 5 ■ 6 . 3 2 5 . 9 9 ' 5 . 0 4 4 . 7 9 3 . 8 3 2 . 5 7 1 . 4 5 0 . 4 6 2 6 7 . 1 3 6 . 6 2 5 . 7 6 4 . 6 1 3 . 2 1 2 . 2 5 0 . 9 4 0 . 3 2 2 7 ' 6 . 2 9 6 . 2 6 6 . 3 3 5 . 1 5 4 . 3 6 2 . 6 3 1 . 5 6 ' 0 . 3 5 ' 2 8 6 . 1 6 5 . 7 1 5 . 8 7 5 . 0 6 3 . 3 7 1 . 9 8 1 . 1 5 0 . 6 4 29 6 . 5 3 ■ 6 . 0 6 5 . 1 9 . 3 . 5 1 ' 2 . 5 6 1 . 0 3 6 . 1 8 0 . 1 4 30 6 . 6 7 5 . 7 6 . 4 . 5 3 3 . 5 5 2 . 8 9 2 . 4 2 1 . 2 8 i.io 31 6 . 4 2 6 . 1 5 5 . 0 9 4 . 6 4 4 . 0 2 3 . 0 9 1 . 7 4 0 . 6 9 32 6 . 1 9 5 . 3 4 5 . 5 6 ■ 4 . 6 2 . 3 . 5 1 2 . 0 0 0.62 0 . 5 4 . 3 3 5 . 5 4 5 . 2 5 5 . 5 1 5 . 0 1 3 . 2 7 ' 2 . 7 2 1 . 3 7 0 . 1 8 34 6 . 1 0 5 . 6 3 5 .8 5 . 4 . 8 2 3 . 7 7 2 . 8 9 1 . 3 9 0 . 4 8 35 5 . 4 3 6 . 1 9 6 . 1 2 4 . 9 5 4 . 1 7 2 . 5 6 1 . 2 2 0 . 6 7 . 36 5 . 4 9 5 . 0 0 5 . 1 0 4 . 3 2 2 . 7 7 1 . 8 8 0 . 7 2 • 0 . 8 6 37 7 . 0 4 5 . 7 5 5 . 4 3 3 . 9 5 3 . 0 3 1 . 9 9 0 . 8 2 0 . 3 7 38 6 . 2 5 6 . 0 1 5 . 6 1 4 . 1 5 3 . 8 1 2 . 2 3 ' 0 . 2 1 0 . 0 8 39 5 . 8 0 5 . 5 1 4 . 7 1 3 . 9 7 2 .7 8 ' 1 . 6 1 0 . 7 7 0 . 1 8 40 6 . 4 9 5 . 4 3 5 . 0 7 4 . 7 5 2 . 7 5 1 . 4 6 0 . 9 0 0 . 6 6 . 41 6 . 5 1 6 . 0 8 5 . 2 7 4 . 1 6 3 . 4 2 2 . 7 9 0 . 9 4 O'. 36 42 6 . 4 0 5 . 7 5 5 . 4 7 3 . 6 4 3 . 2 0 . 1 . 5 1 0 . 4 7 0 . 2 7 4 3 6 . 3 6 5 . 4 6 4 . 4 2 2 . 9 6 1 . 6 6 - - - 44 6 . 8 9 6 . 0 6 • 5 . 7 5 3 . 5 5 3 . 1 9 1 . 6 9 1 . 1 8 0 . 4 5 45 5 . 8 9 5 . 2 3 5 . 7 1 4 . 7 3 3 . 4 5 2 : 5 7 0 . 5 6 0 . 2 0 46 6 . 1 9 5 . 6 9 5 . 6 8 4 . '32 3 . 7 8 2 . 7 4 0 . 8 3 0 . 5 1 47 6 . 0 5 5 . 8 6 5 . 5 1 4 . 8 3 4 . 3 6 3 . 2 2 ■ 1 . 2 5 0 . 6 1 4 8 6 . 0 2 5 . 6 2 5 . 7 4 4 . 7 0 3 . 9 8 2 . 5 8 ; 1 . 2 5 0.76 49 6 . 4 2 5 . 4 1 4 . 4 2 . 3 . 6 2 2 . 9 2 2 . 6 3 1 . 3 9 0 , 3 9 50 7 . 1 5 6 . 3 1 5 . 7 4 4 . 7 7 3 . 2 3 2 . 3 4 1 . 7 0 0 . 6 5 169 Appendix Table 22. Soil water use plotted according to the re lationship, w = a + b In t . Cultivar Parameter 6 - 1 2 1 2 - 1 8 1 8 - 2 4 2 4 - 3 0 3 0 - 3 6 3 6 - 4 2 4 2 - 4 8 4 8 - 5 4 I r 2 . 8 2 . 9 1 . 8 8 . 9 2 . 8 4 . 8 5 . 8 3 . 7 0 a . 0 8 . 0 8 . 0 0 - . 0 7 - . 0 8 - . 1 1 - . 1 3 - . 0 3 b . 3 4 . 3 5 . 3 9 . 3 7 . 3 0 . 2 6 . 1 9 . 0 6 2 r2 . 8 6 . 8 4 . 9 0 . 9 1 . 9 0 . 8 6 . 8 4 . 4 0 a . 1 0 . 1 4 . 0 3 . 0 1 - . 1 0 - . 0 9 - . 0 8 . 0 0 b . 3 4 . 2 9 . 3 3 . 3 0 . 2 5 . 2 0 . 1 1 . 0 3 3 r 2 . 8 8 . 8 5 . 8 5 . 8 9 . 8 5 . 8 7 . 8 4 . 1 5 a . 1 8 . 1 3 . 0 6 - . 0 7 - . 0 8 - . 0 8 - . 0 4 - . 0 4 b . 3 6 . 2 9 . 2 9 . 3 2 . 2 5 . 1 8 . 1 5 . 0 5 4 r2 . 9 2 . 8 8 . 9 1 . 8 7 . 8 7 . 8 5 . 7 3 . 1 7 a . 0 3 . 0 9 - . 0 2 - . 0 6 - . 0 6 - . 0 6 - . 0 9 . 0 0 b . 3 8 . 3 3 . 3 8 . 3 0 . 3 0 . 2 0 . 1 1 . 0 2 ' 5 r2 . 8 6 . 8 2 . 8 5 . 8 6 . 8 6 . 8 7 . 8 4 . 4 5 a . 1 9 . 1 9 . 1 1 . 0 1 - . 0 7 - . 1 4 - . 0 5 - . 0 7 b . 3 1 . 2 7 . 2 1 . 2 0 . 2 9 . 2 6 . 1 2 . 0 4 6 r2 . 9 1 . 8 7 . 8 9 . 9 0 . 9 1 . 9 2 . 7 7 . 2 2 a . 0 7 . 0 5 . 0 1 - . 0 3 - . 1 3 - . 1 1 - . 1 6 - . 0 1 b . 3 7 . . 3 3 . 3 4 . 3 7 . 3 2 • . 2 2 . 1 4 . 0 2 7 2 r . 9 3 . 8 7 . 8 8 . 9 0 . 8 9 . 9 0 . 8 1 . 6 6 a . 1 0 . 1 1 . 0 6 . 0 4 - . 0 1 - . 0 7 - . 1 0 - . 0 9 b . 3 6 , 3 2 . 3 6 . 3 2 , 2 8 . 2 3 . 1 6 . 0 9 0 2 r . 9 2 . 8 7 . 9 2 . 9 2 . 8 9 . 8 3 . 6 9 . 7 3 a , . 0 9 . 1 4 . 0 3 - . 0 3 - . 0 7 - . 1 4 - . 0 7 ■ - . 0 7 b . 3 5 . 3 2 . 3 6 . 3 2 . 2 4 . 2 5 . 1 4 . 0 7 ' 9 2 r . 9 1 . 8 8 . 8 7 . 8 6 . 9 1 . 9 1 . 8 2 . 7 8 a . 1 1 .0 7 . . 0 4 . 0 1 - . 1 0 - . 0 9 . - . 1 2 - . 0 7 b . 3 4 . 3 0 . 3 1 . 3 3 . 3 3 . 2 5 . 1 4 . 0 7 10 2 r . 8 9 . 5 6 . 8 7 . 9 1 . 9 0 . 8 6 . 7 6 . 7 5 a . 0 8 . 0 8 . 0 7 - . 0 2 . - . 0 7 - . 1 2 - . 1 3 - . 0 3 b . 3 4 . 3 4 . 3 5 . 3 8 . 3 3 . 2 7 . 1 7 . 0 6 11 r2 . 9 2 . 9 1 . 9 0 . 8 7 . 7 3 . 9 0 . 8 2 . 7 6 a . 0 2 . 0 8 - . 0 8 - . 1 5 - . 0 5 - . 6 0 - . 0 2 - . 0 1 b . 3 7 . 3 2 . 3 0 . 3 0 . 1 9 . 1 2 . 0 7 . 0 5 12 r2 . 8 8 . 0 5 . 8 9 . 9 7 . 9 3 . 8 6 . 0 3 . 2 8 a . 1 1 . 1 0 . 0 5 - . 0 1 - . 0 3 - . 0 9 - . 0 9 - . 0 4 b . 3 3 . 3 3 . 3 5 . 3 6 . 2 9 . 2 4 . 1 3 . 0 3 13 r2 . 9 4 . 9 0 . 9 0 . 9 1 . 8 8 . 8 4 . 8 3 . 8 1 a . 0 4 . 1 0 . 0 0 . 0 0 - . 1 2 - . 1 6 - . 0 6 - . 0 4 b . 3 7 . 3 2 . 3 2 . 2 9 . 3 0 . 2 5 . 1 5 . 0 7 14 r2 . 8 7 . 8 4 . 8 3 . 8 8 . 8 6 . 8 8 . 9 3 . 6 3 a . 1 2 . 1 2 . 0 9 - . 0 3 - . 1 2 - . 0 7 - . 0 6 - . 0 4 b . 3 7 . 3 2 . 2 9 . 2 9 . 2 6 . 1 4 . 1 0 . 0 8 190 Appendix Table 22. Soil water use plotted according to the re­ lationship, w = a + b In t . Cont. Cultivar Parameter 6-12 *2-13 18-24 ,24-30 30-36 36-42 42-48 48-54 15 r2 .93 .90 .87 .91 .92 .87 .78 . .30 a .05 .08 .01 -.07 -.10 -.09 -.04 -.03 b .39 .33 .36 .35 .32 .23 .09 .01 16 r2 .89 .88 .91 .92 .97 .78 .75 ' .50 a .16 .13 -.01 -.10 ' -.09 -.11 .00 ■ -.04 b .37 .32 .33 .36 .25 .12 .06 .06 17 r2 .92 .86 .87 .90 .90 .95 .76 .52 a .12 .16 .06 -.01 -.09 -.10 -.08 -.07 b .37 .35 .36 .34 .33 .23 .13 .04 18 r2 .92 .89 .90 .88 .90 .86 .85 .61 a .05 .10 .00 -.03 -.05 -.09 -.11 .02 b .41 .36 .36 .35 .30 .22 .15 .06 19 r2 .93 .85 .89 .92 .93 .90 .58 .11 a .13 .16 .07 -.08 -.10 -.08 -.04 -.08 b .34 .31 .34 .35 .33 .23 .06 .01 20 r2 .89 .86 .90 .89 .91 .84 .63 .03 a .10 .11 .08 -.04 -.04 -.09 -.06 ' .00 b .39 .36 .39 .34 .27 .16 .06 -.01 21 r2 .92 .83 .90 .89 .89 .88 .80 .84 a .11 .11 .07 .01 -.10 -.17 -.14 -.05 b .34 . .29 .31 .28 .25 .29 .19 .07 22 r2 .92 .87 .89 .89 .89 ■ .87 .80 .59 a .10 .14 ■ .05 .01 -.03 -.10 -.08 -.05 b .37 .33 .34 .29 .29 .23 .15 . .05 23 r2 .94 .85 .85 .85 .90 .91 .83 .80 a .19 .16 .10 .06 -.04 -.10 -.14 -.09 b .33 .27 .32 .31 .30 .25 .20 .08 24 r2 .91 .84 .87 .89 .91 .85 .78 .78 a .11 .17 .13 .06 -.08 -.10 -.08 -.02 b .35 .32 .31 .30 .26 .27 .19 .08 25 r2 .91 .91 .88 .90 .89 .85, .80 .87 a .10 .07 .00 .00 -.06 -.17 -.13 -.09 b .36 .35 .33 .32 .29 .28 .17 .05 26 r2 .93 .87 .93 .93 .89 .88 .87 .83 a .08 .13 .08 .00 -.08 -.18 -.12 -.05 b .42 .29 .42 .31 .27 .27 .14 .05 27 r2 .90 .83 .87 .87 .87 .86 .76 .45 a .07 .13 .13 .04 -.03 -.10 -.08 -.03 b .37 .33 .33 .31 .31 .25 .16 .04 28 r2 .88 .86 .87 .89 .91 .78 .84 .74 a .12 .10 .09 .01 -.04 -.06 -.07 .01 b .33 .31 .33 .33 .25 .17 .13 .04 191 Appendix Table 22. Soil water use plotted according to the re­ lationship, w = a + b In t . Cont. Cultivar Parameter 6-12 12-18 18-24 24-30 30-36 . 36-42 42-48 48-54 29 r2 .93 .91 .90 .90 .85 .75 .55 .16 a .07 .09 .01 -.05 -.11 -.08 -.05 -.02 b .38 .34 .33 ■ .27 .24 .12 .05 .02 30 r2 .92 .92 .90 .90 .86 ■ .81 .69 - a .07 .11 .03 . -.10 -.14 -.16 -.10 - b .40 .31 .28 .30 .28 .27 .15 - 31 r2 .92 .91 .89 .89 .90 .88 .83 .82 a .08 • .11 .04 .04 -.09 -.15 -.15 -. 05 b .37 .34 .31 .28 .33 .30 .21 .08 32 r2 .89 .86 .89 .91 ■ .90 .87 .74 .79 a .07 .05 .02 -.04 -.04 -.07 -.09 -.01 b .36 .32 .36 .33 .26 .18 .10 .04 33 r2 .90 .86 .86 .92 .90 .86 .84 .69 a .03 .05 .06 -.01 -.11 -.06 -.06 ■ -.05 b .35 .31 .32 .34 .29 .22 .14 .05 34 r2 .92 .88 .89 .91 .86 .84 .74 .56 a .05 .05 .01 -.03. -.08 . -.12 -.12 -.07 b .37 .34 .38 .34 .30 .27 .17 .08 35 r2 .88 .82 .85 .89 .89 .90 . .79 .66 a .08 ■ .21 .12 .02 -.02 -.09 -.14 .02 b .31 .27 .33 .32 .29 .23 .18 .05 36 r2 .89 .85 .87 .87 .84 .83 .66 .24 a .07 .10 .02 -.01 -.09 -.15 -.12 .06 b .32 .26 .29 .29 .24 .22 .12 .02 37 r2 .94 .90 .91 .90 .85 .81 .70 .60 a .02 .02 .05 -.07 -.06 -.09 -.08 -.05 b .45 .36 .33 .31 .24 .19 .11 .05 30 • r2 • .89 .88 .90 .91 .92 .85 .60 .44 a .06 .05 .02 -.06 -.13 -.12 -.07 . -.08 39 T2 .90 .88 .91 .91 .89 .85 .79 . .39 a .06 .12 -.01 .00 -.12 -.12 -.02 -.08 b .34 .29 .32 .26 ,26 .18 .07 .03 40 r2 .90 .89 .91 .87 .85 .77 .77 .73 a .06 .03 -.01 .01 -.06 -.11 -.04 -.01 b .39 .34 .34 .30 .22 .17 .09 .05 41 r2 .92 .68 .82 .89 .87 .85 .78 .62 a .09 .11 .06 .00 -.07 -.11 -.16 .00 b .37 .32 .31 .22 .27 .26 .17 .00 42 r2 ' .88 .89 .91 .88 .89 .84 .74 .53 a .07 .07 .04 -.07 -.08 -.11 -.08 -.01 b .37 .34 .33 .29 .26 .19 .06 .03 192 Appendix Table 22. Soil water use plotted according to the re­ lationship, w = a + b In t. Cont. Cultivar Parameter 6-12 12-18 18-24 24-30 30-36 36-42 42-48 48-54 43 .88 .89 .92 .84 .79 a .05 .03 -.01 -.06 -.07 - - - b .39 .34. .30 .24 .16 - 44 r2 .83 .89 .88 .91 .88 .82 .88 a .18 .11 .09 -.08 -.07 -.13 -.03 - b .34 .33 .32 .39 .35 .20 .10 45 r2 .92 .92 .90 .91 .86 .80 .73 .35 a .06 .02 .00 -.04 -.10. -.07 -.06 -.01 b .35 .36 .32 .34 .29 .21 .07 .02 46 r2 .90 .86 .82 .91 .89 .90 .74 .38 a .09 .09 .07 .01 -.05 -.09 -.07 .02 b .35 .32 .33 .29 .28 .24 .10 .02 47 r2 .90 .87 .88 .89 .89 .86 .78 .68 a .07 .10 .03 .01 -.04 -.08 -.08 .00 b .35 .32 .34 .31 .31 .27 .14 .04 48 r2 .87 .83 .85 .89 .87 .89 .82 .65 a .15 .13 .11 .01 -.06 -.09 -. 13 -.02 b .30 .29 .31 .30 .31 .23 .17 .06 49 r2 .91 .90 .91 ■ .89 .81 .77 .86 .80 a .10 .07 -.02 -.10 -.13 -.06 -.05 -.08 b .36 .31 ■ .30 .30 .28 .21 .13 .08 50 r2 .91 .88 .88 .92 .90 . .85 .84 .22 a .11 .13 .06 -.01 -.05 -.11 -.03 .03 b .40 .33 .34 .32 .24 .23 .13 .02 193 Appendix Table .23» Total water use (in), yield (bu) and water use efficiency.(bu/in) for the drought line. Kamp1s farm. 1977 CuUivar ■Water use . Yield Waler use to 54 in efficiency I 6.42 29.9 4.66 2 5.68 25.1 4.42 3 6.01 34.0 5.66 4 6.17 18.3 2.97 5 5.83 33.0 5:66 6 6.14 29.1 • 4.74 7 6.29 27.3 4.34 8 6.13 25.7 4.19 9 6.05 25.6 4.23 10 6.38 20.7 3.24 11 ' 5.38 23.9 4.44 12 6.16 26.1 4.24 13 6.17 30.0 4.86 14 5.70 23.4 4.11 15 6.06 29.5 4.87 16 5.82 24.7 4.24 17 6.35 . 17.1 2.69 18 6.42 27.3 4.25 19 ■ ' 6.09 25.0 4.24 20 5.98 29.4 4.92 21 5.98 • 23.2 3.88 22 6.12 22.9 3.74 23 6.36 26.6 4.10 24 6.44 20.4 4.41 25 6.27 26.6 4.24 26 6.29 20.7 3.29 27 6.40 31.9 4.90 28 5.92 24.7 4.17 29 5.40 22.9 4.24 30 5.91 20.4 4.01 31 6.47 25.4 3.93 32 5.93 30.9 . 5.21 33 5.87 28.0 4.77 34 6.41 22.3 3.48 35 6.03 30.0 4.90 36 5.52 20.1 3.64 37. 6.21 27.1 4.36 38 5.09 22.1 3.75 39 5.41 28.4 5.25 40 5.93 20.5 3.46 41 6.11 23.5 3.85 42 5.68 10.0 3.17 43 4.74 . 22.5 4.75 44 5.74 22.9 3.99 45 6.01 24.4 4.06 46 5.85 25.6 4.38 47 6.14 26.7 4.35 48 6.04 25.8 4.27 49 6.10 26.9 . 4.41 50 6.19 25.5 4.12 194 Appendix Table 24. Water loss (%) for young (not headed) plants of the drought line. 1975. Cultivar I hr 6 hr 12 hr • 18 hr 24 hr 48 hr 72 hr 96 hr 240 hr 1 2 110.5 184.2 221.0 236.8 257.9 289.5 • 305.3 310.6 336.9 3 100.0 189.7 248.3 275.9 303.5 331.1 344.9 351.8 365.6 4 62.5 137.5 200.0 237.5 275.0 325.0 343.8 350.1 368.9 5 89.3 160.7 214.3 242.9 271.5 310.8 325.1 335.0 360.0 6 65.0 140.0 200.0 245.0 280.0 330.0 350.0 360.0 385.0 7 100.0 150.0 200.0 231.3 262.6 312.6 343.9 356.4 387.7 8 93.3 180.0 220.0 246.7 266.7 286.7 293.4 300.1 326.8 9 104.5 181.8 240.9 268.2 290.9 322.7 331.8 336.3 349.9 10 93.3 186.6 239.9 266.6 293.3 ' 326.6 339.9 ' 339.9 366.6 11 119.0 219.0 285.7 314.3 342.9 371.5 381.0 381.0 395.3 12 100.0 195.0 250.0 280.0 315.0 355.0 375.0 305.0 410.0 13 108.6 208.6 285.7 322.8 354.2 395.6 397.0 405.6 425.6 14 66.7 144.5 211.2 251.9 292.6 348.2 374.1 385.2 414.8 15 100.0 180.0 240.0 270.0 305.0 345.0 355.0 365.0 380.0 16 64.3 142.9 225.0 282.1 332.1 403.5 435.6 446.3 478.4 17 107.7 223.1 294.9 343.6 387.2 441.0 456.4 461.5 479.4 18 75.0 150.0 215.0 255.0 290.0 350.0 375.0 385.0 410.0 19 103.1 200.0 271.9 309.4 343.8 381.3 396.9 400.0 425.0 20 90.3 158.0 216.1 248.4 277.4 316.1 329.0 335.5 354.8 21 96.4 153.5 203.5 239.2 282.1 357.1 400.0 421.4 482.1 22 • 100.0 200.0 252.6 284.2 305.3 336.9 347.4 352.7 368.5 23 120.0 212.0 268.0 300.0 332.0 368.0 304.0 392.0 416.0 24 53.1 110.7 170.1 221.9 259.4 310.0 346.9 359.4 •393.0 25 120.0 232.0 280.0 316.0 336.0 364.0 372.0 376.0 396.0 26 70.8 145.8 212.5 254.2 287.5 337.5 358.3 366.6 391.6 27 100.0 177.4 245.1 280.6 309.6 351.5 364.4: 370.9 396.7 28 77.8 144.5 ,194.5 •222.3 255.6 300.0 3.27.0 330.9 372.2 29 96.7 158.0 209.6 241.9 274.2 322.6 345.2 350.1 390.4 30 59.1 109.1 159.1 190.9 227.3 286.4 310.2 336.4 377.3 31 117.4 208.7 273.9 308.7 343.5 307.0 400.0 404.3 421.7 32 50.3 125.0 175.0 204.2 229.2 270.9 291.7 304.2 333.4 33 111.8 194.2 247.1 276.5 294.1 317.6 329.4 335.3 347.1 34 71.4 153.5 210.6 246.3 278.4 321.3 335.6 339.2 357.1 35 104.3 182.6 243.5 278.3 308.7 352.2 369.6 378.3 404.4 36 57.1 122.8 182.8 222.8 262.0 317.1 340.0 351.4 380.0 37 112.5 203.1 262.5 293.8 321.9 362.5 375.0 301.3 403.2 38 72.7 159.1 231.8 272.7 309.1 354.6 360.2 372.7 395.4 39 89.3 171.4 235.7 271.4 300.0 332.1 346.4 350.0 3o7.9 40 100.0 192.9 . 235.8 257.2 270.6 307.2 314.3 328.6 350.0 41 105.9 200.1 264.7 305.9 341.2 376.5 394.1 400.0 417.6 42 56.5 121.7 173.9 208.7' 247.0 291.3 308.7 ' 321.7 352.2 43 93.0 187.6 243.9 275.2 306.5 344.0 350.3 356.6 375.4 44 59.1 118.2 172.7 209.1 245.5 304.6 331.9 341.0 368.3 45 82.4 158.9 217.7 253.0 288.3 329.5 341.3 347.2 ’ 370.7 46 64.7 152.9 205.8 241.1 264.6 294.0 323.4 329.3 . 347.0 47 100.0 103.3 245.8 279.1 308.3 345.8 ■3o2.5 306.7 383.4 48 - - - - - - - -* 49 86.7 163.4 220.1 256.8 286.8 330.1 346.0 356.0 376.8 50 112.0 172.0 212.0 236.0 256.0 288.0 304.0 312.0 332.0 195 Appendix Table 25. Water loss (%) for old (headed) plants of the drought line. 1975. Cultivar I hr 6 hr 12 hr 24 hr 48 hr 72 hr 96 hr 240 hr 1 2 28.4 102.0 146.0 184.3 207.0 216.7 223.8 242.9 3 38.2 120.7 179.2 224.4 257.9 271.1 282.6 302.6 4 23.9 87.1 134.1 186.3 223.7 238.8 249.2 272.6 5 44.2 133.0 185.5 223.5 247.1 257.6 267.4 276.8 6 33.1 118.7 172.4 229.2 274.7 294.5 304.4 319.1 7 36.0 100.3 146.1 189.8 219.2 230.7 241.2 257.6 0 . 36.0 136.0 197.4 240.4 272.0 280.0 297.4 313.6 9 47.2 135.2 189.6 217.8 263.1 275.4 286.5 298.0 . 10 26.0 131.3 194.6 250.6 286.8 302.0 310.5 324.5 11 41.1 132.6 202.9 277.0 318.8 333.7 344.1 353.6 12 33.4 106.4 153.9 200.0 242.2 261.9 272.8 294.1 13 20.0 113.8 102.6 258.5 309.8 326.2 338.4 358.1 14 28.3 99.3 143.8 169.2 225.5 240.7 250.5 271.3 15 42.6 127.7 188.5 243.2 276.6 294.5 306.2 324.9 16 23.2 80.5 120.9 168.1 208.0 227.7 240.2 264.7 17 42.8 139.2 193.8 247.9 282.4 296.9 305.1 321.0 18 35.9 135.9 189.4 233.2 . 258.4 269.7 276.5 290.7 19 46.5 151.3 203.0 254.6 280.2 293.3 303.6 317.9 20 50.0 122.1 163.7 192.5 214.1. 222.5 229.5 239.3 21 29.7 102.6 160.8 237.3 321.6 356.5 374.0 398.1 22 33.0 119.5 161.7 188.5 207.7 218.6 225.9 243.6 23 34.7 120.0 104.0 260.5 318.9 338.1 352.0 371.5 24 ' 34.5 113.3 156.1 191.5 217.2 231.2 230.5 '249.7 25 34.4 134.0 193.1 237.0 265.1 277.7 286 .1 300.4 26 30.8 120.4 179.4 240.9. 275.3 286.7 293.1 307.6 27 53.9 153.1 ■ 209.9 248.1 266.8 273.9 278.9 285.1 20 28.0 102.6 150.0 .195.9 229.9 242.6 250.0 272.0 29 42.0 108.5 143.4 169.3 109.0 197.2 203.2 214.8 30 29.0 103.4 143.0 178.4 202.3 215.7 225.7 253.4 31 35.3 124.0 183.1 230.1 256.7 268.0 277.3 296.3 32 34.0 129.1 170.5 213.5 236.9 240.5 ' 254.4 264.7 33 35.6 123.2 102.8 239.7 278.5 294.5 304.1 328.3 34 34.2 107.4 140.6 161.5 177.0 187.0 192.5 207.4 35 34.8 131.5 192.5 257.1 299.4 313.2 323.1 337.2 36 33.8 122.0 152.1 174.1 168.6 198.3 204.7 221.8 37 39.8 134.7 193.9 242.1 273.0 287.1 297.7 315.7 30 ' 33.8 128.8 166.8 198.0 221.7 235.2 244.1 265.4 39 39.8 119.9 153.5 177.7 195.3 203.5 211.3 227.3 40 40.6 156.0 212.5 254.1 278.3 292.0 300.4 320.0 41 41.6 149.8 226.2 294.4 330.5 342.6 350.8 368.2 42 34.1 128.3 181.5 229.8 260.0 276.0 285.9 ■ 309.0 43 28.8 106.7 158.4 218.3 265.1 282.0 294.0 311.2 44 27.5 112.2 163.0 212.2 247.2 265.0 274.5 295.5 45 34.8 ■120.8 100.7 238.8 270.5 286.5 297.1 321.9 46 31.3 109.3 155.0 197.6 226.5 238.5 246.4 264.5 47 47.8 136.2 188.8 236.9 268.8 283.4 293.5 315.3 48 - - - - - — - - 49 24.9 91.4 143.2 211.7 265.3 . 206.4 299.1 326.0 50 26.9 114.3 160.1 190.9 218.8 230.9 239.4 255.2 196 Appendix Table 26„ Water loss (%) for whole plants of the drought line. 1976. Cultivar 1% hr 6 hr 12 hr 24 hr 48 hr I 56.08 159.6 240.7 297.8 339.1 2 85.74 217.7 292.8 350.7 391.2 3 78.65 186.2 265.7 322.5 359.0 4 70.22 165.6 245.8 32 L. 5 373.1 5 64.56 166.1 262.1 306.7 344.0 6 68.06 169.5 246.1 306.9 358.9 7 68.74 159.3 233.3 284.3 319.6 8 74.90 199.0 287.1 361.9 400.8 9 76.26 184.1 262.1 318.5 358.6 10 85.30 248.5 329.5 398.5 445.3 11 63.44 184.2 252.0 312.6 350.0 12 69.40 161.1 235.1 318.8 383.6 13 76.26 192.7 286.9 357.7 394.8 14 73.08 184.6 265.7 322.7 374.2 15 84.12 180.9 253.2 321.5 373.8 16 73.57 177.1 248.8 . 324.0 374.7 17 68.04 149.6 206.8 273.3 325.4 18 61.60 138.9 183.3 219.3 255.6 19 75.55 176.1 237.9 262.2 287.2 20 . 75.27 195.5 250.7 307.8 347.2 21 75.66 158:5 222.9 290.6 378.1 22 74.10 176.7 250.0 304.2 346.6 23 106.5 226.5 303.4 353.2 393.1 24 68.92 154.0 225.0 284.0 324.9 25 75.64 183.6 251.3 . 301.9 335.1 26 99.68 277.9 412.0 484.0 523.9 27 63.32 160.3 227.6 280.6 326.1 28 75.76 188.1 273.3 341.1 384.0 29 70.80 152.0 221.7 277.2 330.0 30 75.40 193.9 279.6 340.9 423.7 31 82.76 205.2 280.4 335.6 368.6 32 79.06 174.6 239.5 298.1 348.9 33 72.44 180.0 259.7 330.2 397.3 . 34 64.35 161.8 225.3 262.5 287.3 35 85.80 206.9 292.2 351.4 391.0 36 74.94 194.2 281.2 336.9 379.5 37 83.80 205.5 282.1 338.5 .386.6 38 83.70 192.7 263.1 311.0 349.9 39 66.48 160.4 224.6 276.8 316.6 40 96.86 216.5 263.7 331.8 370.1 41 82.88 211.9 291.2 342.7 377.1 42 86.17 188.7 257.6 323.3 373.3 43 79.76 187.4 259.5 316.8 357.4 44 72.52 165.3 235.3 294.0 335.7 45 ■ 82.68 180.0 253.1 320.6 373.3 46 75.60 .172.9 . 246.7 322.2 395.3 47 91.10 210.8 291.7 356.1 403.6 48 79.32 192.7 254.4 291:9 322.6 49 69.76 175.1 253.1 316.3 ■ 363.5 50 84.72 206.2 259.9 302.1 •339.4 - C c u - - J O s I n ^ C u h leaves of the 197 Appendix Table 27. Water loss (7„) for drought line. 1976. Cultivar O - 3 hr O - oven dry I 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 249.1 204.6 186.2 187.1 243.3 238.6 227.0 181.8 214.7 193.7 234.7 219.9 179.4 250.3 167.8 193.8 237.6 182.0 172.1 167.6 161.2 187.8 157.5 223:1 202.0 162.4 229.9 177.5 178.1 129.7 185.1 181.3 190.9 217.5 172.7 209.6 198.9 228.7 209.2 189.6 193.7 187.1 236.4 201.6 182.2 181.3 182.5 225.1 195.3 224.2 265.9 277.9 276.3 258.5 287.2 282.5 293.0 257.6 309.2 270.0 325.4 268.4 280.2 299.7 262.4 272.4 303.6 262.0 257.8 272.3 292.4 255.4 272.8 261.6 278.6 243.3 313.0 259.1 279.0 247.2 299.2 289.1 286.9 245.7 269.5 265.0 294.8 301.1 258.3 267.4 295.7 270.5 330.2 265.7 269.4 286.6 272.0 280.1 268.1 269.9 198 Appendix Table 28. Water loss (7.) for heads of the drought line. 1976. Cullivar • WiLh Grain Weight. Grain Weight. Subtracted I 16.14 ' <>11.26 2 23.60 53.98 3 23.80 58.60 4 16.66 42.97 5 18.08 ' 43.96 6 20.20 50.84 7 18.36 43.52 8 25.68 39.64 9 27.56 35.44 10 23.90 56.24 11 19.52 41.60 12 19.98 64.02 13 31.14 54.46 14 18.64 59.74 15 '32.15 56.60 16 21.80 ■ 75.22 17 22.22 70.10 18 22.08 60.94 19 28.06 48.90 20 . 32.06 90.92 21 26.04 75.90 22 19.68 ■ 66.30 23 25.50 ' 73.98 24 14.26 ' 76.54 25 ' 26.76 54.98 26 ' 26:26 104.9 27 . 13.20 51.92 20 24.22 143:3 29 14.52 . 65.00 30 24.18 95.90 31 26.14 81.64 32 13.26 91.60 33 ' 33.56 105.6 34 14.52. 04.00 35 22.38 81.50 36 16.66 . . 73.96 37 38.14 86.16 38 26.00 55.90 39 16.80 79.74 40 19.12 100.7 41 22.66 ■ 08.34 42. 17.80 113.0 43 25.80 06.10 44 17.60 89.63 45 29.70 05.76 46 ' 20.66 84.76 47 22.54 07.14 48 19.36 05:32 49 17.16 75.00 50 18.38 90.00 199 Appendix Table 29. Modulus of elasticity (bar) for the drought line. 1976 & 1977. Cultivar 1976 ’ 1977 I 41 2 178 3 117 4 52 5 159 6 107 7 H O 8 199 9 100 10 99 11 102 12 227 13 107 14 113 15 113 16 81 17 80 18 176 , 19 193 20 134 21 159 22 145 23 64 24 102 25 209 ' 26 259 27 186 26 97 29 . 160 30 66 31 92 32 166 33 43. 34 35 99 36 117 37 214 38 82 39 99 40 82 ■ 41 95. .42 117 43 107 44 102 45 138 46 84 47 45 48 109 49 79 50 70 • s O O - ^ o ^ u i h ^ w r x 200 Appendix Table I 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 .29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 50 30. Plant height to the bottom of the head, A (cm), and top of the awns, B (cm), percent plump kernels (%), and 100 kernel weights (gm) for the drought line. 1977. A B Kernels Wts. 39.1 56.7 30.2 3.21 49.5 65.2 16.0 2.89 48.8 69.3 49.3 3.51 54.3 71.4 18.4 3.01 42.4 62.6 64.0 4.60 56.0 75.6 61.6 4.10 41.0 57.1 16.6 3.53 ,52.2 68.5 5.6 2.69 ' 44.4 64.2 23.1 . 3.14 54.2 72.0 5.1 2.45 44.9 65.9 • 24.0 3.21 57.2 74.3 ' 27.4 2.93 55.0 73.8 62.4 3.80 45.7 63.8 64.6 . 3.92 50.6 70.0 30.6 3.13 53.9 73.5 58.8 3.92 49.5 66.1 9.6 2.09 48.8 65.0 51.0 3.71 54.1 74.5 .26.5 3.37 44.3 ■ 65.7 49.2 3.87 57.8 ' 79.1 40.1 3.56 51.5 70.6 18.6 3.61 51.5 71.2 29.2 ■ 3.21 53.4 72.9 64.6 4.27 53.0 73.7 5.5 2.99 44.2 60.5 29.5 3.20 38.9 57.0 42.8 3.67 53.6 69.0 11.9 2.83 53.6 73.7 74.2 3.82 54.0 ' 72.7 35.8 3.23 46.0 67.2 49.6 3.34 46.2 65.5 55.0 3.76 49.6 69.0 17.9 3.09 46.7 66.6 74.0 ' 4.24 54.2. 73.6 24.6 3.40 34.3 53.5 51.7 3.97 44.7 66.2 29.0 3.47 33.2 50.1 24.2 3.08 45.6 64.3 30.7 3.60 58.8 76.0 8.9 2.73 37.9 57.8 24.5 3.32 60.9 60.1 9.2 2.70 37.3 57.6 13.2 3.23 51.8 72.4 37.6 2.79 42.3 ' 63.8 13.2 3.11 61.6 78.4 12.3 2.69 30.4 60.3 23.5 3.13 45.3 63.5 47.4 3.00 45.0 64.9 37,2 3.23 49.6 68.0 12.1 3.20 201 APPENDIX TABLE 31 LIST OF SYMBOLS Symbol . Units Definition A cal-cm'^-min"^ Sensible beat flux B caI-cm”^-min“^ Bound water Bs c a I - cm” ^ -min “ ^ Stored energy ■ Cp Cal-B--eG"1 Specific, heat of dry air at con- , stant pressure e mb Vapor pressure em mb Modulus of elasticity - E g-cm“^-min-1 Evaporation rate . Kh ' O I cm -min” Eddy diffusivity for heat kW cm— min”1 Eddy diffusivity for water vapor L cal-g™1 Heat of vaporization of water. LE cal-cm'^-min”1 Evapotranspiration rate . M .cal-cm” -min” Metabolic rate P . mb Absolute pressure ■ Ps ■ ■ cal-cm*"^-min-1 Photosynthetic rate q cal-cm”^-min”1 Water flux. X Fraction reflected ra ' sec-cm-1 Air resistance rI sec-cm-1 Leaf resistance rr sec-cm-^ Root resistance 202 Appendix Table 31 (Continued) Symbol Units Definition rs — 1sec-cm Stomatal resistance R Relative water content ' R Relative water content at zero turgor O potential R1 ' - -2 . -I ' cal-cm - m m Long wave radiation Rn cal-cm ^-min ^ Net radiation Rq T —2 . —1cal-cm - m m Short wave radiation S -2 -I cal-cm -min Soil heat flux t Fraction transmitted T °K Absolute temperature U ' , - 2 . - 1 cal- cm -mm Uptake of water V ■ mm Cell volume V O mm Cell volume at zero turgor potential W Ratio of mole weight of water vapor to dry air 3 Bowen ratio e Emissivity 5 -3g-cm Air density T bar Water potential V a bar Air water potential Y1 bar ■ Leaf water potential Y m bar Matric potential 203 Appendix Table 31 (Continued) Symbol Units Definition ¥O bar Osmotic potential ¥ P . bar Pressure or turgor potential ¥r bar Root, water potential ¥ mt bar Matric potential at full turgidity ¥ °t bar Osmotic potential at full turgidity 204 Appendix Table 32. Feekes Scale (45). Stage 1 2 3 4 5 6 7 8 9 10 10.1 One shoot (number of leaves can be added) Beginning of tillering Tillers formed, leaves often twisted spirally. Beginning of the erection of the pseudo-stem, leaf sheaths beginning to lengthen Pseudo-stem (formed by sheaths of leaves) strongly erected First node of stem visible at base of shoot Second node of stem formed, next-to-last leaf just visible Last leaf visible, but still rolled up, ear beginning to swell Ligule of last leaf just visible Sheath of last leaf completely grown out, ear swollen but not yet visible First ears just visible (awns just showing in barley, ear escaping through split of sheath in wheat or oats) 10.2 Quarter of heading process completed 10.3 Half of heading process completed 10.4 Three-quarters of heading process completed 10.5 All ears out of sheath 10.5.1 Beginning of flowering (wheat) 10.5.2 Flowering complete to top of ear 205 Appendix Table 32. Feekes Scale (45). Cont. Stage 10.5.3 Flowering over at base of ear 10.5.4 Flowering over,, kernel watery ripe I, 1.1 Milky ripe II. 2 Mealy ripe, contents of kernel soft but dry 11.3 Kernel hard (difficult to divide by thumb-nail) Ripe for cutting. Straw dead11.4 LITERATURE- CITED 207 1. Aase1 J.K. 1971. Growth, water use, and energy balance compar­ isons between isogenic lines of barley. Agron; J. 63: 475- 428. 2. Aase1 J.K., J.H. Brown, and J.F. Benci. 1974. Radiation pene­ tration in canopies of barley cultivars isogenic for color. Can. J. Plant Sci. 54: 611-615. 3. Baradas, M.W., B.L. Blad, and N.J. Rosenberg. 1976. Reflectant induced modification of soybean canopy radiation balance. IV Leaf and canopy temperature. Agron. J. 67: 843-848. 4. Baradas, M.W.,B.L. Blad, and N.J. Rosenberg. 1976. Reflectant induced modification of soybean canopy radiation balance. V. Longwave radiation balance. Agron. J. 68: 848-852. 5. Bertrand, A.R. 1965. Water conservation through' improved prac­ tices. p. 207-235. In W.H. Pierre et. aI. (eds.). Plant environment and efficient water use. Amer. Soc. Agron. . Soil Sci. Soc. Amer., Madison, Wisconsin. 6. Billings, W.D., and R.J. Morris. 1951. Reflection of visible and infrared radiation from leaves of different ecological groups. Amer. J. Bot. 38: 327-331. 7. Black, T.A., C.B. Tanner, and W.R. Gardner. 1970. Evapotrans- piration from a snap bean crop. Agron. J. 62: 66-69. 8. Blad, B.L. and N.J. Rosenberg. 1974. Lysimetric calibration of the Bowen ratio energy balance method for evapotranspiration estimation in the central Great Plains. J. Appl. Meteor. 13: 227-236. 9. Bohning.R.H., and C.A. Burnside. 1956. The effect of light in­ tensity on rate of apparent photosynthesis in leaves of sun . and shade plants. Amer. J. Bot. 43: 557-561. 10. Bowen, I.S. 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27: 779-787. 208 11. Brown, K.W., and W. Covey. 1966. The energy-budget evaluation of the micrometeorological transfer processes within a corn­ field. Agr. MeteoroI. 3: 73-96. 12. Brown, K.W., and N.J, Rosenberg. 1973. A resistance model to predict evapotranspiration and its application to a sugar beet field. Agron. J. 65: 341-347. 13. Broyer.T.C . 1952. On volume enlargement and work expenditure by an osmotic system in plants. Physiol. Plant. 5: 459-469. 14. Campbell, A.P. 1973. The effect of stability on evaporation . rates measured by the energy balance method. Agr. Meteor. 11: 261-267. 15. Campbell, G.S., R.I. Papendick, and R.J. Cook. 1975: Water relations of dryland wheat. Western Contributing Project Report. 16. Campbell, G.S. 1976. A reassessment of leaf tissure water re­ lations. Western Contributing Project Report. 17. Campbell, G.S., R.I. Papendick, E. Rabie, and A. Shayo-Ngowi. 1976. A comparison of osmotic potential, elastic modulus and bound water in.leaves of dryland winter wheat. Western contributing Project Report. 18. Cowan, I.R. and F.L. Milthorpe.. 1968. Plant factors influencing the water status of plant tissues. p. 137-193. In T.T. Kozlowski (ed.). Water deficits and plant growth. Vol. I. Academic Press, New York. 19. Dedio, W. 1975. Water relations in wheat leaves as screening ^ tests for drought resistance. Can. J. Plant Sci. 55: 369-378. 20. Denmead, O.T. and I.C. McIlroy.. 1970. Measurements of non­ potential evaporation from wheat. Agr. Meteorol. 7: 285-302. 21. Doraiswamy, P.C., and N.J. Rosenberg. 1974. Reflectant induced modification of soybean canopy radiation balance. I. Pre­ liminary tests with a kaolinite refIectant. Agron. J. 66: 224-228. 209 22. Elam, F.L. 1971. Snow job for tomatoes. Farm J. July, p.7. 23. Eslick, R.F. 1978. University. Personal communication. Montana State 24. Ferguson, H. 1974. use efficiency Use of variety isogenes studies. Agr. Meteorol. in plant water- 14: 25-30. 25. Ferguson, H., R.F. Eslick, and J.K. Aase. 1973, Canopy temp- era lures of barley as influenced by morphological charact­ eristics. Agron. J. 65: 425-428. 26. Ferguson, H., C.S. Cooper, J.H. Brown, and R.F. Eslick. 1972. Effect of leaf color, chlorophyll concentration and temp­ erature on photosynthetic rates of isogenic barley lines. Agron. J. 64: 671-673. 27. Frank,A.B., J.F. Power, and W.O. Willis. 1973. Effect of temp­ erature and plant water stress on photosynthesis, diffusion resistance, and leaf water potential in spring wheat. Agron J. 65: 777-780. 28. Fritchen, L.J. 1966. Evapotranspiration rates of field crops determined by the Bowen ratio method. Agron. J. 58: 339- 342. 29. Fritchen, L.J. and C.H.M. van Bavel. 1962. Energy balance com­ ponents of evaporating surfaces in arid lands. J. Geophys. Res. 67: 5179-5185. 30. Fuchs, M., C.B. Tanner, G.W. Thrtell, and T.A. Black. 1969. Evaporation from drying surfaces by the combination method. Agron. J. 61: 22-26. 31. Gabrielsen, E.K. 1948. Effects of different chlorophyll con­ centrations on photosynthesis in foliage leaves. Physiol. Plant. I: 5-37. 32. Gardner, W.R.and C.F. Ehlig. 1965. Physical aspects of the internal water relations of plant leaves. Plant. Physiol. 4 : 705-710. 33. Gates, D.M. 1963. The energy environment in which we live. Amer. Scien. 51: 327-348. 210 34. Gates, D.M., H.J. Keegan, J.C. Schleter, and V.R, Weidner. 1965; Spectral properties of plants. Appl. Opt. 4: 11-20. 35. Gates, D.M. and L.E. Papian. 1971. Atlas of energy budgets of plant leaves. Academic Press, New York. 36. Gates, D.M. and W. Tantrapprn. 1952( The refectivity of de­ ciduous trees and herbaceous plants in the infrared to.25 microns,. Science. 115: 613-616. 37. Geiger, P. 1961. The climate near the ground. (English TransI.)1965. Harvard Univ. Press, Cambridge. 38. Haines', F.M. 1950. The relation between cell dimensions os­ motic pressure and turgor pressure. Ann. Hot. 14: 385-394. 39. Halstead, M.H. and W. Covey. 1957. Some meteorological as­ pects of evapotfanspiration. SSSAP. 21: 461-464. 40. Hurd, E.A. 1976. II. Parameters of drought resistance in a breeding program, p. 317-353. In T.T. Kozlowski (ed.). ^ . Water deficits and plant growth. Vol. 4. Academic Press, New York. 41. IGY, 1958. Radiation instruments and measurements. Annals of the IGY 1957/58. Vol. 5. Part 6. Pergamon Press, ■ London. ' 42; Kanemasu, E.T. 1977. Effect of soil moisture and air temper­ ature on sorghum leaf temperature. Western Contributing Project Report. 43. Kaul, R. 1967. A survey, of water suction forces from some prairie wheat varieties. Can. J. Plant. Sci. 47: 323-326. 44. Kaul, R. 1974. Potential net photosynthesis in flag leaf of severely drought-stressed wheat cultivars and its relation to grain yield. Can. J. Plant Sci. 54: 811-815. 45. Large, E.C. 1954. Growth stages in cereals. Illustration of the Feekes scale. Plant Path. 3: 128-129. 46. Lemeur, R. and N.J. Rosenberg. 1975. Reflectant induced mod­ ification of soybean canopy radiation balance. II. A quantitative and qualitative analysis of radiation reflect­ ed from a green soybean canopy. Agron. J. 67: ,301-306. 211 47. Lemeur, R. and N.J. Rosenberg. 1976. Reflectant induced modification of soybean canopy radiation balance. III. A comparison of the effectiveness of celite and kaolinite reflectants. Agron. J. 68: 30-35. 48. Lemon, E.R., A.H. Glaser, and L.E. Satterwhite. 1957. Some aspects of the relationship of soil, plant, and metero- logical factors to evapotranspiration. SSSAP. 21: 464-468. 49. Levitt, J. 1951. Frost, drought, and heat resistance. Ann. Rev. of PI. Phys. 2: 245-268. 50. Levitt, J. 1972. Responses of plants to environmental stress­ es. Academic Press, New York. . 51. Lipton, W.J. and F. Matoba. 1971. Whitewashing to prevent sunburn of 'Crenshaw' melons. Hortic. Sci. 6: 343-345. 52. Moss, R.A. and W.E. Loomis. 1961. Absorption spectra of,leaves I.. The visible spectrum. Plant Phys. 27: 370-390. 53. Parker, J. 1972; Protoplasmic resistance to. water deficits. p. 125-167. In T.T. Kozlowski Ced.). Water deficits and plant growth. Vol. 3. Academic Press, New York. 54. Philip, J.R. 1958. The osmotic cell, solute diffusibility and the plant water economy. Plant Phys. 33: 264-271. 55. Philip, J.R. 1958. Propagation of turgor and other proper­ ties through cell aggregations. Plant Phys. 33: 271-274. 56. Rose, C.W. 1966. Agricultural physics. Pergainon Press, London.. 57. Salim, M.Sm. and G.W. Todd. 1965. Transpiration patterns of wheat, barley, and oat seedlings under varying conditions of soil moisture. Agron. J. 57: 593-596. 58. Salim, M.H., G.W. Todd, and C.A. Stutte. 1969. Evaluation of techniques for measuring drought avoidance in cereal seed­ lings. Agron. J. 61: 182-185. 59. Sandhu, A.S. and H.H. Laude. 1958. Tests of drought and heat hardiness of winter wheat. Agron. J. 50: 78-81. . 212 60. Seginer, I. 1969. The effect of albedo on the evapotranspir- ation rate. Agr. Meteorol. 6: 5-31. 61. Shull, C.A. 1929. A spectrophotometric study of reflection of light from leaf surfaces. Bot. Gaz. 87: 583-607. 62. Tanner, (3.B-. 1960. Energy balance approach to evapotranspir- ation from crops. SSSAP. 24: 1-9. 63. Wadleigh, C.H., W.A. Perry and P.M. Herschfield. 1965. The moisture problem, p. 1-19. In W.H. Pierre et. al. (eds.). Plant environment and efficient water use. Amer. Soc. Agron. - Soil Sci. Soc. Amer. Madison, Wis. 64. Watson, D.J. 1968. A prospect of crop physiology. Ann. App. Biol. 62: 1-9. 65. Wilson, J.W. 1967. The components of leaf water potential. I. Osmotic and matric potentials. Aust. J. Biol. Sci. 20: 329-347. 66. Wilson, J.W. 1967. The components of leaf water potential. II. Pressure potential and water potential. Aust. J. Biol. Sci. 20: 349-357. 67. Wilson, J.W. 1967. The components of leaf water potential. III. Effects of tissue characteristics and relative water content on water potential. Aust. J. Biol. Sci. 20: 359-367. 6Y„y1„1 ere-rr- _ 3 1 7 6 2 10010424 7 D378 Fink, Thomas C Fit95 Drought resistance in cop.2 barley as related to color and screening tests DATE IS S U ED TO r> g y y d K ,A / M OSf IN" D378 F495 C°P.2