

Synthesis, characterization, and mechanistic studies on a group of platinum complexes using 195PT nuclear magnetic resonance by Danny Richard Bedgood, Jr

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Montana State University

© Copyright by Danny Richard Bedgood, Jr (1991)

Abstract:

The synthesis and reactions of three salts of a polymeric, intensely red luminescent platinum(II) complex formed by the reaction of K2PtCl6 with H3P03 at 220-240° C are reported. The compound was characterized using 31P and 195Pt NMR, IR, UV/Vis and XPS spectroscopy, fluorometry, elemental analysis, and X-ray crystallography. The proposed structure has an average length of five platinum atoms per molecule and is a penta- anion, based upon elemental analysis data. NMR, IR, and UV/Vis spectroscopy support pyrophosphite bridges, with a pair of P(OH)3 groups bound to each of the terminal platinum atoms, and the fluorometry data support a molecule with Pt-PT interactions based upon intense emission at 659nm. Platinum XPS data indicate platinum(II) is present, although at 72.6eV the resonance is slightly lower than for similar dimeric compounds. Crystals obtained from reactions with (CH3) 4NI and (CH3)4Br and (Bu)4NBr were found to be Pt2 (POP) 4I2 (cell dimensions 16.0086, 16.8876, 16.3354A) and Pt2(POP)4Br2 (cell dimensions 15.2880, 15.2921, 11.6217Å). Results of many reactions of the polymer with SCBT, CNT, CH3COOH, HN03, H2S04, P(CsH5)3, ethylenediamine, and other reagents are reported.

Studies on the polymerization of Pt(OH)62- in strong mineral acids is reported, and the formation of polymeric precipitates in H2S04, H3P04, HC104, HN03, and CF3S03H are reported. Elemental analysis of the polymeric solids formed in H2S04 indicates 3-5 platinum atoms per anion and 12:1 for the H3PO4 polymer. Formation of polymeric precipitates was not affected by reaction in non-aqueous media, and precipitates were obtained in various concentrations of platinum and acid (as long as acid concentration remained above 0.1M [0.5M for H3P04]).

A new synthetic scheme is described by which platinum(III) dimers can be formed by reaction of platinum(II) and platinum(IV), in the reverse of disproportionation. 195Pt NMR spectroscopy was used to follow the reactions, and identify the Pt2(S04)42- and Pt2(HP04)42- products. This scheme was used to form a new compound with trifluoroacetic acid, proposed to be a platinum (III) dimer of the form Pt2(TFA)42+. The formation and identification by 195Pt NMR spectroscopy of new platinum(II) and platinum(IV) complexes formed with trichloroacetic acid, methanesulfonic acid, and para-toluenesulfonic acid are also reported, with formation constants calculated for some of the platinum(II) species.

SYNTHESIS, CHARACTERIZATION, AND MECHANISTIC STUDIES ON A GROUP OF PLATINUM COMPLEXES USING ¹⁹⁵PT NUCLEAR MAGNETIC RESONANCE

by

Danny Richard Bedgood, Jr.

A thesis submitted in partial fulfillment of the requirements for the degree

Doctor of Philosophy

of

in

Chemistry

MONTANA STATE UNIVERSITY Bozeman, Montana

August 1991

APPROVAL

of a thesis submitted by

Danny R. Bedgood, Jr.

This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistancy, and is ready for submission to the College of Graduate Studies.

8/26/91 Date

Elin H Old Chairperson, Graduate

Committee

Approved for the Major Department $\frac{8/26/9(}{\text{Date}}$ Head, Major Department

D378

B391

Approved for the College of Graduate Studies

august 26, 1991 Reau Darovio Data Graduate Dean

ii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this thesis is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this thesis should be referred to University Microfilms International, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted "the exclusive right to reproduce and distribute copies of the dissertation in and from microfilm and the right to reproduce and distribute by abstract in any format."

Signature Date

iii

TABLE OF CONTENTS

		Page
ттоп		
11.91		• • • • • •
LIST	OF FIGURES	. ix
ABSTI	RACT	.xiii
т	INTRODUCTION	1
 •	History	. 1
	Sulfate Ligands	3
	Phosphate Ligands	. 9
	Pvrophosphite Ligands	. 10
	Polymerization with Aquo/Hydroxo Ligands	. 16
II.	EXPERIMENTAL	. 21
	Nuclear Magnetic Resonance	. 21
	Infrared	. 22
	UV-Vis	. 22
	X-Ray Photoelectron Spectroscopy	. 22
	Fluorometry	. 23
	X-Ray Crystallography	. 23
III.	RESULTS/DISCUSSION	. 24
	Red Compound	. 25
	Synthesis	. 25
	Potassium Salt	. 25
•	Sodium Salt	. 29
	Methyltriphenylphosphonium salt .	. 30
	Properties	. 30
	Elemental Analysis	. 30
	Spectroscopic Properties	. 34
	Infrared	. 34
	UV/Visible	. 34
	Fluorescence	. 36
	NMR Spectroscopy	. 41
	XPS	. 47
	Solution Stability	. 47
	Potassium salt	. 47
	Sodium Salt	. 50
	Methyltriphenylphosphonium	L · ·
	Salt	. 51
	X-ray Crystallography	. 52
	Crystallization Attempts	. 52
	Aqueous Solvents	. 52
	Non-aqueous Solvents	. 54
	Reactions	. 57

TABLE OF CONTENTS, continued

]	₽a	a	e
	_	_	_

The Concept of Reverse Disproportionation	58
Reactions with Hydrochloric Acid	61
Reactions with Barium Ion	62
Reactions with Agucous Sulfate Top	66
Reactions with Aqueous bullace ion : : :	60
The Nature of Platinum (1V) in Acid Solution .	.0.9
Formation of Solids with Strong Mineral	_ •
Acids	70
Loss of Platinum(IV) Resonances in NMR .	74
Elemental Analysis	74
	75
$\frac{1}{2} \frac{1}{2} \frac{1}$	
Oxidation of Platinum(11) co	76
Platinum(IV)	70
Oxidation with Cl_2	79
Oxidation with Permanganate	94
Oxidation with Peroxydisulfate	L00
Ovidation with Hydrogen Peroxide	104
Dlatinum (TT) in Acid	105
	105
Previous Work	106
Reactions in Concentrated Acids	100
Sulfuric Acid	L07
Phosphoric Acid	109
Evidence of Polymerization	111
Reverse Dignoroportionation Reactions	113
Reverse Disproportionation Redoctions	114
Reactions with Sulfuric Acid	117
Reactions in Phosphoric Acid	11/
Synopsis of Reverse Disproportionation and	
Platinum(IV) Polymerization Results	119
Well Characterized Reactions of Platinum(II)	
and Platinum (TV) with Organic Acids	123
Parations of Platinum(II) and	,
Reactions of fraction (12)	
Platinum (1V)	123
with Trifluoroacetic Acid	100
Platinum (II)	123
Platinum(IV)	128
Mixtures of Platinum (II) and	
Platinum (IV)	135
Peactions in 50%	
Trifluoroacetic Acid	135
Reactions in neac	137
trifluoroacetic acid	107
Platinum(IV) dissolved in base	
before addition of	
trifluoroacetic acid	140
Reactions of Platinum(II) and	
	• .
rith Muichlonopactia Agid	140
WITH TITCHIOLOGUEUIC ROLU	140
Platinum(11)	7-70

TABLE OF CONTENTS, continued

				raye
Platinum(IV)	•		• •	142
Methanesulfonic Acid			• •	146
Platinum(II)	•	• •		146
Platinum(IV)	•	• •	• •	148
Trifluoromethanesulfonic Acid .	•	• •		148
Platinum(II) and Platinum((IV)	•-		148
Para-Toluenesulfonic Acid	•	• •		152
Platinum(II)	•		• •	152
Platinum(IV)	•	•••	• •	152
IV. CONCLUSIONS	•	•••	••	155
REFERENCES CITED	• •	• •,	• •	158

LIST OF TABLES

Table	Page
	<u></u>
1. ¹⁹⁵ Pt and ³¹ P NMR Collection Parameters.	
2. Elemental Analysis Results for the Meth	-
yltriphenylphosphonium Salt of the Re	31
Complex	. JI
3. Comparison of Infrared Absorptions of the re	34
complex with $Pt_2(POP)_4$ and NH_4POP	
4. Results of Fluorescence Experiments on the	.e
Sodium Salt of the Red Complex III a RE	بر ۸۵۰
Mull. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	- 40
5. Comparison of Electronic Spectra for PC2 (POP)4	<i>r</i> //1
$Pt_3(POPOP)_4^{\circ}$, and the Red Complex (IIII).	
6. Results of Attempts to Grow Crystals of Cr	
Postassium Salt of the Red Complex In Aqueou	53
Solution (Room temperature unless noted.)	
7. Results of Attempts to Grow Crystals of Cr	
Sodium Salt of the Red Complex In Non-aqueou	13
Media for X-ray Diffraction Analysi	
(conducted at room temperature unrea	55
noted.)	10
8. Results of Attempts to Grow Crystars of Ca) —
Potassium Salt of the Red Complex in Nor	
aqueous Media (room cemperature units	. 55
otherwise noted).	
9. Results of Attempts to Grow Crystaris of the Re	ad s
Methyltriphenylphosphonium Sait of the in	19
Complex for x-ray Dilliaction in Non ages	56
Media	a-
10. Results of Readcions of the Red Complex	. 58
nyipnosphonium Sait of the New Compton.	ds
11. Results of Elemental Analysis of Solar	ch .
Obtained from Reaction of Flating hold and	75
Sulfuric and Phosphoric Actus.	of
12. Comparison of PC white chemical shifted $(OH)_{c}^{2}$	in
Chloride Substituted Complexes of revenue,	82
Acid and Base Solucion.	1.
13. SPE NMR CHEMICAL SHITLS OF FICARCES OF C	. 93
Uxidation of Platfium (11) complexes Formed	bv
14. Providencial Shirts of Comptemes Termon (I	I)
Permanganale Oxidation of fidelinam(=	100
Species	e,
15. TE NMR Chemical Shires of Richard, Sand	of
Phosphate, Adecate, and childred completed 2^{+}	106
$PT(H_2U)_4 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $	

vii

viii

LIST OF TABLES, continued

Table

.

Table	Page
16. ¹⁹⁵ Pt NMR Chemical Shifts of Pt(H ₂ O) ₄ ²⁺ Complexes formed in Dilute and concentrated	
Sulfate/Sulfuric Acid	109
Phosphate/Phosphoric Acid	111
Complexes	126

LIST OF FIGURES

Figure

Page

1.	The Structure of $[(C_6H_5NC)_4Pt(u-NH_2NH)_2Pt-$	ċ
_	$(CNC_6H_5)_4]X_2$.	. 4
2.	The Structure of $K_2Pt_3(NO_2)_6O$: 3
3.	The Structure of $Pt_2(SO_4)_4(H_2O)_2^-$.	. 5
4.	Structure of $[Pt(NO_2)_4(NO)(H_2O)]$.	. 0
5.	Structure of $[Pt(NO_2)_2(NO)CL_3]^-$.	. 0
6.	Structure of $Pt_2(NO_2)_4(OH)_2^{-1}$. /
7.	The Structure of $Pt_4 (NO_2)_9 O_3^{\circ}$. 0
8.	Structure of $[Pt_2(HPO_4)_4(H_2O)_2]^2$	10
.9.	Structure of $Pt_2(H_2P_2O_5)_4$	13
19.	193 Pt NMR Spectrum of Pt ₂ (H ₂ P ₂ O ₅) ₄ 1122	17
10	Hudrovo- Bridged Dimers of Cis-Platin.	19
12.	Structure of the Red Complex	33
13.	Infrared Spectrum of the Methyltriphenylphosp-	
14.	honjum Salt of the Red Complex as a KBr	
	$M_{11} (CM^{-1})$	35
1 5	Mull (CM)	
15.	Ov/VIS Spectrum of the board bare of the heat	37
	Complex in water (im)	0.
16.	UV/VIS Spectrum of the Sodium Sait of the Rea	38
	Complex as a NBI Mull (mm)	50
17.	UV/Vis Spectrum of the Sodium Sait of the Neu	39
	Complex in im not (inn)	55
18.	"P NMR Spectrum of the Methylcriphenylphosph"	42
	onium Salt of the Red Complex in DMSC	72
19.	³¹ P NMR Spectrum of Decomposition Froducts of	
	the Sodium Sait of the Red Comptex in 10%	15
	CH_3CN/CH_3OH	40,
20.	Platinum X-ray Photoelectron Spectroscopy	
	Spectrum of the	
	Methyltripnenylphosphonium sait of the	18
	Red Complex	40
21.	Phosphorus X-ray Photoelectron Spectroscopy	
	Spectrum of the	
	Methyltriphenylphosphonium Sait of the	10
	Red Complex	63
22.	¹⁹⁵ Pt NMR Spectrum of $Pt_2(SO_4)_4$ in water	. 05
23.	¹⁹⁵ Pt NMR Spectrum of $Pt_2(SO_4)_4$ after Addition	61
	of HCl	04
24.	Loss of the ¹³³ Pt NMR Resonance of $Pt_2(SO_4)_4$	
	upon Addition of One Equivalent of Ba	65
		65
25.	Mono- and Dimeric Platinum(IV)Aquo/Hydroxo	
	Species, Showing Loss Over Time in	73
	Concentrated H_2SO_4	13
26.	193Pt NMR Spectrum of Sulfato- Complexes of	0.0
•	$Pt(H_2O)_4^{2^+}$ in $1\underline{M}$ HClO ₄	80

ix

LIST OF FIGURES, continued

Dar

r rga.		5-
27.	¹⁹⁵ Pt NMR Spectrum of Cl ₂ Oxidation Products of Sulfato- Complexes of Pt(H_2O) ₄ ²⁺ in Dilute	
28.	H_2SO_4	81
29.	Pt $(H_2O)_4^{2+}$ in 1 <u>M</u> HClO ₄	84
30	Nitrato- Complexes of $Pt(H_2O)_4^{2^+}$	85
	Nitrato- Complexes of $Pt(H_2O)_4^{2+}$ Bubbled	87
31.	¹⁹⁵ Pt NMR Spectrum of Phosphato- Complexes of Pt (H ₂ O), ²⁺ in 1M HClO,	89
32.	¹⁹⁵ Pt NMR Spectrum of Cl ₂ Oxidation Products of Phosphato- Complexes of Pt(H ₂ O), ²⁺	90
33.	¹⁹⁵ Pt NMR Spectrum of Cl ₂ Oxidation Products of Phosphator Complexes of Pt (H ₂ O), ²⁺	92
34.	¹⁹⁵ Pt NMR Spectrum of Partially Equilibrated	• -
	HClO ₄	95
35.	of Sulfato- Complexes of $Pt(H_2O)_4^{2+}$	96
36.	¹⁹⁵ Pt NMR Spectrum of Nitrato- Complexes of Pt $(H_2O)_4^{2+}$ in 1 <u>M</u> HClO ₄	98
37.	¹⁹⁵ Pt NMR Spectrum of MnO ₄ ⁻ Oxidation Products of Nitrato- Complexes of Pt(H ₂ O) ₄ ²⁺ in Base	99
38.	¹⁹⁵ Pt NMR Spectrum of Equilibrated Sulfato- Complexes of Pt(H ₂ O) ²⁺	102
39.	¹⁹⁵ Pt NMR Spectrum of Peroxydisulfate Oxidation Products of Sulfato- Complexes of	100
40.	Pt $(H_2O)_4^{2^+}$	103
41.	Pt $(H_2O)_4^{2+}$ in Concentrated H_2SO_4 ¹⁹⁵ Pt NMR Spectrum of Phosphato- Complexes of	108
12	Pt $(H_2O)_4^{2+}$ in Concentrated H_3PO_4	110
76.	ion Synthesis of $Pt_2(SO_4)_4^{2-}$ in Concentrated H.SO.	115
43.	¹⁹⁵ Pt NMR Spectrum of Literature Preparation of Dt (SO) 2^{-1} in Concentrated H SO	116
44.	¹⁹⁵ Pt NMR Spectrum Illustrating Loss of Sulfa-	· .
	$Pt_2(SO_4)_4^{2-}$ Grows in	118
45.	ion Synthesis of Pt ₂ (HPO ₄) ₄ ²⁻ in 50% H ₃ PO ₄	120
46.	³¹ P NMR Spectrum of Reverse Disproportionation Synthesis of $Pt_2(HPO_4)_4^{2-}$ in 50% H_3PO_4	121

x

LIST OF FIGURES, continued

ligure	Page
17. ¹⁹⁵ Pt NMR Spectrum of TFA Complexes of Pt $(H_2O)_4^{2+}$ in 1M HClO.	. 124
18. ¹⁹⁵ Pt NMR Spectrum of TFA Complexes of Pt $(H_2O)_4^{2+}$ in 1 <u>M</u> HClO ₄ Exposed to Air	. 127
19. ¹⁹⁵ Pt NMR Spectrum of Pt $(NO_2)_4^2$ in Concentrated TFA	. 129
50. Diagram Illustrating Chemical Shift of ¹⁵⁵ Pt NMR Resonances of TFA Complexes of	100
Platinic Acid in 50%, 75%, and 100% TFA 51. ¹⁹⁵ Pt NMR Spectrum of Formation (and Final Loss	· 1.30
IN Spectrum D) OF THA COMPLEXES OF Platinic Acid in 50% THA	, 131
plexes of Platic Acid in 75% TFA	. 133
$TFA. \dots TFA.$. 134
54. ¹⁹⁵ Pt NMR Spectrum of New Peak Observed upon Addition of $Pt(H_2O)_4^{2+}$ to Equilibrated TFA	. 136
55. ¹⁹⁵ Pt NMR Spectrum of TFA Complexes of Platinic Acid in Concentrated TFA Before and After	
Addition of $Pt(H_2O)_4^{2+}$ 56. ¹⁹⁵ Pt NMR Spectrum of TFA Complexes of $Pt(H_2O)_4^{2+}$ in Concentrated TFA Before and After	. 138
Addition of Platinic Acid in Concentrated	i . 13,9
57. ¹⁹⁵ Pt NMR Spectrum of TCA Complexes of Pt $(H_2O)_4^{24}$ in 50% (Spectra A-C) and 75% (D) TCA	. 141
58. ¹⁹⁵ Pt NMR Spectrum of TCA Complexes of Platinic Acid in 50% TCA	. 143
59. Diagram of Successive TCA Substitutions of Platinic Acid, and their Statistical	. 144
60. ¹⁹⁵ Pt NMR Spectrum of Formation of CH_3SO_3H Complexes of Pt $(H_2O)_4^{2+}$ in Neat CH_3SO_3H .	I . 147
61. ¹⁹⁵ Pt NMR Spectra of Formation of CH ₃ SO ₃ F Complexes of Platinic Acid in Neat	1 . 149
62. ¹⁹⁵ Pt NMR Spectrum of Platinic Acid in Triflic Acid.	. 150
63. ¹⁹⁵ Pt NMR Spectra of Pt(H_2O) ₄ ²⁺ in Triflic Acid	. 151
64. ¹⁹⁵ Pt NMR Spectrum of Tosylic Acid Complex of Pt $(H_2O)_4^{2+}$. 153

LIST OF FIGURES, continued

Figure

Page

ABSTRACT

The synthesis and reactions of three salts of a polymeric, intensely red luminescent platinum (II) complex formed by the reaction of K₂PtCl₆ with H₃PO₃ at 220-240° C are reported. The compound was characterized using ³¹P ¹⁹⁵Pt UV/Vis and NMR, IR, and XPS spectroscopy, fluorometry, elemental analysis, and X-ray crystallography. The proposed structure has an average length of five platinum atoms per molecule and is a penta- anion, based upon elemental analysis data. NMR, and UV/Vis spectroscopy support pyrophosphite IR, bridges, with a pair of $P(OH)_3$ groups bound to each of the terminal platinum atoms, and the fluorometry data support a molecule with Pt-PT interactions based upon intense emission at 659nm. Platinum XPS data indicate platinum(II) is present, although at 72.6eV the resonance is slightly lower than for similar dimeric compounds. Crystals obtained from reactions with (CH₃)₄NI and $(CH_3)_4Br$ and $(Bu)_4NBr$ were found to be $Pt_2(POP)_4I_2$ (cell dimensions 16.0086, 16.8876, 16.3354Å) and $Pt_2(POP)_4Br_2$ (cell dimensions 15.2880, 15.2921, 11.6217Å). Results of many reactions of the polymer with SCN, CN, CH₃COOH, HNO_3 , H_2SO_4 , $P(C_6H_5)_3$, ethylenediamine, and other reagents are reported.

Studies on the polymerization of $Pt(OH)_6^{2-}$ in strong mineral acids is reported, and the formation of polymeric precipitates in H_2SO_4 , H_3PO_4 , $HClO_4$, HNO_3 , and CF_3SO_3H are reported. Elemental analysis of the polymeric solids formed in H_2SO_4 indicates 3-5 platinum atoms per anion and 12:1 for the H_3PO_4 polymer. Formation of polymeric precipitates was not affected by reaction in non-aqueous media, and precipitates were obtained in various concentrations of platinum and acid (as long as acid concentration remained above 0.1M [0.5M for H_3PO_4]).

A new synthetic scheme is described by which platinum(III) dimers can be formed by reaction of platinum(II) and platinum(IV), in the reverse of disproportionation. ¹⁹⁵Pt NMR spectroscopy was used to follow the reactions, and identify the $Pt_2(SO_4)_4^{2^-}$ and $Pt_2(HPO_4)_4^{2^-}$ products. This scheme was used to form a new compound with trifluoroacetic acid, proposed to be a platinum(III) dimer of the form $Pt_2(TFA)_4^{2^+}$. The formation and identification by ¹⁹⁵Pt NMR spectroscopy of new platinum(II) and platinum(IV) complexes formed with trichloroacetic acid, methanesulfonic acid, and paratoluenesulfonic acid are also reported, with formation constants calculated for some of the platinum(II) species.

xiii

CHAPTER I

1

INTRODUCTION

History

Platinum has been used as ornamentation since antiquity, at which time it was confused with silver; the Egyptians and South American Indians used platinum for jewelry, no doubt believing it to be silver(1). It was as a result of the exploration of the South American continent that platinum was introduced to Europe. Perhaps the first unofficial report was as early as 1558 by Scalinger describing an infusible metal from Mexico The first official report of this element and Darien. was in 1748 by Don Antonio de Ulloa, who referred to it in his papers following a trip to South America; he and his papers were captured by English privateers, and his observations came to the attention of the Royal In 1750 William Watson related to the Society(2). Society a communication from William Browning of a "semimetal called Platina di Pinto" found in the Spanish West Indies(3).

While the chemistry of platinum is very rich and varied, it is the formation of binuclear and larger cluster complexes by platinum that is of particular interest in this work. Perhaps among the first such compounds proposed was by Blondel(4), who in 1905 reported a platinum(III) complex containing coordinated sulfate; while only the empirical formula was determined, this compound has attracted a great deal of interest the last twenty years, and will be discussed in more detail below.

Perhaps the first report of a bimetallic platinum complex was in 1925 by Tschugaev(5), who described a hydrazine derivative of a phenylisocyanide, in which two hydrazine molecules bridge between two platinum complexes (Figure 1); for X=Cl⁻, the compound is red, but upon

 $\left[(C_{6}H_{5} \cdot NC)_{4}Pt \bigvee_{NH_NH}^{NH_{2}-NH} Pt(CN\Phi)_{4} \right] X_{2}$ Figure 1. The Structure of $[(C_6H_5NC)_4Pt(u-NH_2NH)_2Pt(CNC_6H_5)_4]X_2.$

heating turns green, returning to red when cooled. Since that time many different types of binuclear (or larger) platinum clusters have been described and characterized with carbonyl(6)(7)(8)(9)(10), and c a r b o x y l a t e a n d dithiocarboxylate(11)(12)(13)(14)(15)(16)ligands, a s we l l a s t h e p l a t i n u m blues(17)(18)(19)(20)(21)(22)(23)(24)(25)(26);of primary importance to the work described in this paper are the multinuclear platinum complexes formed with sulfate, phosphate, pyrophosphite, and aquo/hydroxo ligands, described below.

Sulfate Ligands

mentioned above, Blondel reported that the As reaction of PtO_2 with concentrated sulfuric acid and oxalic acid reduction resulted in a compound that analyzed as $K[Pt(SO_4)_2].H_2O(4)$. This was a modification reactions reported by Vezes in of the 1893(27)(28), in which $K_2Pt(NO_2)_4$ was reacted with dilute mineral acids to yield copper-red needles which he as $K_2H_4Pt_3(NO_2)_60.3H_2O$ (reformulated in formulated 1977(29) as $K_2[Pt_3(NO_2)_60] \cdot 3H_20$ with the structure shown in Figure 2.) Since the work by Blondel the

Figure 2. The Structure of $K_2Pt_3(NO_2)_6O$. Russians have focused considerable attention upon the compound; in the first report of their work in this area, Ginzberg(30) prepared a compound like Blondel's by

reaction of $K_2Pt(NO_2)_4$ with concentrated H_2SO_4 to yield a compound proposed to contain platinum(III); a compound similar to this was reported from the reaction of $PtCl_6^{2-}$ The first formula proposed and sulfuric acid(31). for the compound indicating multinuclearity was by Ivanova(32), who proposed a compound of the form $Pt_2(SO_4)_A^{2-}$ based upon visible and infrared spectra on solvent extraction experiments with aqueous sulfate. Substitution of the proposed axial water molecules by halides, hydroxide, and nitrite was reported in 1975 before the crystal structure vear (33)(34), one This work had attracted the determined (35). was attention of Cotton's group, who published a slightly detailed crystal synthesis(36)(37), and revised analysis(38) which resulted in the structure shown in Figure 3 (the first detailed crystal structure of the bimetallic platinum core was reported by Falohon of a DMSO derivative in 1982(39)).

Note the 'lantern' arrangement of the bridging ligands around the platinum core, and the axially coordinated water molecules; the molecule has essentially C_{4h} symmetry, for the O-Pt-Pt-O atoms fall in a plane with the sulfur atoms deviating consistently from that plane. The Pt-Pt bond distance is 2.461Å, indicating strong interaction between the metal atoms designated as a single bond. Several analogous compounds have now been

Figure 3. The Structure of $Pt_2(SO_4)_4(H_2O)_2^{2-}$. prepared with Re(40), Mo(41)(42), Rh(43), Ir(44), Ru(45), and Os(46).

In preparing this compound a series of dramatic color changes are observed; the initial solution of $K_2Pt(NO_2)_4$ in concentrated acid turns immediately a deep blue; as the reaction proceeds, the color changes slowly over two to three hours to green, then yellow, precipitating the yellow dimer. Brown gas is evolved throughout this sequence.

These colored compounds indicated that several intermediates must be in solution; four of these have been identified and their structure determined by X-ray analysis(47)(48). The first two compounds, blue and green, are mononuclear, containing bent nitrosyl and nitrite groups coordinated to the platinum atom (Figures 4 and 5). Note that in both cases the original Platinum(II) was oxidized to platinum(IV);

also note that for the first species, $[Pt(NO_2)_4(NO)(H_2O)]_{,}^{-}$

four nitrites and a nitrosyl are coordinated, yet the original complex began with only four nitrogen ligands $(Pt(NO_2)_4^{2-})$. The extra nitrogen group must have come from another $Pt(NO_2)_4^{2-}$ molecule, leaving at least one other compound in solution, containing at most three nitrogen ligands. The second compound, $[PtCl_3(NO_2)_2(NO)]^{2-}$, contains contaminating chloride as a result of insufficient recrystallization of the K₂Pt(NO₂)₄, and a coordinated bent nitrosyl. These compounds represent only the second and third reported bent nitrosyl

The remaining two compounds were prepared in dilute sulfuric acid later neutralized with Na_2CO_3 ; these compounds are yellow, multinuclear complexes containing coordinated nitrite (Figures 6 and 7). The first

compound contains platinum(II), while the second is a

mixture of platinum(II) and platinum(IV).

It is important to realize that these four compounds could be intermediates in the formation of $Pt_2(SO_4)_4^{2-}$; all contain coordinated nitrite or nitrosyl, and three of the complexes demonstrate the oxidation of the platinum(II) to platinum(IV) preceding the formation of the platinum(III) dimer. In this paper(48) it is suggested that perhaps, since platinum(II) and platinum(IV) are present in the solution, the final platinum(III) product is formed as a result of reaction of two such species, in a mechanism like the reverse of disproportionation. Much of the focus of this thesis will deal with determining the validity of this suggestion (Chapter (III)).

The NMR analysis of the sulfate dimer and its axially substituted derivatives was first conducted by Appleton/Hall(49)(50). Reported are the

resonances for the lithium salts of the sulfate dimer and phosphate (to be discussed in more detail below) dimer, as well as a variety of compounds axially substituted with OH-, Cl-, Br-, SCN-, NO_2^- , DMSO, NH_3 , and CN-. (The lithium salts were used because of the low solubility of the potassium salts.) The ¹⁹⁵Pt NMR chemical shifts for axially 1216ppm for compounds range from these coordinated water and SCN, to 2049ppm for the dihydroxocomplex (all platinum NMR resonances reported are relative to the PtCl₆²⁻, with positive resonances to lower shielding); the ¹J and ²J coupling constants were also reported for platinum to carbon, platinum to nitrogen, and platinum to platinum.

Phosphate Ligands

The first report of the phosphate analogue of the sulfate dimer was in 1980 by the same Russian group who did the first work on the sulfate dimer(51); this compound was prepared in the same way as for the sulfate, with the exception that cis-Pt(NH₃)₂(NO₂)₂ was reacted with the acid. The X-ray structure was determined(38) (Figure 8), and found to be comparable to that for the sulfate dimer; the molecule maintains C_{4h} symmetry, with the phosphorus atoms slightly out of the O-Pt-Pt-O plane. The Pt-Pt distance is 2.486Å, statistically different from the 2.461Å in the sulfate dimer, but was not

believed to reflect any significance chemically. Several axially substituted derivatives were reported with structures similar to those reported for the sulfate dimer(52). Analogous compounds have been prepared with Rh(53) and Re(54).

As for $Pt_2(SO_4)_4^{2-}$, the NMR spectra for the phosphate dimer and its axial derivatives (Cl⁻, Br⁻, SCN⁻, NO₂⁻, CN⁻, DMSO, and NH₃) were reported by Appleton/Hall(49),(50). The ¹⁹⁵Pt NMR chemical shifts of these species cover a similar range as for the sulfate complexes, from 1256ppm for the SCN⁻/H₂O compound to 1987ppm for the NO₂⁻/H₂O.

Pyrophosphite Ligands

The first report of the reaction of K_2PtCl_4 with phosphorous acid in 1955(55) yielded a yellow solution and platinum metal upon addition of sodium

explained bv were results these carbonate; the yellow solution Troitskaya(56) six years later: was due to unreacted $PtCl_4^{2-}$, and the platinum metal was generated by reduction by the added carbonate. The product, $[Pt{P(OH)_2O}_2{P(OH)_3}_2]$, was in fact determined to be contained in the colorless solution obtained by heating $PtCl_4^{2-}$ with H_3PO_3 in water. This work was repeated in 1977 (57), with the synthesis of new mixed platinum/copper complexes bound by Ph2PCH2CH2PPh2 (dppe) ligands, as well as the report of a side product of the original Troitskaya compound; this compound "showed an intense green emmission on irradiation with UV light". A preparation in better yield with a phosphorous acid melt (instead of aqueous solution) is suggested, but the properties of the compound are reported to be identical to those of the Troitskaya compound. The synthesis has more recently been reported to be improved by evaporating aqueous solutions under inert atmosphere, using barium as the counter-ion, starting with Na2PtCl4, or starting with The structure of this luminescent Pt (NH₃),Cl₂(58). compound was reported three years later(59), and is illustrated in Figure 9; it turns out not to be mononuclear as earlier reported, but binuclear, as the intense luminescence is now believed to suggest (60), basic same the (63). Note (62), (61), construction as the sulfate and phosphate platinum(III)

dimers, with bridging pyrophosphite ligands generated by dehydration of the phosphorous acid (axially coordinated water are omitted). The Pt-Pt bond distance is 2.925Å, longer than the distance in the platinum(III) dimers, and indicates strong interaction between the two metal atoms but no bond (though it has been suggested that the bond distance might be more dependent upon the size of the bridging bite than the metal-metal interaction(64).)

The ¹⁹⁵Pt NMR spectrum(59) shows a pentet of pentets (Figure 10); each platinum is coupled to the four equivalently bound phosphorus atoms, as well as to the four equivalent phosphorus atoms on the adjacent platinum atom (³J coupled).

Many derivatives of this complex have been prepared by replacement of the axially coordinated water with

double substitution (of the form other ligands: by Cl^- and $CH_3I(65)$; Br^- I- $Pt_{2}(H_{2}P_{2}O_{5})_{4}X_{2}^{4-})$ and (66)(67); NO₂⁻, SCN⁻, a n d imidazolyl(56)(68)(69), and mixed substitution of the form Pt, (H,P,O,) ,XY4-, X=C1-, Br-, I-; Y=C1-, Br-, Ι-, CN^{-} , $NO_2^{-}(56)$ (66) (70). These compounds form easily by chemical or electrical oxidation by the incoming ligand, and the ease with which they form and their stability is attributed to an increase in the bond order from zero to one between the platinum atoms (the Pt-Pt distances in these compounds are at least 0.343Å shorter than for the parent compound.)

Among the most interesting of the derivatives are those involving a single substitution of an axial water by halide ion $(Pt_2(H_2P_2O_5)_4X^{4-})$ (61) (71) (72); these

compounds do not maintain the remaining coordinated water, but instead lose it to form golden metallic products with infinite chains of ...-Pt-Pt-X-Pt-Pt-X-Pt-... linkages. These chains are made up of alternating Pt(II)-Pt(III) centers, and behave as semiconductors.

The NMR spectra of the derivatives are very similar to those of the parent compound for identical substituents, but become very complicated when the substituents differ, due to all the extra coupling to the now different phosphorus and platinum atoms.

The trimeric compound proposed by Roundhill is worthy of more detailed consideration here, for it is a The green dimer higher oligomer of this system. $(Pt_2(H_2P_2O_5)_4^{4-})$ is formed by heating a solution of $PtCl_4^{2-}$ with H_3PO_3 to dryness at 100°C; Roundhill reports that if this condensation (and concomitant dehydration of the phosphorus ligand) is conducted at 170°C, a new species is formed as a dark green powder, with intense red luminescence at room temperature; this compound allegedly contains bridging triphosphite $(O_2 POP(0) OPO_2^{3-})$, with a trinuclear platinum core. The ³¹P NMR spectrum of this complex is reported to have broad resonances, and fall at 62.1ppm with platinum satellites (¹J=3250Hz). In addition to this compound, another compound is formed at yet higher temperatures; this compound has a 'vermillion and is insoluble in water and organic red' color,

solvents.

This 'vermillion red' compound appears to be the same compound studied by us for several years, and the results of that work are reported in Chapter III. Roundhill's assignment of the dark green compound, however, to a trimer with four bridging triphosphite ligands is flawed; it is not possible to get four triphosphite ligands around a linear three metal center! The triphosphite ligand is bent, just as propane is bent (see below); while a ligand can bridge across the

top, and another across the bottom of a linear trimer, it is not possible to coordinate another ligand across the chain, as these ligands would deform the linear arrangement of metal centers, disrupting the coordination across the top and bottom. Thus, while the complex no doubt has multiple platinum centers, they cannot be arranged in a linear fashion. Further, Roundhill offers no support for the premise that triphosphite is present; the ³¹P NMR spectrum should show two distinctly different kinds of phosphorus atoms, doubtless coupled to each other as well as to the two different kinds of platinum The ¹⁹⁵Pt NMR spectrum should show two different atoms. kinds of platinum atoms (which it does), but for the proposed structure to be correct they must have a one to two ratio: one central platinum atom to two terminal platinum atoms. While the peaks are reported to be of unequal intensity, the vital information of their actual ratios is absent. Similarly, no IR information is given, indicate the possible presence of would which triphosphite.

Polymerization with Aquo/Hydroxo Ligands

The first thorough study of olation of metal complexes was by equilibrium measurements on chelate compounds; Gustafson and Martell(73) reported in 1959 on the dimerization of 1:1 copper(II) dipyridyl and o-phenanthroline complexes. Their studies demonstrated that as the pH of the solution approached neutrality, hydroxo- bridges form to give a structure as in Figure 11. They also reported that at high pH, the dimeric species decomposed to yield mononuclear complexes.

Since that time the polymerization of many other metals under these conditions has been studied.

hexaaquochromium(II) ion induces the of Oxidation polymerization with hydroxide bridges to form dimers (at acidic pH), and trimers, tetramers, pentamers, and Complexes increases(74). pН the hexamers as bridges have containing three hydroxide been the isomerization of well as reported(75), as $Cr_4 (OH)_7^{5+}$ (produced by reaction of $Cr_4 (OH)_6^{6+}$ with base) to $Cr_4(\mu-0)(OH)_5^{5+}(76)$.

Olation of cobalt is reported to yield not only two and three centered species upon raising pH, but a tetrameric complex ($[Co{(\mu-OH)_2Co(NH_3)_4}_3](SO_4)_3 \cdot 4H_2O$) as well(77), and complexes containing three hydroxide bridges(78),(79). Rhodium forms dimeric clusters with two and three bridges(80), as does iridium(81), which also forms dimers from $Ir(H_2O)_6^{3+}$ in 2M HClO₄(82).

Perhaps the richest such polymerization occurs with

iron, manganese, and vanadium. Iron is known to form oligomers with as many as twelve metal atoms(83), manganese forms many dimers and trimers(84), as does vanadium in vanadates; OV(IV) reacts to form 1:1 oxovanadium chelates of salicylic acid, sulfosalicylic acid, 3,5-disulfopyrocatechol (tiron), and 5-sulfo-8hydroxyquinoline, all of which dimerize at mildly acidic reported to be are These dimers pH(85). 'intermediates n the formation of extensively hydrolyzed and polymerized polynuclear vanadyl species."

Of particular interest to this work is the nature and facility of such olation reaction with platinum. Most recently the focus of such studies has dealt with the formation of polynuclear complexes of *cis*-platin and its analogues; at near neutral pH these compounds readily dimerize to form complexes (86) (87) (88) (89) (90) (91) as in Figure 12. Such compounds are of interest, as physiological pH is very near neutral, and the active forms of the anti-cancer drug *cis*-platin are no doubt similar to these compounds.

In the early sixties the dimerization and polymerization of platinum(III) species (discussed earlier) and platinum(IV) became of interest; an early review of this work was presented by Sidgwick(92), who mentions on page 1621, for example, that the reported compound $PtO_2 \cdot 4H_2O$ is probably polymerized $H_2Pt(OH)_6$.

Since this time, much of the published work in the area of platinum(III) and platinum(IV) olation has been done by the Russians. In connection with their work on the platinum(III) sulfate and phosphate dimers, some studies of the condition of $Pt(OH)_6^{2-}$ in strong acid have been Hexahydroxoplatinate(IV) is reported to reported. sulfuric perchloric and polymerize in form cationic species (as does acids(93),(94) to Pd(OH)2), that decompose to form monomeric complexes at It was soon reported(95) that the high pH (>10). product isolated from the solution of polymerized platinum(IV) in 25% sulfuric acid analyzed for a platinum to sulfate ratio of 4:1, supporting the earlier work platinum oligomer was cationic; indicating the from phosphoric acid the products experiments o'n solutions also indicated a high platinum to phosphorus This work continues, the latest paper(96) ratio. suggesting that monomeric sulfate complexes predominate in 2-5<u>M</u> H_2SO_4 (platinum concentration approximately $10^ ^{4}\underline{M}$), with polynuclear hydroxosulfato compunds present in less acidic media.

The work described in the remainder of this paper deals with the synthesis, identification, and study of the mechanism of formation of a group of multinuclear platinum compounds related to the compounds described in this introduction. First will be the synthesis and characterization of a polymeric compound related to the pyrophosphite dimers; followed by experiments which shed light on the nature of platinum(IV) in acidic media, leading to a potential mechanism for the formation of the platinum(III) dimers which can be used to form new dimeric species.

CHAPTER II

EXPERIMENTAL

This chapter describes the experimental conditions and parameters under which the data to be described were obtained.

Nuclear Magnetic Resonance

Most of the spectra discussed in this work were collected on a Bruker WM 250 NMR Spectrometer using a tuneable 10mm broadband probe; the remainder collected on a Bruker AM 500 instrument will be noted as such. All experiments were conducted with samples of platinum concentration in the 20-50 mM range.

Table 1 lists typical operating parameters for ¹⁹⁵Pt and ³¹P data collections; the number of scans usually ranged from 16,000 to 40,000, occasionally as many as 75,000 for platinum, and 1500 to 3000 for phosphorus.

Samples were run with D_2O as a lock standard either in solution, or as an external standard; experiments run in DMSO used D_6 -DMSO as lock standard.

Table 1. ¹⁹⁵ Pt and ³¹ P NMR Spectroscopy Collection Parameters.				
Spectrometer Frequency	53.518MHz	101.250MHz		
Synthesizer Frequency	98.04- 98.34MHz	74.47MHz		
Observation Frequency	868Hz	70,845Hz		
Spectrum Size	1-2K	8K		
Spectral Width	50,000Hz	20,000Hz		
Receiver Delay	0 sec	1.5sec		
Aquisition Time	.0102sec	.203sec		
Receiver Gain	800	100		
Pulse Width	30 usec	18 usec		
Line Broadening	25Hz	3Hz		

Infrared

Infrared spectra were collected on a Nicolet 5DX as KBr or Nujol mulls.

UV-Vis

UV-Vis spectra were collected on a Cary-14 in dilute aqueous solution, or as a KBr mull.

X-Ray Photoelectron Spectroscopy

XPS spectra were collected on a Leybold-Hereaus hemispherical EA11 energy analyzer, using a Mg K_{α} X-ray source in a UHV system; this source emits electrons with an energy of 1253.6 eV. A sample of a few milligrams was
physically rolled into the surface of a piece of indium foil, and introduced into the analysis chamber. Surface charging effects were compensated for by monitoring and adjusting the chemical shifts of the indium and carbon absorbances.

Fluorometry

Fluoresence data were collected with a Spex Fluorolog 2 Model F211; a 1.2mm slit was used in the excitation monochrometer (2.25nm bandpass), and a 0.5mm slit in the emission monochrometer (1.8nm bandpass). Data were corrected to detector response, and front face collected.

X-Ray Crystallography

Intensity data were collected on a Nicolet R3mE four circle diffractometer. Crystals were mounted on a glass fiber for reflection collection, and between 18 and 23 centered reflections were used to determine the unit cell dimensions by least squares refinement (radiation source of graphite-monochromatized Mo K_{α}). Platinum positions were determined by Patterson synthesis, and remaining atoms by difference synthesis.

CHAPTER III

RESULTS/DISCUSSION

We will now consider the reactions which lead to some new multinuclear platinum clusters in the systems discussed in the Introduction. First will be the synthesis and characterization of a polymeric species which is a higher oligomer of the pyrophosphite dimer $Pt_2(H_2P_2O_5)_4^{2-}$ (described under the section titled ;Red Compound'); this compound probably contains molecules of A structure will first be somewhat varying length. proposed based upon elemental analysis data and other experimental data in support of this structure will Second (beginning with the section titled 'The follow. Concept of Reverse Disproportionation') are detailed the results of experiments seeking to form the sulfato- and phosphato- $Pt_2X_4^{2-}$ dimers by a systematic, reasoned approach -- the reverse of disproportionation; in the process of these reverse disproportionation reactions were also studied the nature of the polymerization of platinum(IV) in mineral acids, and the formation of many new platinum(II) and platinum(IV) mononuclear complexes in strong organic acids.

24

Red Compound

Synthesis

Potassium Salt

 K_2PtCl_4 (381.6 mg. 0.930 mmoles) and H_3PO_3 (2648.7 mg, 32.3 mmoles) were dissolved in deionized water and the resulting solution refluxed in an oil bath until colorless. This solution was then transferred to a petri dish and heated to near dryness on a hot plate (surface temperature of which was 220-240 °C.) As the solution approached dryness the green color of the $Pt_2(POP)_4^{4-}$ ion began to appear. Seven minutes from the first appearance of this color (at which point the mixture was a darker green oil) the petri dish was removed from the hot plate and allowed to cool to room temperature; during these seven minutes the syrup was swirled occasionally. As it cooled, the color of the mixture changed to dark red; this dark red mixture had an intense red luminescence at room temperature (the luminescence was more intense at room temperature than at elevated temperatures.) The oil was washed four times with five to ten mL of methanol, and then acetone, to remove excess H₃PO₃, and dried at room temperature under vacuum to yield a red solid.

If the condensed oil was heated longer than seven minutes at this temperature it formed a dark purple compound, which did not change color as it cooled from

25

the high temperatures at which it formed, and has no luminescence.

The synthesis is reversible: addition of water to the dried solid produced a deep red solution of the red compound, which luminesced orange; as time progressed the solution became green with green luminescence, and finally colorless; if the solution was heated at near 100 °C this transformation took only a minute or two (the same behavior was observed for the dark purple compound, which also formed the dark red solution in water.) The orange luminescence observed as the complex decomposed seemed to arise from a mixture of red and green luminescence (red from the complex, and green from $Pt_2(POP)_4^{4-}$). This combination of red and green emmission, appearing orange, differs from a combination of red and green reflected light, which would appear brown (97).

Occasionally a light blue solution resulted (which did not change with heating), and produced light blue solids; these solids were insoluble in acetone and methanol, but dissolved in water to produce red/orange to yellow solutions with green luminescence. These solutions turned blue after about three hours. The blue solids obtained turned red/orange upon drawing air through them for drying; this suggested that the blue compounds were reduced platinum species, for they underwent oxidation by air to convert to the red compound.

Also occasionally a yellow solution was obtained instead of red, which remained yellow even if heated or condensed at 200 °C. Yellow solids isolated from these solutions were soluble in methanol, acetone, and slightly soluble in water; solutions in methanol to which were added diethyl ether to try to precipitate the solid turned lavender.

In two cases, after heating at 210-250°C for eight minutes, an orange/red oil was obtained which upon addition of water yielded an orange solution whose color did not change even upon heating to dryness. The orange solid obtained had a green luminescence. Reheating with more water caused no change. After storage at room temperature for five days, the solution was brown/black; heating this solution to a thick oil at approximately 100 °C for 15 minutes produced sparks and fire, leaving black solid in the regions of the petri dish where the fire occurred.

This red polymer was also prepared, with more difficulty, by heating the solution of K_2PtCl_4 and H_3PO_3 in water to dryness in an oven. A solution in six mL of water was put in an oven at 110 °C; after 100 minutes only colorless crystals of H_3PO_3 were observed. A further 80 minutes at this temperature still did not produce the red compound, and the temperature was raised

27

