
Metamorphic Testing For Machine Learning:
Applicability, Challenges, and Research

Opportunities

Faqeer ur Rehman
Gianforte School of Computing

Montana State University
Bozeman, USA

faqeer.rehman@student.montana.edu

Madhusudan Srinivasan
University of Nebraska

Omaha, USA

msrinivasan@unomaha.edu

Abstract—The wide adoption and growth of Machine Learning
(ML) have made tremendous advancements in revolutionizing
a number of fields i.e., manufacturing, transportation, bio-
informatics, and self-driving cars. Its ability to extract patterns
from a large set of data and then use this knowledge to make
future predictions is beyond the human imagination. However,
the complex calculations internally performed in them make these
systems suffer from the oracle problem; thus, hard to test them
for identifying bugs in them and enhancing their quality. An ap-
plication not properly tested can have disastrous consequences in
the production environment. Metamorphic Testing (MT) has been
widely accepted by researchers to address the oracle problem
in testing both supervised and unsupervised ML-based systems.
However, MT has several limitations (when used for testing
ML) that the existing literature lacks in capturing them in a
centralized place. Applying MT to test ML-based critical systems
without prior knowledge/understanding of those limitations can
cost organizations a waste of time and resources. In this study,
we highlight those limitations to help both the researchers
and practitioners to be aware of them for better testing of
ML applications. Our efforts result in making the following
contributions in this paper, i) providing insights into various
challenges faced in testing ML-based solutions, ii) highlighting
a number of key challenges faced when applying MT to test
ML applications, and iii) presenting the potential future research
opportunities/directions for the research community to address
them.

Index Terms—Metamorphic Testing, Machine Learning, Meta-
morphic Testing for Machine Learning, Testing Machine Learn-
ing, Challenges in Testing Machine Learning, Applicability of
Metamorphic Testing in Machine Learning, Challenges of Meta-
morphic Testing

I. INTRODUCTION

Machine Learning (ML) has progressed dramatically and is

expanding its roots in almost every field of life i.e., manufac-

turing, marketing, healthcare, education, autonomous vehicles,

and collaborative robots. Its high success and progress are

driven by the availability of high computing resources, the

abundance of data, and the development of efficient algo-

rithms.

Since ML models are an integral part of various critical

systems, they must be properly verified and validated before

their deployment to the production environment. An ML-

based system that lacks the existence of a systematic testing

pipeline(s) may end up in resulting both financial and human

loss. As evidence, history witnessed on its face when in Mar

2018, a woman in Arizona became a victim of Uber’s self-

driving car, resulting in her death [1]. This sad incident forced

Uber to stop its services (i.e., testing self-driving vehicles);

thus, resulting in huge financial and reputational losses for

the company. Similarly, in Oct 2018, it was reported that the

Amazon AI-based recruiting software became biased (favoring

men over women) during the selection of candidates for the

company-wide open positions, resultantly forcing Amazon to

scrap it [2]; thus, causing wastage of time, cost, and the human

resources. Last but not the least, Microsoft’s AI-based chatbot

(named Tay) became racist and generated offensive/hurtful

tweets within its first 24 hours after its deployment [3]; thus,

pushing the IT giant to immediately take it off, which seriously

hurt its reputation around the globe.

The aforementioned failures strongly urge researchers to fo-

cus more on the quality assurance of ML models and propose

effective testing strategies to better verify their correctness

and robustness. One of the challenges faced in testing the

correctness and robustness of such computationally complex

AI-based models is their large input space for which they must

be verified. This ultimately put these complex models under

the category of non-testable programs, known as suffering

from the Oracle Problem [4]. To better understand the problem

domain, consider there is a Deep Neural Network (DNN)

that takes executable files as input and predicts whether the

files are malicious or not. Suppose, for the given executable

file the model predicts (along with some probability score)

that it belongs to the category of ‘malicious’ class label.

However, the important question that arises here is ‘how can
we verify and test that the output produced by this model is
correct and reliable?’ One of the potential solutions is to use

human involvement i.e., a security expert first creates a virtual

machine, configures the testing environment, and then executes

the given input file to observe whether it is really malicious or

not, and at the end using this knowledge to verify the output

34

2023 IEEE International Conference On Artificial Intelligence Testing (AITest)

979-8-3503-3629-0/23/$31.00 ©2023 IEEE
DOI 10.1109/AITest58265.2023.00014

20
23

 IE
E

E
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
O

n
A

rt
if

ic
ia

l I
nt

el
lig

en
ce

 T
es

tin
g

(A
IT

es
t)

 |
97

9-
8-

35
03

-3
62

9-
0/

23
/$

31
.0

0
©

20
23

 IE
E

E
 |

D
O

I:
 1

0.
11

09
/A

IT
es

t5
82

65
.2

02
3.

00
01

4

Authorized licensed use limited to: Montana State University Library. Downloaded on January 18,2024 at 18:13:18 UTC from IEEE Xplore. Restrictions apply.

produced by the ML model under test. This method is very

expensive, laborious, infeasible, and error-prone when we have

thousands of files to verify. This further raises an important

question to answer ‘how to test such complex non-testable
programs that suffer from the oracle problem?’

In comparison to ML, Software Engineering (SE) is a much

more mature field having well-known, experimented, and

trusted software testing techniques. In this context, SE4ML

is a new trending research area in which one of the main

focus areas is to leverage the existing SE testing techniques for

better quality assurance of ML-based models [5] [6]. Among

the traditional SE testing techniques, the most effective and

common testing technique that we found to alleviate the oracle

problem in testing ML-based models is the Metamorphic

Testing (MT) approach [7]. The MT technique does not require

the availability of ground truth to verify the correctness of

individual input. Instead, it uses the concept of multiple

executions (i.e., the source and follow-up executions) to check

whether the necessary property captured in the Metamorphic

Relation (MR) is satisfied or not. The buggy behavior of the

program is said to be detected if the program fails to adhere

to the relation specified in the MR(s).
One may argue that among the traditional software test-

ing techniques, the MT technique is not the only testing

technique that addresses the Oracle problem. Instead, other

popular testing techniques like Differential Testing and N-
version programming could be used to avoid the extra cost

(of multiple executions) involved in using MT. This reasoning

is valid and unquestionable but one of the major limitations

that make these two testing techniques unrealistic/infeasible in

a real environment is that they require multiple copies/versions

of the same model under test which is not always available

in real life. This makes the MT technique more realistic,

and the feasible choice among researchers to alleviate the

oracle problem in testing ML-based models. However, we have

identified a number of limitations in MT (when used for testing

ML) that the researchers must be aware of them when applying

MT for testing ML applications.
It is important to highlight that a wide range of research

studies are available in which MT has been applied in testing

both supervised and unsupervised ML applications but to the

best of our knowledge, we are unable to find any work that

guides/informs the researchers about the open challenges faced

in using MT for testing ML-based models and the potential

future research opportunities/directions in a centralized place.

Applying MT to test ML-based critical systems without prior

knowledge/understanding of those limitations can cost orga-

nizations a waste of time and resources. The work of Chen

et al. [14] does highlight some challenges faced in MT (at

a broader level) but their work is solely focused on MT in

general, neither discusses those challenges in the context of the

emerging field of ML nor shows whether they are applicable

in ML domain or not, which is equally the motivator for this

research work. We aim to address this gap by making the

following contributions.

• To better understand the problem space, we first provide

insights into the general challenges encountered in testing

ML-based solutions.

• We highlight the limitations/challenges faced in applying

MT to test ML-based systems.

• We recognize those limitations/challenges as potential

research opportunities and provide further directions to

the research community to address them.

We organize the rest of the paper as follows. Section II

discusses the related literature review in which we mainly

focus on highlighting the applicability of MT in testing both

supervised and unsupervised ML. Section III discusses the

challenges faced in testing ML applications, whereas, Section

IV highlights the limitations/challenges faced in applying

MT for testing ML applications along with potential future

research opportunities. In the end, we conclude our study in

Section V.

II. LITERATURE REVIEW

Metamorphic Testing (MT) [7] is a property-based testing

technique that identifies and targets the necessary properties

of the program under test. It identifies relations known as

Metamorphic Relations (MRs) that use a concept of multiple

executions (known as source and follow-up executions) to

check whether the necessary characteristic/property expected

from the program under test is satisfied or not. The violation

of necessary MR will depict that the program under test has

some potential bug. Consider a program used for calculating

variance among the data points. One of the MRs can be ‘if

we change the order of data points, it should not change the

final calculated variance for the given data points’. Similarly,

‘multiplying all the data points with -1 should keep the output

consistent’.

The tremendous advancement of ML in almost every field of

life is inevitable. ML has been largely embraced by researchers

and is used in a variety of domains i.e., to test compilers

[10], code obfuscators [14], protein function prediction tools

[12], data analytics programs [9], machine translators [11],

and autonomous vehicles [13]. However, their computational

complexity and large input space make it a challenging task

for software testers to devise systematic testing techniques for

better testing them and improving their quality. In this context,

MT has been shown to be a promising testing technique

that has been widely applied in testing such computationally

complex programs. To better understand the applications of

MT in ML research space, we present a brief literature review

targeting the testing of the most common types of ML i.e,

supervised and unsupervised ML.

A. MT Applicability in Testing Supervised ML

Zhou et al. [13] used MT for the identification of faults

in Apollo’s perception module and reported the identified

inconsistencies eight days before the incident when Uber’s

autonomous vehicle hit and killed the pedestrian. Shahri et

al. [12] proposed several MRs that perform different transfor-

mations to the input (i.e., protein sequences) for performing

the quality assurance of a protein function prediction software.

35

Authorized licensed use limited to: Montana State University Library. Downloaded on January 18,2024 at 18:13:18 UTC from IEEE Xplore. Restrictions apply.

Moreira et al. [17] leveraged MT in testing six acoustic scene

classifiers by performing sample and attributes permutations.

The results obtained show that the proposed approach is able

to identity both verification and validation issues in the appli-

cations under test. Ma et al. [18] proposed MT-based approach

for addressing the oracle problem in testing a fake news

detection system. However, there is no clear evidence showing

the identification of implementation bugs in the program under

test. Jiang et al. [16] proposed a set of 20 MRs and checked

their effectiveness by validating four sentiment analysis sys-

tems. Further, the authors tried to explore the effect of false
satisfactions on MT effectiveness and their potential causes

when testing sentiment analysis systems. Ma et al. [15] took

an advantage of using MT to test a classification model trained

on COVID-19 CT images which predict whether the patient

has been diagnosed with COVID or not. The authors proposed

8 MRs to test and detect inconsistencies in the COVID-19

diagnosis classification program under investigation. Rehman

et al. [19] [20] work uses a combination of MT and statistical

concepts for verification of MRs to identify the induced buggy

behaviors in the network intrusion detection systems.

B. MT Applicability in Testing Unsupervised ML

Research shows that the researchers are focusing more on

using MT for testing supervised ML applications but much-

limited research work is available in the space of leveraging

MT for testing unsupervised ML algorithms. To the best of

our knowledge, we are able to find just four research papers

in which MT has been used in testing unsupervised ML

algorithms [22] [23] [24] [25]. Yang et al. [22] proposed a list

of MRs and used them to test (from a validation perspective)

a clustering algorithm (i.e., k-means) implemented in WEKA

tool. Similarly, Xie et al. [23] also focused on testing WEKA

tool in which they leveraged the MT technique for validating

a set of clustering algorithms (i.e., belonging to the category

of Prototype-based systems, Hierarchy-based systems, and

Density-based systems) to check whether the algorithms under

investigation adhere to the user expectations or not. Rehman

et al. [24] [25] took MT one step further and proposed a large

set of diverse MRs for testing python based library (sci-kit

learn) in which they tested k-means, Agglomerative clustering,

and DBSCAN algorithms from both the verification (targeting

the necessary characteristics of the algorithms under test) and

validation perspective (targeting the user expectations expected

from the algorithms under test). The limited research available

urges researchers to make further significant contributions in

this research space.

III. CHALLENGES IN TESTING MACHINE LEARNING

PROGRAMS

Before discussing the open challenges faced in using MT

for testing ML-based applications, we first put some light on

highlighting notable challenges posed by testing ML-based

systems, which are as follows.

1) Requirements Specification Document: In comparison

to traditional software, preparing a requirements specification

document for the ML model is a challenging task. The

complex concepts involved in the implementation of ML algo-

rithms are the driving force that prevents customers/business

analysts to capture the clear requirements expected from the

final product. The lack of a specification document ultimately

makes it a harder task for the software tester to verify the

acceptance criteria for the ML model under test.

2) Strong Cohesiveness Among ML Components: The ML

model can broadly be classified into three components, i) the

data, ii) the application code written by the ML developer,

and iii) frameworks/libraries (i.e., Pytorch, Sci-kit learn, etc.)

but the program available for testing/deployment is the final

trained ML model. The trained ML model is treated as a single

unit, making it a challenging task for the software testers to

break down the system into smaller components and then test

each component individually for better fault localization and

quality improvement.

3) Large Input Space: When testing traditional software

systems, a software tester may have some information before-

hand to test the program i.e., the availability of a list of valid

and invalid users to test the authentication mechanism of the

program under test. However, in testing ML-based solutions,

a software tester grapples with understanding the large input

space e.g., features like price, location, and weather conditions

may contain any possible valid value. Hence, validating the

ML model for such a large input space is a challenging task.

This raises an important question to answer ‘how can a well-
representative and limited set of data be generated/used to bet-
ter test the ML solutions within limited resource constraints’,
which is equally an open research problem.

4) Decision Logic: When developing traditional software,

a software engineer hard-code the rules and the business logic

is fixed to perform the desired functionality. However, in ML-

based models the software engineers do not hard-code the

decision logic, instead, these rules are learned from the training

data. This brings an extra challenge for the software tester to

test ML-based applications in which decision logic changes

based on the data provided to them.

5) Testing Multiple Components: When testing traditional

software, the main component for testing is the application

code. However, ML-based models have multiple components

to test that include, i) the data, ii) the code written by the

software engineer, and iii) the underlying framework/library

i.e., Pytorch, and Sci-kit learn. Testing all these components

requires extra resources and introduces its own challenges for

the software testers to perform their testing within the limited

available time and resources.

6) Oracle Problem: The ML models have unique charac-

teristics i.e., they have large input space for which they need

to be tested. Specifying/identifying the oracle (in the form of

a class label) for such a large input space makes these systems

suffer from the oracle problem [4].

7) Non-Deterministic Results: Generally, the business rules

written in traditional software output deterministic results

36

Authorized licensed use limited to: Montana State University Library. Downloaded on January 18,2024 at 18:13:18 UTC from IEEE Xplore. Restrictions apply.

across multiple runs. However, in ML-based models i.e.,

Neural Networks, each time the model is trained on a fixed

set of training data, it is not necessary that the model will

generate deterministic predictions for the same set of test data.

This stochastic nature makes the traditional software testing

techniques infeasible to address the oracle problem in testing

such types of computationally complex models.

8) Black-box Nature: In general, complex ML-based mod-

els i.e., Deep Neural Networks, are treated as a black-box

model because of the computational complexity involved in

their training and making predictions for unseen data. This

makes them less transparent, difficult to interpret, and harder to

test. ML/AI Explainability is another hot research area where

researchers focus on addressing such problems at scale.

9) Misleading Performance Metrics: In supervised ML,

we strongly rely on using performance metrics to check

the prediction power of the model under test. However, it

is important to highlight that sometimes these performance

metrics i.e., accuracy, may be misleading, especially, when the

model under test is producing high accuracy but does contain

a hidden implementation bug [26]. Thus, it is important to

mention that in addition to using performance metrics, the

researchers should also focus on proposing effective testing

strategies for better testing of ML programs that are now

getting an integral part of mission-critical systems.

IV. CHALLENGES/LIMITATIONS OF MT IN TESTING ML

AND FUTURE RESEARCH OPPORTUNITIES/DIRECTIONS

The existing literature shows that researchers are widely us-

ing the Metamorphic Testing (MT) technique for better testing

of a large range of ML applications and is undoubtedly con-

sidered one of the most effective testing techniques to address

the oracle problem in testing ML-based systems. However,

like every testing technique, the MT technique has its own

limitations/challenges faced in testing ML but we are unable

to find any work that highlights those limitations/challenges

to better understand them and provide directions for making

future research contributions. Applying MT to test ML-based

critical systems without prior knowledge/understanding of

those limitations/challenges can cost organizations a waste of

time and resources. This motivated us to focus on addressing

this gap that result in this study which captures the following

list of limitations/challenges along with future research direc-

tions. We hope that this research work will enable researchers

and practitioners to make well-informed decisions when they

aim to apply MT for testing ML.

1) Testing Neural Networks: One of the challenges faced

by researchers in finding implementation bugs in Neural Net-

works (NNs) based models is their non-deterministic nature

in making predictions for the same test inputs (due to random

assignment of network weights during the training phase)

[26] [27]. It is important to highlight that the traditional

MT works well for testing traditional ML-based models i.e.,

SVM, Decision trees, and K-NN but it becomes infeasible

when the program under test (i.e., NN-based model) has

stochastic nature in the final outputs and the software tester

has used equality condition to verify the results (obtained for

the source and follow-up inputs). Therefore, in such scenarios,

the classical MT technique can’t be used directly to verify the

MRs for such ML models. The most recent work [19] [20]

integrates MT with statistical methods to verify the proposed

MRs for testing Deep Neural Networks (DNNs). However, one

of the limitations of their approach is the high computational

cost because in order to statically verify the MRs, the NN

model under test needs to be trained multiple times. A possible

research direction can be the optimization of their statistical

MT approach to lower the computational cost. As an example,

one of the possible approaches to extend their work can be

using a less number of well-representative features/samples

(that will lower the training time for large ML models) and

showing their fault detection effectiveness using empirical

studies.

2) Consistent Outputs Can Lead To False Acceptance of
MR(s): The MT technique identifies the violation of MR if

the output obtained for the source and follow-up inputs are

not consistent. The important question to answer is what if
the buggy program version outputs the wrong but consistent
outputs for both the source and follow-up inputs? Such cases

will result in high false positives, wrongly assuming that

the MR(s) have been satisfied, which ultimately can lead to

disastrous consequences when used in testing mission-critical

systems. Therefore, we recommend organizations use MT as a

supplementary testing technique on top of using other testing

techniques, especially, when the cost of a false positive is

very high. Apart from that, knowing about such limitations

of MT will help organizations in making much informed

decisions. Some potential future directions in this area can

be to identify which other criteria (other than relying on the

final outputs/predictions) can be used to verify the MRs for

the program under test. As an example, Rehman et al. [24],

uses multiple criteria (i.e., final outputs, cluster centroids,

and nearest neighbors) to verify the MRs for testing k-means

clustering algorithm. Similarly, instead of relying on the final

output, more granular details i.e., the features used by the ML

model (for making predictions) can also be used to verify the

MRs.

3) Large Set of MRs can Make MT Infeasible: Due to the

critical nature of ML-based applications, it is always desirable

to have a large set of MRs for their effective testing. However,

a large set of MRs may not be applicable in a regression

testing environment when the organizations have limited test-

ing resources. A future research direction can be to identify

which characteristics of ML-system under test can be utilized

for effective MRs prioritization and minimization; thus, saving

organizational testing cost and resources. A potential extension

to it can be showing the generalization of the prioritized MRs

for testing a large number of ML models.

4) Human Involvement in Identification of MRs: One of the

challenges faced in using MT for testing ML applications is

the human involvement in the identification of MRs for the ML

model under test. This is a very challenging task because of the

complex nature of ML algorithms which requires their deep

37

Authorized licensed use limited to: Montana State University Library. Downloaded on January 18,2024 at 18:13:18 UTC from IEEE Xplore. Restrictions apply.

understanding; thus, making it a harder task for a software

tester to test them. A possible research direction can be to

leverage ML-based techniques for the automatic identification

and prediction of suitable MRs for the ML model under

test. However, addressing this problem using supervised ML

may require generating a sufficient amount of data and then

accurately labeling them.

5) Unrealistic Test Cases: MT is not only a testing tech-

nique but can also be used for generating new test cases, i.e.,

the follow-up execution phase of MR helps in the generation

of new data. However, in some cases, the generated test cases

may not be realistic enough to capture the real-life scenarios

encountered by the program under test in a production environ-

ment. An example of such MR can be i.e., the multiplication

of features (i.e., date of birth, IP address, etc.) with some

constant may result in the generation of new follow data that

may never be encountered/exist in a real life. Therefore, such

MRs will serve no/less fruitful purpose at the cost of wasting

organizational testing resources. A potential future research

direction can be to identify and propose new approaches that

can help in generating more realistic and representative test

cases (for both structured and unstructured data) for the MRs

that will be encountered by the model(s) in a real environment.

6) MR’s Fault Detection Effectiveness: To show the ef-

fectiveness of proposed MRs, researchers normally use the

Mutation Score i.e. the percentage of faults detected, and

then use this measure to identify the MRs that are most

effective in uncovering the injected bugs [26] [27]. This

process requires the execution of both the source and follow-

up test cases (to calculate the mutation score) which is a

costly and resource-intensive task, especially, when the model

under test is complex and takes a few hours to train itself for

single program execution. A potential future direction can be

using ML-based techniques for the prediction of fault detection

effectiveness of each MR (before executing them) and then

using this knowledge to predict and execute the MRs that are

‘more effective’; thus, saving the organizational’s testing cost

in preventing the execution of MRs that are least effective.

7) High Execution Cost: In order to verify a single MR, the

ML model under test needs to be trained multiple times i.e.,

one for the source inputs and one for the follow-up inputs.

Consider, a deep neural network that takes at least a day

to train itself on a given dataset. This execution time will

get double when a software tester intends to verify a single

MR for the model under test. Similarly, to verify a set of

15 MRs, a software tester will need at least a month to

execute all of them. Such a high execution cost makes MT

inapplicable for testing large-scale complex ML models. A

possible solution can be using a subset of well-representative

features and instances that can help in reducing the overall

training time for verification of MR(s). However, identifying

a small set of well-representative features and samples for such

a problem itself is another interesting open research problem.

8) Inability of MRs to Identify The Location of Bug(s):
When applying MT to test ML-based models, a violation of

MR just reveals the existence of a potential bug in the model

under test, however, it tells nothing about its location i.e.,

where the bug is (either in the data or in the program code)?. A

possible approach to address this problem can be, i) using MT

for testing each component (i.e., data and code) separately, and

ii) integrating MT with other testing techniques i.e., symbolic

execution of programs and Unit testing to better help software

engineers identify the location of bug in the model under test.

9) Documenting the type of MR(s): In MT, one of the

common misconceptions is that the violation of MR will depict

the existence of some bug in the program under test. However,

it is important to highlight that this may not hold true for every

scenario because the violation of MR does not necessarily

mean that there is some implementation bug in the program

under test [21]. As an example, when testing the k-NN

algorithm, the addition of a new data point (during follow-up

execution) may change the proportion of data points belonging

to some specific class label that can create a tie, and can

change the final results. Such a violation of MR will not depict

that there is some implementation bug in the algorithm under

test. Instead, the algorithm is correctly implemented but the

result changed because the algorithm randomly selected one

of the class labels to break the tie. Thus, it is very important

to explicitly mention/document whether the proposed MR(s)

target the verification aspect or the validation aspect of testing

the algorithm under investigation. The violation of MR(s)

targeting the verification aspect can be characterized as the

existence of an implementation bug but the MR(s) targeting

the validation aspect does not necessarily mean that there is

some bug identified in the program under test. Instead, such a

violation captures the deviation of the model from the general

user’s expectations. If such important information about the

MRs is not properly highlighted and documented, this will

result in high waste of time and resources for an organization.

As an example, imagine a case when a developer spent a

significant amount of time and effort to find a bug(s) that

in reality was not existing at all because it was not explicitly

documented whether the violated MR targets the verification

or the validation aspect of testing the model under test.

10) Limited Research in Testing Unsupervised ML: In com-

parison to supervised ML, we have seen much less research

focus on using MT for testing unsupervised ML. To the best

of our knowledge, we are able to find just four research

papers in which MT has been used in testing unsupervised

ML algorithms [22] [23] [24] [25]. This creates a tremendous

opportunity for researchers to explore and propose effective

testing strategies for using MT in a such less focused area.

11) Lack of MRs Generalization: Another challenge faced

when using MT for testing ML programs is the difficulty

encountered in the generalization of MRs. An MR applicable

in one domain data (i.e., healthcare image data) may not be

applicable/scalable to some other similar domain data (i.e.,

healthcare tabular data). A potential future direction can be

proposing a framework that can serve as a guideline for

researchers to create/propose MRs that could be generalized

to multiple domains effectively.

38

Authorized licensed use limited to: Montana State University Library. Downloaded on January 18,2024 at 18:13:18 UTC from IEEE Xplore. Restrictions apply.

12) Identification of Sufficient Number of MRs: The liter-

ature suggests that different researchers proposed a different

number of MRs for the ML models under investigation. Sun et

al. [11] proposed a single MR for testing machine translators

i.e., Google, and Microsoft, whereas, Ma et al. [15] proposed

8 MRs to test and detect inconsistencies in the COVID-19

diagnosis classification model under investigation. This raises

an important question to address ‘how many MRs can be
considered sufficient to check the correctness and robustness
of the ML model under test’. On one hand, using a large

number of MRs may be impractical in a regression testing

environment, whereas, on the other hand, a small number

of MRs may not be sufficient to effectively test the model

under test; thus, finding the optimal number/balance is critical.

One potential avenue for future research can be to mine

historical data and use that knowledge to suggest/predict the

sufficient number of MRs for testing the ML model(s) under

test. Furthermore, organizations can tweak their data mining

algorithm (for finding a sufficient number of MRs) based on

the available resources they have.

V. CONCLUSION

Metamorphic Testing is undoubtedly a very powerful and

simple approach for testing the correctness and robustness

of ML-based solutions. However, applying MT to test ML-

based critical systems without having prior knowledge about

its limitations/challenges may cost organizations a waste of

time and resources. In this study, we briefly highlight the appli-

cability of MT in testing ML applications (both supervised and

unsupervised ML), its limitations/challenges faced in testing

ML solutions, and potential future research opportunities for

researchers to address them. We believe that this study will

help the researchers and practitioners to be aware of the MT

limitations/challenges beforehand (when testing ML systems)

and possible consequences during the software testing phase.

In the future, we aim to address some of the highlighted

limitations/challenges that will further expand the body of

knowledge in the emerging field of ‘Metamorphic Testing for

Machine Learning’.

REFERENCES

[1] Ohnsman, A. (2018). Lidar maker velodyne ‘baffled’by self-driving uber’s
failure to avoid pedestrian. Forbes, March.

[2] https://www.reuters.com/article/us-amazon-com-jobs-automation-
insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-
women-idUSKCN1MK08G

[3] https://www.theguardian.com/technology/2016/mar/24/tay-microsofts-ai-
chatbot-gets-a-crash-course-in-racism-from-twitter

[4] Weyuker, E. J. (1982). On testing non-testable programs. The Computer
Journal, 25(4), 465-470.

[5] Kumeno, F. (2019). Sofware engneering challenges for machine learning
applications: A literature review. Intelligent Decision Technologies, 13(4),
463-476.

[6] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., ...
& Zimmermann, T. (2019, May). Software engineering for machine
learning: A case study. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
(pp. 291-300). IEEE.

[7] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic
testing: a new approach for generating next test cases. Technical Re-
port HKUST-CS98-01, Department of Computer Science, Hong Kong
University of Science and Technology, Hong Kong, 1998.

[8] Chen, T. Y., Kuo, F. C., Liu, H., Poon, P. L., Towey, D., Tse, T. H., &
Zhou, Z. Q. (2018). Metamorphic testing: A review of challenges and
opportunities. ACM Computing Surveys (CSUR), 51(1), 1-27.

[9] Jarman, D. C., Zhou, Z. Q., & Chen, T. Y. (2017, May). Metamorphic
testing for Adobe data analytics software. In 2017 IEEE/ACM 2nd
International Workshop on Metamorphic Testing (MET) (pp. 21-27).
IEEE.

[10] Donaldson, A. F., & Lascu, A. (2016, May). Metamorphic testing for
(graphics) compilers. In Proceedings of the 1st international workshop on
metamorphic testing (pp. 44-47).

[11] Sun, L., & Zhou, Z. Q. (2018, November). Metamorphic testing for
machine translations: MT4MT. In 2018 25th Australasian Software En-
gineering Conference (ASWEC) (pp. 96-100). IEEE.

[12] Shahri, M. P., Srinivasan, M., Reynolds, G., Bimczok, D., Kahanda, I., &
Kanewala, U. (2019, April). Metamorphic testing for quality assurance of
protein function prediction tools. In 2019 IEEE International Conference
On Artificial Intelligence Testing (AITest) (pp. 140-148). IEEE.

[13] Zhou, Z. Q., & Sun, L. (2019). Metamorphic testing of driverless cars.
Communications of the ACM, 62(3), 61-67.

[14] Chen, T. Y., Kuo, F. C., Ma, W., Susilo, W., Towey, D., Voas, J., &
Zhou, Z. Q. (2016). Metamorphic testing for cybersecurity. Computer,
49(6), 48-55.

[15] Ma, Y., Pan, Y., & Fan, Y. (2022, August). Metamorphic Testing
of Classification Program for the COVID-19 Intelligent Diagnosis. In
2022 9th International Conference on Dependable Systems and Their
Applications (DSA) (pp. 178-183). IEEE.

[16] Jiang, M., Chen, T. Y., & Wang, S. (2022). On the effectiveness of
testing sentiment analysis systems with metamorphic testing. Information
and Software Technology, 106966.

[17] Moreira, D., Furtado, A. P., & Nogueira, S. (2020, August). Testing
acoustic scene classifiers using Metamorphic Relations. In 2020 IEEE
International Conference On Artificial Intelligence Testing (AITest) (pp.
47-54). IEEE.

[18] Ma, Y., Towey, D., Chen, T. Y., & Zhou, Z. Q. (2021, July). Metamorphic
Testing of Fake News Detection Software. In 2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC) (pp.
1508-1513). IEEE.

[19] ur Rehman, F., & Izurieta, C. (2021, July). Statistical Metamorphic
Testing of Neural Network Based Intrusion Detection Systems. In 2021
IEEE International Conference on Cyber Security and Resilience (CSR)
(pp. 20-26). IEEE.

[20] ur Rehman, F., & Izurieta, C. (2021, September). A Hybridized Ap-
proach for Testing Neural Network Based Intrusion Detection Systems. In
2021 International Conference on Smart Applications, Communications
and Networking (SmartNets) (pp. 1-8). IEEE.

[21] Xie, X., Ho, J. W., Murphy, C., Kaiser, G., Xu, B., & Chen, T. Y. (2011).
Testing and validating machine learning classifiers by metamorphic
testing. Journal of Systems and Software, 84(4), 544-558.

[22] Yang, S., Towey, D., & Zhou, Z. Q. (2019, May). Metamorphic
exploration of an unsupervised clustering program. In 2019 IEEE/ACM
4th International Workshop on Metamorphic Testing (MET) (pp. 48-54).
IEEE.

[23] Xie, X., Zhang, Z., Chen, T. Y., Liu, Y., Poon, P. L., & Xu, B. (2020).
METTLE: A metamorphic testing approach to assessing and validating
unsupervised machine learning systems. IEEE Transactions on Reliability,
69(4), 1293-1322.

[24] Rehman, F. U., & Izurieta, C. (2022, June). MT4UML: Metamorphic
Testing for Unsupervised Machine Learning. In 2022 9th Swiss Confer-
ence on Data Science (SDS) (pp. 26-32). IEEE.

[25] Rehman, F. U., & Izurieta, C. (2022, August). An Approach For
Verifying And Validating Clustering Based Anomaly Detection Systems
Using Metamorphic Testing. In 2022 IEEE International Conference On
Artificial Intelligence Testing (AITest) (pp. 12-18). IEEE.

[26] Li, Z., Cui, Z., Liu, J., Zheng, L., & Liu, X. (2020, January). Testing
neural network classifiers based on metamorphic relations. In 2019 6th
International Conference on Dependable Systems and Their Applications
(DSA) (pp. 389-394). IEEE.

[27] Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R. M., Bose, R. J. C.,
Dubash, N., & Podder, S. (2018, July). Identifying implementation bugs
in machine learning based image classifiers using metamorphic testing.
In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 118-128).

39

Authorized licensed use limited to: Montana State University Library. Downloaded on January 18,2024 at 18:13:18 UTC from IEEE Xplore. Restrictions apply.

