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The detection of a stochastic gravitational-wave signal from the superposition of many inspiraling
supermassive black holes with pulsar timing arrays (PTAs) is likely to occur within the next decade. With
this detection will come the opportunity to learn about the processes that drive black-hole-binary systems
toward merger through their effects on the gravitational-wave spectrum. We use Bayesian methods to
investigate the extent to which effects other than gravitational-wave emission can be distinguished using
PTA observations. We show that, even in the absence of a detection, it is possible to place interesting
constraints on these dynamical effects for conservative predictions of the population of tightly bound
supermassive-black-hole binaries. For instance, if we assume a relatively weak signal consistent with a low
number of bound binaries and a low black-hole-mass to galaxy-mass correlation, we still find that a
nondetection by a simulated array, with a sensitivity that should be reached in practice within a few years,
disfavors gravitational-wave-dominated evolution with an odds ratio of ∼30∶1. Such a finding would
suggest either that all existing astrophysical models for the population of tightly bound binaries are overly
optimistic, or else that some dynamical effect other than gravitational-wave emission is actually dominating
binary evolution even at the relatively high frequencies/small orbital separations probed by PTAs.
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I. INTRODUCTION

The history of structure formation in our Universe is
understood to be one of hierarchical building, in which
small galaxies merge to form larger galaxies, and large-
scale structure emerges in the course of these interactions. It
is commonly assumed that this history of galactic mergers
implies a companion history of black-hole mergers [1],
which suggests the existence of a large population of
supermassive-black-hole (SMBH) binaries that emit gravi-
tational radiation. There is some observational evidence
that SMBH binaries do, in fact, exist [2,3]. If the SMBHs
are at separations where they emit appreciable energy in
gravitational waves (GWs), these GWs will add together to
form a stochastic background of gravitational radiation,
which can be searched for using pulsar timing arrays
(PTAs) [4–7].
To search for GWs, PTAs take advantage of the fact that

millisecond pulsars are the best natural clocks in the
Universe. These rapidly spinning neutron stars emit radio
waves that sweep past Earth with stunning regularity—for
the best systems, we can predict the time of arrival (TOA)
of the radio pulses with accuracies of tens of nanoseconds.
These predictions are made using timing models that
include the orbits of the pulsars and Earth, spin-down of
the individual pulsars, changes in the instruments, and
many other effects [8–10]. Once the parameters of this
timing model are fitted, the model is subtracted from the
TOA data, leaving behind timing residuals. If there is a
stochastic background of GW radiation permeating the

space between Earth and the observed pulsars, these timing
residuals will include the GW signal, manifesting as a red
“noise” source.
In an individual pulsar, the effect of this stochastic

background would be impossible to detect, as it could
be modeled away as one of the other known red noise
processes. However, Hellings and Downs [11] showed that
the GW signal due to a stochastic background of binaries
will be correlated between different pulsars, with a corre-
lation function that depends on the angle between two
pulsars on the sky. It is by searching for red power content
that possesses this correlation that PTAs can detect a
stochastic GW signal [12–15].
It is certainly true that at some point in the inspiral of

SMBH binaries, the emission of GWs and the concordant
loss of energy and angular momentum become the primary
driver toward merger. In order for these systems to merge
within a time period shorter than the current age of the
Universe, however, it is not possible for GWs to be solely
responsible for the evolution of the SMBH system after the
initial galactic merger. There must be other mechanisms
that drive the black holes near enough to each other for GW
emission to dominate. These mechanisms include phenom-
ena such as stellar scattering and the accretion of gas, which
are thought to become less efficient as the black holes
approach merger [16–22]. For the elliptical galaxies that
host black holes massive enough to emit GWs in the PTA
band, gas is thought to be scarce, and is therefore unlikely
to drive SMBH binaries close enough to become GW
dominated. Major mergers of comparable mass galaxies
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have long been known to result in gas poor elliptical
galaxies [23–25]. The assumption that PTA sources in
particular are exceedingly gas poor is strongly supported by
the large drop in the observed quasar luminosity function
for z < 2 [26], which implies a decrease in the gas-mass
accretion rate of PTA candidate sources at z < 1 by 3–4
orders of magnitude compared to the peak rates found at
z > 2 [27]. Furthermore, once the SMBH binaries reach
orbital separations of Oð1 pcÞ, simple estimates imply that
there are not enough stars available in the region of phase
space capable of removing the necessary amount of energy
and angular momentum for the SMBH binary to merge via
GW emission within a Hubble time. This region of phase
space for stars is referred to as the loss cone, and the
depletion of the loss cone is often referred to as the last
parsec problem [28]. There are many proposed resolutions
to the last parsec problem, but they primarily involve
mechanisms that can refill the loss cone (see [29] and
references therein).
It has commonly been assumed in PTA analyses that the

last parsec problem is solved by some unspecified mecha-
nism, but that GWs are the dominant driver of binary
mergers throughout the frequency range (∼10−9–10−6 Hz)
to which pulsar timing is sensitive. This is not, however,
guaranteed to be the case, and it is important to remember
that the SMBH binaries of interest emit GWs throughout
their evolution, even when the driving evolutionary force is
something other than GWs. This means that the stochastic
background of GWs to which PTAs will be sensitive could
have a spectral shape that is significantly different than that
predicted by assuming purely GW-driven binary dynamics
[30–36].
This reality can have both negative and positive conse-

quences. The negative effect of gas- or stellar-driven binary
evolution is that it causes the amplitude of the stochastic
GW background within the PTA sensitivity band to be
lower than what it would be if all mergers were GW driven
throughout the band. However, the presence of more
complicated spectra, which could be shaped by many
astrophysical processes, would give us the opportunity to
learn about the galactic environments in which SMBH
binaries evolve and merge.
In this paper we explore both of these possibilities, using

the techniques of Bayesian inference and model selection.
First, in Sec. II we discuss some of the processes that can
affect the shape of the stochastic spectrum, and how to
determine what that shape will be. In Sec. III, we describe
our simulations and the analysis techniques used, and
present the results of our analysis. We find that the
detection of a stochastic GW background is not hindered,
and can in fact be significantly helped, by using a more
complicated model for the spectrum that includes the
possibility of non-GW inspiral mechanisms. We also show
the extent to which the parameters that describe this
spectrum can be measured in the event of a detection,

and constrained in the event of a nondetection. Throughout
this section we analyze the effects that the choice of priors
has on model selection and parameter estimation, and
discuss which prior choice is appropriate for a particular
goal. Finally, we summarize and conclude in Sec. IV.
Unless otherwise noted, we will work in geometrized units
where Newton’s constant G and the speed of light c
satisfy G ¼ c ¼ 1.

II. SPECTRAL MODELS

The characteristic amplitude of the stochastic GW signal
generated by a population of inspiraling SMBH binaries on
circular orbits can be calculated via [33,37,38]

h2cðfÞ ¼
Z

∞

0

dz
Z

∞

0

dM
d3N

dzdMdt
dt

d ln f
h2ðfÞ: ð1Þ

In this expression, hðfÞ is the instantaneous GW strain
amplitude emitted by a single circular binary with a
Keplerian rest frame orbital frequency of f=2, since circular
binaries emit gravitational waves at twice the orbital
frequency, and is given by [39]

hðfÞ ¼ 8ffiffiffiffiffi
10

p M5=3

DL
ðπfÞ2=3 ð2Þ

where DL is the luminosity distance to the source. For a
binary with component masses M1 and M2, M≡
ðM1M2Þ3=5ðM1 þM2Þ1=5 is a combination of masses
known as the chirp mass, z is the redshift, and t is time
measured in the binary rest frame. We note that the
amplitude hðfÞ applies regardless of whether the source
is evolving primarily under the influence of gravitational
waves, or is dominated by some other dynamical effect.
The term

d3N
dzdMdt

dt
d ln f

¼ d3N
dzdMd ln f

ð3Þ

is the differential number of inspiraling binaries per unit
M, z, and ln f. The term dt=d ln f encodes the frequency
evolution of the binary. For a population of circular binaries
that are driven purely by GW emission, this frequency
evolution is given by the standard quadrupole formula:

dt
d ln f

¼ 5

64π8=3
M−5=3f−8=3: ð4Þ

With this substitution, Eq. (1) becomes [37]

h2cðfÞ ¼
4f−4=3

3π1=3

Z Z
dzdM

d2n
dzdM

M5=3

ð1þ zÞ1=3 ; ð5Þ

where d2n=ðdzdMÞ≡ d3N=ðdVcdMdzÞ is the comoving
number density of merged remnants per unitM and z, with
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Vc being the comoving volume. Finally, dVc intervals are
related to dz intervals via [37]

dVc ¼
4πD2

L

Hoð1þ zÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þΩΛ

p dz; ð6Þ

where Ho, ΩM, and ΩΛ are the Hubble constant, total
(baryon and dark matter) mass-energy density, and dark
energy density, respectively, and DL is related to z in a flat
cosmology via

DLðzÞ ¼
1þ z
Ho

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ z0Þ3 þ ΩΛ

p ð7Þ

(see [40] and references therein).
Equation (5) is often reparametrized as hc ¼

Aðf=yr−1Þ−2=3, where A is the amplitude at f ¼ 1 yr−1.
A is therefore the standard metric that has been used
throughout the literature for characterizing the sensitivity
of PTAs, although this only makes sense if we assume all
binaries have circular orbits and are gravitational-wave
dominated.
GWs cannot, however, be the only driver of SMBH

coalescence—not if these binaries are to merge within a
Hubble time. There are many other mechanisms, such as
interactions between the SMBH binary and surrounding
stars and gas, that draw the binaries together after their
galaxies merge. These mechanisms will alter the calcu-
lation above exclusively via a change in dt=d ln f; generi-
cally, dt=d ln f can be no smaller than the prediction of
Eq. (4), since any other dominating mechanism will cause
binaries to evolve more rapidly through frequency. This
will result in a different frequency dependence in the final
power spectrum, such that the spectral slope will be smaller
at frequencies dominated by other mechanisms.
To see how other dynamical effects will impact the shape

of the spectrum, we can recast Eq. (1) as

h2cðfÞ ∝ f
dN
df

h2ðfÞ ∝ f7=3
df
dt

: ð8Þ

This rewriting is made under the assumption that dN=dt is
constant, i.e. that the merger rate is not evolving much with
time. We can see from Eq. (8) that the spectrum depends on
the emitted gravitational waves, hðfÞ, scaled by an ampli-
tude, dN=df, that encodes the number of binaries in a given
frequency bin. The final step emphasizes that, given a
constant dN=dt, the number of binaries per frequency bin is
determined solely by the frequency evolution of these
binaries, df=dt.
Then we can write

df
dt

¼
X
i

�
df
dt

�
i
; ð9Þ

where the sum extends over all the physical processes
that drive the black holes to inspiral. For instance, for
GW-driven evolution

�
df
dt

�
GW

∝ f11=3: ð10Þ

Given the strong frequency dependence of GW-driven
inspiral, we will assume that at least the final stage of
binary evolution is dominated by GW emission, and pull
this term out of the sum in Eq. (9). We can then recast the
expression in Eq. (8) in the form

hcðfÞ ¼ A
ðf=fyearÞ−2=3

ð1þP
ibiðf=fyearÞðγi−11=3ÞÞ1=2

; ð11Þ

where fyear is the fiducial frequency of 1=year, the γi’s
encode the frequency dependence introduced by a particu-
lar astrophysical effect, the bi are the dimensionless relative
amplitudes of the astrophysical processes driving the binary
toward merger scaled relative to the GW-driven case at
f ¼ fyear, and A is a dimensionless amplitude. Note that
unless the ai ¼ 0, A is not equal to the characteristic
amplitude at a frequency of 1=year. On the other hand, for
most scenarios we expect the ai ≪ 1, so to a good
approximation, A is close to equaling hcðf ¼ fyearÞ.
Before we consider specific alternative dynamical effects

to GW-driven inspiral, it is useful to briefly review our
understanding of the evolutionary histories of SMBH
binaries. The early SMBH dynamics within merging gal-
axies is driven by dynamical friction [41] wherein each
SMBH and its concomitant stellar bulge and dark matter
subhalo gravitationally focus first the dark matter and then
the baryonic content of the companion galaxy. This focusing
of excess mass behind the SMBH induces a drag, thereby
causing the SMBH to drop further into the gravitational
potential well of the merging pair. Dynamical friction
continues to operate until the SMBH orbital velocity exceeds
the stellar velocity dispersion, at which point the binary is
said to have hardened. Subsequent evolution of the binary is
driven by stellar scattering, in which background stars on
centrophilic orbits (i.e. stars outside the SMBH binary that
are scattered onto low angular-momentum orbits toward the
center of the gravitational potential) interact with the SMBH
binary in a three-body interaction, and remove energy and
angular momentum from the SMBH binary as a result [21].
The last parsec problem occurs when there are insufficient
stars on the necessary orbits to continue driving the SMBH
binary toward the GW-dominated regime. There are several
proposed solutions to this problem, including any form of
asymmetry in the gravitational potential (see [42] and refer-
ences therein), but all of these solutions can be considered
mechanisms to refill the loss cone, so that stellar-induced
hardening via three-body interaction can continue until GWs
are able to efficiently drive the binary onward to merging.
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The semimajor axis a of a SMBH binary that interacts
with a background of stars via three-body scattering
evolves according to [21]

da
dt

¼ a2ρ
σ

H; ð12Þ

where ρ is the density of background stars and σ is their
velocity dispersion, and H is approximately constant and
was estimated in [21] via N-body simulations. Thus, for
stellar scattering df=dt ∼ f1=3. If we assume that a binary is
driven by stellar scattering immediately prior to being
driven by the emission of GWs, we can find the frequency
at which GWs begin to dominate by equating ðda=dtÞstars
from Eq. (12) to ðda=dtÞGW under the influence of
gravitational-wave emission. This crossover frequency
has been estimated as fb ≈ 10−9M−7=10

8 η−3=10 Hz, where
M8 is the total mass of the binary in hundreds of millions of
solar masses and η is the symmetric mass ratio [43] (note
that there is a typo in this reference, but we have confirmed
that the expression we present here is correct). In what
follows, we will call such transition frequencies “bend
frequencies,” since the slope of hcðfÞ changes as one
hardening process takes over from another. For a two part
da=dt model (or, equivalently, df=dt), where some other
dynamical mechanism gives way to GW-driven evolution,
we have

hcðfÞ ¼ A
ðf=fyearÞ−2=3

ð1þ ðfb=fÞκÞ1=2
; ð13Þ

with κ ¼ 10=3 being the appropriate value for the specific
case of stellar scattering. We must mention that stellar
scattering is not the only mechanism that could potentially
influence the inspiral of SMBH binaries. Other possible
effects include torquing of the binary from circumbinary
disks, where the details of the effect depend sensitively
on the dissipative physics of the disk, and gas-driven
evolution due to massive inflows of gas that can be
triggered by dynamical instabilities during the galactic
merger [16,34–36,44–48]. In general, a particular physical
effect will lead to an expression for da=dt, which can be
mapped to values of fb and κ in the GW spectrum. Given
the presumed absence of gas in the massive elliptical
galaxies that host PTA sources, disk- or gas-driven inspiral
is thought to be less probable than stellar scattering, so we
will focus primarily on the latter as the dominant effect
preceding GW-driven inspiral. We also mention that, even
in the case of stellar-driven inspiral, it is possible that the
balance of energy- and angular-momentum removal could
drive SMBH binaries to nonzero eccentricities when they
transition to being GW dominated [21]. Having said this,
zero eccentricity appears to be an attractor solution for
binaries in numerical experiments with plausible initial

conditions of the stellar population [21], so we will focus
on circular binaries hereafter.
Realistic astrophysical binaries will be driven by multi-

ple mechanisms throughout their evolutionary history,
which is reflected in the summation in Eq. (9). This will
result in a GW power spectrum with several slopes and
several transition frequencies. It is likely, however, that in
order to measure the parameters of such a complicated
power spectrum, it will be necessary to make a high signal-
to-noise ratio detection of the stochastic GW background. In
the early days of PTA data analysis, a simple model that
allows for a single transition between GW-dominated
evolution and some other power law will most likely suffice.
Figure 1 shows examples of the different types of

simulated signals we will analyze in Sec. III. Plotted in
this figure are the four basic shapes of spectra which we
will investigate, along with the baseline spectrum of a
purely GW-driven binary population. The spectra include
two different bend frequencies, fb ¼ 1 × 10−8 Hz and
fb ¼ 3 × 10−8 Hz (which are quite arbitrary choices—
the theoretical uncertainty of what realistic values are for
fb is very large, and so a theoretically motivated value is
difficult to define), and two different slopes for the low-
frequency part of the data, κ ¼ 10=3, which corresponds to
stellar scattering, and κ ¼ 26=9, which is chosen to be a
somewhat more dramatic bend. These different shapes are
labeled with roman numerals. Further details of the
simulated data will be discussed in the next section.
The final astrophysical function that enters into Eq. (13) is

the merger rate, and it is this rate that determines the overall
amplitude of the GW background. When performing a
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FIG. 1 (color online). Examples of the five different spectral
shapes we will investigate. (I) has fb ¼ 10−8 Hz and κ ¼ 29=6,
(II) has fb ¼ 10−8 Hz and κ ¼ 10=3, (III) has fb ¼ 3 × 10−8 Hz
and κ ¼ 29=6, (IV) has fb ¼ 3 × 10−8 Hz and κ ¼ 10=3, and
(V) (the dashed line in each panel) is the signal from binaries that
are driven purely by GWs throughout the band. Here, we plot the
power spectral density, ShðfÞ ¼ h2c=ð2fÞ.

SAMPSON, CORNISH, AND MCWILLIAMS PHYSICAL REVIEW D 91, 084055 (2015)

084055-4



Bayesian analysis with the spectral model (13), it is
necessary to provide priors on all the parameters. A prior
on a particular parameter encodes any information that is
known, or believed, a priori about that parameter. In the
analysis presented in the next section, we will focus on two
different astrophysically motivated priors on A, as well as
priors that are uniform in A and in lnA. The two astro-
physical priors are motivated by the work of McWilliams
et al. [32,33] (model A), and Sesana and Ravi et al. [34,36]
(model B). Both models can be approximated as Gaussian
distributions in lnA. The prior for model A is centered at
A ¼ 4.1 × 10−15, with an uncertainty in lnA of σ ¼ 0.6
[33]. The model B prior is centered at A ¼ 10−15, with an
uncertainty in lnA of σ ¼ 0.5. Since these prior distributions
are Gaussian, neither requires the specification of an upper or
lower limit on A. The third prior that we consider, which is
uniform in A, has the natural lower limit of A ¼ 0. To
calculate the upper limit for this prior, we impose the (rather
conservative) constraint that the energy density in GWs in
the PTA observing band cannot close the Universe. An
alternative would be to demand that the energy density in
GWs from PTA sources cannot close the Universe, which
would extend the integration over the energy density to
include the out-of-band merger and ringdown of the black-
hole binaries. We chose to use the frequency range covered
by the PTA observing band since those are the frequencies
that are directly constrained by the data. To use this
requirement to impose an upper limit on A we relate hc
to the energy density per logarithmic frequency interval via

ΩGWðfÞ ¼
2π2

3H2
0

f2h2cðfÞ; ð14Þ

then impose that

Z
fmax

fmin

ΩGWðfÞd ln f < 1: ð15Þ

The lower-frequency limit of this integral is unimportant
since the integral is dominated by the high-frequency
behavior. Performing the integral results in a limit on A
of the form

A2 < f−4=3y f−2=3max
H2

0

π2
: ð16Þ

For fmax ¼ 5.5×10−7 Hz, this implies that A < 4.4 × 10−12

(assuming a Hubble parameter of H0 ¼ 67.8 km=s=Mpc,
which is the upper limit we use when employing a uniform
prior in A throughout our analyses). We take the uniform
prior on the logarithm of the amplitude to share the same
upper limit derived for the uniform amplitude prior, but there
is no natural value for the lower limit. This prevents us from
using this prior to set upper limits, but by choosing a lower
limit several orders of magnitude below the noise level, it is

possible to use the uniform logarithmic prior for parameter
estimation once a detection has been made.
The other parameters that enter into our model for the

GW spectrum are fb and κ, as discussed above. The prior
we choose to employ on fb is uniform in lnðfbÞ, indicating
our lack of knowledge about even the order of magnitude of
the frequency at which the GW slope may bend, and has a
lower limit of fb ¼ 2.5 × 10−9 Hz (which is below the
lower edge of the sensitivity band for a 10 year data span),
and an upper limit of fb ¼ 10−7 Hz. This upper limit is
somewhat arbitrary, but it does indicate our belief that GWs
must, at some high enough frequency, dominate the
evolution of SMBH binaries. For κ, we use a prior that
is uniform in κ, with a range of 0 to 23=3 (the noninteger
value for the upper end of the range is due to us changing
our conventions for the parametrization of the spectrum late
in the project).
We note that we have chosen to study our ability to

measure the low-frequency slope, bend frequency, and
amplitude for a set of simulated data, rather than trying to
assess how efficiently or frequently the last parsec problem
is solved, or what the correct correlation is between the
black-hole mass and a particular property of the host
galaxy. Our principle motivation for this choice is that
the astrophysically motivated distributions only differ by
a factor of ∼2–3 in predicted signal amplitude between the
most conservative and the most optimistic estimates,
despite making different assumptions about the solution
to the last parsec problem and the correlation between
black-hole mass and host-galaxy properties. Furthermore,
there are multiple elements that contribute to this level of
amplitude uncertainty, including the overall galaxy merger
rate and its dependence on mass and environment, in
addition to the last parsec solution and the choice of
black-hole-mass–host-galaxy-property correlation. Given
our comparative ignorance of the low-frequency signal
slope and the transition frequency between the dynamical
process dominating the final parsec and GW-driven evo-
lution, we choose to focus our study on constraining these
parameters for a given amplitude.
Another approach we could have taken with the ampli-

tude prior is to separate the uncertainties into an observa-
tional part (from factors such as the rate of galaxy mergers
and the M-σ relation) and a theoretical part (from factors
such as the efficiency of dynamical friction in hardening the
binary and the fraction of systems where the last parsec
problem is overcome). This could be done by writing the
prior as a Gaussian distribution in lnA, centered at some
value ln Ā, with width σobs to account for the observational
uncertainties. The central value, ln Ā, would then be a
hyperparameter to be determined by the data. If we quantify
the uncertainty on the central value Ā as Ā ¼ ηA�, where A�
is some reference value and η encodes the theoretical
uncertainty in the merger efficiency, then assigning a
Gaussian prior on the hyperparameter ln η of width σth
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centered on η�, and marginalizing over the hyperparameter,
leads to Gaussian distributions of the form used for models
A and B with width σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2obs þ σ2th

p
. Alternatively, a

uniform prior on ln η over some range leads to a roughly
uniform prior on lnA between lnðηminA�Þ and lnðηmaxA�Þ
with rounded edges of width σons. Thus, the analyses we
consider are equivalent to a hierarchical Bayesian analysis
that separates out the theoretical and observational uncer-
tainties for certain choices of the hyperprior.

III. SIMULATED DATA AND ANALYSIS

Our simulated data set consists of the timing residuals
from 20 pulsars, randomly distributed on the sky, and
observed for 10 years with a two-week cadence. The data
from each pulsar are generated including white noise at a
level of 200 ns, and no red noise. We then recover this
simulated signal using a model that includes the three
parameters that describe the GW spectrum, A; fb; κ, and the
noise parameters for each pulsar. These include a white
noise level, red noise level, and red noise slope. The white
noise is fully described by the amplitude of its power
spectral density (PSD), which we label Sn. The prior on
Sn was uniform in lnðSnÞ, and ranged from Sn ¼ 4 ×
10−18 Hz−1=2 to Sn ¼ 10−2 Hz−1=2. The red noise is para-
metrized by its PSD amplitude, Sr, and by a slope, r, as
SrðfÞ ¼ Srðf=fyearÞr. The prior on the red noise amplitude
was also uniform in lnðSrÞ, with the same range as Sn, and
the prior on the slope r was uniform from −2 to −6.
Finally, we include two parameters for each pulsar that

encode the effects of the timing model on the timing
residuals. As discussed briefly in the introduction, the
timing model used to predict the TOA of radio pulses from
a given pulsar includes a large set of parameters [8–10]. In
this analysis we only consider the two timing model
parameters that have the greatest effect on the low-
frequency sensitivity. These are the quadratic and linear
terms in the spin-down model for each pulsar, which take
the form

PðtÞ ¼ P0 þ _P0tþ P̈0t2 þ…: ð17Þ
Here, P0 is the initial spin period of the pulsar, and _P0 and
P̈0 encode the way that this spin evolves in time.
In order to speed up our analysis, we choose to perform

our calculations in the Fourier domain. We therefore need
to understand how the quadratic and linear terms in the
timing model translate to effects on the timing residuals as a
function of frequency. The Fourier transform of the timing
model is given by

~PðfkÞ ¼
Z

T

0

PðtÞei2πfktdt; ð18Þ

where fk ¼ k=T for integer k, and T is the observation
time. This integral evaluates to

~PðfkÞ ¼ TP0δk0 −
i _P0T2

2πk
−
iP̈0T3

2πk
þ P̈0T3

2π2k2
þ…: ð19Þ

The k ¼ 0 term is simply a constant offset that
we can ignore. Writing a ¼ P̈0T3=ð2π2Þ and b ¼
−ð _P0T2 þ P̈0T3Þ=ð2πÞ, the timing model for each pulsar
can be written as

~Pk ¼
a
k2

þ ib
k
: ð20Þ

A model of this form, with independent a and b for each
pulsar, is then subtracted from the TOAs.
The full set of parameters in our model thus consists of

the five noise/timing parameters for each pulsar, and three
parameters to describe the GW background—A; fb; κ. With
this set of parameters, the likelihood is defined by [49]

pðdjs;nÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞLdetC

p exp

�
−
1

2

X
ab

X
ij

raiC−1
ðaiÞðbjÞrbj

�
;

ð21Þ

where C is the covariance matrix, which depends on both
the noise in the individual pulsars and on the GW back-
ground, and r ¼ d − s denotes the timing residuals after the
subtraction of the timing model s from the data d. The
indices a and b label individual pulsars, and run from 1 to
the number of pulsars,Np. The indices i and j label the data
samples, i.e. individual frequency bins. Since our simulated
data are stationary, the correlation matrix is diagonal in i; j
and CðaiÞðbjÞ → CabðfÞ.
The timing model parameters for each pulsar enter the

likelihood in the timing residuals; they are subtracted from
the TOAs before the likelihood is evaluated. The red and
white noise contributions for each pulsar enter along the
diagonal of the covariance matrix. Finally, the GW signal
enters via the Hellings and Downs [11] correlation matrix,
which has the form

Hab ¼
1

2
þ 3ð1 − cos θabÞ

4
ln

�
1 − cos θab

2

�

−
1 − cos θab

8
þ 1

2
δab: ð22Þ

The full covariance matrix is then given by

CabðfÞ ¼ ShðfÞ
Hab

3
þ δabfSna þ Sraðf=fyÞrag; ð23Þ

where ShðfÞ is the PSD of the GW background, Sna is the
PSD of the white noise, Sra is the amplitude of the PSD of
the red noise, and ra is the slope of the red noise.
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A. Methods

Our analysis is carried out within the framework of
Bayesian inference, using the technique of Markov chain
Monte Carlo (MCMC) techniques. To calculate Bayes
factors,1 we must calculate the evidence for each model,
which necessitates performing an integral over the full
parameter space. For this integral, we use the technique of
thermodynamic integration [50–52]. This technique neces-
sitates the use of parallel tempering, in which multiple
chains are run at different “temperatures,” which are
defined by changing the likelihood to

pðdjs; n; βÞ ¼ pðdjs; nÞβ; ð24Þ
where β is analogous to an inverse temperature. This
effectively “softens” the likelihood, allowing the chains
to effectively sample the full posterior. Chains with differ-
ent temperatures are allowed to swap parameters with a
probability given by the Hastings ratio

Hi↔j ¼ min
�
pðdjsi; ni; βjÞpðdjsj; nj; βiÞ
pðdjsi; ni; βiÞpðdjsj; nj; βjÞ

; 1
�
: ð25Þ

The evidence for each model is then given by

lnpðdÞ ¼
Z

i

0

Eβ½lnpðdj~xÞ�dβ; ð26Þ

where Eβ denotes the expectation at inverse temperature β.
Given equal prior belief in two models, the Bayes factor is
then simply the evidence ratio between them. The tech-
nique of parallel tempering is useful not only as a means of
calculating Bayes factors, but as a tool for improving the
convergence of the MCMC runs.
In order to further speed convergence, we use a cocktail of

jump proposals. These include small random-walk jumps of
varying sizes, which we define as draws in each parameter
from a Gaussian centered at the current location; parallel
tempering swaps; and differential evolution proposals [53].
We find that the differential evolution jumps are particularly
helpful in encouraging efficient exploration.

B. Detection and model selection

We first investigate the impact on detectability of the
shape of the GW spectrum, both in the simulated signal and
in the model used to extract it. We do this by simulating
GW backgrounds of varying shapes and amplitudes,
described in Table I, and recovering these signals using
templates that either do or do not include a bend in the
spectrum. The templates that do not include a bend are

consistent with the belief that the SMBH binary population
is driven purely by GWemission throughout the sensitivity
band. Figure 2 shows the results of this study. The prior on
the GW amplitude for the two signal models (with a bend
and without) was uniform in amplitude. The horizontal axis
is labeled by the simulated signals, which have been
arranged from left to right in ascending order of detect-
ability for the model that includes a bend. The vertical axis
shows the Bayes factor in favor of either signal model,
where a Bayes factor larger than unity indicates detect-
ability. There are two main features to notice in Fig. 2. The
first is that the model with no bend, i.e. for which the

TABLE I. The different types of simulated signals for Figs. 2
and 3.

Type Subtype A × 1015 fb (Hz) κ

I a 0.08 3 × 10−8 29=6
b 2.0 3 × 10−8 29=6
c 4.0 3 × 10−8 29=6

II a 0.08 3 × 10−8 10=3
b 2.0 3 × 10−8 10=3
c 4.0 3 × 10−8 10=3

III a 0.08 10−8 29=6
b 2.0 10−8 29=6
c 4.0 10−8 29=6

IV a 0.08 10−8 10=3
b 2.0 10−8 10=3
c 4.0 10−8 10=3

V a 0.08 0 N/A
b 2.0 0 N/A
c 4.0 0 N/A

FIG. 2 (color online). The Bayes factors between noise and two
GW signal models, both with uniform amplitude prior, one with a
bend in the spectrum, the other assuming a purely GW-driven
evolution. A Bayes factor larger than unity indicates a detectable
GW background. Unsurprisingly, the model that allows for a
bend in the spectrum fares much better than the GW-driven model
in cases where the simulated signal spectrum includes a bend
(types I, II, III, and IV), and performs only slightly worse when
the simulated signal is purely GW driven (type V).

1Given equal prior belief in the validity of two models, A and
B, the Bayes factor, BAB, between models A and B, given the
observed data, is the “betting odds” that model A is the better
theory, rather than model B.
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SMBH binaries are driven purely by GWemission through-
out, does not perform appreciably better than the more
complicated model that includes a bend for any simulated
signal. This is true even when the signals themselves do not
include a bend in the spectrum. This tells us that using the
more complicated model for the purpose of detection will
not significantly decrease our sensitivity to a GW back-
ground.2 The second, related feature is that the Bayes factor
for the model that allows for a bend is consistently favored
over the no-bend model when the simulated signal has a
bend. From this we can see that we will be able to perform
model selection between astrophysical models that predict a
slope change in the spectrum, and those that predict a purely
GW-driven evolution across the PTA frequency band.
The other main prediction of astrophysical models is

reflected in the prior we impose on the amplitude of the
GW background. In the previous section, we discussed the
different amplitude priors from the merger models of
McWilliams et al. [33] (model A) and Sesana and Ravi
et al. [34,36] (model B). In Fig. 3, we demonstrate the
ability to perform model selection between these two
priors. This figure again shows the Bayes factors between
a set of GW spectrummodels and noise. We see that both of
the astrophysical models outperform the uniform amplitude
prior, and that the model A and model B priors are
distinguishable from each other, with model A preferred
for large amplitude signals, and model B preferred for small
amplitude signals.

C. Parameter estimation

In addition to selecting between models, we are also
interested in determining the accuracy with which the GW
spectrum can be recovered. As a first method for visual-
izing our ability to constrain the shape of the GW back-
ground, in Fig. 4 we show density plots of the recovered
spectra calculated by simulating a noise-only signal, and
recovering with the full GW spectral model. This is the type
of analysis that leads to an upper limit on the GW
amplitude, as there is no detection. To generate this plot,
we calculate the spectrum at a sample of points in the
Markov chain, then make a histogram of this spectrum at
every frequency. The color map shows the weight of the
histogram in each bin, with red corresponding to higher
weight, and blue corresponding to lower weight. Also
shown is the white noise level (as a white line), and the 5%,
50%, and 95% confidence regions for the shape of the
spectra. The purely GW-driven signal model with a uniform
amplitude prior, labeled “flat in A, no bend” in Fig. 4, yields
a 95% upper limit on the amplitude of A95 < 7.3 × 10−16.
This number can be directly compared to the published
upper limits fromrealPTAs, since theseanalysesalsoassume
a purely GW-driven evolution. The current upper limits are:
the Parkes Pulsar Timing Array—A < 2.4 × 10−15; the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav)—A < 7 × 10−15; European Pulsar
Timing Array—A < 6 × 10−15. Thus, our simulated array
is roughly three times more sensitive than the reported state
of the art, but based on projections [15], we expect our
simulated sensitivity to be reached in reality within the next
two to three years. The upper limits on the amplitude from
the models in Fig. 4 that allow for a bend in the spectrum
are, unsurprisingly, significantly weaker. For example, the
model with a constant amplitude prior and a bend in the
spectrum leads to an upper bound of A95 < 6.8 × 10−15—a
full order of magnitude worse than the limit for the purely
GW-driven model.
Figure 5 shows posterior distributions for the recovered

power spectra, but this time for simulated data includes an
astrophysically driven GW background. The parameters for
this background were A ¼ 4.0 × 10−15, fb ¼ 3 × 10−8 Hz,
and κ ¼ 10=3. In this case, the simulated signal is plotted
along with the white noise. It is again clear that the different
choices in amplitude prior have a strong effect on the
recovered spectrum. In this case, we have also included an
example with a prior that is uniform in the logarithm of the
amplitude. This choice of prior has been shown [54,55] to
be a poor choice for setting upper limits, but we suggest
that it is a superior choice for parameter estimation.
Note that the recovered spectra in Fig. 5 do not fall

precisely along the simulated track. This is an effect of the
marginalization that occurs when calculating the densities.
We are not showing the shape of any particular spectrum
that was recovered by the chain. Rather, we are showing the
distribution of the spectrum at each frequency, which is not

FIG. 3 (color online). The Bayes factors between GW signal
models with three different priors—uniform in amplitude and the
model A and B astrophysical amplitude priors—and noise. In this
study, all the GW models allowed for a bend in the spectrum. A
Bayes factor larger than unity indicates a detectable GW back-
ground. Here we see that both astrophysical priors outperform the
uniform prior for detectability, and also that we are able to
distinguish between the two astrophysical models.

2The best approach would be to marginalize over the model
dimension along with the model parameters using a reversible
jump Markov chain Monte Carlo algorithm so that the optimal
model is selected by the data and not guessed in advance.
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required to have the same shape as the underlying spectral
model. It is, essentially, a projection of the joint posterior
distribution of the signal parameters A, fb, and κ. We do
not, therefore, expect the median recovered spectrum to lie
directly on the simulated spectrum.
We will now discuss in detail the recovery of A, fb, and κ.

To examine our ability to measure the values of these
parameters, Fig. 6 shows the prior and posterior distributions
for the signal parameters, for the same simulated signal as
was used to generate Fig. 5, and for four choices of
amplitude prior (uniform in A, uniform in lnA, and the
two astrophysical priors, models A, B). Along the diagonal,

we show the one-dimensional prior and posterior distribu-
tions for each parameter. In the off diagonals, we show
two-dimensional posterior distributions, illustrating the cor-
relations between the parameters. The biases that arise from
a uniform amplitude prior are clear in this figure—in
particular, the amplitude, A, is pulled to very high values
by this choice in prior. While this can be good for setting
conservative upper limits on A given the lack of a detection,
it is clearly a poor choice for parameter estimation. In
contrast, the prior uniform in lnA, while bad for setting
upper limits, is shown here to be a good choice for parameter
estimation.

FIG. 4 (color online). Density plots of the recovered spectra from MCMC runs including the full GW signal model (with A; fb, and κ
all free), for three different choices of amplitude prior. The simulated data in this case contained only noise. The priors used are,
clockwise from top left, the model A prior, the model B prior, and the prior uniform in A. Also shown are the simulated white noise
(white line) and the 5%, 50%, and 95% confidence regions for the recovered spectra.

TABLE II. The maximum a posteriori values for A, fb, and κ, along with the 90% credible intervals for each parameter, corresponding
to the simulated signals and inferred distributions shown in Fig. 6. Recall that the simulated values of these parameters were
A ¼ 4.0 × 10−15, fb ¼ 1 × 10−8 Hz, and κ ¼ 10=3. Note that only the model A and uniform in lnA cases include the simulated values
within their 90% confidence intervals.

Prior A5% AMAP A95% ðfbÞ5% ðfbÞMAP (Hz) ðfbÞ95% κ5% κMAP κ95%

Model A 2.05 × 10−15 3.4 × 10−15 7.10 × 10−15 5.16 × 10−9 9.4 × 10−9 3.29 × 10−8 1.65 3.3 5.17
Model B 1.35 × 10−15 1.9 × 10−15 2.83 × 10−15 3.64 × 10−9 5.0 × 10−9 8.13 × 10−9 2.6 5.0 7.01
Flat in A 1.61 × 10−14 5.2 × 10−14 6.45 × 10−14 4.53 × 10−8 9.5 × 10−8 9.83 × 10−8 2.11 2.6 3.03
Flat in lnA 2.04 × 10−15 8.8 × 10−15 2.56 × 10−14 6.16 × 10−9 2.8 × 10−8 7.96 × 10−8 1.80 2.5 3.80
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The maximum a posteriori (MAP) parameter values, as
well as the 90% credible intervals, for A; fb, and κ are
shown in Table II for all four choices of amplitude prior.
From this table we see that only the model A prior and the
flat in lnA prior return credible intervals that contain the
simulated value for A. Our model selection studies show
that it would be very clear given a signal of this type that the
model A prior is favored, and consequently, is the model
that should be used for parameter estimation in this case.

D. Astrophysical inference

The measurement of κ is of particular interest, as it maps
most easily to astrophysical predictions. There are two
approaches we can take to use the recovered κ to distin-
guish between astrophysical models. The first is illustrated
in Fig. 6; we can simply produce posteriors of κ given
the detection of a GW background, and assess whether the
measured value is consistent with a particular model.
This presents a challenge, however, as the value of κ is
not measured with high precision. That is, the posterior
distributions of κ for both astrophysical amplitude priors

and for the prior uniform in lnA have significant weight
throughout the prior range.
Additionally, the shape and peak of these posteriors

depend strongly upon the choice of prior on A. This can,
however, be viewed more as a feature than a drawback, as
the choice of prior on A encodes astrophysical information.
This implies that the correct method for drawing astro-
physical inferences from the measurement of the stochastic
background is through model selection, where the models
are defined both by κ and by the prior on A.
To investigate this type of model selection study, we

simulated data of types II and IV, and recovered these
simulated data sets using templates with fb free, but with
fixed values for κ, using the amplitude prior for model A.
We then calculated the Bayes factors between these two
models. The spectral models used for recovery have fixed
slopes κ ¼ 10=3, κ ¼ 7=3, or κ ¼ 29=6. The simulated data
had a spectrum with κ ¼ 10=3, which corresponds to stellar
slingshot hardening. The κ ¼ 7=3 model corresponds to
hardening due to a thin, cold circumbinary gas disk, while
the κ ¼ 29=6 was randomly selected to provide a model
with a shallower spectrum than was used to generate the
data. Figure 7 shows the log Bayes factor of the κ ¼ 10=3

FIG. 5 (color online). Density plots of the recovered spectra from MCMC runs including the full GW signal model (with A; fb, and κ
all free), for four different choices of amplitude prior. The simulated data in this case contained a GW background of type IV.c. The
priors used are, clockwise from top left, the model A prior, the model B prior, a prior uniform in lnA, and a prior uniform in A. Also
shown are the simulated white noise (white line), the simulated signal (gray line), and the 5%, 50%, and 95% confidence regions for the
recovered spectra. The model A prior and the prior uniform in lnA result in the best fir to the simulated spectrum.
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model relative to the κ ¼ 29=6 (red) and κ ¼ 7=3 (blue). So
long as the bend frequency is high enough (signal type IV),
and the amplitude large enough (subtypes b,c), it is possible
to distinguish between the different hardening mechanisms.

E. Learning from a nondetection

Information is gained from any measurement that leads
to a posteriori distribution that is different from the prior
distribution. In Fig. 8, we show the prior and posterior
distributions of A; fb, and κ, as above, but now recovered
from running on a signal that contains only noise. These
distributions are shown for three different choices of

amplitude prior—model A, model B, and uniform in A.
It is clear that these distributions are significantly altered
from the priors, showing that we can learn about astro-
physical model space even lacking a GW detection.
The primary result from PTA searches for a stochastic

GW background is typically quoted as an upper limit on the
amplitude A. Unsurprisingly, for the signal analyzed in
Fig. 8, the 95% upper bound on A depends on the choice of
prior. For model A, A95% ¼ 9.95 × 10−15; for model B,
A95% ¼ 1.99 × 10−15; and finally, for a uniform prior in A,
A95% ¼ 6.83 × 10−15. We see, then, that model A leads to
the most conservative upper bounds. Note that these

FIG. 6 (color online). Prior and posterior distributions for the three GW parameters, A; fb, and κ, recovered using four different
amplitude priors. Along the diagonal are plotted the one-dimensional prior and posterior distributions for (from top) A, fb, and κ. The off
diagonals show the 2-d posteriors. The priors used are, clockwise from top left: model A, model B, uniform in lnA, and uniform in A.
The simulated signal had A ¼ 4.0 × 10−15, fb ¼ 10−8 Hz, and κ ¼ 10=3. It is clear the prior that is uniform in A leads to strong biases in
the recovered parameter values. Thus, although this prior is a good choice for producing conservative upper limits, it has limited utility in
parameter estimation studies.
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bounds are for spectral models that allow for a bend in the
spectrum; the limits assuming purely GW-driven evolution
are almost an order of magnitude lower. We will now
explore precisely how much information we gain by a
nondetection for the two astrophysical models.
To quantify exactly how much we can learn in this case,

we compute the information gain (in bits) as the Kullback-
Leibler (KL) divergence [56,57] between the posterior and
prior distributions. If the posterior matches the prior, we have
learned nothing from the data. The larger the difference, the
more we have learned. The KL divergence between the
posterior, pð~xjdÞ, and the prior, pð~xÞ, is given by

KLðpð~xjdÞjjpð~xÞÞ ¼
Z

pð~xjdÞ log
�
pð~xjdÞ
pð~xÞ

�
d~x: ð27Þ

This quantity can be calculated via thermodynamic integra-
tion, and is equal to

KLðpð~xjdÞjjpð~xÞÞ ¼ Eβ¼1½lnpðdj~xÞ� − lnpðdÞ; ð28Þ

which is the expectation value of the log likelihood minus
the log evidence. For the case illustrated in Fig. 8, the KL
divergences between posterior and prior are KLmodel A ¼
308.1� 0.4 bits and KLmodel B ¼ 304.6� 0.4 bits. These
numbers encode the information we have learned about both
the signal and the noise parameters. One way to get a rough
estimate of what we learned about the signal model is to
compare the information gain for the signal and noise model
to the information gain for the noise model alone, which
comes out to KLnoise model ¼ 301.2� 0.4 bits, suggesting an
information gain of ∼7 bits for model A and ∼3 bits for
model B. To properly isolate the information gained about
the astrophysical models, we need to perform the integral in

Eq. (27) over only the prior and posterior of the signal
parameters A; fb, and κ. The functional form of the prior
distributions is known, so this presents no difficulty. For the
posterior distributions, we perform a three-dimensional
kernal density estimation smoothing of the posterior dis-
tributions derived from our Markov chains. The kernal
density estimation is applied to chain samples that are
mirrored at the prior boundaries to reduce edge effects.
We then use these smoothed distributions to numerically
integrate Eq. (27). We find that, for model A the information
gain for the spectral model is KL ¼ 1.5� 0.08 bits, while
for model B the information gain is KL ¼ 0.7� 0.04 bits.
These numbers are significantly smaller than the crude
estimate obtained by taking the difference between the noise
and signal models, but this is not surprising—we know that
there are significant correlations between the noise param-
eters and the signal parameters, and the information measure
is not additive. While these information gains are not large,
they show that the posterior and prior distributions are
measurably different, and that we begin to learn about the
astrophysical models driving the SMBH mergers even
before a detection is made. As a point of comparison, the
information gain for model A is equal to the information
gained about cosmological models in going from the 7 year
Wilkinson Microwave Anisotropy Probe (WMAP) data set
to the 9 year data set, but is significantly less than the 30 bits
gained in going from the 9 year WMAP maps to the higher
resolution Planck maps [58].
As the signal-to-noise ratio grows, the information gain

grows. For the strong signal examples shown in Fig. 6, the
information gains are KL ¼ 3.1� 0.2 bits for model A and
KL ¼ 4.8� 0.2 bits for model B. In this instance we learn
more about model B since the amplitude of the simulated
signal is large compared to what is predicted by the model,
so there is a greater difference between the prior and
posterior distributions.
An alternative way of seeing that we learn something

about the astrophysical models from a nondetection is to
compare the evidence for models that include a bend in the
spectrum to those that assume a purely GW-driven evolu-
tion. For the noise-only data sets used to generate Fig. 8, the
log Bayes factor in favor of there being a bend in the
spectrum is ln BF ¼ 18.7� 0.5 for the model A amplitude
prior and lnBF ¼ 3.5� 0.5 for the model B amplitude
prior. These results say that a nondetection of GWs by a
PTA with the sensitivity of our simulated array would rule
out purely GW-driven evolution of the these merger
models. Scaling back the sensitivity of the simulated array
by a factor of two (increasing the timing noise from 200 to
400 ns) to get something closer to the NANOGrav
sensitivity in 2015, yields ln BF ¼ 5.6� 0.5 for the model
A amplitude prior and lnBF ¼ 1.4� 0.4 for the model B
amplitude prior. At this lower sensitivity there would still
be strong evidence for non-GW-driven evolution for model
A, but not for model B.

FIG. 7 (color online). The Bayes factors between a GW model
with free parameters A and fb and fixed κ ¼ 10=3, and models
with fixed κ ¼ 29=6 (red) and κ ¼ 7=3 (blue). The simulated
signals (described in Table I) all had κ ¼ 10=3. The amplitude
prior used here was the model A prior. The signals are arranged
along the x axis in order of ascending detectability. A Bayes
factor larger than unity indicates a preference for the κ ¼ 10=3
model. For the most detectable signals, there is a clear preference
for the correct model.
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IV. SUMMARY

Pulsar timing arrays are likely to detect a stochastic GW
background from SMBH binaries before the end of the
decade [15]. The astrophysical processes that drive SMBH
binaries toward merger are not fully understood, and are
largely unconstrained by observations. Processes such as
stellar scattering can drive the binaries through the sensitive
band of PTAs more quickly than GWs, leading to a
diminution of the GW signal. This may make the detection
of GWs more challenging, but also opens up a new avenue
for learning about the astrophysics of SMBH mergers
through measurement of the spectral shape.

We have shown that a simple model for the spectrum,
described in Eqs. (8) and (13), is useful for the detection of
GW backgrounds that are generated by SMBH binaries
which are driven by more than one type of mechanism
within the pulsar timing band. This model can also be used
in parameter estimation studies to characterize this GW
background.
We found that the choice of prior on the amplitude can

significantly impact parameter estimation, and that the
commonly used uniform prior in amplitude leads to
especially large biases. A prior that is uniform in the
logarithm of the amplitude was found to be a far better
choice.

FIG. 8 (color online). Prior and posterior distributions for the three GW parameters, A; fb, and κ, recovered by analyzing simulated
data that contain only white noise. Along the diagonal are plotted the one-dimensional prior and posterior distributions for (from top)
A, fb, and κ. The off diagonals show the 2-d posteriors for all combinations of these three parameters. The amplitude priors are,
clockwise from top left: model A, model B, and uniform in A. Note that, even in the absence of a GW signal, the posterior
distributions are substantially different from the priors. This indicates that we can learn about astrophysical models even if no
detection is made.
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We have shown that pulsar timing observations can be
used to distinguish between models that are characterized
by different priors on the amplitude of the GW background.
In future work, we plan to extend this study to more
detailed models that make predictions about the slope
parameters and the bend frequencies.
Finally, we have illustrated that information is gained

about astrophysical models, even when no detection
is made.
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