
A register-transfer descriptive language and simulator for digital networks
by William Platt Crane

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
in Electrical Engineering
Montana State University
© Copyright by William Platt Crane (1977)

Abstract:
A computer hardware descriptive language was developed to describe digital networks at the
Register-Transfer level. This language was then implemented into a computer program to allow
simulation of the network.

The description language defines a digital network in terms of the hardware components and the
interconnections among the components. Bused and directly-connected transfers are available. A wide
array of data operations are available. Control branching capability is provided. Very few restrictions
are placed upon the design; such quantities as the sizes of components, their interconnections, and data
types are left entirely up to the designer.

The simulation of a network consists of the step-by-step execution of each transfer and branch
operation. Values of components may be displayed as often as desired. Real-time interrupts may be
simulated.

f

STATEMENT OF PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the
requirements for an advanced degree at Montana State University,
I agree that the Library shall make this thesis freely available
for inspection. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by
my major professor. It is understood that any.copying or publication
of this thesis for financial gain shall not be allowed without my
written permsSion.

Signature: / & ■

Date: ' < 7 O'?

A REGISTER-TRANSFER DESCRIPTIVE LANGUAGE AND
SIMULATOR FOR DIGITAL NETWORKS

by
WILLIAM PLATT CRANE II

A thesis submitted in partial fulfillment of the requirements for the degree
of

MASTER OF SCIENCE
in

Electrical Engineering

Approved:

Chairperson, Graduate Conimittee

Head, Major Department

Graduate Dean

MONTANA STATE UNIVERSITY Bozeman, Montana
June, 1977

iii
Acknowledgments

• I wish to thank Prof. Donald Rudberg who, as Chairman of my
graduate committee, provided many helpful suggestions leading to
the completion of this project.

I would also like to thank Jim Anderson for answering my
endless stream of questions concerning the Sigma - 7 computer's
operating system.

. Many other people contributed ideas and criticism of this
project as it evolved. A special thanks goes out to Bonnie
Ellinghausen, Tim Estle, Dan Poole, Cheryl Schmidt, and John
Campbell for their contributions.

TABLE OF CONTENTS.

VITA ii
ACKNOWLEDGMENTS 'iii
TABLE OF C O N T E N T S ' / iv
LIST OF FIGURES . . -. . . . : vii
.LIST OF TABLES■ : . .' . viii
LIST OF P R O G R A M S ; i ix
A B S T R A C T x
CHAPTER

I. INTRODUCTION . . ■. . ' . . . I
1.1. Current Status of Simulation. Systems ' I
1.2. Scope of Work ' ■ . . 5

II. FEATURES OF THE SMALL DIGITAL SYSTEM SIMULATOR . 6

III. A COMPLETE DESIGN EXAMPLE IN SDSS 11
IV. SUMMARY AND C O N C L U S I O N S. ' ". .' 29

APPENDICES ‘. • - . . . 33
A. SMALL DIGITAL SYSTEM SIMULATOR LANGUAGE REFERENCE MANUAL . 34

Al. Notation to be Used .. ' 36
A2. Character Set, Statement Format, and Operators . . .36

• A3. Symbolic Names ". 39
A4. Constants -. • 39

A4.1. Unsigned Integer Constants . . . ■. . . . 40
A4.2. Constants Formed by Alpha Generator . ■ . . . • .. 40

A4.3. Constants Formed by Omega Generator 41.
A4.4. Constants Formed by Epsilon Generator 42

T . , '

A4.5. Constants Formed by Encode Generator .. . ■/. 43
AS. Types of SDSS Statements ' ." . ■ . 46

AS.I. System Definition Statements . . 47
AS.1.1. Registers 48
AS.I.2. Scalars 49
AS.1.3. Panel Switches . . . • . . . '. SI
AS.I..4. Panel Lights ’ 52
AS.1.5. , Random Acess Memory 54
AS.1.6 . Read-Only Memory 56
AS.I.7. Logical Functions : 57
AS.1.8 . Data Paths 61

AS.1.8.1. Connect Statement 63
AS.1.8 .2. Bus Statement .. . 6 8 .

AS.2. Memory Initialization 73
AS.3. Control Sequence Statements . ■ . . . : 76

AS.3.1. Compression 77
.' AS.3.2, Bit Selection . ■ . . . • 79

AS. 3.3. Reduction . •. ■ . . 80
AS.3.4. ■ Transfer Statements 81 .

AS.3.4.I. Directly Connected • '
Transfers 83

V

AS.3.4.2. Bused Transfers 95

-AS..3.5,. Branch Statements . . ' . . ; . . 104

AS.3.5.I. Unconditional Branch . . 105
AS.3.5.2. Three-way Conditional

Branch 106
AS.3.6. Halt Statement 107

AS.4. Housekeeping Statements . .' . .• • . . . 108-
A5.4.1. Print Statement . ' . .■ . ., . . 109
A5.-4.2.. End Statement 112
A5.4.3. Interrupt Statement , 112.
AS.4.4. Return Statement 114

.A6. Compilation and Simulation Procedures . . ; . '. 115
 ̂ B. RESULTS FROM A SIMULATION WITH THE COMPUTER OF CHAPTER III 118
c: SOME NOTES ON THE SDSS COMPILER , /. . f,.' . ' . .' 129

R E F E R E N C E S' . . . 136

vi

LIST OF FIGURES

1 . HARDWARE DIAGRAM OF-EXAMPLE COMPUTER ■. 12
2. MACHINE INSTRUCTION SET ", . 15

Al. DIRECTLY-CONNECTED DATA PATHS . ' . . T . V. . . 61
A2. BUS-CONNECTED DATA P A T H 62
AS. VALID SOURCE SYNTAX FOR DIRECTLY-CONNECTED DATA TRANSFERS . 87
A4. HARDWARE DIAGRAM FOR BUSED TRANSFERS ' - . . ' 103
BI. ASSEMBLY PROGRAM TO SUM THREE VALUES . ■ . '. . ' 119

LIST OF TABLES
vi i i

Al. DEFINITION OF"TERMS USED IN FIGURE AS

ix

I . ' COMPLETE DESCRIPTION OF A COMPUTER IN SDSS . . 17

LIST OF PROGRAMS

v

X

ABSTRACT

A computer hardware descriptive language was developed to describe digital networks at the Register-Transfer level. This language was then implemented into a computer program to allow simulation of the network.The description language defines a digital network in terms of the hardware components and the interconnections among the components. Bused and directly-connected transfers are available. A wide array of data operations are available. Control branching capability is provided. Very few restrictions are placed upon the design; such quantities as the sizes of components, their interconnections, and data types are left entirely up to the designer.The simulation of a network consists of the step-by-step execution of each transfer and branch operation. Values of components may be displayed as often as desired. Real-time interrupts may be simulated.

I. INTRODUCTION
T.I Current Status of Simulation Systems

The use of simulation as a design aid in the construction of
digital systems has seen .a large increase in recent years. A
major cause of this increase has been the decrease in the time and
cost of developing digital systems when simulation is employed. Given
an adequate description of the system, it is possible to perform tests
on the simulated system to determine such quantities as timing
estimates, behavior of the system under heavy or unusual conditions,V
and possible problems such as a bottleneck along a data bus.

The crux of the simulation problem is implied by the term:
adequate description. Prior to performing a simulation", one must
decide what information he wishes to gain from the simulation. ' The
choice of computer hardware descriptive language (CHDL.) to be used
to describe the digital system depends upon this decision.

Bell and Newell (2) indicate four major levels at which digital '
systems may be described: . .

1) the electronics level ■ . '
2) the logic level .
3) the programming level
4) the processor-memory-switch level ’ ' . ' ■

At the electronics level, all hardware is described in terms of
basic electronic components, such as resistors and capacitors. The
result of a simulation at this level is a record of the voltages and
currents of the circuit as a function of time. Any circuit may be
described at this level; however, virtually all of the discrete
nature of digital circuits is lost, as the voltages and currents vary
continuously (although perhaps very rapidly). Another disadvantage
is that a large number of components is necessary to even simple
digital networks. A simulation at this level would produce a very
large amount of information, most of which would be of little use.
Clearly, such a level of description is useless for describing
digital systems.

The logic level defines digital systems in terms of logic
functions. A simulation at this level produces the results of the
logical operations specified as a function of time. These results are
descrete values corresponding to the final state of the system after an
operation has been performed, and are not continuous functions of time.

This logic level is loosely divided into several sublevels. The
lowest defines a network in terms of primitive logic gates and flip-
flops. Moving upwards networks evolve from simple combinational
circuits into synchronous and asynchronous circuits containing
memory. The top level of the logic level is commonly called the
Register-Transfer (RT) IeveL Here,networks are described in terms

2

3
of larger memory elements, such as registers and random access
memories, and the data paths used to connect these elements and perform
operations.upon the data during transit. Individual flip-flops and
logic gates are relatively rare at the RT level, although occasionally
they are used.

The programming level marks a large change in the description of
digital systems. Below this level, the description is based upon the
existence of specific hardware elements, be they registers or resistors.
At the programming level, the description is not concerned with the
hardware necessary to perform.an operation; that is, a result is
desired, and the hardware necessary to compute that result is irrele
vant.

. The programming level is associated with computers; that is,
machines that interpret stored programs. Many digital systems, such as
instrumentation systems, do not operate under stored programs. Thus,
they have a logic level, but no program level of description.

The programming level specifies operations.on specific data types,
such as integer .or floating point values. Programs are able to define
data structures as collections of values, and to manipulate these
structures to produce other structures. The logic level does not have
this capability; it is concerned with boolean operations (and perhaps
simple arithmetic operations) upon bit strings. The interpretation
of the bit strings is left up to the designer.

The processor-memory-switch (PMS) level looks at the inter
connections. of the major units of a computing system. These units
include devices such as entire processing units (CPU's), mass
storage devices, and input / output devices. These units are connected
together by data links. Description at this level conveys how the
data is to be transfered and manipulated at an information processing
basis. Items such as transfer rates and band widths of data channels
are considered. For a complete description of PMS, see Bel I and
Newell (2).

The majority of the CHDL1s have been developed at the logic level.
A brief description of a number of these languages, along with an
extensive bibliography, was presented by Su (6). All of the languages
described by Su have been developed into complete simulation systems.
Several have been adapted to produce hardware diagrams from the CHDL.
For examples, see Barbacci and Siewiorek (I), Knudson (5), and
Gentry (3).

4

t

I .2 Scope of Work

At the time that this project was undertaken ̂ there was no means
available at Montana State University to simulate digital systems. As'
a large amount-of. digital design is done at Montana State, a simulator
was felt to be highly desirable. This project consisted of the speci- '
fication and implementation of a simulation system, called the,.'Small
Digital System Simulator1.

The Small Digital System Simulator language had to meet several
goals. The language must be able to describe a wide class of digital
systems in a reasonable concise manner. The description must have a
direct correspondence with the hardware necessary to implement the
design. The language must be as free as possible from' such restrictions
as data formats, hardware component sizes and configurations, and the ■
sequence of operations. It must provide" facilities to allow the
designer to observe and control the behavior of the digital system
during the actual simulation. Finally, the language had to be easily
translatable into a form which would allow simulation on the host
computer, a Honeywell Sigma 7.

'5

II. FEATURES OF THE SMALL DIGITAL SYSTEM SIMULATOR

The Small Digital System Simulator (SDSS) is based upon the
CHDL 1 A Hardware Programming Language*» developed' by Hill-and
Peterson (5). SDSS is a Register-Transfer language. Its major compo- ■
nents are memory elements, such as registers and random access memories,
and the data paths along which transfers are made. "

■ A complete description of SDSS is presented in Appendix A. It is
recommended that the reader be familiar with the contents of Appendix A
before proceeding. Only a brief description of the major features of

* .SDSS will be given here.
SDSS requires that all hardware elements that are to be present

in the digital system be explicitly defined. Symbolic names are '
assigned to each element, and are used to refer to the.element there
after. Each element has a specific size, given in bits. With the '
exception of scalar elements, which by their nature contain only one .
bit, elements may contain up to 32 bits, inclusive..

. One random access memory and one read-only memory may be defined
for each digital system. A memory definition specifies: (I) the word-
size of the memory, (2) the number of words in the memory, (3) the
name of the register which will contain the address of the desired . .
location within the memory whenever a memory reference is made, and
(4) the name of the register to or from which data will be transfered

7
when a memory reference operation is made. Of course, data can not be
stored into a read-only memory.

Another class of hardware elements which finds much usage is the
logical function. A logical function is essentially a logic network
which performs some operation not easily handled by the primitive ope
rations allowed within SDSS.- Such operations are addition and multi
plication. Since these operations are generally quite simple concep
tually (and relatively easy to implement in hardware) it is reason
able to treat them as individual operations in the description. Each
function must be defined to SDSS by specifying its symbolic name, the
number of arguments supplied to the function, and the size of the result
returned by the function, in bits. SDSS includes several commonly used
logical functions as primitive operators, and allows the inclusion of
Fortran function subprograms for arbitrary functions.

Data paths are those routes along which data may be transfered
between hardware elements. Transfers are allowed only along defined
paths. Any transfer may specify some operation upon the data, such as
a boolean operation, a logical function, or rotation. A transfer may
specify which bits of a memory element are to be used as a data source
or data destination in a given transfer. Generally, any selection of
bits from an element is valid.

Data buses may be defined in a digital system. ,A bus is defined
by giving the symbolic name, the size (in bits) of the bus, and all

8
connections to and from the bus. Operations may be performed upon the
data values either prior to their being placed upon the bus, or after
the data has been picked off of the bus, or both. It is clear that a
bus is a special case of a data path.

A set of control sequence statements is used to describe the
sequence of operations to be performed by the system. These statements
specify the individual transfers to be made, and the order in which
they are to be made.. From two to ten transfers may be specified, as
occuring simultaneously. In such a case, any or all of the transfers
may specify a given element as a data source. Only one transfer may
specify a given element as its data destination.

In every set of simultaneous transfers, the original values of all
elements will not be modified until after the data sources for all of
the transfers have been computed.

A bused transfer must be specified as a set of two or more simul
taneous transfers. ■ Each of these transfers must specify a bus as its
data source or data destination, or both. The bus will retain any
value placed upon it for the duration of the set of transfers; thus,
two or more transfers may specify a given bus as their data source.
A bus will not maintain its value beyond the transfer period.

The sequence of operations may be altered by branch statements.
Branch statements allow both conditional and unconditional branching.

9

Conditional branching depends upon the current values of the elements
of the digital system. -

A number of pseudo-statements are available. These statements are
used to specify actions that are not part of the control sequence, and
to convey information to the SDSS compiler. These statements include
defining interrupt-handling routines and requesting a display of the
current.value of hardware elements.

An interrupt routine is a hardware routine described by a set of
control sequence statements. This routine will be entered upon reciept
of a real-time interrupt from outside the digital system. Up to 256 .
interrupt routines may be defined.

SDSS does not. assume any data types or formats. The designer is
free to implement any data types he desired. The only exceptions to
this rule are the logical functions defined within SDSS. These
functions operate assuming their arguments are in 2 's complement form.
The usage of any other data types will require that arithmetic opera
tions be done either with a series of control sequence statements, or
by an external logical function.

SDSS does not maintain any timing information. It is not possible
to specify how much time a particular operation will consume. All
transfers are done asynchronously; each transfer is initiated immedi
ately following completion of the. previous statement. For the case of

10
several simultaneous transfers, the time required by the set of
transfers will be the time required by the slowest transfer.

III. A COMPLETE DESIGN EXAMPLE IN SDSS

A complete design example is presented here. A single
accumulator computer is described in SDSS. The hardware arrangement
for this computer is shown in Figure I . Note that both bused and .
directly-connected transfers are included. The data paths are shown
unidirectional paths. The data paths connecting the random access
memory 1M 1 with its data register 'MD1 and its memory addressing
register 'NA' are not explicitly defined as data paths; they are ■
implicitly included by the 'RAM' statement.

. Observe in Figure I there are no paths shown for either the
assignment of constants to elements,, or for the shifting and rotation
hardware associated with the elements 'AC' and ' 1L 1. These paths were
omitted for clarity. There are no paths connecting the functions
'FUN2' and 'WAIT' with their arguments and destinations. These - •
functions, strictly speaking, are not part of the hardware of the
computer. Function 'FUN2' permits'communication from the operator to
the computer, and function 'WAIT' executes a call to the Sigma - 7 •
monitor to enter a wait-state. In a real computer, these functions
would not be present or necessary. . ■'

The machine wordsize is 18 bits. ' Six basic instructions are
available in the computer, along with fourteen operate instructions.
The operate instructions do not require a memory reference for their

8194 w X
18

MALG - 13

MDLG - 18
SAND

- MD - 18
CO —) MA

I > PCPC - 13

PCLG - 13

-v

ACLG - 18

AC - 18

IR - 18

BUS3 T I

IA - 18

ADD
BUS4

BUSS

INC
BUSl

BUS2

- L-I
_ T

FIGURE I
HARDWARE DIAGRAM OF EXAMPLE COMPUTER

(Numeric values give number of bits / component)

13
execution. The instruction set is defined in Figure 2.

A memory reference instruction may specify either indirect address
ing or indexing, or both, to form the address of its operand. If both
are requested, the indirect addressing is resolved first.

The machine will test the value of 1 2 3 * 5RFLAG1 (Run-Flag) prior to
each instruction fetch. If the value of 1RFLAG1 is I, the next
machine instruction will be fetched from memory and executed. If the
value of 1RFLAG1 is 0, control will branch to the routine to request
operator intervention via the front panel.

1RFLAG1 may be reset to 0 by executing a 1 HALT1 instruction, or by
recieving an external interrupt. An external interrupt indicates that
the operator wishes to communicate with the computer through the front
panel.

The front panel contains the following controls:

1) Run / halt switch
2) Load program counter from switches
3) Load memory address from switches
■4) Store the contents of the switches into the memory

location given by the contents of the memory address
register, and increment the memory address register

5) Display the contents of the memory location specified by

14
the contents of the memory address register., and
increment the contents of the memory address register.

. 6) Single step through the next machine instruction.

■ The front panel also contains lights to display the contents of
the memory address register, the memory data register, the program
counter, and the accumulator. The contents of all four registers will
be displayed following each front panel operation.

The SDSS description of this computer is given in Program I.
An example of the results produced by a simulation of this computer

is given in Appendix B. The simulation consists of entering a short
program into the computer through the front panel and then executing
the program.

Observe that the front panel could have been implemented by
defining separate interrupt routines for each panel control. While
this method may present more realism in terms of the hardware of the
computer, it causes a lack of realism in terms of interaction with
the computer. With several interrupt routines, it would be necessary
to cause an interrupt, request the particular interrupt routine, and
then enter the value of the switches (if hecessary) to request one
panel function. It appears to be a toss-up as to which method is more
realistic.

15

Machine instruction word
Operand address ‘
Indexing bit; perform indexing if bit 4 = 1
-Indirect addressing bit; perform ■ indirect addressing if bit 3 = I
Operation code

Op code Instruction
000

001
010

on

100

101

no

ISZ - Increment memory operand and skip the following instruction if the result is zero.LAC - Load accumulator from memory. .AND - And the accumulator with the memory operand. Put result into the accumulator. . -TAD - Two's complement addition- of thecontents of the accumuTator with the • memory operand. Result is placed in the accumulator.JMS - Jump to subroutine. Increment the program counter and store value in memory location. Increment memory location value, and fetch next instruction from this
location. ■ •DAC - Deposit accumulator into memory location.JMP - Fetch next instruction from memory

• location. ' ■ ' •

FIGURE 2
MACHINE INSTRUCTION SET

IG

111 OPR - operate instruction.

Operate instructions utilize bits 0-6 for their operation code.
Bits 0-2 are always I's. No memory reference is necessary. .Bits 7-17
are ignored. The operate instructions perform the following actions:

Op code Instruction
1110000 Halt .TllOOOl IA <= AC
1110010 IA <= INC(IA)'
1110011 AC <= IA
1110100 L sAC <= $SL(1) L sAC
1110101 L sAC <= $sr(l) L sAC
1110110 L sAC <= $RL(1) L sAC
1110111 L sAC <= $RR('l) L sAC
1111000 L <= 0
1111001 L <= I
1111010 L <= SNOT L
11110T1. AC <= 0 .
1111100 AC <= I
1111101 AC <= $N0T AC
1111110 NOP
1111111 NOP ■

FIGURE 2 (Continued)

17
I

PROGRAM I

COMPLETE DESCRIPTION OF A COMPUTER IN SDSS .

C - . - ---'------------------ ' '---------------------- ’-----
C DEFINE THE HARDWARE ELEMENTS OF THE MACHINE AND
C DATA TRANSFER PATHS,
C------------------'-------------- :---------- ------------

R E G I S T E R I A C I 8), MOC18), A C (I B) 5 I R (I S) 9 M A (I S) 5

I P C (I S) 9 O P E R (S)
S C A L A R L 9 R F L A G I N I T I A L (O)
RAM M d S 9 8192), MAR = M A 5 MDR = MD
F U N C T I O N INC (I5IB)9 WAIT(I9S)9 FUN2(2,21),
I ADD (2,19)
BUS B U S l (1 8)5(I N=MA, P C 5M D 9I A) $ (OUT = INC)
BUS B U S 2 (1 8) , (IN = I N C) * (O U T = P C 9M D 9I A 9HA)
BUS BUS SC 1 8) , (I N = I A 5M D) 5 (O U T = A O D)
BUS R U $ 4 (18) 5 (IN = AC 5I R) , (O U T = A O D)
BUS B U S 5 (1 9) , C I N = A D D) , (O U T = C L 5A C) , I R)
C O N N E C T < M 0 1 A C) 5(A C ? M 0) 9 Cl A I A C) 9(AC S I A) , (MO?I R) ,
1 (I R I P C) 9(P C i M A) , (S W S S M D) 9(O P E R) W A I T) ,
2 (W A I T ; 0 P E R) , (0 P E R S F U N 2) 9(S W S i F U N 2) 9

3 (MO $ AND A C : A C) , (P C l P C L G) 9(M A i M A L G) 9

4 (MD? M D L C O 9 (O I R F L A G) 9 COi AC), (A C l A C) 5(L I L) 9

5 (S S L (I) L 5A C t L 9 A C) , ($ S R (1) 1 , A C ? L , A C) ,
6 (S R L d) L , A C i L 9 AC) $ (O i L) 9 (SWS |MA), CSWSI PC) ,
7 (I R , H A) , (A C i A C L G) 9C F U N 2 i O P E R , S W S) ,

18

8 CtfRR(I)L5ACSLe A O 5COPER SOPER)

c c u r r e n t i m p l e m e n t a t i o n of sdss does not allow
C SETTING. THE SWITCHES BY THE PROGRAM OR BY AN OPERATOR.
C TO GET AROUND THlSs DEFINE THE. SWITCHES AS AN ORDINARY
C REGISTER.

REGISTER SWS(18)
LIGHTS PCL6(13)» ACLG(IS)9 MDLG(IS)9 MALG(IS)

C CONTROL SEQUENCE STEPS FOLLOW.
c- - - - - - - - - - - - - - - - - - - - - — ■ - - - - - - - - - - - - -
C IF RFLAG = L9 THEN FETCH AND EXECUTE THE
C INSTRUCTION POINTED TO BY THE PROGRAM COUNTER. ELSE5

PROGRAM I C CONTINUED)

10 RFLAGSO > 12, 500, 12
12 MA < PC

MD < M $DCD MA
IR < MD .
PRINT PC5MA5MDeAC5IR5L9IA5RFLAG

C LOOK FOR OPERATE INSTRUCTION

$ A(3)/1RST > IS5 125, 15

C . LOOK FOR I LEVEL OF INDIRECT ADDRESSING

15 IRC3) S I > 25$ 20, 25

19

20 MA < $W(13)/IR
MD < M $DCD MA
$W(13)/!R < $W(13)/MD

.C • LOOK FOR INDEXING

25 ' IRC4) S I > 35» 30» 35
30. SU S 3 < IA ? BUS4 < IR; ADD < 8US3? ADD < 8US4|

I BUS 5 < ADDS $W(13)/IR < 8US5

C SEPARATE REMAINING INSTRUCTIONS

. 35 IR(O) I O > 40» 45» 40
40 IR(I) S O > 120, 45» 120
45 MA < $W(13)/IR

IR(O) : I > 50» 90» 50
50 MD < M SDCD MA

$ A(3)/IR : O > 55, 80» 55
55 SA(3)/IR : I > 60, 75» 60
60 $A(3)/IR S 2 > 65» 70» 65

C • TAD INSTRUCTION

65. BUS3 < MD? 3US4 < AC? ADD < BUS3® ADD < BUS41
I BUS5 < ADDS L»AC < BUS5
>115

PROGRAM I C CONTINUED)

C AND INSTRUCTION

20

70 AC < MO $ A N D AC
> 115

C LAC INSTRUCTION

75 AC < MO
> 115

C ISZ INSTRUCTION

80 • BUSl < MOi
I' INC < BUSli

■ 2 BUS2 < INCi
3 MD < 8US2 ■
M $DCD MA < MO
$OR/MO 5 O > 115 s 85 9 115

' 85 BUSl < PCi INC < BUSli 8US2 < INCi PC < BUS2
> 115

C SEPARATE JMS FROM OAC

90 IR(2) i O > 95, 100,.95

C DAC INSTRUCTION

95 MO < AC
> 105

PROGRAM I C CONTINUED)

C JMS INSTRUCTION

21

PROGRAM I C CONTINUED)

IOO BUSl < PC; INC < BUSlI BUS2 < INCl MO < BUS2
105 M $OCD MA < MO

IRC2) : O > 115, HO, 115
H O PC < $W(13)/IR
115 BUSl < PCI INC < BUSlI BUS2 < INCI PC < BUS2

' > 10

C JMP INSTRUCTION

120 PC < $WC13)/IR
> 10 .

t OPERATE INSTRUCTIONS i DECODE OP CODE A N D BRANCH

125 $WC4)/SA(7)/IR : I > 230, 225$ 130
130 SVI (4) / $ A C 7) /1R ; 3 > 220, 215, 135
13 5 $W(4)/$A(7)/IR : 5 > 210$ 205$ 140
140 $W(4)/$A(7)/lR i 7 > 200, 195$ 145
145 $W(4)/$A(7)/IR i 9 > 190$ 185, 150
150 $WC4)/$AC7)/IR : 11> 180$ 175$ 155
15 5 SW (4)/ $A(7)/ IR % 13> 170$ 165$ 160

C NO OPS

160 > H S

C COMPLEMENT AC

22

C

170

C

175

C

180

C

185

C

165

190

PROGRAM I

AC < SNOT AC
> 155

SET AC TO I'S

AC < SE C18)
> 155

SET AC TO O

AC < SECDC 0*18)
> 115

COMPLEMENT L

L < SNOT L
> 115

SET L TO I

L < SECIKl $1)
> 115

SET L TO O

L < SECDCO,!)
>115

C CONTINUED)

23

C ' .ROTATE (L9AC) RIGHT I BIT

195 L9AC < $RRC1) L9AC
> 115

C ROTATE (L , A C) LEFT I BIT

200 L 9AC < $RL(1) L9AC
> 1 1 5

C SHIFT (L9AC) RIGHT I BIT

205 L9AC < ISL(I9O) L 9AC
> 115

C SHIFT (L9AC) LEFT I BIT

210 L9AC < ISL(I9O) L9AC
> 115

C LOAD IA INTO AC
I

215 AC < IA
> 115

C I N C R E M E N T IA

220 BUSl < IAi INC < BUSl5 BUS2 < INC; IA < BUS2
> 115

PROGRAM I C CONTINUED)

24
PROGRAM I C CONTINUED)

C LOAD IA FROM AC

225 IA < AC
■' >. 115

C SET RUN FLAG = O — MACHINE WILL ENTER CONSOLE
c request Routine before next instruction f e t c h .

230 RFLAG < $ECD(0»I)
>115

C— ------- -- - ------- ------- -------------------- -
C . INTERRUPT ROUTINE. SET RFLAG = O AND FINISH
C CURRENT INSTRUCTION THAT WAS INTERRUPTED.
C -- . -- - - - - - - - - - - - - - - --- ' - - - - - - - - - - - - - - - -

INTERRUPT I
RFLAG < $ECD(0$1)
RETURN

C--
C ROUTINE TO CONROL FRONT PANEL FUNCTIONS AND
C DISPLAY REGISTER VALUES. REGISTERS ARE DISPLAYED
C FOLLOWING EACH PANEL OPERATION.
C- - - .---
500 PCLG < PC

ACLG < AC
MDLG < MD
MALG < MA
PRINT PCLGe MALG9 MDLG9 ACLG

25

PROGRAM I (CONTINUED)'

C REQUEST PANEL. OPERATION AND SWITCH V A L U E S .

OPERsSWS < FUN2C OPERs SWS)

C OPER = O => ENTER WAIT STATE.
C I => LOAD PC FROM SWITCHES
C 2 => LOAD MA FROM SWITCHES
C 3 => STORE SWITCHES INTO MEMORY AT ADDRESS IN
C - MA AND INCREMENT VALUE IN MA 8Y I
C 4 => DISPLAY MEMORY POINTED TO BY MA9 AND
C‘ INCREMENT MA B Y l
C 5 => SET RUN FLAG = I AND RESUME EXECUTING
C PROGRAM FROM THE ADDRESS IN PC
C 6 => SINGLE STEP NEXT MACHINE INSTRUCTION

OPER : I > 545, 540, 505
505 OPER : 3 > 535» 5 30» 510
510 GPER Z 5 > 525, 520, 515

C SINGLE STEP THE MACHINE INSTRUCTION POINTED TO
C .BY PROGRAM COUNTER.

515 > 12

C SET RUN FLAG = I AND RESUME PROCESSING WITH
C INSTRUCTION POINTED TO BY PROGRAM COUNTER.

520 RFLAG < 4ECDC1*!)

26

C

.525

C

• 530-

C ,

535

C

540

C
C

545

.. PROGRAM I C CONTINUED >

DISPLAY MEMORY LOCATION AND INCREMENT MA

MO < M $OCD MA
BUSl < MAS INC < BUSlS BUS2 < INCS NA < BUS2
> 500

STORE SWS INTO MEMORY AND INCREMENT MA

MD < SWS
M tDCO MA < MD
BUSl < MAS INC < BUSlS 8US2 < INC S MA < 8US2
> 5 00

LOAD MA FROM SWS

MA < $ W C 1 3) / S W S
> 5 00

LOAD PC FROM SWS

pc < twcm/ s w s
> 5 00

PUT MACHINE INTO WAIT STATES NEED TO INTERRUPT
TO GET OUT.

RFLAG < $EC0(0»1)

> 10

27

OPER < WAITC OPER)
> 500
END

PROGRAM.I (CONTINUED)

INTEGER FUNCTION FUN2C OPER9SWS)
INTEGER OPER9SWS9FUNZ
DATA MASK / Z0003FFFF /

20 OUTPUT 'ENTER OPERATION REQUEST"
INPUT OPER
TF C OPER oL Te O o OR o

I . DPER .GT. 6) OUTPUT “INVALID REQUEST"I
2 GO TO 20
IF C OPER =GE. I .AND.

I OPER =LEo 3) OUTPUT “ENTER SWITCHES
2 READ C IOS9IOO) SWS
FORMAT (Z)
SWS = IANOC SWS9 MASK)
FUN2 = IORC ISLC OPER9IS), SWS)
RETURN
END

28
PROGRAM I C CONTINUED)

INTEGER FUNCTION WAIT CRFLAG)
INTEGER RFLAG
DATA J /ZOFOOlOOO I

S10. CALI,8 J
RETURN
END

IV.. SUMMARY AND CONCLUSIONS

SDSS was developed to permit description and simulation of digital
networks at a Register-Transfer level. The result of this'development'
is a powerful and versatile system. The designer is free to choose '
virtually any hardware configuration. The hardware components that :
may be defined are registers, scalars, lights, switches, random and:
read-only memories, buses, and logical functions- Registers, lights, .
and switches may contain up to 32 bits, inclusive. The memories may
have any wordsize up to 32 bits, inclusive, arid contain any number of
words. Buses may contain up to 64 bits, inclusive. Several logical
functions to perform arithmetic operations are included within SDSS.
For those operations not available, it is possible to incorporate
standard Fortran FUNCTION subprograms to provide those operations. '
Any or all of the registers, switches, scalars, and memories may be
initialized prior to initiation of the simulation to provide a"
starting point for the digital network.- ■

Having decided upon a hardware configuration, the designer must
specify all data paths and data operations which will be permitted.
Operations available include the boolean operators (AND,. NAND, OR, .
NOR, and XOR), shifting and rotation, concatenation, compression,,
and bit selection. Al I of these operations may be performed in
directly connected transfers and in bused transfers. . ' •

30
A control sequence must be specified to define the particular

transfers to.be made, and the order in which they are to be made.
Only those transfers which are along data paths which have been
defined are allowed; that is, transfers must be made along existing
hardware routes.

It is possible to describe a sequence of transfers which will
interpret stored programs, or which will simply process data values.
The former case is commonly called a computer, whereas the latter is
representative of numerical algorithms and instrumentation systems.

Once the control sequence has been defined, SDSS will perform
syntax checking on each statement. Valid statements will be compiled,
while invalid statements will be flagged in error. Use of any hard
ware components that.were not defined explicitly will cause an error,
as will any transfers along non-existant data paths.

Having obtained a valid'description, syntax-wise, the digital
network may be simulated to verify or refute the logical description.
Simulation consists of a step-by-step execution of each control
sequence operation. If desired, the results following any operation\
may be displayed. Any number of test cases may be used to verify the
design. Should the design be incorrect, it is a simple matter to
track down the logic error(s).

Several other features are available in SDSS. Hardware interrupt
routines may be defined to process random, exceptional conditions

31
generated from outside of the digital system. Following the process
ing of the interrupt, the interrupted routine may be resumed. SDSS
allows the contents of all hardware components to be displayed at any
time; the values may be displayed in hexidecimal or decimal notation.
The introduction of bit strings into the description is simplified by
the several forms available in which bit strings may be defined.

SDSS will provide a useful instructional aid for those learning
the concepts of sequential logic networks. The syntactical restric
tions plus the one-to-one correspondence to hardware circuitry prohib
its the design of networks that can not be realized. Such concepts
as bused transfers, hardwired and micro-programmed control units, and
machine organization can be explored easily. The ability to simulate
a design provides perhaps the most efficient means of verifying
concepts and designs utilizing these concepts.

A number of digital networks have been described and simulated
under SDSS. . Ffom these simulations a number of recommendations can
be made for. future improvements in SDSS.

Some means of inputting data values directly into the network
during simulation is necessary. Using a Fortran FUNCTION subprogram
obscures the operation, and suffers from the inability to simulate a ■
direct memory access operation, or set switches. (An 1 INPUT1 state
ment, suitable for inclusion in SDSS, is described in Appendix C.)

A statement similar to the Fortran 'CONTINUE1 statement would
be very handy to provide a null statement containing a label. Such a
statement would be useful as a target for several branches all coming
to the,same point, such.as a 'PRINT' statement. Currently, a transfer
of the form:

A < A
is necessary. Such a statement obscures the hardware somewhat.

A more versatile branch statement, analogous to the APL branch
statement, would make branching of control easier to describe. Such a
branch statement would perform boolean operations and reduction upon
the data values to compute a single bit result. This single bit would
control the branch. If no branch is taken, control would fall through
to the next SDSS statement.

At the present, a processing unit (itself defined in SDSS) can
not have a stack dedicated' to its exclusive use; to utilize a stack, a
portion of main memory must be used. By permitting multiple memories
to be defined, it would be an easy matter to allow stacks, as well as
consider memory interleaving concepts.

The most obvious deficiency in SDSS appears to be the lack of all
timing information. Many operations do not take place exclusive of all
others, but are initiated while other operations are concurrently taking
place; results may not be available until several machine cycles later.
Such; transfers are impossible to simulate in SDSS.

32

a p p e n d i c e s

APPENDIX A

SHALL DIGITAL SYSTEM SIMULATOR

LANGUAGE REFERENCE MANUAL

35
'THE SMALL DIGITAL SYSTEM SIMULATOR C SDSS) LANGUAGE

AND COMPILER IS USED TO AID IN THE DESIGN OF SMALL DIGITAL
SYSTEMS BY PROVIDING A C O N C I S E , EASILY-READ DESCRIPTION OF
THE REGISTER-TRANSFERS WHICH TAKE PLACE W I T H I N THE SYSTEM»
THIS DESIGN MAY THEN BE TESTED BY SIMULATION TO DETERMINE
IF THE DESIGN IS CORRECT«

SOME GENERAL FEATURES OF THE SOSS LANGUAGE AND
COMPILER ARE I

1) ALL CONTROL SEQUENCE OPERATIONS SPECIFIED IN
• SDSS CORRESPOND TO A MICRO-OPERATION WITHIN AN ACTUAL

DIGITAL SYTEM0 EACH OPERATION IS WRITTEN AT THE
REGISTER-TRANSFER LEVEL, PROVIDING ENOUGH DETAIL SO
THAT IT IS EASY TO FOLLOW EACH OPERATION, YET NOT
HAVING SO MUCH DETAIL THAT THE OVERALL OPERATION OF
THE SYSTEM IS OBSCURED.

2) SEVERAL TYPES OF HARDWARE ELEMENTS WITH
■ARBITRARY SIZES MAY BE DEFINED.

3) DATA PATHS MUST BE DEFINED TO ALLOW THE
TRANSFER OF DATA VALUES BETWEEN HARDWARE ELEMENTS.

4) OPERATIONS THAT ARE NOT AVAILABLE WITHIN SOSS
MAY BE IMPLEMENTED BY MEANS OF A FORTRAN FUNCTION
SUBPROGRAM

5) REAL-TIME INTERRUPTS MAY BE SIMULATED.
6) AN EXTENSIVE ARRAY OF DATA TRANSFERS AND.

BRANCHING CAPABILITY IS AVAILABLE.

36
Al NOTATION TO BE USED

IN THE FOLLOWING DESCRIPTION OF SOSS STATEMENT
S Y N T A X , THE NOTATIONS

IS USED TO MEAN THAT THE QUANTITY ' < N A M E > * IS TO BE
REPLACED BY A DESIGNER-SELECTED V A L U E .

OPTIONAL QUANTITIES! THEY.MAY BE OMITTED IF DESIRED.
■ QUANTITIES W R I T T E N WITHIN BRACES ■[j I M P L Y THAT

E X A C T L Y ONE OF THE ENCLOSED TERMS' MUST BE CHOSEN.
BRACKETS AND BRACES MAY BE NESTED TO ANY LEVEL.
QUANTITES FOLLOWED BY AN ELIPSIS C ...) MEAN THAT

THE QUANTITY MAY BE REPEATED AS NECE SSRY o .

A2 CHARACTER SET, STATEMENT FORMAT, AND OPERATORS

THE CHARACTERS ALLOWED BY SDSS ARE THE FOLLOWING:

<NAME>

QUANTITIES WRITTEN WITHIN BRACKETS

ALPHAS ETICS: A - Z
NUMERICS! 0 - 9

SPECIAL CHARACTERS: ; : , = ()
' / * $ SR

37
THE ALPHANUMERIC CHARACTERS CONSIST OF THE

AL PHABE TI CS' PLUS THE NUMERICS.
AN SDSS STATEMENT FOLLOWS THE SAME GENERAL FORMAT AS

ALLOWED IN- FORTRAN:

A STANDARD 80-CHARACTER INPUT RECORD IS USED FOR SOSS
STATEMENTS.

IF COLUMN I CONTAINS THE CHARACTER "C, THE CONTENTS
OF THE RECORD ARE IGNORED EXCEPT FOR LISTING PURPOSES ® AND
MAY. CONTAIN ANY DESIRED INFORMATION.

COLUMNS I - 5 ARE USED TO CONTAIN STATEMENT LABELS.
A LABEL CONSISTS OF FROM I TO 5 NUMERICS? ALL SPACES
WITHIN THE LABEL FIELD ARE IGNORED. A LABEL IS REQUIRED
ON A STATEMENT ONLY IF THAT' STATEMENT IS THE TARGET OF A
BRANCH STATEMENT. LABELS MAY HAVE VALUES IN THE RANGE OF
FROM I TO 99999, INCLUSIVE.

COLUMN 6 TS THE CONTINUATION COLUMN. IF COLUMN 6
CONTAINS ANY CHARACTER OTHER THAN A BLANK OR A ZERO, THE
RECORD IS ASSUMED TO BE A CONTINUATION OF THE PREVIOUS
RECORD. A TOTAL CF 10 RECORDS MAY BE USED TO CONTAIN AN
SDSS STATEMENT. CONTINUATION RECORDS MAY NOT CONTAIN
LABELS.

■ COLUMNS 7 - iZ ARE USED TO CONTAIN THE SDSS STATEMENT
ITSELF.

COLUMNS 73 - 80 ARE IGNORED BY THE COMPILER, AND MAY
BE USED FOR ANY DESIRED PURPOSE.

IN ADDITION, COMPLETELY BLANK LINES ARE PERMITTED IN
SDSS. A BLANK LINE MAY NOT BE CONTINUED,

COMMENT LINES MAY NOT APPEAR WITHIN A CONTINUED
STATEMENT,

38

BLANKS ARE IGNORED IN SDSS STATEMENTS EXCEPT WHEN
THEY ARE CONTAINED WITHIN TEXT STRINGS. BLANKS MAY BE
USED TO IMPROVE THE. READABILITY OF THE SYSTEM DESCRIPTION.

A NUMBER OF OPERATORS ARE DEFINED IN THE SDSS
LANGUAGE. SEVERAL CONSIST OF THE DOLLAR SIGN C $)
FOLLOWED BY A ONE TO THREE ALPHABETIC CHARACTER M N E M O N I C .
THESE OPERATORS ARE:

BOOLEAN OPERATORS: $ANO
$NND
$OR
$NOR
$XOR
tNOT

S LOGICAL AND
5 LOGICAL NAND
I LOGICAL OR
: LOGICAL NOR
S LOGICAL EXCLUSIVE-OR
: LOGICAL NEGATION

SHIFT OPERATOR: SSL : LEFT SHIFT
$SR S SHIFT RIGHT

ROTATE OPERATOR: SRL S ROTATE LEFT
$RR S ROTATE RIGHT

CONSTANT GENERATORS: SA
SW
SE
SECD

: ALPHA CONSTANT GENERATOR
S OMEGA CONSTANT GENERATOR
S EPSILON CONSTANT GENERATOR
: ENCODE CONSTANT GENERATOR

MEMORY REFERENCE
OPERATORS SDCD

THE USAGE OF THE CONSTANT GENERATORS IS DETAILED IN
SECTION A4, "CONSTANTS'. THE USAGE OF THE OTHER $
OPERATORS IS DESCRIBED IN SECTION AS.3.4, "TRANSFER

39

STATEMENTS', AND SECTION AS.3.5, "BRANCH STATEMENTS".
TWO OTHER OPERATORS ARE USED IN SOSS. THEY ARE THE

COMPRESSION OPERATOR, DESCRIBED IN SECTION AS.3.I, AND THE
REDUCTION OPERATOR, DESCRIBED IN SECTION AS.3.3.

A3 SYMBOLIC NAMES

A SYMBOLIC NAME CONSISTS OF ONE ALPHABETIC CHARACTER
FOLLOWED BY ANY NUMBER, INCLUDING ZERO, OF ALPHANUMERIC
CHARACTERS. HOWEVER, ONLY THE FIRST FOUR CHARACTERS OF A
SYMBOLIC NAME ARE RETAINED BY THE COMPILER. THUS, EACH
NAME SHOULD DIFFER IN THE FIRST FOUR POSITIONS.

A4 CONSTANTS

CONSTANTS ARE USED TO DENOTE A NUMERIC VALUE WHICH IS
HARDWIRED INTO THE DIGITAL SYSTEM. EXCEPT FOR A FEW
SPECIAL CASES WHICH WILL BE NOTED LATER, THE SDSSx LANGUAGE
DOES NOT RECOGONIZE NUMERIC VALUES AS BEING OTHER THAN
SIMPLE BINARY BIT STRINGS. THUS, IT IS UP TO THE DESIGNER
TO DETERMINE WHAT A BIT STRING REPRESENTS (SUCH AS A 2'S
COMPLEMENT NUMBER >. THIS FEATURE IS REFLECTED IN THE
MANNER IN WHICH CONSTANTS ARE SPECIFIED.

40
SEVERAL FORMS OF CONSTANTS ARE ALLOWEDo THEY ARE 5

A4®I UNSIGNED INTEGER CONSTANT

THIS FORM IS COMPOSED OF FROM I TO 10 DECIMAL DIGITS
C NUMERICS >? EMBEDDED BLANKS ARE IGNORED* VALUES OF FROM
0 TO 4294967295 C 2**32 - I J MAY BE REPRESENTED BY AN
UNSIGNED INTEGER CONSTANT * UNLESS OTHERWISE STATED IN
THIS MANUAL, ALL NUMERIC CONSTANTS WILL BE UNSIGNED
INTEGERS*

A4,2 CONSTANTS FORMED BY ALPHA GENERATOR

THIS FORM CAUSES THE GENERATION OF A BIT STRING
CONSISTING OF ONE OR MORE I"S FOLLOWED BY ZERO OR MORE
0*5, TWO VARIATIONS OF THE ALPHA CONSTANT ARE AVAILABLE S

A) SA C <MNES>8 <#BITS>)

WHERE BOTH <#ONES> AND <'#BITS> ARE UNSIGNED
INTEGERS* THIS FORM SPECIFIED THAT THE

■

LEFTMOST <#ONES> BITS OF A BIT STRING <S8ITS>
BITS LONG ARE TO BE SET TO 1"S« ANY
REMAINING BITS ARE TO BE SET TO 0<S« THE
VALUE OF OS!BITS> MAY BE FROM I TO 32,

41

INCLUSIVE. THE VALUE OF <#QNES> MAY BE FROM
I TO < fBITS>s INCLUSIVE.

B) $A C <^ONES>)

WHERE <#ONES> IS AN UNSIGNED INTEGER. THIS
ABBREVIATED FORM REQUIRES THAT THE LENGTH OF
THE BIT STRING BE IMPLICITLY AVAILABLE FROM
SOME OTHER PORTION OF THE SDSS STATEMENT. OF
THIS LENGTH, THE LEFTMOST <#ONES> BITS ARE
SET TO !'S8 AND ANY REMAINING BITS ARE SET TO
O'S. THE VALUE OF <#ONES> MAY NOT EXCEED THE
IMPLICIT LENGTH. THE IMPLICIT LENGTH MAY NOT
EXCEED 64 BITS.

A4.3 CONSTANTS FORMED BY OMEGA GENERATOR

THIS CONSTANT GENERATOR CREATES A BIT STRING
CONSISTING OF ONE OR MORE 1*S PRE DEEDED BY ZERO OR MORE
O'S. TWO FORMS ARE AVAILABLE S

A) $W C <@ONES>8 <#BITS> 3

WHERE <#ONES> AND <*BITS> ARE BOTH UNSIGNED
INTEGER CONSTANTS^ THIS} FORM SPECIFIES THAT
THE RIGHTMOST <#ONES> BITS OF A BIT STRING
<#BITS> BITS LONG WILL BE SET TO 1'S, AND ANY

42
REMAINING BITS WILL BE SET TO O'S. THE VALUE
OF <#8ITS> MAY BE FROM I TO 32® INCLUSIVE.
THE VALUE OF <#ONES> MAY BE FROM I TO
<#8ITS>® INCLUSIVE.

I
B) $W C <#ONES>)

•WHERE <SONES> IS AN UNSIGNED INTEGER. THIS
ABBREVIATED FORM REQUIRES THAT THE LENGTH OF
THE SlT STRING BE IMPLICITLY ABBREVIATED FORM
REQUIRES THAT THE LENGTH OF THE BIT. STRING BE
IMPLICITLY AVAILABLE FROM SOME OTHER PORTION
OF THE SOSS STATEMENT. OF THIS LENGTH® THE
RIGHTMOST <#ONES> BITS ARE SET TO IeS9 AND
ANY REMAINING BITS ARE SET TO C S * THE VALUE
OF <#QNES> MUST NOT EXCEED THE NUMBER OF BITS
SPECIFIED BY THE IMPLICIT LENGTH. THE
IMPLICIT LENGTH CAN NOT EXCEED 64 BITS.

i 'A4.4 CONSTANTS FORMED BY EPSILON GENERATOR

THIS CONSTANT GENERATOR HAS TWO FORMS WHICH ARE
INTERPRETED DIFFERENTLY= THEY ARE ®

A) $E C <*ONES>)

43

WHERE <#ONES> IS AN UNSIGNED INTEGER. THIS
FORM GENERATES A BIT STRINGa KNOWN AS A FULL
VECTOR, WHICH IS <#BITS> BITS LONG. EACH BlY
OF THIS STRING IS SET TO A "I*. THE VALUE OF
<#ONES> MUST BE IN THE RANGE OF I TO 32:
INCLUSIVE.

8) SE (<BIT> $ <$BITS>)
i !

WHERE BOTH <BIT> AND <#BITS> ARE UNSIGNED
INTEGERS. THIS FORM GENERATES A BIT STRING
WHICH IS <#BITS> LO^G. ALL BITS IN THIS
STRING ARE SET TO 0"S EXCEPT FOR THE <BIT>*TH
BIT, WHICH IS SET TO A "I*. NOTE THAT BIT-O
IS THE MOST SIGNIFICANT BIT IN THE STRING*
THE VALUE OF <#8ITS> MUST BE IN THE RANGE OF
I TO 32, INCLUSIVE. THE VALUE OF <8IT> MUST
BE IN THE RANGE OF O TO <#BITS>-1® INCLUSIVE.
THIS FORM OF THE CONSTANT IS KNOWN AS A FULL
VECTOR.

A4.5 CONSTANTS FORMED BY ENCODE GENERATOR

THIS CONSTANT GENERATOR ALLOWS ANY ARBITRARY BIT
STRING TO BE SPECIFIED. THIS CONSTANT.MAY BE GENERATED IN
TWO FORMS?

44
A) $ECD (<VALUE>s <i?BITS>)

WHERE <VALUE> AND <#BITS> ARE UNSIGNED
INTEGERS* THIS FORM GENERATES A BIT. STRING
WHICH IS <#8ITS> BITS LONG* <#BITS> MUST BE
IN THE RANGE OF I TO 32g INCLUSIVE* THE
CONSTANT GENERATED IS THE BINARY CODED VALUE
OF <VALUE>* THE NUMERIC NUMERIC VALUE OF
<VALUE> MUST BE IN THE RANGE OF O TO
4294967295 C 2**32 - I ,INCLUSIVE* THE
BINARY VALUE OF <VALUE> MUST OCCUPY NO MORE
BITS THAN THOSE SPECIFIED BY <#BITS>.

B) SECD C <VALUE> .)

WHEI^E <VALUE> IS AN UNSIGNED INTEGER* THIS
ABBREVIATED FORM REQUIRES THAT AN IMPLICIT
LENGTH BE AVAILABLE FROM SOME OTHER PORTION
OF THE SOSS STATEMENT* AS BEFORE9 THE NUMBER
OF BITS REQUIRED TO CONTAIN <VALUE> MUST NOT
EXCEED THE NUMBER OF BITS GIVEN BY THE
IMPLICIT LENGTH* <VALUE> MUST BE IN THE
RANGE OF O TO- 4294967295 C 2**32-l).

45
EXAMPLES OF VALID CONSTANTS:

CONSTANT BINARY VALUE

0 0
100 1100100
$A(5,10) 1111100000
Z$W(3$10) 0000000111
SE C4) 1111
$E(2,5) OOlOO
$ECD(1234915) 000010011010010

46

AS TYPES OF SDSS STATEMENTS

ALL STATEMENTS IN THE SOSS LANGUAGE CAN BE CLASSIFIED
INTO FOUR GROUPS;

1) SYSTEM DEFINITION STATEMENTS® THESE
STATEMENTS DEFINE THE HARDWARE ELEMENTS WHICH
COMPOSE THE DIGITAL SYSTEM UNDER SIMULATION®

2) MEMORY INITIALIZATION STATEMENT® THIS
STATEMENT ALLOWS MEMORIES TO BE INITIALIZED
PRIOR TO THE SIMULATION OF THE SYSTEM IN
ORDER TO SIMULATE AN INITIAL PROGRAM LOAD®

3) CONTROL SEQUENCE STATEMENTS® THESE
STATEMENTS DEFINE THE SEQUENCE OF
MICRO-OPERATIONS TO BE PERFORMED BY THE
DIGITAL SYSTEM®

4) HOUSEKEEPING STATEMENTS® THESE STATEMENTS
PERFORM SUCH OPERATIONS AS DISPLAY THE
CONTENTS OF HARDWARE ELEMENTS, AND DEFINE
INTERRUPT HANDLING ROUTINES®

EACH STATEMENT TYPE WILL BE DESCRIBED IN DETAIL
DELOW®

)

47
AS ol SYSTEM DEFINITION STATEMENTS

BEFORE ANY DIGITAL SYSTEM CAN BE SIMULATED s THE
HARDWARE ELEMENTS WHICH COMPOSE THE SYSTEM MUST BE
DEFINED. THE ELEMENTS WHICH MAY BE DEFINED IN SDSS ARE
THE FOLLOWING' ;

REGISTERS
.

SCALARS
PANEL LIGHTS
PANEL SWITCHES
RANDOM ACCESS MEMORY
r e a d-only memory
LOGICAL FUNCTIONS
DATA PATHS

NO SYSTEM DEFINITION STATEMENTS MAY HAVE A LABEL.
DEFINITION STATEMENTS MAY APPEAR IN ANY ORDER= HOWEVER,
ALL SYSTEM DEFINITION STATEMENTS MUST PRECEED STATEMENTS
OF ANY OTHER TYPE= ;

48
ASolol REGISTERS

A REGISTER IS DEFINED BY MEANS OF THE "REGISTER'
STATEMENT« A REGISTER MAY CONTAIN FROM I TO 32 BITS,
INCLUSIVE, AND MAY BE GIVEN AN INITIAL VALUE IF DESIRED*

IF THE LENGTH OF THE CONSTANT IS SPECIFIED, THEN THIS
LENGTH MUST BE NO GREATER THAN THE NUMBER OF BITS IN THE
REGISTER* IF NO LENGTH IS SPECIFIED IN THE CONSTANT? THEN
THE LENGTH OF THE REGISTER WILL BE USED AS THE IMPLICIT
LENGTH* IF A CONSTANT REQUIRES MORE BITS TO REPRESENT THE
CONSTANT THAN ARE AVAILABLE IN

THE.'REGISTER' STATEMENT HAS THE FORMS

REGISTER <NAME> C <SI2E>) INITIAL C <CONSTAN

WHERE <NAME> . IS THE UNIQUE NAME ASSIGNED TO
S THE REGISTER
<SIZE> IS THE SIZE, IN BITS, OF THE

REGISTER* IT MAY HAVE A VALUE
OF FROM I TO 32, INCLUSIVE*

INITIAL SPECIFIES THAT AN INITIAL •
VALUE IS TO BE ASSIGNED TO THE
REGISTER*

<CONSTANT> IS ANY OF THE CONSTANTS DEFINED
IN SECTION A4.9 AND GIVES THE
THE INITIAL VALUE DESIRED*

49

TWO OR MORE REGISTERS MAY BE DEFINED ON ONE
'REGISTER' STATEMENT BY SEPARATING EACH DEFINITION WITH
COMMAS.

A MAXIMUM OF 50 REGISTERS MAY BE DEFINED. AS MANY
'REGISTER' STATEMENTS AS NECESSARY MAY BE USED TO DEFINE
THESE REGISTERS.

EXAMPLES OF VALID REGISTER DEFINITIONS:

. . COLUMN
678
REGISTER REGl(IO)
REGISTER A123456C15) INITIAL (O)
REGISTER AZ(IO)B Y14C25) INITIAL

I ($A(5))g B(20)

AS.I.2 SCALARS

A SCALAR ELEMENT IS ONE WHICH STORES ONLY ONE BIT OF
INFORMATION. AN OPTIONAL INITIAL VALUE MAY BE USED TO
INITIALIZE THE SCALAR TO EITHER A 'I' OR A 'O'. SCALAR
ELEMENTS ARE DEFINED VIA THE 'SCALAR' STATEMENTg WHICH HAS
,THE FORM:

50
SCALAR <NAME> INITIAL < <CONSTANT>)j

WHERE <NAME> IS THE UNIQUE NAME ASSIGNED TÔ
THE SCALARo

INITIAL SPECIFIES THAT AN INITIAL VALUE
IS TO BE ASSIGNED TO THE SCALAR*

<C0NSTANT> IS EITHER A 'I' Oft A trO170 THIS
VALUE IS USED AS THE INITIAL
VALUE OF THE SCALAR*

MORE THAT ONE SCALAR MAY BE DEFINED BY A SINGLE
"SCALAR* STATEMENT BY SEPARATING EACH DEFINITION WITH
COMMAS.

A MAXIMUM OF 50 SCALARS MAY BE DEFINED. AS MANY
'SCALAR" STATEMENTS AS NECESSARY MAY BE USED TO DEFINE
THESE SCALARS.

EXAMPLES OF VALID SCALAR DEFINITIONS:

COLUMN
678
SCALAR A
SCALAR J INITIAL CO)
SCALAR Kg L INITIAL Cl), M

AS.I.3 PANEL SWITCHES

PANEL SWITCHES PERMIT THE SIMULATION OF MANUALLY
ENTERING INFORMATION THROUGH THE FRONT PANEL INTO THE
SYSTEM UNDER SIMULATION. A SET OF PANEL.SWITCHES MAY BE
THOUGHT OF AS A COLLECTION OF SINGLE SWITCHES, EACH .
CAPABLE OF HOLDING ONE BIT OF DATA INFORMATION. PANEL
SWITCHES MAY BE GIVEN AN OPTIONAL INITIAL;VALUE. SWITCHES
ARE OEFIhlEO VIA THE "SWITCHES' STATEMENT, WHICH HAS THE
FORM:

51

SWITCHES <NAME> (<SIZ£>) INITIAL C ^CONSTANT)->1
WHERE <NAME> IS THE UNIQUE NAME ASSIGNED TO

THE SET OF SWITCHES.
<SIZE> IS THE NUMBER OF INDIVIDUAL SWITCHES

MAKING UP THE SET, <SIZE> MAY HAVE A
VALUE OF FROM I TO 32, INCLUSIVE,

INITIAL INDICATES THAT AN INITIAL VALUE IS TO
'BE ASSIGNED TO THE SWITCHES.

<CONSTANT> IS A VALID CONSTANT AS DEFINED IN
SECTION A4, AND GIVES THE INITIAL
VALUE DESIRED.

. IF A LENGTH IS SPECIFIED IN THE CONSTANT, IT MUST NOT
EXCEED THE SIZE OF THE SWITCHES. IF NO LENGTH IS
SPECIFIED, THE LENGTH OF THE SWITCHES IS USED AS THE
IMPLICIT LENGTH. IF THE CONSTANT REQUIRES MORE BITS FOR

52
ITS REPRESENTATION THAN ARE AVAILABLE IN THE SWITCHES, THE
SWITCHES WILL NOT BE INITIALIZED*

TWO OR MORE SETS OF SWITCHES MAT BE DEFINED ON ONE
"SWITCHES' STATEMENT BT SEPARATING EACH DEFINITION WITH
COMMAS.

UP TO 5 SETS OF SWITCHES MAY BE DEFINED. AS MANY
"SWITCHES" STATEMENTS AS NECESSARY MAY BE USED TO DEFINE
THESE SWITCHES.

EXAMPLES OF VALID SWITCH DEFINITIONS?

COLUMN
678
SWITCHES A(IO)
SWITCHES 8(15) INITIAL C O)
SWITCHES C(18)INITIAL($A(5))s

I' ■ SWSC16) INITIAL <$£(16))

AS.I.4 PANEL LIGHTS

PANEL LIGHTS PERMIT A VISUAL DISPLAY OF THE CONTENTS
■

OF VARIOUS MEMORY ELEMENTS WITHIN THE SYSTEM UNDER
SIMULATION. PANEL LIGHTS ARE DEFINED VIA THE "LIGHTS"
STATEMENT, WHICH HAS THE FORMS

53

LIGHTS <NAME> (<SIZE>)

<SIZE> IS THE NUMBER OF BITS, OR INDIVIDUAL
BULBS IN THE SET OF LIGHTS® <SIZE>
MAV HAVE ANY VALUE FROM I TO 32,
INCLUSIVE*

UP TO FIVE SETS OF LIGHTS MAY BE DEFINED* AS MANY
'LIGHTS' STATEMENTS AS NECESSARY MAY BE USED*

TWO OR MORE SETS OF LIGHTS MAY BE DEFINED VIA ONE
'LIGHTS' STATEMENT BY SEPARATING EACH DEFINITION WITH
COMMAS.

LIGHTS MAY NOT BE ASSIGNED AN INITIAL VALUE.

EXAMPLES OF VALID LIGHTS DEFINITIONS:

COLUMN
6 78
LIGHTS Ll(IB)
LIGHTS L2C10), L21 C 32)$

I LGSC12)

54
AS.!«5 RANDOM ACCESS MEMORY

ONE RANDOM ACCESS MEMORY (RAM) MAY BE DEFINED FOR
EACH DIGITAL SYSTEM. A RAM IS DEFINED BY MEANS OF THE
"RAM' STATEMENTS WHICH.HAS THE FORMS

RAM <NAME> C <#BITS>9 <#WOROS>)9 MAR = <MARREG>s
MDR = <MDRREG>

WHERE <NAME> IS THE NAME ASSIGNED TO THE
MEMORY.

<#BITS> IS THE NUMBER OF BITS PER WORD .
OF RAM, AND MUST BE IN THE RANGE '
OF I TO 32, INCLUSIVE.

<#WORDS> IS THE TOTAL NUMBER OF WORDS IN
THE MEMORY. <ftiOROS> MUST BE
GREATER THAN ZERO, AND IS LIMITED
ONLY BY THE SIZE OF THE MEMORY
OF THE host c o m p u t e r .

<MARREG> IS THE NAME OF THE REGISTER TO BjE
USED AS THE MEMORY ADDRESS
REGISTER. THIS REGISTER WILL
CONTAIN THE ADDRESS OF THE LOCATION
WITHIN THE RAM WHICH WILL BE
ACCESSED IN A MEMORY REFERENCE
OPERATION.

<MDRREG> IS THE NAME OF THE MEMORY DATA
REGISTER. THIS REGISTER WILL BE

55
USED TO SUPPLY DATA TO THE RAM*

OR TO RECIEVE DATA FROM THE

RAM, IN A MEMORY REFERENCE

OPERATION©

THE REGISTERS <MARREG> AND <NDRREG> NEED NOT BE

DEFINED AT THE TIME THE 'RAM" STATEMENT IS ENCOUNTERED©

HOWEVER, THEY MUST BE DEFINED BY A . "REGISTER' STATEMENT

PRIOR TO THE CONCLUSION OF OF THE SYSTEM D E FIN IT IO N

STATEMENTS© THE CMARREG> REGISTER SHOULD CONTAIN ENOUGH

BITS TO ADDRESS ALL WORDS IN THE.RAM© THE <MORREG>

REGISTER MUST CONTAIN EXACTLY AS MANY BITS AS THE WORDSIZE

OF THE RAM©

SHOULD THE < MARREO REGISTER NOT CONTAIN ENOUGH BITS

TO ACCESS ALL OF THE MEMORY, THAT PORTION OF THE MEMORY

WITH ADDRESES IN ACCESS OF THE MAXIMUM ADDRESSABLE VALUE

CAN NOT BE ACCESSED©

THE THREE OPERANDS IN A "RAM* STATEMENT. MAY APPEAR IN
ANY ORDER© '

EXAMPLES OF VALID RAM DEFIN IT IO NS S

COLUMN

678
RAM MEM C 18,1024),MAR=MA,MDR=MD
RAM MAR=REGl, RAfKlG0 8192),

* MD R= RE G 2

56
NOTE THAT I F BOTH "RAM' STATEMENTS APPEARED IN THE

SAME SYSTEM DESCRIPTION* THE SECOND ONE MOULD BE IN ERROR?

ONLY ONE RAM MAY BE DEFINED FOR EACH SYSTEM,
A "RAM' STATEMENT. IMPLICITLY DEFINES DIRECT DATA

PATHS CONNECTING THE <MARREG> REGISTER WITH THE MEMORY,
THE MEMORY WITH THE <MORREG>s AND THE <MARREG> REGISTER .
WITH THE MEMORY« THE TWO REGISTERS <MORREG> AND <MARREG>
ARE THE ONLY ALLOWED MEANS OF COMMUNICATION WITH. THE RAM.

A5<>I o 6 READ-ONLY MEMORY

ONE READ-ONLY (ROM) MEMORY MAY BE DEFINED FOR EACH

D IG IT A L SYSTEM. A ROM IS DEFINED BY MEANS OF THE "ROM"

STATMENTs WHICH HAS THE FORM?

ROM (<#.BITS>V <#W-QRDS>)« MAR = <MARREG>*
MOR = <MDRREG>

WHERE EACH OPERAND HAS THE SAME MEANING AS I T DOES IN
A "RAM* STATEMENT. ALL THE RULES OF D E F IN IT IO N OF A RAM
APPLY TO A ROM. NOTE THAT I T I S POSSIBLE FOR BOTH A RAM
AND A ROM TO HAVE THE SAME REGISTER(S) FOR THEIR MEMORY
ADDRESSING AND MEMORY DATA REGISTERS.

' A "ROM" STATEMENT IMPLICITLY DEFINES DIRECT DATA

PATHS CONNECTING THE ROM WITH THE <MDRREG> REGISTER*. AND

57
THE <MARREG> REGISTER WITH THE ROM. THE TWO REGISTERS

<MDRREG> AND <MARREG> ARE THE ONLY MEANS OF COMMUNICATING

WITH THE ROM.

A S . 1 . 7 LOGICAL. FUNCTIONS

A LOGICAL FUNCTION, IN CONTRAST TO BOOLEAN- OPERATORS,

I S AN OPERATION THAT NORMALLY CAN NOT BE PERFORMED IN ONE

MACHINE CYCLE T IM E . SUCH OPERATIONS INCLUDE ADDITION,
MULTIPL ICATION, AND D I V I S I O N . . THESE OPERATIONS MUST BE

PERFORMED BY A SUBSYSTEM OF THE MACHINE. THIS SUBSYSTEM

MAY BE EITHER A HARDWIRED CIRCUIT ROUTINE, OR A

SOFTWARE-CONTROLLED PROCESS. SDSS PROVIDES FOR THE

INCLUSION OF LOGICAL FUNCTIONS TO DO SUCH OPERATIONS.

SDSS INCLUDES SEVERAL LOGICAL FUNCTIONS WHICH MAY BE

REFERENCED DIRECTLY BY THE DESIGNER. THEY ARES DIRECTLY

BY THE DESIGNER. THEY ARES

I

ADD — TO ADD TWO VALUES TOGETHER, USING 2"S

COMPLEMENT ARITHMETIC. e
INC — TO INCREMENT. A VALUE BY I USING 2*S

COMPLEMENT ARITHMETIC.

DEC — TO DECREMENT A VALUE BY I USING 2 "S

COMPLEMENT ARITHMETIC.

EACH OF THESE FUNCTION HAVE THREE OTHER NAMES BY

WHICH THE SAME OPERATION MAY BE INVOKED. THE OTHER NAMES
ARE! I

58

FOR ADDS A D D l5 ADD2, ADD 3

FOR INCS I N C l , IN C 2 , I NC 3

FOR DECS D E C l , DEC2, DECS

THESE 12 FUNCTIONS ARE KNOWN AS THE B U I L T - I N -

FUNCTIONS C B I F ' S .)*

THUS? I T IS POSSIBLE TO HAVE FOUR DIFFERENT HARDWARE

UNITS IN THE SAME D IG IT A L SYSTEM TO PERFORM THE SAME BASIC

OPERATION, BUT HAVING NO INTERACTION &MONG THEM0

FOR THESE 12 FUNCTIONS, NO INDICATION OF OVERFLOW OR

UNDERFLOW IS GIVEN* IT IS UP TO THE DESIGNER TO DETERMINE

THE V A L ID IT Y OF THE RESULTS*

SHOULD SOME OPERATION BE DESIRED THAT IS NOT

AVALIABLE WHTh XN SDSS, THE DESIGNER CAN CREATE XT HIMSELF

BY MEANS OF A STANDARD FORTRAN FUNCTION SUBPROGRAM, AND

INCLUDE THIS SUBROUTINE AT PROGRAM LOAD TIME (SEE SECTION

A6) *

* ALL FUNCTIONS, INCLUDING B I F ' S , MUST BE'DEFINED TO

THE SDSS COMPILER BEFORE THEY MAY BE USED IN THE SYSTEM

d e s c r i p t i o n * to d e f i n e a f u n c t i o n , t h e s d s s ^f u n c t i o n *

STATEMENT IS USED* I T HAS THE FORMS £

FUNCTION <NAHE> C <5ARGS>, <#BITS>)

WHERE < #B IT S > IS THE NUMBER OF B ITS I N THE RESULT

RETURNED BY THE FUNCTION* < # 8 IT S > MUST

BE IN THE RANGE OF I TO 3 2 , INCLUSIVE*

<#ARGS> IS THE NUMMBER OF ARGUMENTS REQUIRED

BY THE FUNCTION* ALL FUNCTIONS REQUIRE

AT LEAST ONE ARGUMENT*

59

t h e b u i l t - i n - f u n c t i o n s r e q u i r e a f i x e d ,NUMBER QF

ARGUMENTS I

FUNCTION NUMBER OF ARGUMENTS

ADD, AD D l , ADD2, ADDS 2
IN C , I N C l , I NC 2 , INC 3 I

DEC, O E C l i D EC 2 , DECS I

I F THE NAME OF A 8 I F I S USED AS SOME OTHER HARDWARE

ELEMENT C SUCH AS A REGISTER) PRIOR TO BEING DEFINED AS. A

FUNCTION THEN THAT NAME AUTOMATICALLY CEASES TO BE A

FUNCTION. SI M ILARILY p I F A NAME HAS BEEN DEFINED AS A

F U N C T IO N , .NO OTHER ELEMENT MAY USE THAT NAME.
I T IS POSSIBLE TO REDEFINE THE NAME OF A B IF TO BE

THE NAME pF A DESIGNER-SUPPLIED FUNCTION. TO DO T H IS ,

SIMPLY PRECEED THE NAME OF THE B IF BY AN ASTERISK C *)?

THE NAME IS NO LONGER ASSOCIATED WITH THE B IF TO WHICH I T

PREVIOUSLY REFERED.

THE USAGE OF A FUNCTION IN THE CONTROL SEQUENCE

STATEMENTS IS DESCRIBED IN SECTION A S . 3 . 4 .

UP TO 12 EXTERNAL LOGICAL FUNCTIONS, IN ADDITION TO

ANY B I F ' S , MAY BE DEFINED. TWO OR MORE FUNCTIONS MAY BE

DEFINED ON THE SAME 'FUNCTION" STATEMENT BY SEPARATING

EACH D E F IN IT IO N BY COMMAS.

VALID FUNCTION D E F IN IT IO N S !

COLUMNS

678

FUNCTION ADD< 2 ? 1 9)
y

FUNCTION. I N C (I 9I S) c S U 8 (2 „ 1 7)

FUNCTION *OECC391 0)

NOTE IN THE LAST EXAMPLE THE B IF "DEC" IS REDEFINED

TO BE AN EXTERNAL FUNCTION HAVING 3 ARGUMENTS AND

RETURNING A VALUE IO BITS LONG®

PROGRAMMING NOTES

UNDER THE CURRENT IMPLEMENTATION OF SDSS9 THERE

IS NO PROVISION BV WHICH DATA VALUES MAV BE

INPUT INTO THE SYSTEM DURING SIMULATION* ONE

WAY TO OBTAIN DATA VALUES I S TO USE A FORTRAN

FUNCTION SUBPROGRAM WHICH WILL REQUEST AND

OBTAIN A DATA VALUE? AND RETURN I T TO THE

SIMULATION AS ITS RESULT* SUCH A FORTRAN

ROUTINE TO PERFORM THIS FUNCTION COULO BE:

FUNCTION I N P l (I)

INPUT I

I N P l = I

RETURN

END -

THIS FUNCTION COULD BE CALLED BY THE D IG ITAL

SYSTEM WITH THE TRANSFERS

A < I N P l . CA)

61

SEE SECTION A S . 3 . 4 FOR DETAILS ON THE TRANSFER

STATEMENT.

■

A S . I . 8 DATA PATHS

IN ORDER TO TRANSFER INFORMATION FROM ONE HARDWARE

ELEMENT TO ANOTHER, A DATA PATH BETWEEN THE TWO ELEMENTS

MUST E X IS T . TWO TYPE OF DATA PATHS ARE AVAILABLE IN SDSSS

THEY ARE THE DIRECTLY-CONNECTED DATA PATH, AND THE

BUS-CONNECTED DATA PATH,

A DIRECTLY-CONNECTED DATA PATH I S ONE ON WHICH ONLY

ONE UNIQUE HARDWARE ELEMENT MAY PLACE DATA® AND FROM WHICH

ONLY ONE UNIQUE ELEMENT MAY EXTRACT DATA, SUCH.A PATH IS

DEPICTED IN FIGURE Al. THE ARROW INDICATES THE DATAi PATH,

***** * * * * *
* * * *
* * * * FIGURE A l* A *==========)* 8' *'
* * * * DIRECTLY CONNECTED
* * * *
* * * * * . * * * * * . DATA PATH

EACH SUCH DATA PATH IS UNID IRECTIONAL, DATA MAY BE

TRANSFEREO IN ONLY ONE DIRECTION. IN ORDER TO ALLOW TWO

ELEMENTS TO 'TALK * WITH EACH OTHER, TWO DATA PATHS MUST BE
DEFINED, ONE FOR EACH DIRECTION,

62
A BUS-CONNECTED DATA PATH ALLOWS ANY OF SEVERAL

ELEMENTS C BUT ONLY ONE AT A TIME) TO PLACE DATA VALUES

ON THE BUS, AND ONE OR MORE ELEMENTS C POSSIBLY

SIMULTANEOUSLY > TO EXTRACT DATA VALUES FROM THE BUS0 A

BUS-CONNECTED DATA PATH MAY BE DEPICTED AS IN FIGURE A2.
THE BUS IS NORMALLY AT LEAST AS WIDE C THAT IS, MAY

CONTAIN AT LEAST AS MANY BITS) AS THE LARGEST ELEMENT

THAT IS TO BE CONNECTED TO THE BUS*

* * * * * * ; * * * * *
* . * *'. * *
* A *=='==•= = > * = = = = = = > * g *
* * . * * . *
* * * * * * * * * *

*
*

* * * * * *
* *= = = = = = >*
* C * *
* *< = = _ = == *
* * * * * *

*
*

* * * * * * * * * * *
*= = = = — > * *

* D * = = = - = = > * * £ .*
* * *< = = =
* * * * * * * * * * *

BUS

FIGURE A2
BUS-CONNECTED DATA PATH

AS BEFORE, EACH CONNECTION I S UNIDIRECTIONAL* NOTE

THAT IN FIGURE A2 THAT ELEMENTS C AND E MAY BOTH SUPPLY

DATA TO THE BUS AND EXTRACT DATA FROM THE BUS* ELEMENTS A

AND D MAY ONLY SUPPLY DATA TO THE BUS, WHILE ELEMENT B MAY
ONLY RECI EVE DATA FROM THE BUS* THE BUS I S REPRESENTED AS

THE VERTICAL LINE IN FIGURE A2*

63

BOTH BUSED AND DIRECTLY CONNECTED DATA PATHS PROVIDE

FOR THE CONCATENATION OF DATA SOURCES AND DESTINATIONS«

TWO ITEMS MAY BE CONCATENATED TOGETHER TO FORM A SINGLE

B IT STRING. THE RESULTING B IT STRING IS THEN TREATED AS A

SINGLE B IT STRING IN ALL OPERATIONS.

TO DEFINE A DIRECTLY-CONNECTED DATA PATH9 THE SDSS

'CONNECT' STATEMENT IS USED. TO DEFINE A BUS-CONNECTED

DATA PATH9 THE SDSS STATEMENT 'B U S " IS USED.

A S . 1 .8 = 1 CONNECT STATEMENT

THE 'CONNECT' STATEMENT IS USED TO DEFINE DIRECTLY

CONNECTED DATA PATHS. THE STATEMENT HAS THE FORMS

CONNECT C <PATH>) 9 C <PATH>) , . . .

WHERE <PATH> IS ONE OF NINE BASIC DATA PATH

SPECIF ICATIONS. EACH <PATH> DEFINES ONE UNIDIRECTIONAL

DATA PATH. THE ALLOWED FORMS FOR <PATH> ARE THE 1

f o l l o w i n g :

I

GA
1) <0RG1>? <DEST1>

2) <0RG1>? <DEST1>9 <DEST2>

3) <0RG1>, <0RG2>S <DEST1>

4)

5)
6)
7)

8)
9)

<0RG1>s <0RG2>S <DEST1> p <DEST2> ,

$<SR> < < #S /R >) <0RG1>5 <DEST1>
$<SR> (< #S /R >) <0RG1>? <0ESI1>9 <DEST2>

$<SR> C < & S / R >) <ORGl>g <QRG2>§ <DEST1>

$<SR> (< # S /R > > <ORGl>p <0RG2>$ <DEST1>» <DEST2>

<0RG1> <0P> <0RG2>J <0EST1>

WHERE <SR> IS A SHIFT OR ROTATE OPERATOR, AND M A Y BE ONE

OF: SL9 SRg RL» OR RRo

<0R61> SPECIFY THE DATA SOURCES TO BE USED

& FOR THIS DATA PATHo THE SOURCES MAY BE
<0RG2> THE NAMES OF REGISTERSg SWITCHESg SCALARSg

OR FUNCTIONS* A CONSTANT MAY ALSO BE USED AS

A DATA SOURCE* I F A CONSTANT IS TO BE USED

AS A DATA SOURCE* THEN THE TRANSFER PATH MUST

ALLOW FOR THE CONSTANT* TO OO THISe A ZERO

C O ") IS USED FOR <0RG1> AND / OR <0RG2>*

THE CONSTANT ITSELF I S NOT SPECIF IED UNTIL

THE ACTUAL DATA TRANSFER STATEMENT IS

ENCOUNTERED* ANY NUMBER OF DIFFERENT

CONSTANTS MAY BE USED AS DATA SOURCES FOR THE

TRANSFER ALONG A DATA PATH SO DEFINED* ■

■;
<DE S T l > ARE THE NAMES OF THE DATA DESTINATION

& ELEMENTS* DESTINATIONS MAY BE THE

<DEST2> NAMES OF REGISTERSs SCAtARSs FUNCTIONS,
OR LIGHTS*

65

<#S/R> IS THE NUMBER OF SINGLE SHIFTS OR

ROTATIONS OESlREDe

<0P> IS A BOOLEAN OPERATOR AND MUST BE ONE

OFS SANDe SNND9 SOR9 SNOR9 SXOR0

THE SEMICOLON SEPARATES THE DATA SOURCE FROM THE

DESTINATION WITHIN EACH PATH FORM. COMMAS ARE USED TO

INDICATE CONCATENATION OF ELEMENTS TO FORM SOURCES AND

DESTINATIONS-

FORMS I THROUGH 4 ARE USED TO CONNECT ONE ELEMENT

DIRECTLY TO ANOTHER- THE ONLY OPERATION UPON THE DATA

ALONG TH IS PATH I S NEGATIONo

FORMS 5 THROUGH 8 ARE USED WHEN THE DATA SOURCE BITS

ARE TO BE SHIFTED OR ROTATED BEFORE BEING STORED IN THE

SPECIFIED DESTINATION= ANY SHIFT OR ROTATION OPERATOR MAY
BE USED IN THESE FORMS=

FORM 9 IS USED WHEN A BOOLEAN OPERATION IS TO BE

PERFORMED ON THE TWO DATA SOURCES SPECIFIED= THE

RESULTING VALUE I S THEN STORED I N THE DESIGNATIED

DESTINATION= 1

THE 'CONNECT ' STATEMENT SAYS NOTHING ABOUT THE SIZES

OF THE ELEMENTS THAT ARE CONNECTED= A DATA PATH BETWEEN

TWO ELEMENTS IS ASSUMED TO BE CAPABLE OF TRANSFERING ANY
OR ALL BITS OF THE SOURCE TO THE DESTINATION* ASSUMING

THAT A AND B ARE REGISTERS OF 10 AND 20 B I T S ,

RESPECTIVELY, THEN I T IS POSSIBLE TO TRANSFER THE ENTIRE

CONTENTS OF A9 OR A PORTION OF A9 OR A SINGLE B I T OF A TO

ANY EQUAL-SIZED PORTION OF B ALONG THE SINGLE DATA PATH

GIVEN BY: 'CONNECT C A l B) ' = DATA TRANSFERS ARE DESCRIBED

IN SECTION A5 = 3 « I « .

66

THE FOLLOWING RESTRICTIONS MUST BE ADHERED TO WHEN

USING THE "CONNECT" STATEMENTS

1) DATA PATHS MUST CONNECT ALL ARGUMENTS TO ALL

FUNCTIONS THAT U T IL I Z E THE ARGUMENTo DATA PATH

FORM » 1 MUST BE USED TO DO THIS= THE ARGUMENT

IS SPECIFIED AS THE SOURCEs AND THE FUNCTION IS

SPECIF IED AS THE DESTINATION= THE FUNCTION NAME

MUST BE CONNECTED TO THE DESTINATION BY A DATA

PATH OF FORM #1 OR #2»

2) A FUNCTION M A Y NOT BE CONNECTED TO A FUNCTION®

A FUNCTION NAME MAY NOT BE USED IN A

■ CONCATENATED SOURCE OR DESTINATION

SP EC IF ICA T IO N, OR IN A SHIFT OR ROTATE DATA

PATH® . !

3) LIGHTS MAY NOT BE USED AS DATA SOURCES=

4) SWITCHES MAY NOT BE USED AS A DATA DESTINATION=

5) THE N A M E S OF BUSES A N D MEMORIES MAY NOT BE USED

IN A 'CONNECT" STATEMENT=

6) A HARDWARE ELEMENT MAY NOT BE CONCATENATED WITH
ITSELF WHEN USED AS A DATA DESTINATION= IT MAY
BE CONCATENATED WITH ITSELF WHEN USED AS A DATA

SOURCE=

IT I S NOT NECESSRY TO HAVE DEFINED ALL HARDWARE

ELEMENTS AT THE TIME THE 'CONNECT' STATEMENT IS

ENCOUNTERED. HOWEVER, ALL ELEMENTS MUST BE DEFINED PRIOR

TO THE CONCLUSION OF THE SYSTEM DEFIN IT IO N STATEMENTS=

APPROXIMATELY 200 DATA PATHS MAY BE DEFINED= THE

EXACT NUMBER ALLOWED IS DEPENDENT UPON HOW MANY PATHS OF

EACH TYPE ARE USED WITHIN THE SYSTEM D E F IN IT IO N SECTION.

67

VALID "CONNECT" STATEMENTS:

. COLUMN

678

CONNECT (A SB), CA, B S C) , CAf BSC9O)

CONNECT C i S L (D A g A) 9 < $R R C 2)B ,D SB,0) 9

I (A $AND B? C)

CONNECT C OSA)$ C$SLC4)D,0S O)

THIS LAST "CONNECT" STATEMENT SPECIFIES THAT ONE OR

MORE C AS YET UNSPECIFIED) CONSTANTS ARE TO BE TRANSFEREO

TO THE DESTINATION " A " . THE SECOND PATH STATES THAT A

CONSTANT IS TO BE CONCATENATED WITH " D " , FORMING THE LOW

ORDER B ITS OF THE RESULTING STRING. THIS STRING IS THEN

SHIFTED LEFT FOUR B I T S . THIS TYPE OF PATH ALLOWS A

SHIFTING OPERATION THAT SETS THE B ITS SHIFTED INTO " 0 " TO

BE SOMETHING OTHER THAN A STRING OF ALL 1 " S OR 0 " S .

1

68
A5.1.8.2 BUS STATEMENT

THE 'B U S ' STATEMENT IS USED TO DEFINE BUS-CONNECTED

DATA PATHSe THE 'B U S ' STATEMENT HAS THE FOLLOWING TWO

FORMS:

1) BUS <NAME> C <SIZE>)» CIN= <IN>, < I N > , »»»

(OUT= <OUT>$ <OUT>B . .)

2) BUS <NAME>b (I N = < I N > B <IN>, >9 j

(OUT= <DU T> B <OUT>9 ooo)

WHERE <NAME> IS THE UNIQUE NAME OF THE BUSe

< SI ZE> IS THE S I Z E 9 IN B ITS OF THE BUSo

SIZE MUST BE IN THE RANGE OF I TO 64,
INCLUSIVE*

< IN > IS AN INPUT SPECIFICATION DEFINING

" A DATA SOURCE WHICH IS TO BE PLACED

THE BUS.
<OUT> IS AN OUTPUT SPECIF ICATION DEFINING THE

ELEMENTS WHICH MAY EXTRACT DATA

FROM THE BUS.

THE SPECIFICATIONS < IN > AND <OUT> MAY HAVE ONE OF THE

FOLLOWING FORMS:

69
fo
<NAME> .
$<SR> (<#SR>) <NAME>

WHERE <NAME> IS THE NAME OF SOME HARDWARE ELEMENT.
<5R> IS A SHIFT OR ROTATION OPERATOR 9 AND

. MAY BE ONE OF: SL9 SR, RL9 AR.
<#SR> IS THE NUMBER OF SHIFTS OR ROTATES

TO SE PERFORMED.'

0 S P EC IF IES THAT A CONSTANT WILL BE

USED AS THE DATA SOURCE FOR TH IS

INPUT. THE CONSTANT ITSELF I S NOT

GIVEN AT THIS T IM E 8 B U T . IS SPECIF IED

AT THE TIME THE DATA TRANSFER IS

ACTUALLY PERFORMED. ONCE THE BUS

HAS ' 0 * SPECIF IED AS AN INPU T9 ANY

NUMBER OF CONSTANTS MAY BE USED AS

INPUT TO THAT BUS.

<OP> IS A BOOLEAN OPERATOR9 AND MAY BE ONE

OFJ AND9 NNDs NOR9 OR9 XOR.

NAMES OR CONSTANT SPECIFICATIONS C THE ' 0 ') THAT ARE

ENCLOSED WITHIN PARENTHESIS INDICATE THAT THE TWO ELEMENTS

70
ARE TO BE CONCATENATED TOGETHER? THE LEFTMOST NAME OR

CONSTANT BECOMES THE MORE S IG N IF IC AN T PORTION OF THE

RESULTING B IT STRING.

FORM I OF THE 'B U S ' STATEMENT IS THE COMPLETE

D E F IN IT IO N FOR A BUS. ALL NECESSARY INFORMATION TO DEFINE

THE BUS I S PROVIDED. FORM 2 I S USED SHOULD MORE SOURCES

AND / OR DESTINATIONS BE REQUIRED THAN WILL F I T IN ONE

SDSS STATEMENT. IF THIS FORM IS USED® THEN I T IS

PERMISSIBLE TO OMIT ONE OF THE OPERANDS ' (I N =) * OR

' (O U T =) ' IF THAT OPERAND IS NOT NEEDED.

A 'B U S ' STATEMENT OF FORM I MUST ALWAYS APPEAR I F A

BUS IS TO BE DEFINED, I F FORM 2 IS USED TO EXTEND THE

NUMBER OF CONNECTIONS® IT MUST USE THE SAME NAME AS USED

IN A FORM I 'B U S ' STATEMENT, THE FORM 2 STATEMENT. MAY

APPEAR PRIOR TO THE FORM I STATEMENT.

THE FOLLOWING RESTRICTIONS APPLY TO THE 'B U S '

STATEMENTS

1) THE NAME OF A MEMORY MUST NOT APPEAR IN A BUS

STATEMENT.

2) A CONSTANT (' 0 ') MAY NOT BE GIVEN AS AN OUTPUT

SP EC IF ICA T IO N,

3) A HARDWARE ELEMENT MAY NOT BE CONCATENATED WITH

ITSELF WHEN I T IS USED AS AN <OUT>
T

SP E C IF IC A T IO N . ’ .

4) SWITCHES MAY NOT BE USED AS AN <OUT>

SP EC IF IC A T IO N ,

5) LIGHTS MAY NOT BE USED AS A N ,< IN > SPEC IF ICAT IO N.

6) A BUS MAY BE CONNECTED TO ANOTHER BUS. HOWEVER®

A BUS MAY NOT BE USED AS A CONNECTION TO IT S E L F .

71
THE PHYSICAL ARRANGEMENT OF THE HARDWARE THAT IS

CONNECTED TO A BUS MAY BE VISUALIZED AS FOLLOWS? IF

SOMETHING IS CONNECTED AS AN INPUT TO THE BUS9 THEN ALL

OPERATIONS C IF ANY) WILL BE PERFORMED PRIOR TO THE DATA

BEING PLACED ONTO THE BUS- S I M I L A R I L Y 9 FOR AN OUTPUT FROM

THE RUS9 DATA IS TAKEN FROM THE BUS0 AND THEN OPERATED

UPON BEFORE BEING PLACED IN THE DESIRED DESTINATION ,V
ELEMENT-

ALL DATA VALUES PLACED UPON THE BUS ARE POSITIONED IN

THE LEAST SIGNIF ICANT PORTION OF THE BUS- LIKEWISE, WHEN
DATA IS BEING TAKEN FROM THE BUS9 THE LEAST SIGNIFICANT

B ITS OF THE BUS ARE USED TO SUPPLY THE DATA B IT S - THE BUS

SHOULD BE AT LEAST AS WIDE AS THE LARGEST B I T STRING WHICH

IS TO BE PLACED ON THE BUS-

GIVEN A BUS-TO-BUS CONNECTIONS I T IS NOT NECESSARY TO

DUPLICATE THE CONNECTION SPECIF ICATION IN BOTH BUSES

INVOLVED- FOR EXAMPLE, IN THE FOLLOWING "BUS* STATEMENTS?

BUS A (I O) 0 COUT= B 9 - - -) 9 (I N = . . .)

BUS B (I O) 9 (I N = B9 0 , 0) , (OUT= . . .)
I

THE PATHS SHOWN ARE IDENTICAL? EITHER ONE OF THEM MAY BE

OMITTED- DUPLICATE CONNECTIONS (EITHER BUSED OR DIRECTLY

CONNECTED) ARE ACCEPTED BY SDSS-

IF I T IS DESIRED TO PLACE THE CONTENTS OF A SINGLE

BUS ONTO THE CONCATENATED COMBINATION OF TWO BUSES9 THE

PATH?

) *(DUT=(ABUS9BBUS)9

72
IS REQUIRED IN THE 'BUS* STATEMENT DEFINING THE SOURCE

BUS= S IM ILA R ILY s TO CONCATENATE TWO BUSES TO SUPPLY DATA

TO A THIRO9 THE PATH:

(IN=CABUS9BBUS)e = = «, 3

IS REQUIRED IN THE 'B U S ' STATEMENT.DEFINING THE THE

RECIEVING BUS=

EXAMPLES OF VALID 'BUS* STATEMENTS:

■ • ' I '
COLUMN

673 !
BUS A B U S (I B) e (I N = As B 9 (D 9C) s O) 9

* (OUT= F 9E 9 (H s D)

. BUS BBUS9COUt = S S L (I) 9A S R R (Z) (B 9C) 9 J)»

* (I N = O)

BUS BBUS(ZO)9 C I N = T E S n 9(GUT=DUN)

BUS C B U S (B Z)9 (I N = SAND9 SNND9 SXOR9 $0R)9
* (OUT=ACCUM)

THIS LAST CASE COULD BE SIMPLY A,COLLECTION POINT FOR

THE OUTPUT OF FROM ALL THE BOOLEAN OPERATORS® AND HAVE

ONLY ONE.ELEMENT C PERHAPS THE ACCUMULATOR) AS THE OUTPUT

OF THE BUS =

73

AS® 2 MEMORY I N I T I A L I Z A T I O N

SDSS PROVIDES THE CAPABIL ITY OF I N I T I A L I Z I N G BOTH

RANDOM ACCESS AND READ-ONLY MEMORIES PRIOR TO THE

SIMULATION OF THE SYSTEM. THE ' F I L L " STATEMENT IS USED

FOR THIS PURPOSE. WHEN USED FOR A READ-ONLY MEMORY9 THE

" F I L L ' IS THE ONLY MEANS' BY WHICH THE MEMORY MAY HAVE ITS

CONTENTS SP EC IF IED . FOR A RANDOM-ACCESS MEMORY, THE

" F I L L " STATEMENT MAY SIMULATE AN I N I T I A L PROGRAM LOAD

PROCEDURE FOR THE D IG IT A L SYSTEM.

A " F I L L " STATEMENT, I F PRESENT, MUST FOLLOW ALL

SYSTEM D E FIN IT IO N STATEMENTS, AND PRECEED ALL CONTROL

SEQUENCE.AND HOUSEKEEPING STATEMENTS.

THE " F I L L " STATEMENT HAS THE FORMS

F I L L <MEMORY> « L O > , < H I > > $ < < L O > , < H I >) , . . .

WHERE <MEMORY> IS THE NAME OF THE MEMORY BEING

ALL WORDS WITHIN THE RANGE OF <L0> TO < H I > ,

INCLUSIVE , WILL BE I N I T I A L I Z E D . AS MANY SECTIONS OF

MEMORY AS DESIRED MAY BE I N I T I A L I Z E D BY ONE " F I L L "

STATEMENT. THE SECTIONS OF MEMORY TO BE I N I T I A L I Z E D MAY
BE IN ANY ORDER, AND MAY OVERLAP EACH OTHER.

I N I T I A L I Z E D .

<L0>

&
< H I >

SPECIFY THE LOW AND HIGH ADDRESSES

OF A SECTION OF THE MEMORY WHICH IS

TO BE I N I T I A L I Z E D . BOTH <L0> AND

<HI> MUST SPECIFY LOCATIONS WITHIN

THE MEMORY. THE VALUE OF < H I> MUST

BE NO SMALLER THAN THAT OF < L 0 > .

74
IF I T IS DESIRED TO I N I T I A L I Z E ONLY ONE WORD OF

MEMORY 9 THEN <LO> = <HI>»

THERE IS NO L I M I T TO THE NUMBER OF ' F I L L ' STATEMENTS«

THE F I L L OPERATION IS IN IT IA T E D AT THE TIME THE

SIMULATION IS REQUESTED* BUT PRIOR TO ANY OPERATIONS

SPECIFIED BY THE HOUSEKEEPING OR CONTROL SEQUENCE

STATEMENTS.

THE DATA VALUES WHICH ARE USED TO I N I T I A L I Z E THE

MEMORY ARE READ FROM THE MS INF DATA CONTROL BLOCK C DCB) =

I T IS THE RESPONSIBIL ITY OF THE DESIGNER TO ENSURE THAT

MSINF IS PROPERLY ASSIGNED V IA A SYSTEM ASSIGNMENT CONTROL

STATEMENT C SEE SECTION A6) .

THE DATA RECORDS READ THROUGH THE M S l N F DCB ARE QUITE

FREE-FORMATo A STANDARD 80-CHARACTER RECORD IS READ?.. ANY

EXCESS CHARACTERS ARE IGNORED. DATA VALUES MAY BE WRITTEN

IN EITHER HEXIOECIMAL OR DECIMAL FORMAT.

TO SPECIFY THE FORMAT TO BE USED9 A SINGLE LETTER IS

PLACED IN COLUMN I OF THE DATA RECORD* TO SPECIFY A

HEXIDECIMAL INPUT, THE CHARACTER "X' IS USED? TO SPECIFY A

DECIMAL INPUT, THE CHARACTER 'T" IS USED. (' I " IMPLIES
BASE TEN. ' D ' FOR DECIMAL IS NOT USED SINCE THE

HEXIDEC l MAL SYSTEM USES " D ' AS A VALID .D I G I T *) ONCE AI
DATA FORMAT %AS BEEN S P E C IF IE D , I T THEN APPLIES TO ALL

DATA VALUES ON THE CURRENT RECORD. THE FORMAT WILL REMAIN

IN EFFECT OVER SUBSEQUENT RECORDS UNTIL EX PL IC ITLY

CHANGED.

I F NO FORMAT IS SPECIF IED ON THE FIRST DATA RECORD,

THE. HEXIDECIMAL FORMAT IS ASSUMED BY DEFAULT.

ALL DATA VALUES ARE TERMINATED WHEN EITHER A SPACE OR

A BLANK I S ENCOUNTERED, OR WHEN THE END OF THE RECORD IS

REACHED. ALL BLANKS PROCEEDING A DATA VALUE ARE IGNORED.

Ii

75

A COMMA IMMEDIATELY FOLLOWING THE LAST DATA VALUE ON A

RECORD INDICATES THAT ANOTHER VALUE IS TO BE OBTAINED FROM

THAT RECORD. SINCE NO VALUE IS EXPLIC ITLY G IVEN, A ZERO

' WILL BE ASSUMED. FOR EXAMPLE, THE DATA RECORDS

I , 2 , 3 , 4 ,

CONTAINS THE 5 DATA VALUES® ! , 2 , 3 , 4 , AND 0$ I N THAT ORDER.

CONSECUTIVE COMMAS, WITH OR WITHOUT INTERVENING

BLANKS, RESULT IN THE GENERATION OF ZEROS. FOR EXAMPLE,

THE RECORDS

CONTAINS THE DATA VALUES: I , 2 , 0 , 0 , 0 , 0 , 3 , AND O9 IN THIS

ORDER®
I F AN EN D-OF-F ILE IS ENCOUNTERED ON THE MSINF DCB

PRIOR TO COMPLETION OF THE I N I T I A L I Z A T I O N , ZEROS ARE

GENERATED AS THE I N I T I A L VALUES UNTIL ALL REMAINING MEMORY
LOCATIONS ARE F I L L E D , ' THIS PROVIDES A CONVENIENT MEANS TO -

SET LARGE BLOCKS OF MEMORY TO ZERO.

ANY I N I T I A L VALUE WHICH IS TOO LARGE TO BE. CONTAINED .

WITHIN THE MEMORY WORDSIZE C AS DEFINED IN A "RAM" OR

'ROM' STATEMENT) WILL HAVE HIGH ORDER,BITS TRUNCATED SO

THAT THE RESULTING VALUE WILL F I T WITHIN THE MEMORY

WOROSIZE®

76

EXAMPLES OF VALID ' F I L L * STATEMENTS I

COLUMN .

678

F I L L MEMl C O9 IOO),, C 109«, 1.09)

F I L L MEM2 (IO O 9I Z O) 9 (I l O 9 115)

ASo 3 CONTROL SEQUENCE STATEMENTS

CONTROL. SEQUENCE STATEMENT'S ARE USED TO DESCRIBE THE

IN D IV ID U AL MICRO-OPERATIONS WHICH ARE INVOLVED DURING THE

OPERATION OF A D IG IT A L SYSTEM= CONTROL SEQUENCE

STATEMENTS MAY BE GROUPED AS FOLLOWS:

1) TRANSFER STATEMENTS= THESE STATEMENTS SPECIFY

HOW DATA IS TO BE MANIPULATED AND TRANSFERED

FROM ONE HARDWARE ELEMENT TO ANOTHER® TRANSFER

STATEMENTS ARE DESCRIBED IN SECTION AS.3.4.

2) BRANCH STATEMENTS® THESE STATEMENTS' ARE USED TO

MODIFY. THE ORDER IN WHICH THE TRANSFER

STATEMENTS ARE EXECUTED® BRANCH STATEMENTS ARE

DESCRIBED IN SECTION AS®3®5®

3) 'H A L T * STATEMENT® THE "HALT* STATEMENT IS USED

TO TERMINATE OPERATION OF A D IG ITA L SYSTEM® THE

"HALT" STATEMENT IS DESCRIBED IN SECTION A S . 3 . 6 .

77

ANY CONTROL SEQUENCE STATEMENT MAY HAVE A LABEL! ONLY

THOSE STATEMENTS WHICH ARE TARGETS OF,BRANCH STATEMENTS

ARE REQUIRED TO HAVE A LABEL.

THE OPERATIONS OF COMPRESSION AND REDUCTION, AND THE

BIT. SELECTION NOTATION PROVIDE CONVENIENT MEANS OF

SPECIFYING USEFUL OPERATIONS. THESE OPERATIONS AND

NOTATION WILL NOW BE DEFINED.

A S . 3 . I COMPRESSION

THE APPLICATION OF COMPRESSION PROVIDES A MEANS OF

SELECTING ONLY CERTAIN BITS LOCATIONS FROM A M U LT IPLE-B IT

ELEMENT. THESE LOCATIONS WILL THEN BE USED AS DATA

SOURCES OR DESTINATIONS IN A TRANSFER STATEMENT. (SEE

SECTION A S . 3 . 4 FOR USAGE OF COMPRESSION IN A TRANFER

STATEMENT.)

A COMPRESSION IS REQUESTED BY THE FOLLOWING NOTATION!

(CONSTANT) / <NAME>

WHERE (CONSTANT) IS ANY CONSTANT! GENERATED BY A CONSTANT

GENERATOR C $A, $W, SE, OR $ECD >. A

LENGTH MAY 'BE SPECIFIED IN (CONSTANT).

I F SQ9 THEN THE LENGTH MUST SPECIFY

EXACTLY THE SAME NUMBER OF B ITS AS THERE

ARE I N THE ELEMENT BEING COMPRESSED. I F

i

78
NO LENGTH I S SPECIF IED IN <CONSTANT>$

THEN THE LENGTH OF THE ELEMENT WILL BE

USED AS THE I M P L I C I T LENGTH,

<NA.ME> IS THE NAME OF THE M U LT IP L E -B IT ELEMENT

BEING COMPRESSED,

THE COMPRESSION OPERATION I S SIMPLE, I F (CONSTANT)

IS WRITTEN AS A BINARY STRING, THEN, FOR EVERY "I" IN THE \

S IR IN G , THE CORRESPONDING B I T LOCATION IN <NAME> IS

SELECTED, THOSE B IT POSITIONS IN <NA.ME> WHICH CORRESPOND

TO O'S IN THE CONSTANT ARE IGNORED, WHAT IS DONE TO.THE

B IT POSITIONS THUS SELECTED DEPENDS ON THE USAGE OF THE

COMPRESSION OPERATOR IN A TRANSFER STATEMENT,

AS AN EXAMPLE OF COMPRESSION, ASSUME " A * TO BE A

1 0 - B I T REGISTER, THEN THE COMPRESSION

S W (5.) / A

SELECTS THE LAST 5 B IT POSITIONS OF "A". THE COMPRESSION

$ AC3) / A

SELECTS THE FIRST 3 B IT POSITIONS OF / A " , THE COMPRESSION

SECOC 6 8 2 , 1 0 .) / A
•" ' ■ '<■

SELECTS EVERY OTHER B I T POSITION OF " A * , BEGINNING WITH

THE MOST S IG NIF IC AN T B IT OF
MULTIPLE COMPRESSIONS ARE LEGAL, THEY HAVE THE FORMS

"

79

(CONSTANT) Z. (CONSTANT) / o «„ / (NAME)

IN SUCH A CASE, COMPRESSION PROCEEDS FROM RIGHT TO LEFTo

EACH CONSTANT MUST SPECIFY NO MORE- B ITS THAN REMAIN AFTER

THE COMPRESSION TO IT S RIGHT HAS TAKEN PLACEo FOR

EXAMPLE* I F " A " I S A I O - B l T REGISTER* THEN - ■ ' -

$E <3) / $ECOC 2 4 8 * 1 0) / A
'

;

SPECIFIES BITS 4» 5$ AND 6 OR "A". '

SPECIAL CONSIDERATIONS MUST BE GIVEN TO THE

COMPRESSION OF A BUS* I F THE BUS CONTAINS NO MORE THAN 32

B I T S , THEN ANY OF THE FOUR CONSTANTS GENERATORS M A Y BE

USED TO COMPRESS THE BUS= IF THE BUS CONTAINS MORE THAN

32 B IT S , THEN ONLY THE $A AND $W CONSTANTS GENERATORS-MAY

BE USED TO COMPRESS THE BUS, AND AN E X P L IC IT LENGTH MUST

NOT BE GIVEN IN THE CONSTANT= I F A LENGTH IS GIVEN IN

SUCH. A CASE, AN ERROR WILL RESULT =

A5*3=2 BIT SELECTION

. B IT SELECTION IS A NOTATION USED TO SELECT A SINGLE

BIT POSITION FROM A M U LT IP L E -B IT HARDWARE ELEMENT= THE

NOTATION USED I S i

(NAME) C (B I T))

80
WHERE <NAHE> IS THE NAME OF THE ELEMENT«=

<B IT> SPECIFIES THE B I T POSITION TO BE SELECTED.

< B IT > MAY HAVE A VALUE OF FROM 0 TO N-l,
WHERE N IS THE NUMBER OF B ITS IN <NAME>.

WHAT IS DONE WITH THIS B I T POSITION DEPENDS UPON ITS

USAGE IN A TRANSFER OR BRANCH STATEMENT«

FOR EXAMPLES OF VALID B IT SELECTIONS? ASSURE THAT "B"

IS A 1 0 - B I T ELEMENT, THEN:

B (O) SELECTS THE MOST S IG NIF IC AN T B IT OF * 8 %

BC9) SELECTS THE LEAST SIGNIF ICANT B IT OF " B %

B (8) SELECTS THE NEXT TO LEAST SIGNIFICANT

B IT OF " 8 " .

ASo3 , 3 REDUCTION

THE REDUCTION OPERATOR GENERATES A SINGLE B IT RESULT

from a MULTIPLE B IT HARDWARE ELEMENT, THE REDUCTION!

OPERATOR IS INVOLKED AS SHOWN BELOW:

<GP> I <NAME>

WHERE <0P> IS ONE OF THE BOOLEAN OPERATORS 5 $AND, $0R$

$NND, $NORs SXORc

<NAME> IS THE NAME O F A M ULTIPLE-B IT ELEMENT,

81

THE REDUCTION OPERATION I S A SHORTHAND NOTATION FOR

THE EXPRESSION?

(H C 0) < 0 P > (< ,e o (H (N - 3)< 0 P > C H (N ~ 2)< 0 P > H C N - l)))

WHERE, H IS A MULTIPLE B IT ELEMENT THAT IS N BITS LONGo

- I

THE OPERATOR <0P> IS ALWAYS APPLIED IN A

RIGHT-TO-LEFT MANNER ACROSS ALL B ITS OF THE ELEMENTo

REDUCTION MAY BE USED ONLY WITHIN BRANCH STATEMENTS*

ASo 3o4 TRANSFER STATEMENTS

A TRANSFER STATEMENT SPECIF IES DATA MOVEMENT C WITH

POSSIBLE DATA MANIPULATION) ALONG A DATA PATH* THE DATA

PATH MUST HAVE BEEN DEFINED PREVIOUSLY V IA A "CONNECT" OR

"BUS" STATEMENT* EVERY TRANSFER SPECIFIES A DATA SOURCE

AND A DATA DESTINATION* EACH TRANSFER MAY BE WRITTEN AS:

{D E ST IN A T IO N) < <SOURCE>

WHERE {D E S T IN A T IO N) DENOTES THE HARDWARE ELEMENTS

WHICH ARE TO REGIEVE THE DATA

VALUE SPECIF IED BY (SOURCE)*

(SOURCE) DESIGNATES THE DATA ORIGIM9 AND

MAY INCLUDE OPERATIONS ON THAT

DATA*

82
< IS THE TRANSFER OPERATOR«,

TWO OR MORE TRANSFERS MAY BE EXECUTED

'SIMULTANEOUSLY' BY WRITING THEM ON THE SAME SOSS SOURCE

RECORDS EACH TRANSFER MUST BE SEPARATED FROM THE OTHERS BY

SEMICOLONS. SUCH. A SET OF TRANSFERS I S CALL A COMPOUND
TRANSFER. A COMPOUND TRANSFER MAY EXTEND OVER

CONTINUATION L IN E S , I F NECESSARY.

A.TRANSFER MUST TAKE PLACE ALONG A DATA PATH. I F THE

PATH IS A DIRECTLY-CONNECTED PATH (DEFINED V IA A

'CONNECT' STATEMENT) THEN THE TRANSFER STATEMENT MUST

EXPLIC ITLY SPECIFY SOURCE ELEMENTCS)® POSSIBLE DATA

OPERATIONS, AND THE DESTINATION ELEMENTS INTO WHICH THE

DATA VALUE IS TO BE PLACED. EACH DIRECTLY-CONNECTED

TRANSFER DENOTES A COMPLETE TRANSFER.

I F THE TRANSFER IS ALONG A BUSED DATA PATH9 THEN A

MINIMUM OF TWO TRANSFERS ARE NECESSARY TO SPECIFY THE

TOTAL TRANSFER. C FOR EXAmPLE9 ONE TRANSFER LOADS A BUS

FROM A REGISTER? THE OTHER TAKES DATA FROM THAT BUS9 AND

DEPOSITS I T INTO A REGISTER.) THUS9 A COMPOUND TRANSFER

IS ALWAYS REQUIRED WHEN DEALING WITH BUSED TRANSFERS.

I T TS LEGAL TO COMBINE BUSED TRANSFERS WITH NON-BUSED

TRANSFERS IN A SINGLE COMPOUND TRANSFER STATEMENTS

PROVIDED THERE IS NO CONFLICT OF HARDWARE RESOURCES.

THERE ARE NO T IMING CONSIDERATIONS WITHIN SDSSS EACH

COMPOUND TRANSFER WILL CONSUME AS MUCH "TIME* AS NECESSARY
I

TO COMPLETE THE ENTIRE. SET OF TRANSFERS. DURING THIS

T IM E 9 ALL BUSES WILL MAINTAIN THEIR ASSIGNED VALUES. NOTE

THAT THE BUS WILL NOT RETAIN ITS ASSIGNED VALUE AFTER ALL

THE TRANSFERS HAVE BEEN COMPLETED. ^

83.
THE ' T I M E ' REQUIRED TO COMPLETE EACH COMPOUND

TRANFSER STATEMENT IS THE TIME REQUIRED BY THE 'SLOWEST"

SINGLE TRANSFER WITHIN THE COMPOUND TRANSFER ® THE |

FOLLOWING CONTROL SEQUENCE STATEMENT WILL NOT BE IN IT IA T E D

UNTIL THE CURRENT STATEMENT IS COMPLETED. I T IS NOT

POSSIBLE TO I N I T I A T E A TRANSFER (FOR EXAMPLE, AN EXTENDED

PRECISION FLOATING POINT D IV IS IO N) AND PICK UP THE

RESULTS AT SOME LATER T IM E .

THERE I S NO CONFLICT BETWEEN TWO OR MORE TRANSFERS

WITHIN A SINGLE COMPOUND TRANSFER WHEN THEY ALL REFER TO

THE SAME ELEMENT AS THEIR DATA SOURCE9 AND ONE TRANSFER

REFERS TO THE SAME ELEMENT AS I T S DATA DESTINATION. EACH

TRANSFER WILL USE THE VALUE FOUND IN THE ELEMENT AT THE .

I N I T I A T I O N OF THE COMPOUND TRANSFER. ■ THE ELEMENT WILL NOT

HAVE ITS VALUE CHANGED UNTIL THE RESULTS HAVE BEEN

COMPUTED FOR ALL THE OTHER TRANSFERS.

THE FORMS ALLOWED FOR DIRECTLY CONNECTED AND BUSED

TRANSFERS DIFFER SOMEWHAT. EACH WILL BE DESCRIBED BELOW.

A S . 3 . 4 . 1 DIRECTLY CONNECTED TRANSFERS

A TRANSFER ALONG A DIRECTLY CONNECTED DATA PATH HAS

THE GENERAL FORM:

D E S T I N A T I O N) < <SOURCE>

WHERE (D E S T IN A T IO N) SPECIF IES THOSE HARDWARE ELEMENTS

84
WHICH ARE TO RECIEVE THE B I T STRING

GENERATED BY <S0URCE>o .

<SOURCE> SPECIF IES THE HARDWARE ELEMENTS

WHICH CONTAIN THE DATA VALUES TO BE

TRANSFEREDs AND ANY OPERATIONS TO BE
PERFORMED UPON THOSE VALUES.

THE QUANTITY (D E S T IN A T IO N) MAY HAVE ANY OF THE

FOLLOWING FORMS!

|<C0MPRESSIQN^

!(REGISTERS

(L IG H T S)

< (SCALAR) >

((REGISTER >1

(L IG H T S)

>< (B I T))

ft(COMPRESSION)3
(REGISTER)

(L IG H T S)

(SCALAR)

(REGISTER)

(L IG H T S)

b C (B I T))

WHERE (REGISTER) IS THE NAME OF A REGISTER*

(L IG H T S) IS THE NAME OF A SET OF LIGHTS*

(COMPRESSION) IS A VALID COMPRESSION OPERATION ON

A REGISTER OR LIGHTS* WHEN A ‘

COMPRESSION IS USED A DESTINATIONS I T

MERELY SPECIF IES THOSE B ITS WHICH ARE

TO ACCEPT NEW DATA VALUES, ANY

REMAINING B ITS IN THE DESTINATION

85
ARE NOT MODIFIED*

NOTES CURRENT IMPLEMENTATION OF SOSS

PERMITS ONLY SINGLE COMPRESSIONS IN DATA .

DESTINATIONS. MULTIPLE COMPRESSIONS ARE NOT

V A L ID . I

< B IT > IS A B IT SELECTION ON THE LIGHTS

OR REGISTER.

<SCALAR> IS THE NAME OF A SCALAR ELEMENT.

THE COMMA C ,) ABOVE INDICATES CONCATENATION. FOR

EXAMPLE, TWO REGISTERS MAY BE CONCATENATED TOGETHER TO

FORM A SINGLE DESTINATION. EACH COMPONENT IN A ' I
CONCATENATED DESTINATION IS TREATED INDEPENDENTLY OF THE

OTHER. THAT I S 9 ANY ELEMENT ON THE LEFT-HAND SIDE OF- THE

SPECIFICATIONS ABOVE MAY BE CONCATENATED WITH ANY ELEMENT

ON THE RIGHT-HAND S ID E .

GIVEN T he FOLLOWING SYSTEM D E F IN IT IO N STATEMENTS?

REGISTER A (I O) 9 8 (5)

SCALAR L

LIGHTS LGS (3)

THEN THE FOLLOWING ARE VALID DESTINATIONS5

86
A SPECIF IES IO B I T DESTINATION

L I .
AeB 15

$ W (3) / A , 8 8

L , $ W (3 , 5) / B 4
LGS9L 4

A DIRECTLY CONNECTED TRANSFER MAY HAVE A DATA SOURCE

GIVEN BY ONE OF THE FOUR FORMS GIVEN I N FIGURE A3o NOTE

THAT TERM DEFIN IT IONS APPLY TO ALL FOUR FORMS.

t'

Forni I

$N0T

(REGISTER >■(COMPRESSION > { ■ ?
J [(SWITCHES") J

(SCALAR)

(CONSTANT)-
(REGISTER)
(SWITCHES} ((B I T >)

r

$NOT

[(COMPRESSION)] (REGISTER}
(SWITCHES}

<
(SCALAR)

(CONSTANT)
(<REGISTER>1
V y ((BIT))(SWITCHES)

Form 2

RR

((#S> ■ , (BIT-IN)

(<#R>)

Y ""(REGISTER)! (REGISTER)
(SWITCHES) (SWITCHES)

> i < CONSTANT>
> > ?

(CONSTANT)
J _ C SCALAR > y (SCALAR)

.. FIGURE A3
VALID SOURCE SYNTAX FOR DIRECTLY-CONNECTED' DATA TRANSFERS

Form'3

COMPRESSION)
(REGISTER'))
(SWITCHES)!

V$NOT
(SCALAR)

(CONSTANT)
(REGISTER) I
(SWITCHES) (< B I T >)

^ sand1

$NND
^$OR >

$NOR
$XOR

[(COMPRESSION) (REGISTER)
(SWITCHES)

L$NOT
(SCALAR)

(CONSTANT)
f (REGISTER)
< f ((BIT))(SWITCHES)

' I ; , /

' Form 4

i$N0Tj B(COMPRESSION) (FUNCTION? (<ARG> [, <ARG> , ..,I)

FIGURE A3 (Continued)

89

TABLE A l

D E F IN IT IO N OF TERMS USED I N FIGURE A3

$ NOT SPECIFIES A B I T - B Y - B I T LOGICAL NEGATION

OF THE SOURCE B ITS AFTER ANY B IT

SELECTION OR COMPRESSION HAS TAKEN

PLACE.

<COMPRESSXON> I S A VALID COMPRESSION OF A REGISTER

OR SET OF SWITCHES. I
IS THE NAME OF A REGISTER.

IS THE NAME OF A SCALAR.

IS A CONSTANT GENERATED BY A CONSTANT

g e n e r a t o r .

SPECIFIES A DESIRED B IT IN A REGISTER

OR SWITCHES.

SPECIFIES THE NUMBER OF SINGLE B IT

SHIFTS TO BE PERFORMED. THE DIRECTION

OF THE SHIFT I S DETERMINED BY THE

OPERATOR $SL C FOR LEFT SHIFT) OR

$SR C FORR RIGHT SHIFT) .

SPECIFIES THE VALUE OF THE B IT

WHICH WILL BE FED INTO THE VACATED

POSITION FOLLOWING A S H IF T . THE

VALUE OF < B I T - N > MAY BE EITHER O

OR I .

(REGISTER)

(SCALAR)

(CONSTANT)

(B I T)

<#S>

(B I T - I N)

90

<#R>

<FUNCTION>

<ARG>

TABLE A l C CONTINUED)

SPECIFIES THE NUMBER OF SINGLE BIT

ROTATIONS TO BE PERFORMED UPON

THE DATA SOURCE, THE DIRECTION OF

THE ROTATION IS GIVEN BY #RL C FOR

ROTATE LEFT) OR #RR C FOR ROTATE

RIGHT) „

IS THE NAME OF A FUNCTION,

IS THE NAME OF AN ARGUMENT TO THE

FUNCTION, I T MAY BE THE NAME OF A

REGISTER s SWITCHES, OR SCALAR, AT

LEAST ONE ARGUMENT MUST BE GIVEN,

i

91
FORM I IS USED TO MOVE DATA FROM ONE HARDWARE ELEMENT

TO ANOTHER WITH NO OPERATIONS OTHER THAN NEGAHONOR

COMPRESSION. EACH OPERAND IN A CONCATENATED SOURCE IS

TREATED INDEPENDENTLY OF THE OTHER IN FORMING THE SOURCE

B IT STRING.

FORM 2 IS USED TO PROVIDE SHIFTING AND ROTATION OF A

DATA STRING. I F A REGISTER ® SWITCHES* OR CONSTANT IS

SPEC IF IED * THEN ALL BITS OF THE ELEMENT ARE USED IN THE

SHFITING OR ROTATION.

FORM 3 APPLIES A BOOLEAN OPERATOR TO THE TWO B IT

STRINGS S P E C IF IE D . THE TWO OPERANDS MUST HAVE EQUAL

LENGTHS EXCEPT FOR THE SPECIAL CASE IN WHICH ONE OPERAND

IS EXACTLY ONE B I T LONG. IN THIS CASE* THE SINGLE BIT IS

EXPANDED TO THE SIZE OF THE M U LT IPLE-B IT ELEMENT PRIOR TO

THE BOOLEAN OPERATOR BEING A P PL IED . NEGATION* I F

SPECIF IED* IS APPLIED PRIOR TO THE BOOLEAN OPERATION.

FORM 4 IS USED TO REFERENCE A LOGICAL FUNCTION. AS

MANY ARGUMENTS AS NEEDED MAY BE SUPPLIED IN A FUNCTION.

I T IS IMPOSSIBLE TO MODIFY THE ARGUMENTS OF A

FUNCTION WITHIN AN EXTERNAL FUNCTION SUBPROGRAM. ONLY THE

DESTINATION ELEMENT CS) WILL BE MODIFIED BY A FUNCTION

REFERNCE.

EACH DIRECT TRANSFER MUST BE MADE ALONG A DATA PATH

DEFINED BY A 'CONNECT' STATEMENT. IN ORDER TO DETERMINE

IF A TRANSFER CAN BE MADE, THE FOLLOWING PROCEDURE MAY BE

FOLLOWED#

I) IF THE TRANSFER CONTAINS A FUNCTION

REFERENCE* THEN EACH ARGUMENT MUST BE

CONNECTED TO THE FUNCTION* AND THE FUNCTION

NAME MUST BE CONNECTED TO THE DESTINATION(S)

ELEMENTS.

92

2) FOR ANY OTHER TRANSFERS*, REMOVE ALL

COMPRESSIONS, B IT SELECTIONS, NEGATIONS, AND

B T T - IN SPECIF ICATIO NSS REPLACE ALL CONSTANTS

BY THE CHARACTER ' 0 % THE REMAINING DATA
SOURCE AND DESTINATION SPECIFICATIONS MUST

APPEAR TOGETHER IN A "CONNECT * DATA PATH IN

ORDER FOR THE TRANSFER TO BE V A L ID .

FOR EXAMPLE, GIVEN THE TRANSFERS

$ t i (3 , 5) / 8 , C (1 0) < $A(10)/D SAND SNOT 8

APPLYING STEPS I AND 2 ABOVE RESULTS IN THE REDUCTION OF

THIS TRANSFER TO ONE OF THE FORMS

B 9C < D SAND B

THUS, THE ORIGINAL TRANSFER REQUIRES THE "CONNECT" DATA
PATHS

CONNECT C D SAND BgB9C)

RECALL THAT THE DATA SOURCE IN A "CONNECT" DATA PATH I S ON

THE LEFT OF THE " I " , AND THE DESTINATION J S TO THE RIGHTs

THERE ARE TWO SPECIAL DIRECTLY CONNECTED TRANSFERS

WHICH ARE USED TO REFERENCE A MEMORY. THEY ARES

I<MEMORY> $DCD <MARREG> < <MORREG>

<MORREG> < <MEMORY> SDCD <MARREG>

I

93

THE FORMER TRANSFER DEPOSITS THE QUANTITY IN THE

<MDRREG> REGISTER INTO THE MEMORY AT THE LOCATION GIVEN 8Y

THE CONTENTS Of THE <MARREG> REGISTERS THE LATTER,

TRANSFER FETCHES THE CONTENTS OF MEMORY LOCATION GIVEN BY

THE CONTENTS OF THE <MARREG> REGISTER AND DEPOSITS I T INTO

THE <MDRREG> REGISTER. OF COURSE, A MEMORY DEPOSIT IS

ILLEGAL FOR A READ-ONLY MEMORY.

THESE TRANSFERS ARE ALONG A DIRECTLY-CONNECTED DATA

PATH WHICH WAS IMPLICITLY DEFINED BY A "RAM" OR "ROM'

STATEMENT. THE.NAMES OF <MARREG> AND <MDRREG> MUST BE THE

SAME AS WERE ORIGINALLY DESIGNATED ON THE "RAM "/"ROM"
STATEMENT. USE OF ANY OTHER REGISTER, OR ANY OTHER

ELEMENT NAME IS I L L E G A L .

THESE TWO TRANSFERS ARE THE ONLY CONTROL SEQUENCE

STATEMENTS IN WHICH THE NAME OF A MEMORY MAY APPEAR, AND

THE ONLY STATEMENTS I N WHICH THE MEMORY REFERENCE OPERATOR

"$DCD' MAY BE USED.

. EVERY TRANSFER STATEMENT ALONG A DIRECTLY CONNECTED

DATA PATH MUST SPECIFY EXACTLY THE SAME NUMBER OF BITS IN
THE DATA DESTINATION AS I T DOES. IN THE DATA SOURCE. ALL

COMPRESSIONS, CONCATENATIONS, AND OPERATIONS "ON THE DATA

ARE PERFORMED PRIOR TO THE COMPARISON OF THE LENGTHS.

NOTE THAT THE COMPRESSION OPERATION MAY BE USED TO MATCH

THE SIZES OF THE SOURCE AND DESTINATION.

THE CONTENTS OF HARDWARE ELEMENTS USED AS DATA

SOURCES ARE NOT MODIFIED UNLESS THAT ELEMENT IS ALSO USED

AS THE DATA DESTINATION. I F AN ELEMENT USED AS A

DESTINATION HAS ONLY A PORTION OF ITS BITS SELECTED, THEN

ONLY THOSE BITS WILL BE MODIFIED.

94

ANY ELEMENT MAY BE NEGATED IN A TRANSFER WITHOUT

HAVING TO SPECIFY THE NEGATION HARDWARE IN A DATA PATH
DEFINIT ION= THIS IS BECAUSE THE NEGATION OF A B I T STRING

IS ALMOST ALWAYS AVAILABLE FOLLOWING MOST DIGITAL
OPERATIONS= THUSs IT I S NOT E X P L IC IT L Y DECLARED=

A SINGLE HARDWARE ELEMENT MAY BE CONCATENATED WITH
ITSELF WHEN USED AS A DATA SOURCE = I T MAY NOT BE

CONCATENNATED WITH ITSELF WHEN USED AS A DATA DESTINATION=

THE FOLLOWING ARE EXAMPLES OF VALID DIRECTLY

CONNECTED TRANSFERS= NOTE THAT ALL HARDWAE ELEMENTS AND

DATA PATHS ARE DEFINED IN THIS EXAMPLE=

REGISTER A (I O) 9 B (S) 8 C (I O)

SCALAR L

CONNECT (A IB)» (A 9B lC) s ($ S L (2) A | A) •

(A SAND B I A) 9 (A $0R L I B)

THE FOLLOWING TRANSFERS ARE VALID?

8 < SW(S) / A

6 (4) < A (O)

C < $AC5) Z A 9B

SW(S)ZC < SA (S) Z A SAND SHOT B I A < $ S L (2) A

THE FOLLOWING TRANSFERS ARE ILLEGAL=

A < B

A < S S L (I) A

B (I) < L I

95
IN THESE THREE CASES, THERE IS NO DATA PATH ALONG

WHICH THE TRANSFER CAN BE MADEo

AS.3.4.2 BUSED TRANSFERS

A BUSED TRANSFER IS A TRANSFER WHICH U T IL IZ E S A BUS

ALONG AT LEAST ONE PORTION OF IT S DATA PATHo A BUSED

TRANSFER MAY BE THOUGHT OF AS CONSISTING OF A SERIES OF

MICRO-TRANFERS, ALL OF WHICH TAKE PLACE SIMULTANEOUSLY*

SOSS REQUIRES THE COMPLETELY-BUSED STRUCTURE FOR ALL

BUSED TANSFERSi THAT I S 9 EACH MICRO-TRANSFER MUST SPECIiFY

A BUS C OR A CONCATENATED PAIR OF BUSES) FOR EITHER ITS

DATA SOURCE, OR DATA DESTINATION? OR BOTH* THUS s EACH

MICRO-TRANSFER EITHER PLACES DATA ONTO A BUS, OR EXTRACTS

DATA FROM A BUS.
THE GENERAL FORM OF A BUSED MICRO-TRANSFER IS THE

SAME AS FOR A DIRECTLY-CONNECTED TRANSFERS

D E S T I N A T I O N) < <SOURCE>

THE QUANTITIES ALLOWED FOR D E S T I N A T I O N) ARE

IDENTICAL TO THOSE ALLOWED FOR THE DATA DESTINATION IN A

DIRECTLY CONNECTED TRANSFER* IN ADDITION, D E S T I N A T I O N)

MAY ALSO BES

96
<BUS>

<0P>

^<0P> (<I0>)
<BUS>e <b u s >

(FUNCTION)

WHERE (FUNCTION) I S THE NAME OF A LOGICAL FUNCTION. THIS

IMPLIES THAT SOME ARGUMENT, LOCATED ON A.

BUS, IS BEING SUPPLIED TO THE FUNCTION

BY THIS TRANSFER.

. <OP> IS A BOOLEAN OPERATORS SAND9 $NND, SOR9

$ NOR p SXOR6 THIS IMPLIES THAT SOME

OPERAND, LOCATED ON A BUS, IS BEING

SUPPLIED TO THE OPERATOR AS INPUT DATA,

(B U S) IS THE NAME OF A DATA BUS. TH IS SIMPLY

MEANS THAT DATA IS TO BE PLACED ONTO THE

BUS.

(I D) IS AN INTEGER I N THE RANGE OF I TO 2 5 5 ,

INCLUSIVE.: SHOULD MORE THAT ONE BOOLEAN

OPERATION OF A GIVEN TYPE C FOR EXAMPLE,

TWO 'A NO 'S) BE REQUIRED IN A SINGLE

COMPOUND TRANSFER STATEMENT® THIS (I D)

VALUE IS USED TO DISTINGUISH ONE

OPERATOR FROM THE OTHER. FOR EXAMPLE,

GIVEN THE TRANSFERS:

S A N O (I) (ft 8 $AND(2) (8? S A N D (I) < CS ■
SANDC2) < O

THEN THE RESULTS OBTAINED WILL BE!

97
ft $ AND C B SftND O

AN OPERATOR NAME APPEARING WITHOUT THE

< ID > TERM I S DIFFERENT FROM ALL

OPERATORS WITH THE < ID > TERM. THERE IS

NO P O S S IB IL IT Y OF CONFLICT BETWEEN BUSED

. BOOLEAN OPERATORS AND DIRECTLY CONNECTED

OPERATORS.

I N ft MICRO-TRANSFER THAT PLACED DATA ONTO A BUS» THE

SOURCE B IT STRING IS ALIGNED SO THAT ITS LEAST S IGNIFICANT

B IT IS PLACED INTO THE LEAST SIGNIF ICANT B I T OF THE BUS.

ANY EXCESS BITS IN THE SOURCE STRING THAT CAN NOT F I T ONTO

THE BUS ARE LOST. ANY EXCESS BITS ON THE BUS THAT ARE NOT

EXPLIC ITLY SET BY THE DATA STRING ARE AUTOMATICALLY SET TO

ZEROS. I T IS NOT POSSIBLE TO COMPRESS A BUS TO SELECT

WHCIH B IT POSITIONS ARE TO RECIEVE DATA VALUES. ALL B IT

POSITIONS AR THE RELIEVING BUS ARE USED IN THE TRANSFER.

THE QUANTITY < SOURCE) FOR A MICRO-TRANSFER MAY BE ANY

OF THE <SOURCE> SPECIF ICATIONS GIVEN BY FORM I AND FORM 2

C FIGURE A3) OF A DIRECTLY CONNECTED TRANSFER. IN

ADDIT ION , THE FOLLOWING ARE ALLOWED!

i

98

CCOMPRESSION)

<8US>

<FUNCTION>

[•$NOT

<BUS> C < 8 IT >)

<OP> [(< ID >)]
J

V
C <#S> $ < 8 I T - I N >)'I

V

r <8US> S <BUS>

I
RR

Y < <#R>)

<BUS>]

WHERE (COMPRESSION)

(FUNCTION)

(B U S)

(B I T)

<«FS>

(B I T - I N)

IS A VALID COMPRESSION OF THE BUS.
IF THE BUS CONTAINS MORE THAN 32 B I T S 9

THEN ONLY "$A" AND *$W" CONSTANTS MAY
BE USED IN A COMPRESSION OF THAT BUS.
(SEE SECTION A S . 3 . 1)

IS THE NAME OF A LOGICAL FUNCTION.

THIS IMPLIES THAT THE OUTPUT OF THE

FUNCTION HAS BEEN COMPUTED* AND IS , .

NOW AVAILABLE TO BE TRANSFERED TO SOME '

DESTINATION.

IS THE NAME OF A BUS.
I S A B IT SELECTION FROM THE BUS.

IS THE NUMBER OF SINGLE BIT SHIFTS TO

BE PERFORMED.

I S THE B IT TO BE FED INTO THE P O S IT IO N (S)

<#R>

99

VACATED BY A SHIFT=

I S THE NUMBER OF SINGLE B IT ROTATIONS

• TO BE PERFORMED =

<OP> IS THE NAME OF A BOOLEAN OPERATOR® AND

I S ONE QFS $ANO® $NND® $OR® $'NOR® SXOR =

THE USE OF A BOOLEAN OPERATOR AS A DATA

SOURCE MEANS THAT THE OPERATOR IS TO BE

APPLIED TO THE TWO ARGUMENTS ALREADY

SUPPLIED TO THE OPERATOR BY PREVIOUS

TRANSFERS WITHIN THIS COMPOUND TRANSFER

STATEMENT= THE RESULT OF THE OPERATOR IS

TO BE USED AS THE B-ATA SOURCE FOR THE

TRANSFER=

< ID > I S AN ID E N T IF IC A T IO N NUMBER IN THE RANGE OF

I TO 255, INCLUSIVE® WHICH SPECIF IES

WHICH BOOLEAN OPERATOR I S TO BE USED=

SHOULD TWO OR MORE BOOLEAN OPERATORS OF

THE SAME TYPE C FOR EXAMPLE , TWO -SOR^S)

BE REQUIRED IN ONE COMPOUND TRANSFERft
• STATEMENT® TH IS VALUE DISTINGUISHES ONE

. FROM ONE ANOTHER= SEE THE EXAMPLE IN THE

DISCUSSION OF DESTINATIONS FOR BUSED

TRANSFERS ABOVE=

IF A SHIFT OR ROTATION OF A BUS I S REQUESTED® THE

ENTIRE. BUS PARTICIPATES IN THE SHIFT OR ROTATION= BUSES

AND THE RESULTS FROM LOGICAL FUNCTIONS MAY BE COMPRESSED®

I F DESIRED® TO SELECT CERTAIN B IT POSITIONS FROM THE BUS

OR THE FUNCTION RESULT«

TO PERFORM A BOOLEAN OPERATION® EACH OF 2 OPERANDS

MUST BE PLACED ON SEPARATE BUSES= THE CONTENTS OF EACH

100
BUS ARE THEN TRANSFERED TO THE BOOLEAN OPERATOR, THE

RESULT OF1 THE BOOLEAN OPERATION (DENOTED BY. THE NAME OF

THE OPERATOR) IS THEN TRANSFEREO TO A THIRD BUS, THIS .

THIRD BUS MAY THEN BE TRANSFERED TO THE F INA L DESTINATION,

TO INVOKE A LOGICAL FUNCTION, EACH ARGUMENT MUST BE

PLACED ONTO A SEPARATE BUS, THE CONTENTS OF EACH OF THESE

BUSES MUST THEN BE TRANSFERED TO THE FUNCTION, THE RESULT

OF THE FUNCTION C DENOTED BY THE NAME OF THE FUNCTION

ITSELF) MUST NOW BE TRANSFERED TO AN OUTPUT BUS, THE '

CONTENTS OF THIS OUTPUT BUS MAY NOW BE TRANSFERED TO THE

FINAL DESTINATION

SINCE EACH MICRO-TRANSFER IS ONLY A SINGLE COMPONENT

OF AN OVERALL MACRO-TRANSFER, AT LEAST TWO MICRO-TRANSFERS

ARE NECESSARY TO PERFORM A MACRO-TRANSFER, EACH BUSED

TRANSFER MUST BE EXPRESSED AS A COMPOUND TRANSFER, ALL

MICRO-TRANSFERS I N ONE COMPOUND TRANSFER STATEMENT ARE

ASSUMED TO OCCUR SIMULTANEOUSLY,

THE FOLLOWING RESTRICTIONS MUST BE ADHERED TO WHEN
USING MICRO-TRANSFERS:

1) EVERY BUSED MICRO-TRANSFER MUST SPECIY A BUS AS

ITS DATA SOURCE, IT S DATA DESTINATION, OR BOTH,

2) THE SET OF MICRO-TRANSFERS WHICH COMPOSE A

MACRO-TRANSFER MUST BE WRITTEN IN THE COMPOUND

TRANSFER SUCH THAT, AS THE TRANSFERS ARE SCANNED

FROM LEFT TO RIGHT, EVERY BUS THAT IS USED AS A

DATA SOURCE HAS ALREADY BEEN ASSIGNED A VALUE BY

A PREVIOUS TRANSFER,

3) ANY ELEMENT MAY BE USED AS A DESTINATION IN ONLY

ONE MICRO-TRANSFER IN A COMPOUND STATEMENT, A

BUS MAY BE USED AS A DATA SOURCE ANY NUMBER OF

TIMES ONCE I T HAS BEEN ASSIGNED A VALUE,

101
4) A BUS WILL RETAIN WHATEVER VALUE IS PLACED UPON

THAT BUS FOR THE DURATION OF THE COMPOUND

TRANSFER, THAT VALUE I S LOST AT THE COMPLETION

OF THE COMPOUND TRANSFERS I T CAN NOT BE RETAINED

PAST THE SINGLE COMPOUND STATEMENT.
5) I F TWO BUSES ARE CONCATENNATED, THEIR TOTAL

LENGTH CAN NOT EXCEED 64 B I T S . A BUS MAY BE

CONCATENATED WITH ITSELF WHEN USED AS A DATA

SOURCES I T MAY NOT BE CONCATENATED WITH ITSELF

WHEN I T IS USED AS A DATA DESTINATION. ,

. 6) THE DATA SOURCE AND DESTINATION IN A SINGLE

MICRO-TRANSFER MAY NOT BOTH BE CONCATENATED

BUSES. ONLY THE SURGE, OR THE DESTINATION MAY
BE CONCATENATED, THE D E F IN IT IO N OF CONNECTIONS

TO AND FROM BUSES PROHIBIT SUCH CONCATENATIONS,

I T I S LEGAL TO COMBINE MICRO-TRANSFERS AND

O I RECTLY-CONECTED TRANSFERS IN THE SAME COMPOUND TRANSFER

STATEMENT.

THE FOLLOWING SEGMENT OF AN SDSS DESCRIPTION IS GIVEN

TO ILLUSTRATE VARIOUS BUSED TRANSFERS. THE DESCRIPTION IS

BASED UPON THE HARDWARE DIAGRAM SHOWN IN FIGURE A4.

102

REGISTER A (I O) , B (I O)

SCALAR L

BUS A B U S (I O) 9 C IN=A9 D 5 (OUT=CBUS , SANOp ADD 9 .

* SSL(I)CBUS)

BUS BBU SC 1 0) 9 (I n = B) s (Ou t =Cb u S9SANO5AO D) i
FUNCTION ADO(Z5 I l)

BUS C B U S C l l) B(Ou t = (L 9A) 5B) 5Ci n =BBUSsABUS9
* SANO9 ADD)

C

C TO MOVE THE CONTENTS OF A TO B

C

. ABUS < AS CBUS < ABUSS B < CBUS

C

C TO ADO A AND B TO GIVE RESULT INTO (L s A) eeso

C

ABUS < AS BBUS < Bs ADD < ABUSl ADD < BBUSS

*CBUS < ADDS L 9A < CBUS

C

C TO SHIFT A LEFT I B I T 9 FEED IN A " I " , AND PUT

C RESULT INTO A eeee

C

ABUS < AS CBUS < S S L (I 5 I) ABUSl A < CBUS

C i

C THE FOLLOWING IS AN INVALID SEQUENCE OF'

C MICRO-TRANSFERS ATTEMPTING TO "AND" A AND NOT7 B

C TOGETHER9 AND PLACE THE RESULT INTO Aje THE BUS

C "ABUS ' IS REFERENCED PRIOR TO BEING ASSIGNED A

C VALUE, I F THE 2ND AND 3RD TRANSFERS WERE

C EXCHANGED,, THE SEQUENCE WOULD BE CORRECT,

C)
BBUS < $NOT B I SAND < ABUSl ABUS < A l

103
• *$AND < BBUSJ CBUS < SANDj A < CBUSi

C
END . . .

FIGURE A4 .

HARDWARE DIAGRAM FOR BUSED TRANSFERS

104

EVERY BUSED MICRO-TRANSFER MAY SPECIFY AN OPERATION

ON THE DATA, THE OPERATION MUST HAVE BEEN SPECIFIED AS

LEGAL IN A 'B U S ' STATEMENT, C SEE SECTION A 5 . 1 * 8 , 2 AND
THE EXAMPLE ABOVE,)

EVERY BUSED MICRO-TRANSFER MUST TAKE PLACE ALONG A

DATA. PATH THAT WAS DEFINED VIA A 'B U S ' STATEMENT, Tffe

FOLLOWING PROCEDURE MAY BE USED TO DETERMINE I F A

MICRO-TRANSFER HAS A VALID DATA PATH FOR THE TRANSFERS

n REMOVE ALL COMPRESSIONS® B IT SELECTIONS®

NEGATIONS® AND S I T - I N SPECIF ICATIONS, REPLACE

ANY CONSTANTS WITH THE CHARACTER ' O ' ,

2) I F THE DATA DESTINATION I S A BUS® THEN THE DATA

SOURCE MUST BE SPECIFIED IN AN 'IN=' CONNECTION

FOR THAT BUS,

3> I F THE DATA SOURCE I S A BUS® THEN THE DATA

DESTINATION MUST BE SPECIFIED AS AN 'O U T = '

CONNECTION FOR THAT BUS,

A S , 3 , 5 BRANCH STATEMENTS

BRANCH STATEMENTS ARE USED TO MODIFY THE SEQUENCE OF

MACHINE OPERATIONS DURING THE SIMULATION OF A D IG ITA L

SYSTEM, A BRANCH STATEMENT MAY BE UNCONDITIONAL® MEANING

THE BRANCH WILL BE TAKEN® OR CONDITIONAL® MEANING THE

BRANCH I S DETERMINED BY VALUES WITHIN THE SYSTEM AT THE

TIME THE BRANCH STATEMENT IS ENCOUNTERED,

105
A BRANCH STATEMENT MAY HAVE A LABEL. ONLY THOSE

BRANCH STATEMENTS WHICH ARE A TARGET OF ANOTHER BRANCH

STATEMENT ARE REQUIRED TO BE LABELED. . I T I S NOT POSSIBLE

FOR A BRANCH STATEMENT TO CAUSE A BRANCH TO IT S E L F .

THERE ARE TWO FORMS OF BRANCH STATEMENTS AVAILABLE IN

SDSSo THEY WILL BE DESCRIBED BELOW*

A 5 * 3 o 5 o l UNCONDITIONAL BRANCH

THE UNCONDITIONAL BRANCH STATEMENT HAS THE FORMS .

> <LA8EL>

WHERE <LABEL> IS A VALID STATEMENT LABEL=
* ■ '

THE CONTROL SEQUENCE OPERATION WHICH IS PERFORMED

FOLLOWING THIS BRANCH STATEMENT IS THE ONE LABELED BY

<LABEL> o

IN ORDER TO BE ABLE TO EXECUTE THE SDSS STATEMENT

FOLLOWING THE UNCONDITIONAL BRANCH® THE NEXT STATEMENT.

MUST BE LABELED OR BE AN ' INTERRUPT* STATEMENT*

EXAMPLE OF A VALID UNCONDITIONAL BRANCH:

> 10

106

A S . 3 . 5 . 2 THREE-WAY CONDITIONAL BRANCH

THE THREE-WAY CONDITIONAL BRANCH ALLOWS TRANSFER OF

CONTROL TO ONE OF THREE POSSIBLE STATEMENTS. THE FORM OF

THIS BRANCH STATEMENT IS AS FOLLOWS!

WHERE <REG> IS THE NAME OF A REGISTER.

<SWS> IS THE NAME OF A SET OF SWITCHES.

(SCALAR) TS THE NAME OF A SCALAR,

<COMP> IS A SINGLE OR MULTIPLE COMPRESSION ,
OF THE REGISTER OR SWITCHES.

<RED> IS A REDUCTION OONE ON EITHER A

(SCALAR) > S (CONST) > < L D g <L2>9<L3>

C (B I T))

REGISTER, SWITCHES? OR ON THE
COMPRESSION OF A REGISTER OR SWITCHES:

(B I T) SPECIF IES A B I T SELECTION FROM THE

REGISTER OR SWITCHES.

(CONST) IS ANY VALID CONSTANT AS DEFINED IN

SECTION A4, ALL CONSTANTS GENERATED

BY THE CONSTANTS GENERATORS MUST HAVE

A LENGTH S P E C IF IE D .

107
<L1>

<L2>

<L3> SPECIFY VALID STATEMENT LABELS*

THE EXECUTION OF THE THREE-WAY BRANCH IS AS FOLLOWS S

THE VALUE OF THE EXPRESSION TO THE LEFT OF THE COLON IS

EVALUATED. THE RESULTING VALUE I S THEN COMPARED TO THE

<CONST>. CONTROL THEN PASSES TO THE STATEMENT. LABELED

<L1>» < L 2 > , OR <L3>» I F THE EXPRESSION RESULT IS LESS

THAN, EQUAL TO, OR GREATER THAN THE <CONST>.

THE CONTROL SEQUENCE STATEMENT FOLLOWING THE

THREE-WAY BRANCH MUST HAVE A LABEL, OR BE AN "INTERRUPT*

STATEMENT IN ORDER THAT THAT STATEMENT BE. ACCESSABLE.

EXAMPLES OF VALID THREE-WAY BRANCH STATEMENTS:

COLUMN

678

A : 10 00 > I t 2 , 2-

$AND / B : I > I O t 1 1 , 10

L : 0 > i t 2 , I

$ W (5) /C S $ W (5 , 5) > 1 0 0 , 1 0 4 , 107

A (6) S O > 20$ 3 0 , 34 |

A 5 . 3 . 6 HALT STATEMENT

108

THE 'H A LT" STATEMENT IS USED TO TERMINATE OPERATION

OF THE SYSTEM UNDER SIMULATION. THE "HALT" STATEMENT HAS

THE FORM:

HALT <TEXT>

WHERE. <TEXT> IS ANY CHARACTER STRING. WHEN THE "HALT"

STATEMENT IS ENCOUNTERED IN THE COURSE OF .

THE SIMULATION, THE MESSAGES

HALT AT L INE N N N N

IS PRINTED VIA THE MSLO DCS. N N N N IS THE L INE N U M B E R IN

WHICH THE "HALT" STATEMENT WAS ENCOUNTERED. I F <TEXT> IS

PRESENTs I T IS PRINTED FOLLOWING THE ABOVE M E S S A G E .
THE "HALT" STATEMENT M A Y HAVE A LABEL. !

A S .4 HOUSEKEEPING STATEMENTS

HOUSEKEEPING STATEMENTS ARE STATEMENTS WHICH

COMMUNICATE WITH THE COMPILER DURING COMPILATION^ OR

SPECIFY ACTIONS THAT ARE TO TAKE PLACE. THESE ACTIONS

ARE9 GENERALLY, NOT PART OF THE CONTROL SEQUENCE OR S Y S T E M
D E F IN IT IO N , AND ARE NOT TO BE CONSIDERED AS SUCH.

HOUSEKEEPING STATEMENTS MAY BE PLACED AT ANY LOCATION

FOLLOWING ALL SYSTEM D E F IN IT IO N STATEMENTS AND MEMORY

I N I T I A L I Z A T I O N (" F I L L ") STATEMENTS. A HOUSEKEEPING

109
STATEMENT WILL TERMINATE THE SYSTEM D E F IN IT IO N SECTION AND
THE MEMORY. I N I T I A L I Z A T I O N SECTION, XF EITHER I S CURRENTLY

IN PROGRESS=

HOUSEKEEPING STATEMENTS CONSIST OF THE FOLLOWING

STATEMENT TYPES!

PRINT - TO DISPLAY THE CONTENTS OF HARDWARE

ELEMENTS=

INTERRUPT - TO DEFINE THE BEGINNING OF AN INTERRUPT

ROUTINE= I

RETURN - TO RETURN FROM AN INTERRUPT ROUTINE TO THE

INTERRUPTED ROUTINE*

END . - TO INDICATE TO SOSS THAT THERE ARE NO M O R E
SYSTEM DESCRIPTION STATEMENTS TO READ*

EACH STATEMENT TYPE WILL BE DESCRIBED BELOW*

A 5 . 4 . 1 PRINT STATEMENT

THE 'P R I N T ' STATEMENT I S USED TO DISPLAY THE CURRENT

CONTENTS OF A REGISTER, SCALAR, SET OF L IG H TS , SET OF
SWITCHES, OR PORTIONS OF A M E M O R Y . VALUES MAY BE

DISPLAYED IN EITHER HEXIDECIMAL NOTATION OR D E C I M A L
(B A S E - 1 0) NOTATION. I F HEXIDECIMAL NOTATION IS CHOSEN,

EACH VALUE WILL BE PRINTED AS A 3 2 - B I T VALUE! A N Y EXCESS

HIGH-ORDER BITS NOT NEEDED BY THE VALUE WILL BE SET TO

n o
ZEROS= I F DECIMAL NOTATION IS USED, THE VALUE WILL BE

DISPLAYED AS A I O - O I G I T POSITIVE INTEGER® ANY HIGH-ORDER

ZEROS WILL BE SUPPRESSED®

THE DESIGNER HAS NO CONTROL OVER THE OUTPUT FORMAT,

EXCEPT FOR THE' CHOICE OF NOTATION* THE OUTPUT PRODUCED BY
THE ' P R I N T ' STATEMENT I S FORMATED TO F I T A STANDARD 72

CHARACTER WIDE TERMINAL®

EACH ' P R I N T ' STATEMENT WILL CAUSE THE MESSAGES

VALUES AT LINES NNNN

TO BE PRINTED PRIOR TO THE VALUES OF THE ELEMENTS DESIRED®

NNNN I S THE LINE NUMBER OF THE ' P R I N T ' STATEMENT■ITSELF®

ALL OUTPUT PRODUCED BY THE "PRINT® STATEMENT IS
WRITTEN THROUGH THE MSLO DCB*

THE 'P R I N T ' STATEMENT HAS THE FORMS

D
PRINT C

X

<ELEMENT>, <ELEMENT>, * * „

WHERE (D) INDICATES THAT DECIMAL NOTATION IS TO BE USED®

(X) INDICATES THAT HEXIOECIMAL NOTATION IS TO

BE USED, I

<ELEMENT> IS THE NAME OF AN ELEMENT WHOSE VALUE I S TO

BE DISPLAYED® <ELEMENT> MAY BE THE NAME OF

A REGISTER, SWITCHES, SCALAR, L IGH TS, OR A

MEMORY® IF A MEMORY IS S P E C IF IE D , THEN

THE NAME MUST BE FOLLOWED BY A RANGE OF

LOCATIONS WHICH ARE TO BE DISPLAYED® THIS

RANGE HAS THE FORMS

I

Ill

< M E M O R Y > C <LO> c < H I>)

WHERE <L0> AND < H I> SPECIFY THE LOW AND

HIGH ADDRESSES OF THE M E M O R Y SEGMENT TO BE

DISPLAYED. BOTH MUST SPECIFY LOCATIONS

WITHIN THE MEMORY, AND THE VALUE OF < H I>

M U S T NOT BE LESS THAN THAT OF. <LO>.

I F NEITHER CO) OR (X) ARE SPEC IF IED , HEXIDECIMAL

NOTATION IS ASSUMED.

ANY NUMBER OF ELEMENTS AND MEMORY SEGMENTS MAY B E .

DISPLAYED BY ONE "P R IN T * STATEMENT. I F MORE THAN ONE

ELEMENT I S TO BE DISPLAYED, THEN ALL WILL BE DISPLAYED -IN>

THE SAME NUMBER BASE. IF NO ELEMENTS ARE S P E C IF IE D , THE

STATEMENT WILL BE IGNORED.

EXAMPLES OF VALID "P R IN T " STATEMENTS:

COLUMN

678

PRINT A

PRINT CD) A9 B 9 HEMORYCO51 0 0) , C

112

A5 04 o2 END STATEMENT

THE "END* STATEMENT IS USED. TO INDICATE THE END OF

ALL SOURCE STATEMENTS DESCRIBING THE SYSTEM, EVERY

DESCRIPTION MUST CONTAIN I 9 AND ONLY I 9 "END" S T A T E M E N T .
THE "END" STATEMENT MAY NOT HAVE A LABEL= I F THE "END"

STATEMENT IS ENCOUNTERED DURING A SIMULATION • I T IS

TREATED AS IF I T WERE A "HALT" STATEMENT WITH NO TEXT

STRING FOLLOWING.

THE "END" STATEMENT HAS THE FOLLOWING FORMS

END <LABEL >

WHERE <LA8EL> IS THE LABEL OF A STATEMENT. I F

PRESENTS (L A B E L) SPECIF IES THE FIRST

STATEMENT WHICH I S TO BE EXECUTED

WHEN SIMULATION BEGINS= I F

(L A B E L) IS OMITTEOs, OR IS GIVEN AS

O9 THEN THE F IRST STATEMENT FOLLOWING

ALL SYSTEM D E F IN IT IO N AND F I L L

STATEMENTS WILL BE EXECUTED F IR S T .

A S . 4=3 INTERRUPT STATEMENT

THE "INTERRUPT" STATEMENT IS USED TO DEFINE THE

BEGINNING OF AN INTERRUPT ROUTINES THAT I S 9 AfHARDWARE

• \ ■ ■

113

ROUTINE WHICH WILL BE ENTERED UPON RECIEPT OF AN INTERRUPT

FROM OUTSIDE THE D IG IT A L SYSTEM.

THE "INTERRUPT" STATEMENT MUST FOLLOW ALL SYSTEM

D E F IN IT IO N STATEMENTS AND MEMORY I N I T I A L I Z A T I O N C F I L L)

STATEMENTS.

THE INTERRUPT STATEMENT HAS THE FORMS

WHERE <NUMBER> SPECIF IES A PARTICULAR INTERRUPT ROUTINE.

<NUMBER> MUST BE I N THE RANGE OF I TO 2 5 5 9 INCLUSIVE .

EACH INTERRUPT NUMBER MUST BE SPECIFIED ONLY ONCE PER

DESIGN. THIS NUMBER DISTINGUISHES EACH INTERRUPT ROUTINE

FROM ALL OTHER INTERRUPT ROUTINES.

AN " INTERRUPT' STATEMENT DEFINES THE BEGINNING OF A

HARDWARE INTERRUPT-HANDLING ROUTINE. THIS ROUTINE

CONSISTS OF ONE OR MORE CONTROL SEQUENCE STATEMENTS

DEFINING THE ACTION TO BE TAKEN UPON RECIEPT OF THE

INTERRUPT. THIS ACTION M A Y GE AS SIMPLE AS SETTING A FLAG

TO INDICATE THAT THE INTERRUPT HAS OCCUREDg OR AS COMPLEX

AS A ROUTINE TO HANDLE A POWER- FAILURE CONDITION.

I F THE CONTROL SEQUENCE STATEMENT JUST PRIOR TO THE

' INTERRUPT' STATEMENT DOES NOT CAUSE A BRANCH TO SOME

OTHER PORTION DF THE CONTROL SEQUENCES THEN CONTROL WILL

FALL THROUGH INTO THE INTRRUPT HANDLING ROUTINE.

WHEN AN INTERRUPT IS REQUESTED (SEE SECTION A6 .)»

THE CONTROL SEQUENCE STATEMENT IMMEDIATELY FOLLOWING THE

INTERRUPT STATEMENT WILL BE EXECUTED NEXT. THE SDSS

STATEMENT WHICH WAS IN PROGRESS WHEN THE INTERRUPT WAS

INTERRUPT <NUMBER>

114
RECIE VE D WILL BE COMPLETED PRIOR TO THE INTERRUPT ROUTINE

BEING ENTEREDo

EXAMPLES OF VALID "INTERRUPT* STATEMENTS:

COLUMN

673
INTERRUPT O

INTERRUPT 100

A 5 . 4 . 4 RETURN STATEMENT

THE "RETURN" STATEMENT IS USED TO RETURN TO THE

CONTROL SEQUENCE STATEMENT THAT WOULD HAVE BEEN EXECUTED

NEXT I F AN INTERRUPT. HAD NOT BEEN RELIEVED* THAT I S , IT

ALLOWS A RETURN TO THE MO ST RECENTLY INTERRUPTED ROUTINE*

THE "RETURN" STATEMENT MUST FOLLOW ALL SYSTEM .

D E F IN IT IO N STATEMENTS AND MEMORY I N I T I A L I Z A T I O N

STATEMENTS,

THE "RETURN" STATEMENT HAS TWO FORMS S

FORM 1 5 RETURN

FORM Z t RETURN I

FORM I IS USED I F A RETURN TO THE MOST RECENTLY

INTERRUPTED ROUTINE IS DESIRED, THE STATEMENT TO WHICH

CONTROL IS RETURNED IS THE ONE FOLLOWING THE STATEMENT IN

WHICH THE INTERRUPT WAS DETECTED,

115

EACH INTERRUPT CAUSES A RETURN LOCATION TO BE STORED

INTO AN INTERNAL STACK= A MAXIMUM OF 20 INTERRUPTS MAY BE

STACKED UP HERE= SHOULD IT NOT BE DESIRED TO RETURN TO

THE MOST. RECENTLY INTERRUPTED ROUTINE? BUT MERELY REMOVE

ITS LOCATION FROM THE STACK,FORM 2 IS USED= CONTROL WILL

THEN PROCEED WITH THE STATEMENT FOLLOWING THE " R E T U R N "
STATEMENT=

A6 COMPILATION AND SIMULATION PROCEDURES

THE COMPILER EXISTS AS A LOAD MODULE CALL 'SDSS"

UNDER ACCOUNT 197= THERE I S NO PASSWORD. THE CURRENT

IMPLEMENTATION SUPPORTS ONLINE OPERATION ONLY? ANY ATTEMPT

TO COMPILE IN BATCH MODE WILL TERMINATE COMPILER

OPERATION.

THE COMPILER ACCEPTS ALL SOURCE STATEMENTS THROUGH

THE MeSI DCB= ALL SOURCE L IS T IN G S ARE WRITTEN THROUGH THE

M»LO DCB= ERROR MESSAGES ARE WRITTEN THROUGH THE MsDO

DCB= I F THE M?LO DCB IS ASSIGNED TO A F IL E OR TO A .DEVICE

OTHER THAN THE TERMINAL, ANY ERROR MESSAGES WILL BE

WRITTEN TO BOTH THE TERMINAL AND THE LO D E V I C E /F I L E , THE

COMPILER OBJECT OUTPUT IS WRITTEN THROUGH THE MlGO DCB=

TO CALL THE COMPILER? THE STANDARD CP-V TEL COMMAND

TO I N I T I A T E ANY LOAD MODULE IS USED: .

SDSS.197 <SOURCE-FILE> OVER <GO -F ILE> $ < L I STING-OUTPUT>

116

. THE SDSS COMPILER WILL NOW ASK FOR OPTIONS. THE1

LEGAL OPTIONS ARE S

LS - L I S T SOURCE STATEMENTS

r NS - DO NOT L IS T SOURCE STATEMENTS
LD - L I S T SYSTEM D E F IN IT IO N S Y M M A R Y
ND - OO NOT L I S T SYSTEM D E F IN IT IO N S Y M M A R Y

THE DEFAULT OPTIONS ARE NS AND ND. I F NO OPTIONS ARE

NECESSARY, SIMPLY TYPE. A CARRAIGE RETURN. .

IF THE DESIGNER SPECIF IES v ME' FOR < SOURCE-FILE>s THE
COMPILER WILL NOW PROMPT WITH A COLON AND W A I T FOR A

SOURCE L I N E .

SOURCE STATEMENTS WILL BE ACCEPTED UNTIL AN "END*

STATEMENT OR AN E N D -O F -F ILE IS ENCOUNTERED. ANY FOLLOWING

RECORDS WILL BE IGNORED. I F <SOURCE-FXLE> W A S ASSIGNED TO

"ME", THEN I T IS NECESSARY TO TYPE AN E N D -O F -F IL E ON THE

TERMINAL FOLLOWING THE "END" STATEMENT. THE E N D -O F -F IL E i

CHARACTER IS AN ESCAPE-F COMBINATION.

IF NO ERRORS WERE DETECTED DURING COMPILATION® THE

DESIGN MAY NOW BE TESTED BY SIMULATION.

TO PERFORM THE SIMULATION, THE OBJECT CODE PRODUCED

BY THE COMPILER C AND PLACED INTO THE "GO" F IL E) MUST NOW■ i
BE LOADED WITH THE SDSS L IBRARY. THE LIBRARY I S CALLED

' n i B ' AND IS ON ACCOUNT 1 9 7 . THERE IS NO PASSWORD. I F

ANY EXTERNAL FUNCTION SUBPROGRAMS TO PERFORM LOGICAL

FUNCTIONS ARE NEEDED, THEY MUST BE INCLUDED AT -THIS T IME .

ANY OF. THE HONEYWELL ROUTINES TO I N I T I A T E PROGRAM

EXECUTION MAY BE USED FOR THIS PURPOSE.

THE SIMULATION WILL MAY BE DONE EITHER ON-LINE. OR IN

BATCH MODE. H O W E V E R , I F A N Y INTERRUPTS WERE REQUESTED,

THEN THE SIMULATION MUST BE RUN O N -L IN E .

I

117
ALL 'P R IN T " STATEMENTS WILL DISPLAY DATA V IA THE NSLO

OCBc ALL ' F I L L ' STATEMENTS WILL REQUEST DATA F R O M THE

MSINF OCBe THESE OCB'S MAY BE ALLOWED TO DEFAULT TO THE

TERMINAL, OR THEY MAY BE SET TO A F IL E o (IN THE CASE OF

M5LO» I T WILL DEFAULT TO THE L INE PRINTER I F THE

SIMULATION IS RUN IN BATCH MODEo)

TO SIMULATE A REAL-TIME INTERRUPT,, F IRST I N I T IA T E

EXECUTIONS OF THE G O - F IL E , WHENEVER AN INTERRUPT IS

DESIRED, DEPRESS THE "BREAK' KEY ON THE TERMINAL* THE

PROGRAM WILL RESPOND BY REQUESTING AN INTERRUPT NUMBER*

THF INTERRUPT NUMBER IS THEN ENTERED ON THE T E R M I N A L =
THIS NUMBER MUST CORRESPOND WITH THE.NUMBER DEFINED BY AN

' INTERRUPT ' STATEMENT IN THE SYSTEM DESCRIPTION= I F THE

NUMBER ...IS V A L ID , CONTROL WILL THEN BRANCH TO THE FIRST

STATEMENT WITHIN THE INTERRUPT ROUTINE=

APPENDIX B

RESULTS FROM A SIMULATION
WITH THE

COMPUTER OF CHAPTER III

A short program to sum three values in a list was written based
upon the machine language of the computer described in Chapter III.
This program, written in standard assembler format, is shown in
Figure B I .

119 .

LCC CODE LINE
■;oooo 08009 I. BEGIN LAC KNT • PUT INDEX VALUE INTO INDEX
0001 38800 2 . LIA REGISTER IA
0002 3D800 3. CLA SET AC = 0. 0003 IA00D 4. LOOP TAD TABLE+3,I ADD TABLE ELEMENT USING INDEX
0004 39000 5. INA INCREMENT IA BY I0005 00009 ' 6 . ISZ KNT ADD I; IF = 0, ARE DONE0006 30003 7. -JMP LOOP GO BACK FOR MORE0007 ’ 2800D ' 8 . DAC RESULT STORE SUM IN MEMORY0008 38000 9. HALT . ALL DONE. . .0009 3FFFD 10. KNT DC -3 LOOP COUNTER
000A 00005 11. TABLE DC 5,3 ,-6 VALUES TO BE SUMED
000B 00003
OOOC 3FFFA
000D 12. RESULT DS I RESERVE I WORD FOR SUM13. END BEGIN

FIGURE BI
ASSEMBLY PROGRAM TO SUM THREE VALUES

This program uses indexing, in line '4, to select a particular value,
from TABLE. The assembler notation is somewhat arbitrary, as there is
in fact no assembler for this machine. '

The program was manually entered into the computer through the
front panel as part of the simulation. (The program could have been

120

loaded by a 1 FILL1 statement.) The 'PRINT' statements in the original
description in Chapter III request a display of all register contents
following each instruction fetch, as well as after each operation on
the front panel.

The results of the simulation are given below. Note that the
last three operations on the front panel (at the end of the simulation
output) displays the memory location containing the sum of the three
values, and causes the computer to enter a 'WAIT' state. The only exit
from this 'WAIT' state is by an external interrupt.

! SUSS-Iy 7 MACHINE OVER ROMS,FILE
S OSS V0-LO 13:35 MAR 23, '77
O PT10NS:LS,LD •
NO ERRORS
! LINK ROMS,FUNCTIONSR,#LIB.197 OVER LMN

LINKING ROMS
LINKING FUNCTIONSR
LINKING . " #L1B

' Pl ' ASSOCIATED.
LINKING SYSTEM LIB

121

! R
! LMN .
VALUES Al' LINE 225

PCLG = 00001FCO MALG = 00001FC0 MDLG = 0003BFC0
ACLG = 0 0 0 0 BF C 0 :
ENTER OPERATION REtiUEST

? 2
ENTER SlvIT CHES IN HEX

? 0

VALUES AT LINE 225

• PCLG = 00001FC0 MALG = 00000000 MDLG = 0003BFC0
A CLG = 0000BFC0
ENTER OPERATION REUUESI

? 3
ENTER StiITCHES IN HEX

? 08009

VALUES AT LINE 225

00001FC0 MALG = 00000001 MDLG =' 00008009
0000BFC0
OPERATION REtiUEST .
StiITCHES IN HEX

P CLG =
A CLG =
ENTER

? 3
ENTER

? 38800

122

VALUES

H CLG =
A CLC =
ENTER

? 3
ENTER

?30300

VALUES

-F CLG =
A CLG =
• ENTER
? 3
ENTER

? 1A00D

VALUES

F CLG =
A CLG =
EN I ER

? 3
ENTER

?.-39000

VALUES

F CLG =
A CLG =
ENTER

? 3
ENTER

? 00009

AT LINE 22 5,

00001FC0 MALG = 00000002 MDLG = 00038800
0000BFC0
OFERAl I ON REUUE SI
SWITCHES IN HEA

Al LINE 225
F

00001FC0 MALG = 00000003 MDLG = 0003D800
0000 BFC0
OPERATION REUUEST
SWITCHES IN HEX•

AT LINE 225

00001FC0 MALG = 00000004 MDLG = 0001A00D
0000BFC0
OPERATION REUUE SI-
SWITCHES IN HEX

AT LINE 225

0000 IFC0 MALG = 00000005 MDLG - 00039000
0000BFC0
OPERATION REUUEST
SWITCHES IN HEX

,, >'■VALUES

F CLG =
A CLG =
ENTER

? 3
ENTER

? 30003

VALUES

F CLG = A CLG =
ENTER

? 3
.ENTER
? 28000

VALUES

F CLG =
A CLG =
ENTER

? 3
enter

? 38000

VALUES

F CLG =
A CLG =
ENTER

? 3
ENTER

? 3FEFD

123
AT L IN E 22b

00001FC0 , . ■ MALG = 00000006 MDLG
0000BFC0
OPERATION REQUEST
SLIT CHES .IN HEA

AT LINE 22b

00001FC0 MALG = 0000-000 7 . MDLG
0000BFC0
OPERATION REQUEST
SWITCHES IN HEX

AT LINE 22b

00001FC0 MALG = 00000008 1 MDLG
0000 BF G0
OPERATION REQUEST
SWITCHES IN HEX

AT LINE 225

0000 I FC0 MALG = 00000009 MDLG
0000BFC0
OPERATION REQUEST
SWITCHES IN HEX

00000009

00030003

0002800D

00038000

I

124

VALUES AT LINE 225

PCLG = 00001EC0 MALG = 0000000A MDLG
A CLG = 0000BFC0
ENTER OPERATION REuUEST

? 3
ENTER SWITCHES IN HEX

?00005

VALUES AT LINE 225

PCLG = 0000 IFC0 MALG = 0000000B• . MDLG
A CLG - 0000BFC0
ENTER OPERATION REWUESl

? 3
ENTER SWITCHES IN HEX

?00003

V ALUES AT LINE 225

PCLG = 00001FC0 MALG = 0000000C MDLG
A CLG = 0000BFC0
ENTER OPERATION REWUEST

? 3
ENTER SWITCHES IN HEX

? 3FFFA

VALUES AT LINE 225

PCLG = 00001FC0 MALG = 0000000D MDLG
A CLG = 0000BFC0
ENTER OPERATION REQUEST '

? I

ENTER SWITCHES IN HEX
? 0

0003FFFD

00000005

00000003

0003FFFA

VALUES AT LINE 225 125

PCLG = 00000000 MALG = 0000000D MDLG = 0003FFEAA CLG = 0000BFC0
ENTER OPERATION REUUEST

? 5

VALUES AT LINE

P C = 0 0 0 0 0 0 0 0
A C = 0 0 0 0 BFC0
I A = 0002BFC0

MA = 00000000
IR = 0000S009
RFLA = 0000000 I

MD = 0000600V
L = 0000000 I

VALUES AT LINE

P C 0000000 I MA 0000000 I ' MD = 00036600
A C 0003FFFD I R = 00036600 L 0000000 I
I A 0002BFC0 Rfla = 0000000 I

VALUES AT LINE 42

P C ZZ 00000002 MA = 00000002 MD 0003D600
A C — 0003FFFD I R “ 0003D600 L 0000000 I
I A 0003FFFD RFLA = 0000000 I

VALUES AT LINE 42 ■
I

P C . 00000003 MA 00000003 MD 000 IA00D
A C 00000000 IR 000 IA00D L ZZ 0000000 I
I A 0003FFFD RFLA 0000000 I

VALUES AT LINE 42

P C 00000004 MA 00000004 , MD ZZ 00039000
A C 00000005 I R 00039000 L ZZ 00000000
I A 0003FFFD RFLA 00000001

VALUES AT LINE 42

P C 00000005 MA 00000005 MD 00000009
A C 00000005 I R 0000000V L 00000000
I A 0003FFFE RFLA 00000001

VALUES AT LINE 42 .

P C 00000006 MA = 00000006 MD =: 00030003
A C = .00000005 I R ' = 00030003 L 00000000
I A = 0003FFFE RFLA 0000000 I

VALUES AT LINE 4 2

P C . _ 00000003 MA 00000003 MD 000.1 A00D
A C 0:000000 5 IR 000 IA00D L 00000000
I A = 0003FFFE RFLA 0000000 I

V ALUES Al LINE 42

P C 00000004 MA 00000004 MD 00039000
A C = 0000000b I R 0003V000 L 00000000
I A 0 0 0 3 F F F E RFLA 0000000 I

VALUES AT. LINE 42

P C 00000005 MA - 00000005 ■ MD 00000009
A C = 0000000b I R 00000009 - L ~ 00000000
I A 1 = 0003FFFF KFLA 00000001

VALUES AT LINE 42

P C 00000006 MA 00000006 MD 0003000:
A C 0000000b I R ~ 00030003 L 0000000V
I A 0003FFFF RFLA = 0000000 I I

127
VALUES Al LINE 42

K C = 00000003 MA 00000003 MD 000 IA00DA C 00000008 IR 000 IA00D L 00000000I A 0003FEFF RFLA 0000000 I

VALUES Al LINE 42

PC 00000004 MA 00000004 MD 00039000A C 00000002 I K 00039000 L 0000000 II A “ 0003FFFF RFLA 0000000 I

VALUES AT LINE 42
i'

P C 00000005 MA ZZ 00000005 MD 00000009A C 00000002 I R 00000009 L 0000000 I
I A — 00000000 RFLA ZZ 0000000 I

VALUES AT LINE 42

P C n 00000007 MA - 00000007 MD " =: 0002800D
A C — 00000002 I R = 0002800D L = 0000000 I
I A — 00000000 RFLA = 00000001

VALUES AT LINE 42

P C 00000000 MA - 00000008 -MD ZZ 00038000
A C 00000002 IR 00038000 L ZZ 0000000 I
I A - 00000000 RFLA 0000000 I

VALUES AT LINE 225 ~

P CLG 00000009 MALG 00000008 MDLC = 00038000
A CL -G = 00000002

V.

128

ENTER O'PE'RA 'I I ON "REUUE ST
? 2 '

ENTER SWITCHES IN HEX
7 000D

VALUES AT LINE 225

PCLG = 00000009 MALG = 0000000D
A CLG = 00000002
ENTER OPERATION REQUEST

I A - '

MDLG =' 00^38000

VALUES AT LINE 225

P CLG = 00000009 MALG = 0000000E
A CLG = 00000002
ENTER OPERATION REQUEST

? 0

MDLG = 00000002

APPENDIX C

SOME NOTES ON THE SDSS COMPILER

130
THIS APPENDIX CONTAINS SOME USEFUL INFORMATION

CONCERNING THE SDSS COMPILER ITSELF= IT IS WRITTEN FOR

THOSE PERSONS WHO WILL BE MODIFYING AND IMPROVING SDSS IN

THE FUTURE. A BASIC UNDERSTANDING OF THE SIGMA - 7 AND

THE SDSS SOURCE CODE IS ASSUMED=
.

. SDSS ITSELF IS A COMPILERS I T ACCEPTS PROGRAMS
' ' I

WRITTEN IN SDSS AS SOURCE DATA, AND PRODUCES SIGMA - 7

OBJECT CODE AS OUTPUT.

SDSS IS A 2-PASS COMPILER. AS SUCH, SDSS PERFORMS NO

GLOBAL OPTIMIZATION OF OBJECT CODE OVER ADJACENT

STATEMENTS. THIS RESULTS I N A CONSIDERABLE AMOUNT OF

INEFFICIENCY IN THE GENERATED CODE, BUT THE COMPILER WAS

MUCH EASIER TO WRITE THAN WOULD HAVE SEEN A MULTI-PASS

COMPILER.

WITH TWO EXCEPTIONS, SDSS IS WRITTEN ENTIRELY IN

FORTRAN. THE TWO EXCEPTIONS ARE A SERIES OF ASSEMBLY

/ROUTINES WHICH PERFORM FUNCTIONS D IFF ICU LT OR IMPOSSIBLE

TO PERFORM ENTIRELY IN FORTRAN (SUCH AS I / O ROUTINES AND

DISK F I L E MANIPULATION) , CALLED 'S D S S * , AND THE CONVERSON

FROM CHARACTER INTEGER TO BINARY INTEGER IN ROUTINE

"DECMAL" . ROUTINE "DECIMAL" CONTAINS SEVERAL L INES OF

I N - L I N E ASSEMBLY CODE TO ENABLE THE CONVERSION TO PROCESS
I

VALUES UP TO 2 * * 3 2 - I , WHICH OCCUPY A 3 2 - B I T INTEGER.

SDSS IS CONSTRUCTED IN A MODULAR FASHION. MOST MAJOR

FUNCTIONS ARE PERFORMED IN A SEPARATE SUBROUTINE, WHICH

MAY CALL OTHER SUBROUTINES TO HELP I T OUT. APPROXIMATELY

ONE-HALF OF SDSS IS WRITTEN IN A STRUCTURED FORM# THAT

I S , IT I S WRITTEN, IN FORTRAN, IN A FORM ANALOGOUS TO

P L / 1 'S "DO-WHILE" AND EXTENDED " I F - T H E N -E L S E " STATEMENTS.

FORTRAN "GO-TO" STATEMENTS ARE L IM ITE D TO THOSE NECESSARY

TO IMPLEMENT THE ABOVE STATEMENT FORMS. USE OF THIS

131
■ STRUCTURED FORM GREATLY S IM P L IF IE S THE EFFORT OF WRITTING

AND MODIFYING THE SOURCE CODE. I T IS HIGHLY RECOMMENDED. .

THAT ALL ADDITIONS AND MODIFICATIONS .,TO THE COMPILER BE

WRITTEN. IN A STRUCTURED FORM. (THE OTHER HALF OF THE

COMPILER WAS WRITTEN IN A VERY UNSTRUCTURED FORM, AND IS .

CORRESPONDINGLY MORE D IFF IC U LT TO UNDERSTAND AND MODIFY.)

THE USE OF VARIOUS DISK F ILE S FACIL ITATE THE

COMPILATION PROCESS. FOR EXAMPLE, ALL ERROR CONDITIONS

CAUSE DATA TO BE WRITTEN TO A KEYED DISK F I L E . THE KEY IS

COMPOSED OF THE L INE NUMBER OF THE RECORD IN WHICH THE

ERROR WAS DETECTED, AND A VALUE INDICATING WHICH ERROR

THIS IN IN THE PARTICULAR RECORD C I , 2» ETC.) . WHEN THE

END OF THE STATEMENT HAS BEEN REACHED, A CHECK IS ALWAYS

MADE TO SEE IF THE STATEMENT SHOULD BE WRITTEN OUT. ANY

ERRORS ALWAYS CAUSES THE STATEMENT TO BE WRITTEN. AT THIS

POINT, ANY ERROR MESSAGES CAN BE WRITTEN IMMEDIATELY ■

FOLLOWING THE STATEMENT IN WHICH THEY WERE DETECTED, AND

IN THE SAME ORDER IN WHICH THEY WERE DETECTED.

ANOTHER USE OF THE DISK F ILES IS IN BUILDING A TABLE

OF ALL CONSTANTS GENERATED BY SDSS DURING COMPILATION. IN

ORDER TO PREVENT FORTRAN FROM F IL L IN G UP AN ARRAY WITH

THESE CONSTANTS, AND CAUSING THE COMPILER TO Q U IT , THE

ARRAY. IS WRITTEN TO DISK SHOULD I T EVER BECOME F I L L E D .

THE ARRAY IS NOW EMPTY, AND CAN BE F ILLE D AGAIN. IF I T IS

NECESSARY TO LOOK UP THE LOCATION OF A- CONSTANT, THE

VALUES IN THE ARRAY ARE CHECKED F IRST, FOLLOWED BY A

SEARCH OF THE COPIES OF THE ARRAY ON D IS K . THIS ENTIRE

OPERATION IS CONTROLLED BY SUBROUTINE 'C O N S T ' .

THIS SAME METHOD COULD HAVE BEEN EXTENDED TO ALL THE

TABLES CONTAINING NECESSARY VALUES, SUCH AS THE TABLE OF

REGISTERS. HOWEVER, TH IS WAS NOT DONE DUE TO.THE

132

I

COMPLEXITY OF H A V I N G AS M A NY SETS OF THIS ROUTINE AS WOULD

BE NECESSARY FOR ALL THE TABLES. THUS THERE ARE L IM IT S ON

THE MAXIMUM NUMBER OF MOST ELEMENTS.

THE OBJECT CODE THAT IS GENERATED BY THE COMPILER IS

QUITE WELL DOCUMENTED WITHIN THE SOURCE PROGRAM AT THE

POINT WHERE I T IS GENERATED. EACH LOADER ITEM I S DEFINED

BY A MNEMONIC CODE ALONG WITH ITS OPERANDS 9 AND IS

ACCOMPANIED BY A HEXIDECIMAL VERSION OF WHAT SHOULD BE

GENERATED.

THERE IS ONE COMPILER OPTION WHICH WAS NOT DESCRIBED

IN THE LANGUAGE REFERENCE MANUAL. THIS THE THE " L O '

OPTION. USE OF TH IS OPTION CAUSES THE COMPILER TO

GENERATE INTERNAL SYMBOL TABLES OF ALL THE ELEMENTS

DEFINED BY THE DESIGN, AND ALL TEMPORARY LOCATIONS DEFINED

BY THE COMPILER. THIS FEATURE I S OF GREAT USE IN

DEBUGGING THE COMPILER AND THE GENERATED CODE UNDER THE

'D E L T A ' PROCESSOR ON THE SIGMA - 7 .

USE OF THE ' L O ' OPTIONS ALSO FORCES THE ' L S ' OPTION,

USE OF THE 'N S ' OPTION PROHIBITS THE GE NE RT ION OF INTERNAL

SYMBOL TABLES.

SDSS ALSO CONTAINS A B U I L D - I N DEBUGGING OPTION. THE

SDSS STATEMENT .

* TRACE ON ;

MAY BE PLACED INTO THE SYSTEM DESCRIPTION. USE OF THIS

STATEMENT CAUSES THE COMPILER TO GENERATE A TRACE OF EVERY

SUBROUTINE ENTRY AND E X IT , ALONG WITH THE VALUES OF

SEVERAL VARIABLES AT THE ENTRY AND EXIT POINTS. USE OF

THIS STATEMENT CAN CAUSE THE PRODUCTION OF LARGE AMOUNTS

OF INFORMATION. THUS, I T IS TO BE USED CAUTIOUSLY,

I

133
TO TERMINATE THE TRACING OPTION AT ANY T IME p THE

STATEMENT

... *TRACE OFF

IS USED.

SDSS IS CURRENTLY SET UP TO ALLOW THE INCLUSION OF AN

' I N P U T ' STATEMENT. SUCH A STATEMENT WOULD SE INTERPRETED

AS AN ' I N P U T ' STATEMENT, AND A SUBROUTINE, CALLED ' I h i P U T ' ,

WOULD BE CALLED. THIS SUBROUTINE SIMPLY PRINTS OUT A .

MESSAGE STATING THAT ' I N P U T ' STATEMENTS ARE NOT ACCEPTED

BY SOSSp AND THEN IGNORES THE STATEMENT. TO IMPLEMENT AN

' I N P U T ' ■ STATEMENT, ALL THAT WOULD HAVE TO BE DONE IS TO

REPLACE THIS ONE. SUBROUTINE WITH ONE WHICH WOULD GENERATE

OBJECT CODE. ■ '

AN ' I N P U T ' STATEMENT MIGHT HAVE THE FORMS

INPUT. i
<NAME> I

<MEMORY> (< L 0 > , <HI>)

WHERE <NAME> IS THE NAME OF A.REGISTER, SCALAR,

OR SWITCHES.

<MEMORY> IS THENAME OF A RANDOM-ACCESS MEMORY.

<L0> IS THE FIRST LOCATION IN THE MEMORY.

TO BE READ INTO.

<H I> IS THE LAST LOCATION IN THE MEMORY

TO BE READ INTO .

IT IS ENVISIONED THAT THIS STATEMENT WOULD CAUSE THE

GENERATION OF AM ARGUMENT L IS T AND A BRANCH TO A LIBRARY

134

SUBROUTINE WHICH WOULD DO THE ACTUAL DATA INPUT OPERATION®

IT MIGHT BE NICE FOR THE SUBROUTINE TO REQUEST ,DATA FROM

THE TERMINAL BT NAME (SO AS TO PREVENT CONFUSION BY THE

DESIGNER AS TO WHICH VALUE HE WAS TYPING IN ' THE •

SUBROUTINE WOULD ALSO,HAVE TO MASK OFF ANY. HIGH ORDER BITS

THAT EXCEED THE S IZE OF THE ELEMENT WHICH IS TO REGIEVE

THE VALUE „ SUCH A SUBROUTINE WOULD NOT BE D IFF ICU LT TO

IMPLEMENT. IT MIGHT EVEN BE POSSIBLE TO U T IL I Z E ROUITNE

'# F IL L M E M ' FROM THE LIBRARY TO PERFORM.MOST OF THE

NE.CESSRY OPERATIONS® '

. THE. OBJECT CODE GENERATED BY SDSS MUST BE LINKED WITH

THE SDSS. LIBRARY IN ORDER TO PRODUCE THE SIMULATION LOAD

MODULE.® THE LIBRARY ROUTINES CONSIST OF ASSEMBLY ROUTINES

TD PERFORM SUCH FUNCTIONS AS I N I T I A L I Z A T I O N OF VALUES,

HANDLING INTERRUPTS, AND PERFORMING I / O OPERATIONS AS

DICTATED BY 'P R I N T ' STATEMENTS® •

. THE COMPILER GENERATES TWO SEPARATE ROMS AS OUTPUT®

THE FIRST CONSISTS OF THE MACHINE CODE NECESSARY TO

PERFORM THE SIMULATION, AND CONTAINS ALL CONSTANTS DEFINED

BY THE COMPILER® THE PHYSICALLY FIRST MACHINE INSTRUCTION

GENERATED I S LABELED BY THE EXTERNAL NAME 'WMAlNPGM'* THE

FIRST INSTRUCTION TO BE EXECUTED WHEN THE SIMULATION IS

IN IT IA T E D IS LABELED 'WSTART"® WSTART IS ALWAYS LOCATED

AT A HIGHER CORE ADDRESS THAN IS AINPGH® THE SEQUENCE

OF CODE FOLLOWING KSTART CALL ANY I N I T I A L I Z A T I O N ROUTINES,

AND THEN BRANCHES TO THE FIRST INSTRUCTION OF THE

SIMULATION CODE® THIS FIRST INSTRUCTION MAY NOT BE 'AT

KMAINPGM SINCE IT IS POSSIBLE TO SPECIFY ANOTHER STATEMENT

AS THE FIRST TO BE EXECUTED ON THE ^END" STATEMENT,

THE SECOND ROM IS DEFINED BY THE EXTERNAL NAME

'K D A T A ' . T H IS RDM CONTAINS ALL THE DATA REGIONS NECESSARY

135
■FOR THE SIMULATION. ALL HARDWARE ELEMENTS ARE DEFINED AT

THE BEGINNING OF THIS MODULE, AND ANY TEMPORARY STORAGE

LOCATIONS ARE DEFINED FOLLOWING THE ELEMENT LOCATIONS.

FOR THE LOCATION OF THE ELEMENTS WITHIN THIS MODULE,

SIMPLY REQUEST A. SYSTEM D E F IN IT IO N SUMMARY WITH THE

COMPILER OPTION ' L D % .

. REFERENCES

137

1. Barbacci, M. B., and D. P. Siewiorek, 'Automated Exploration of
the Design Space for Register.Transfer (RT) Systems',
Proceedings of ,the First Annual Symposium of Computer
Architecture, Gainsvilie, Florida, December, 1973.

2. Bell, C. G., and A. Newell, Computer Structures: Readings and
Examples. New York: McGraw-Hill, 1971. \

3. Gentry, M., 'ACompiIer for AHPL Control Sequences', PhD disser
tation, University of Arizona, June, 1971.

4. Hill, F. J., and G. R. Peterson, Digital Systems: Hardware
Organization and Design. New York: John Wiley and Sons, 1973.

5. Knudson, M., 1PMSL - An Interactive Language for High Level
Description and Analysis of Computer Systems', Technical '
Report, Computer Science Department, Carnige-Mellon

. University, 1974.'
6 . S u , Stephen Y. H., .'A Survey of Computer Hardware Descriptive

Languages in the USA', Computer, Vol 7, #12, December 1974,
P P • 45-51.

Crane, William P
A register-transfer

descriptive language
and simulator for digi
tal networks

