MONTANA

STATE UNIVERSITY

A register-transfer descriptive language and simulator for digital networks
by William Platt Crane

A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
in Electrical Engineering

Montana State University

© Copyright by William Platt Crane (1977)

Abstract:

A computer hardware descriptive language was developed to describe digital networks at the
Register-Transfer level. This language was then implemented into a computer program to allow
simulation of the network.

The description language defines a digital network in terms of the hardware components and the
interconnections among the components. Bused and directly-connected transfers are available. A wide
array of data operations are available. Control branching capability is provided. Very few restrictions
are placed upon the design; such quantities as the sizes of components, their interconnections, and data
types are left entirely up to the designer.

The simulation of a network consists of the step-by-step execution of each transfer and branch
operation. Values of components may be displayed as often as desired. Real-time interrupts may be
simulated.

STATEMENT OF PERMISSION TO COPY

In presenting this thesis in partial fulfillment of the
requirements for an advanced degree at Montana Sfate University,
I agree that the Library shall make this‘fhesis freely available
:'for ihspecfion. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be grantéd by
my majér professor. If is uﬁderstood that any.copying or publication
of this thesis for financial gain shall not be allowed without my

~

written permssion.

Yo —_—
Signature: 5;:;2¢222¢41‘,/49 >, éf%;’

‘Date: ’ :ff7 A, ;22;7

" A REGISTER-TRANSFER DESCRIPTIVE LANGUAGE AND
~ SIMULATOR FOR DIGITAL NETWORKS
by

WILLIAM PLATT CRANE II

A thesis submitted in partial fulfillment
of the requirements for the degree

of
MASTER OF SCIENCE
in

Electrical Engineering

Approved:

Rz 4 0. 050

Chairperson, Graduate Cmeittee

ol L L Ll

Aead, Major Départment

Blriney ot T

Graduate Dean

MONTANA STATE UNIVERSITY
Bozeman, Montana

June, 1977

iii
Acknowledgments
I wish to thank Prof. Dona1d Rudberg who, as Chairman of my

,graduéte cq@mittee, provided many helpful suggestions leading to

the completion of this project.
I Wéu]d also Tike to thank Jim Anderson for answering my
: ethess stream of questions concerning the Sigma - 7 computer'g
opérating sy;tem. .

. . Many other people contributed ideas and criticism of this
project as it evolved. A‘speciaf thanks goes out to Bonﬁie
E11fn§hausen, Tim Estle, Dan Poole, Cheryl Schmidt, and John

Campbell for their contributions.

TABLE OF CONTENTS.

VITA
ACKNOWLEDGMENTS | |
TABLE OF CONTENTS

LIST OF FIGURES . . ~~ . . . o . . .

(LIST OF TABLES .

LIST OF PROGRAMS

ABSTRACT .

I.

11.
111.
Iv.

 CHAPTER

INTRODUCTION

1.1. Current Status of Simu]ation.systems '{.
1.2. Scope of Work . . _
FEATURES OF THE SMALL ﬂIGITAL SYSTEM SIMULATQR:
A COMPLETEVDESIGN.EXAMPLE IN SDSS .

SUMMARY AND CONCLUSIONS . |

APPENDICES ..

A.

SMALL DIGITAL SYSTEM SIMULATOR LANGUAGE REFERENCE MANUAL

Al. Notation to be Used

A2. Character Set, Statement Format, and Operators

L

- A3. Symbd]ic Names

Ad. Constants .
A1, Unsigned Integer Constants .

A4.2. Constants Formed by A]phé Generator .

iv
.ovii
.oviit o

. ix

LT

29

T
.'1;34”.
. i_36
36
39
I
.40
Sa”

A5.

v

A4.3. Constants Formed by Omega Generator ..

A4.4. Constants Formed by Epsi1dn Generator

A4.5. Constants Formed by Encode Generator

Types of SDSS Statements .

A5.1. System Definition Statements

A5.
A5.
A5.

- A5,
A5,

A5,
A5.
A5.1.

1

1.
1.3.

1.

™

0 ~N ey O BoWw

Registers . e e

Scalars

_Panel Switches .

Panel Lights .

. . Random Acesé Memory .

Read-Only Memory. .

Logfca] Functions .
 Data Paths |

A5.1.8.1. Connéct Statementi’.

A5.1.8.2. Bus Statement

A5.2. Memory Initialization

A5.3. Control Sequence Statements ‘-.

A5.3.1.

- pB.3.2.
A5.3.3.
A5.3.4. -

Compression .
Bit Se]ection
Reduction

Transfer Statements . .

A5.3.4.1. Directly Connected -

Transfers .-

A
a2
43 -

.. 46
47
-"748 ‘,.

.
573.
S
54
. 56
57
lsJ |
.63 .
68 -
73<Af
;76.

77
79

. - 80
81 -

. 83"

vi

A5.3.4.2. Bused Tfansfefé ;
+A5.3.5. Branch Statements ; : e . ‘104'
R5.3.5.1. Unconditional Branch . . 105
A5.3.5.2." Three-way Conditional . _
_ Branch . .‘ ‘106
A5.3.6. Halt Stafement .. -. ;.:‘; 107
'A5.4. Housekeeping Statements . .-
.A5.4L1; Print Statement 109
| A5.4.2.. End Statement. 112
AS.#;B. Interrupt Statement 112.
A5.4.4, Return Statement L :;ik, 1147
A6. Cohpilation and Simulation Procedures ';“ 15
: BfA RESULTS‘FROM A SIMULATION WITH THE COMPUTER OF'CHAPTER III‘ 118
C: SOME NOTES ON THE SDSS COMPILER S, . 129
136

REFERENCES

95

108

1.
2.
AT
n2.
A3.
A4
B1.

vii

LIST OF FIGURES

HARDWARE DIAGRAM OF EXAMPLE coMPUTER.;

MACHINE INSTRUCTION SET Q"1f15
DIRECTLY-CONNECTED DATA PATHS . 61
BUS-CONNECTED DATA PATH-

VALID SOURCE SYNTAX FOR DIRECTLY-CONNECTED DATA TRANSFERS . 87
HARDWARE DIAGRAM FOR BUSED TRANSFERsf.~'.".::,'..- L 51103 _

R PR

ASSENBLY PROGRAM TO SUM THREE VALUES .- 119

At.

viii

"~ LIST OF TABLES

DEFINITION OF TERMS USED IN FIGURE A3. .

ix

LIST OF PROGRAMS

1. COMPLETE DESCRIPTION OF A COMPUTER IN SDSS .

17

X

ABSTRACT

A computer hardware descriptive 1anguage was deve1oped to describe
digital networks at the Register-Transfer level. This language was
then implemented into a computer program to a]]ow simulation of the
network.

The descr1pt1on language defines a d1g1ta1 network in terms of
the hardware components and the interconnections among the components.

Bused and directly-connected transfers are availabhle. A wide array of .

data operations are available. Control branching capability is pro-
vided. Very few restrictions are pTaced upon the design; such quan-
tities as the sizes of components, their interconnections, and data
types are left entirely up to the designer. - '

The simulation of a network consists of the step- by step execution
of ‘each transfer and branch operation. Values of components may be

‘displayed as often as desired. Real-time interrupts may be simulated.

I. INTRODUCTION

1.1 Current Status of Simulation Systems

The use of simulation as a design aid-in the construction of
digital systems has seen.a 1arge Tncrease'in recent years. A o

major cause of this increase has been the decrease in the time and

cost of developing d1g1td1 systems when s1mu1at1on is emp]oyed G1ven Co
an adequate description of the system, it is possible to perform tests -

“on the simulated system to determine such qhantities as timing

estimates, behavior of the system Underihéevy or unusuat cohdjfiens,ﬂ‘

and possible problems such as a bottleneck along'a data hus. |
The.crhi of the éfmu]affon‘prob1emhfé 1hp11ed_by fhe terh{

adequate description. Prior to performing a simuiation; one ‘must j

decide what information he wishes to gain from the simulation. " The

choice of cqmputer hardware descriptive language (JCHDL_) to be used

to describe the digital system depends upon-this Qecision("
Bell and Newell (2) indicate four major TeveTé at thch‘dfgitaT
systems may be described: |

1) the electronics Tevel

2) the Tlogic level

w

)
) the programming level
)

Eay

the processor-memory-switch level

2
At the electronics level, all hardware is described in terms of

basic e]ectroniq components, such as resistors and capacitors. The
result of a simulation at this level is a record of the voltages and
currents of the circuit as a function of time. Any circuit mdy be
described at this level; however, virt&a]]y all of the discrete
‘hature of digital circuits is lost, as the voltages and currents vary
continuously (although perhaps very rapidly). Another disadvantage
is that a‘1arge number of components is necessary to even simple
digital networks. A simufation at this level would produce a very
1aége amount of information, most of which would be of Tittle use.
Clearly, chh a level of description is useless for describing

' dig{tg1 systems.

The logic level defines digital systems in terms of logic
functions. A simulation at this level produces the results of the
:1ogica1 operations specified as a function of time. fhese results are
descrete values corresponding to the final state of the system after an
operation4has been performed, and are not continuous functions of time.

| This Togic Tevel is loosely divided into several sublevels. The
lowest defines a network in terms of primitive logic gates and flip-
flops. Moving upwards networké evolve from simple combinationa]
circuits into synchronous and asynchronous circuits containing
memory. Thé top level of the logic Tevel is commonly called the

Register-Transfer (RT) Tevel, Here, -networks are described in terms

3

of larger mémory elements, such as registers and random access
memories, and the data paths used to connect these elements and pérform
,operatjohs.upon the data during transit. Individual flip-flops and
iogic gates are relatively rare ai the RT level, although occasionally
they are used. |

: The programming Tevel marks é large change in the description of

_ digita] systems. Below this level, the description is based upon the
existence qf specific hardware elements, be they registers or resistors.
_ At the programming level, the'description is not-concerned with the
hardware necessary to pefform,an operation; that is; a result.is

- desired; and the hardware necessary to compute that result is irrele-
vant.

. The programming level is associated with computers; that 15,
macﬁines that interpret stored programs. Many digital systems, such as
instrumentation systems, do not operate under stored programsl Thus,
they have a 1dgic Tevel, but no program level of description. .

, The programming Tevel specifies operations.on specific data types,
such as integer or floating point va]ugs. Programs are able td define
data structures as collections of values, and to manibufate these
structures to produce other .structures. The logic level aoes not have
'this capab%]ity; it is concerned with boolean operations (and perhaps
simple arithmetic operations) upon bit strings. The interpretation

of the bit strings is Teft up to the designer.

4
The processor-memory-switch (PMS) level Tooks at the inter-

connectioné.of the major units of a computing system. These units
include devices such as entire processing units (CPU's), mass

storage devices, and input / output devices. These units are connected

together by data Tinks. Description at this Tlevel conveys how the

data is to be transfered and manipu1ated'at an information processing

basis. Items such as transfer rates and band widths of data channels

‘are considered. For a complete description of PMS, see Bell and

Newell (2).

The majority of the CHDL's have been developed .at the logic]evef.
A brief description of a number of these languages, along with an
extensive bibliography, was presented by Su (6). 'Ai1 of the Tanguages
described by Su have been developed into comp]eté simulation systems.
Several havé beeh adapted to produce hardware diagrams from the CHDL.

For examples, see Barbacci and Siewiorek (1), Knudson (5), and

Gentry (3).

b .
1.2 'Scope of Work

" At the time that this project was undertaken; there was no means

available 'at Montana State-University to simulate digﬁ£a1 systems.' As

a 1apge-amount-of.digita] désign‘is done at Montana State, a simu]atoF

was felt to be highly desirable. This project épnsistéd of the speci-

fication and implementation of a simuTation system, called the.'Small
Digital System Simu]atdr'. | | A
The Small Digital System Simulator Tanguage had to:meéﬁ_severa1’:
goals. The language must be able to describe a widé class ofsdigita1‘
system§ in a reasonable concise manner. The describtfon_must'have a'_:
direct correspondence with the hardware necessary to implement the

design. The language must be as free as possible from such restrictions

as data formats, hardware component sizes and configurations, and the

sequence of operations. It must provide facilities to’a116w the
designer to observe and control the behavior of the diéita] system
during the actual sihu]ation. Finally, the 1anguage-héd.fo Bé'easi]y.f
translatable into a form which w6u1d allow simulation on the hoStllnﬂ

computer, a Honeywell Sigma 7.

I1. FEATURES OF THE SMALL DIGITAL.SYSTEM SIMULATOR:

‘The Small Digital System Simulator (SDSS ') is bésedjupoh the =

CHDL ' A Hardware Programming Language', developed by Hill and

Peterson (5). SDSS is a Register—Transfer language. Its major-comp0;~:"
nents are memory elements, such as régisters and.raﬁdom écceésAmemofﬁes}‘
and the data paths along which transfers are made. : " ‘ _ ;

A complete description of SDSS is presented in Apﬁeﬁdix:A. It.js '
recommended that the reader be familiar with.thg contghts o%_Aépendix A
before proceeding. Only a brief descriptian‘of théimajér féa{urés-bfn"
SDSS will be given here. :

- SDSS reguires that all hardware-eiements fhat are to be present
in the digital system be explicitly defined. SymboTié‘hames are .
assigned to each element, and are used to réfer:to the:éfémgnt tﬁefe; _
after. Eaéh element has a specifié size, givenlin.bits.: Nitﬁ the"
exception of scalar elements, which by their ﬁéture cphtaingon1y one l.”'
bit, elements may contain up.to 32 bits, 1nc1Usive;.-“‘ : |

. One random access membry.anq one re§d~on1y memory1may_be defined\:
for each digital system. A memory definition speéifies:f(])‘fhé qua;
size of the memory, (é) the number of Wdrds in the-hemory; (3) the',‘
name of thé regfster wh%ch will contain fhe.address 6f the desfred
Tocation within the mémory whenéver a ﬁemory reference 1s:made,-and

(4) the namz of the register to or from which data will be tfahsfered

7

when a memory reference operation is made. Of course, data can not be

stored into a read-only mermory.

Another class of hardwafe elements which finds much usége is the

" logical function. A logical function is essentially a Togic network

which- performs some operation not easily handled by the primitive ope-

rations aliowed within SDSS.. Such .operations are addition and multi-

" plication. Since these operations are generally quite simple concep-

tually (and ré]atiyg]y easy to implement in hardwafe') it is reason~

'abie to treat them as individual operations in the description. Each

function must be defined to SDSS by specifying jts'symbo11c name, the

number of arguments supplied to the function, and the size of the result

returned by the function, in bits. SDSS includes several commonly used

. i
- Togical functions as primitive operators, and allows the inclusion of

Fortran function subprograms for arbitrary functions.

Data paths are those routes along which data may be transfered
between hardware elements. Transfers are allowed only along defined

péths. Ahy transfer may.specify some operation upon the data, such as

"~ a boolean. operation, a logical function, or rotation. A transfer may

speéify which bits of a memory element are to be used as a data source
or data destination in a given transfer. Generally, any selection of
bits from an element is valid.

Data buse§ may be defined in a digital system. .A bys is defined

by giving the‘symbo11c name, the size (in bits) of the bus, and all

8

~connections to and from the bus. Operations may be performed upon the

data values either prior to their being placed upon the bus, or after

the data has been picked off of the bus, or both. It is clear that a

bus is a special case of a data path.

A set of control sequence statements is used to describe the
sequence of operations to be performed by the system. These statements
speﬁify the individual transfers to be made, and the order in which
they are'fg be made.. From two to ten transfers may be specified. as
océuring sfmu1taneous1y. In such a case, any or all of the transfers
may'specify a given element as a data source. Only one transfer may
specify a given element as its data destination.

in every set of simultaneous transfers, the original values of all
elements will pot be modified until after the data sources for all of
the-trahsfeks have been computed.

A bused transfer must be specified as a set of two or more simul-
taneous transfers. - Each of these transfers must specify a bus as its
data source §r data destination, or both. The bus will retain any
value placed upon it for the duration of the set of transfers; thus,

two or more transfers may specify a given bus as their data source.

A bus will not maintain its. value beyond the transfer period.

The sequence of operations may be altered by branch statements.

Branch statements allow both conditional and unconditional branching.

9

Conditional-ﬁranching depénds upon the current values of the elements
of the digital system. | -

A number of pseudo-statements are available. These statements are '
used to spe;ify actions that are not part of the control sequence, and"
to convey 1nforma£idn to tHe SDSS compiler. These statements include
,définihg 1nterrupf-hand11ng.routines and requesting a display of the
cuﬁrent.v&]ué of hardwafe elements.

An 1hterfupt routine is a hardware routine described by a set of
-lc0ntr01 séquence statements. This routine will be entered upon reciept
of a réa]Ttime interrupt from outside the digital system. Up to 256 .
interrupt routines may be defined;

SDSS does not assume -any data types of forhats. The designer is
free to implement any data types he desired. The only exceptions to
this rule are the 1ogiéa1 functions defihed within SDSS. These
funcﬁions 6perate assuming their arguments are in 2's complement form.
Thejusage of any other data types will require that arithmetic opera-
tions be done either with a series of control sequence statements, or
by an external logical function.

SDSS'doeé not maintainfany timing 1nformat10nr It is not possible
to speéffy how much time a particular operation will cqnsuméT ATl
transfers are done asynchronously; each transfer is initiated immedi-

ate]& fo]Towing completion of ‘the previous statement. For the case of

10
several simultaneous transfers, the time required by the set of

transfers will be the time required by the slowest transfer.

I1I. A COMPLETE DESIGN EXAMPLE IN SDSS

A comp1éte design example 1s presented here. A siﬁg1é

accumulator computer is described in SDSS. The hardwafe arrangement :

for this computer is shown in Figure 1. Note tha£ both bused ahd,.-

directly-connected tran%fers are included. The data paths are shown as 5

unidirectional paths. The data paths connecting the random access

memory 'M' with its data register 'MD' and its memory addressing

. register 'MA' are not explicitly defined as- data paths; they are - .

inplicitly included by the 'RAM' statement.

_Observe in Figure 1 there are no paths shown for either. the

assignment of constants to elements, or for the éhifting.and‘rotatibn ‘

hardware associated with thé elements 'AC' and 'L'. These paths were
omitted for clarity. There are no paths cqnnécting ihe‘functjons'
'FUNZ2' and '"WAIT' with their arguments and destinaticns. These -

functions, strictTy-speaking, are not part of the hardware of the |

computer. Function 'FUN2' permits communication from‘the‘operatof to

the computer, and function 'WAIT{ executes a call to the Sigma - 7 -
monitor to enter a waif—state;“ In é rea1'computer,‘these funttions
would not be present or necessary. | |
The machiﬁe wordsize is 18 bits. = Six basic instruttions a}é.‘
available in the computer, along with fourteen operatelinstruétiong.

Thé'operate instructions do not require a memory reference for their

MDLG - 18 ACLG - 18
N] $AND
8194 W X [———yp _ 1g AC:S: 18] L-1
18 Ao AN i e
MALG - 13 F IR £ 18 IA - 18
L I I
SWS - 18 H4MA - 13 BUS3 < BUSA
L__’ e ADD
PC - 13 —> :['—'I_[~
‘[| BUS5 T
|] !
PCLG - 13 & BUS
INC
BUS2
l L
FIGURE 1

HARDWARE DIAGRAM OF EXAMPLE- COMPUTER
(Numeric values give number of bits / component)

13

execution. The instruction set is defined in Figure 2.

A memory reference instruction may specify either 1ﬁd1rect address-
ing or'index1né, or both, to form the address of its opérand. If both
afe requested, the indirect addressing is resolved first.

The machine will test the value of 'RFLAG' (Run-Flag) prior to
eacﬁ instruction fetch. If the value of 'RFLAG' is 1, the next
machine instruction will -be fetched from memory and executed. If the
vaiuelof 'RFLAG' is 0, control will branch to the routine to request
operdtbr interventipn via the front panel.

_ 'RFLAG' may be reset to 0 by executing a 'HALT' instruction, or by
recieving an external interrupt. An external interrupt indicates that
the operator wishes to communicate with the computer through the front
panel. |

The front panel contains the following controls:

—_

Run / halt switch

)
2) Load program counter from switches
3) Load memory address from switches
4) Store the contents of the switches into the.memory

Tocation given by the contents of the memory address
register, and increment the memory address register

5) Display the contents of the memory location specified by

14

the contents of the memory address register, and
increment the contents of the memory address register.

. 6) Single step through the next machine instruetion.

. The front panel 5156 contains lights to display the contents of
the memory address register, the memory data register, the program
counter, and the accumulator. The contents of all four registers will
bé displayed following each front panel operation.

‘The SDSS description of this computer is given in Program 1.

An example of the results produced by a simulation of this computer

jé given in Appendix B. The simulation consists of entering a short

program into the computer through the front panel and then executing

the.program.

Observe that the front panel could have been implemented by

deffning separate interrupt routines for each panel control. While

" this method may present more realism in terms of the hardware of the

computer, it causes a lack of realism in terms of interaction with
the computer. With several interrupt routines, it would be necessary

to cause an interrupt, request the particular interrupt routine, and

. then enter the value of the switches (if hecessary) to request one

panel function. It appears to be a toss-up as to which method is more

realistic.

17

Op code

000

001
010

011

100

101
110

15

Machine instrucfion word

Operand addfess

- Indexing bit; perform 1ndex1ng 1f

b1L.4 1

Indirect addressihg bit; perform
indirect addressing if bit 3 =1

Operation code

Instruction

1S8Z

LAC

AND

TAD

JMS

DAC

JMP

Intrement memory operand and skip the
fo110w1ng 1nstruct1on if the result
is zero.

Load accumulator from memory.

. And the accumulator with the memory

operand. Put result into the
accumulator.

Two's complement add1t1on of the
contents of the accumuTator:with the -
memory operand. Result is placed in
the accumulator. .
Jump to subroutine. Increment the program
counter and store value in memory loca-
tion. Increment memory location value,
and fetch next instruction from th1s
Tocation.

Deposit accumulator into memory
location.

- Fetch next 1nstruct10n from memory
- Tocation. .

FIGURE 2

* MACHINE INSTRUCTION SET

16

11 . OPR - operafe instruction.

Operate instructions utilize bits 0-6 for their operation code.

Bits 0-2 are always 1's. No memory reference is necesséry, .Bits 7-17

are ignored. The operate instructions perform the following actions: .

Op code - Thstruction

1110000 Halt .
1110007 IA <= AC

11100100 . IA<= INC(IA)
1110011 AC <= IA
1110100~ L,AC <= $SL(1) L,AC -
1110101 L,AC <= $sr(1) L,AC
1110110 L,AC <= $RL(1) L,AC
1110171 L,AC <= $RR(1) L,AC
1111000 L <=0

1111001 © L<=

1111010 - L <= $NOT L

1111011 AC <=0 .

1111100 AC <=

1111101 AC <= $NOT AC
1111110 ~ NOP

111711 " ONOP

FIGURE 2 (Continued)

17

PROGRAM 1

COMPLETE DESCRIPTION OF A COMPUTER IN SDSS.-

- am we e e e me ae ae e e Em mm am am wm ma wn em we wm wr e em e e mm o we

DEFINE THE HARDWARE ELEMENTS OF THE MACHINE AND
DATA TRANSFER PATHS. '

- aw mm am ww wm me wm e mm e am wy me e em e am o e e o e ma wm ewe

REGISTER IAC18)s MDC18)s ACC18), IRC1B) s MA(13),
1 PCC13)s OPER(3)

SCALAR Ly RFLAG INITIAL (O

RAM M{18,8192)3MAR = MAy; MDR = MD

FUNCTION INC (1,18), WAIT(143)y FUN2(2,21),

1 ADD (25,19)

BUS BUS1(18),(IN=MA,PCs;MDsTIA);COUT=INC)

BUS BUS2C18), CIN=INC)s(DUT=PCoMD,IA,MA)

BUS BUS3(18)yCIN=IA;MD), (DUT=ADD)

BUS RUS4C18),CIN=AC,IR);(OUT=ADD)

BUS BUSSC19)y {IN=ADD) s COUT=CLsAC) 3 IR)

CONNECT (MD3AC)p(ACIMDIo(TASAC)CACSTIAd,(MD3IRD
1 CIRSPCIS (PCIMA) s (SUSSMD) o (OPERSWALIT),
(WAIT3O0PER) s (COPERIFUN2) 5 {SHS3FUN2),

(MD SAND AC3AC)s C(PC3PCLG); CHAZMALG),
(MD3MOLG s COSRFLAG)» COSAC), CACSAC) s CL3L) s
($SLCIDLACSLLAC) s (SSRCLDILSACSLSACYS
CSRLCIILSACILoAC) s CO3L) 5 (SHSSMAD s (SHSSPL)Yy
(IR3MA) s CACSACLG) ,(FUN23OPER;SHS)y

- N S W

18

PROGRAM 1 (CONTINUED)

8_' - (FRRC1IILLACSL,AC) - COPERSOPER)
C CURRENT IMPLEMENTATION OF SDSS DOES NOT ALLOW
C SETTIMG THE SWITCHES BY THE PRUGRAM OR BY AN OPERATDR.
C'T0 GET ARQDUND THISs DEFINE THE SWITCHES AS AN ORDINARY
L REGISTER.

REGISTER SWS{18)
LTGHTS PCLGC13)y ACLG(18)s MDLGC1B)y MALGL13)

C —————————— e e e v we e e e e m e = e
c CONTROL SEQUENCE STEPS FOLLOW.

o i B i T I
c IF RFLAG = 1, THEN FETCH AND EXECUTE THE

c

INSTRUCTfDS'PUINTED TO BY THE PROGRAM COUNTER. ELSE,

10 RFLAGI0 > 12, 500, 12
12 MA < PC
MD < M ¢DCD MA
IR < HD ,
PRINT PG, MAsMD,AC, IRyLs 1A, RFLAG
C LOOK FOR OPERATE INSTRUCTION
$AC3)/IRST > 15, 125, 15

C . LDOK FDR 1 LEVEL OF INDIRECT ADDRESSING

15 IR(3) : 1 > 25, 20, 25

20

25
30.

.35

44

45 -

50

55
60

65

c

19

PROGRAM 1 (CONTINUED)
MA < $WC13)/7IR

MD < M $DCD MA

$WC13)/TIR < $W{13)/MD

LODK FOR INDEXING

IRC4)Y 3+ 1 > 35, 30, 35

BUS3 < IA3 BUS4 < IRs ADD < BUS3: aADD <€ BUS4;
1 BUSS5 < ADD$ $W(13)/IR < BUSS

SEPARATE REMAINING INSTRUCTIONS

IRCO) & 0 > 404 45, 40
IRC1Y 2 0 > 120, 45, 120
MA < $WC13)/IR

IRCO) ¢ 1 > 509 909 50
MD < M $0CD MA

$AC33/IR 2 0 > 55, 80, 55
$AC3)/IR 2 1 > 60, 755 60
$AC3)/IR 2 2 > 659 T0s 65

TAD INSTRUCTION
RUS3 < MD; B8US4 < AC3 ADD < BUS33
1 BUS5 < ADD3 L,AC < BUSS

> 115

AND INSTRUCTION

ADD < BUS43

70

15

80

"85

90

95

20

N

PROGRAM 1 (CONTINUED)

-AC < MD $AND AC
> 115

LAC INSTRUCTION

CAC <MD
> 115

ISZ INSTRUCTION

. BUS1 < #MD3
1 INC < BUS1:
2 BUS2 < INC3
3 WD < BUS2
¥ $DCD MA < MD
$OR/MD t 0 > 115, 85, 115
BUS1 < PC3 INC < BUS1 BUS2 < INC: PC < BUS2
> 115

SEPARATE JMS FROM DAC
IRC2) ¢ 0 > 95, 1005 .95
DAC INSTRUCTION

MD < AC
> 105

JAS "INSTRUCTION

100

105

110
115

120

\

C

125

130
135
140
145
150

155

160

OPERATE INSTRUCTIONS

21
PROGRAM 1 (CONTINUED)

BUS1 <€ PC3 INC < BUS1$ BUS2 < INC3 MD < BUS2
M $DCD MA < MD :
TRC2) 2 0 > 115, 110, 115

PC < $WC13)/IR |
BUS1 < .PC3 INC < BUS13 BUS2 < INC3 PC < BUS2

> 10
JHP INSTRUCTION
PC < $WC13)/1IR

> 10

DECODE OP CODE AND BRANCH

[2

$WC4)LBACTI/IR
SUC4)/SACT I/ IR
$WC4IISACTI/IR
$WC4I/$ACTI/ZIR 2
$WC4) 7$ACT /IR
$WC4DI/SACTI/IR
$WC4)I/$ACTIZIR

230, 2255 130
220y 215, 135
2105 205, 140
200, 195, 145
190, 185, 150
11> 180, 1759 155
170, 165, 160

ao T
O o=~ W e
vV V Vv Vv

85
[o
W
v

‘NG OPS

> 115 ' - .

COMPLEMENT &C

22

" PROGRAM 1 CONTINUED)
165 AC < $NOT AC
> 155
SET AC TO 1°%

170 AC < $EC18)
L > 155

SET-AC 70 0O

175 AC < $ECDC0518)
> 115

COMPLEMENT L

180 - L < $NOT L
2 115

SET L 70 1

185 L < $ECD(1,1)
> 115 '

. C CSET L TO O

190 L < $ECDCO,1)
> 115

23

PROGRAM 1 ¢ CONTINUED)
_RDTATE (L,AC) RIGHT 1 BIT

195 LyAC < $RRC1D LoAC
> 115

ROTATE (L,AC) LEFT 1 BIT

200 LsAC € $RLCI) L,AC
> 115 '

SHIFT (LsAC) RIGHT 1 BIT

205 LyAC < 8SL{1,0) L,AC’
> 115 '

SHIFT (LsAC) LEFT 1 BIT

210 LoAC < $SLC1,0) LsAC
> 115

LOAD IA INTO AC

215 AC < IA
> 115

INCREMENT IA

220 BUS1 < IA3 INC < BUS1; BUS2 < INC: IA < BUS2
> 115

24
PROGRAM 1 ¢ CONTINUED)

C . LUOAD IA FROM AC

225 1A < AC
© > 115

C "~ SET RUN FLAG = 0 —- MACHINE WILL ENTER CONSOLE
C REQUEST ROUTINE BEFORE NEXT INSTRUCTION FETCH.

1230 RELAG < $ECDCOs1)

> 115
L= = = = o = = = = e e e e wm e wm owm wm we em e = -
c INTERRUPT ROUTINE. SET RFLAG = 0 AND FINISH
CURRENT INSTRUCTION THAT WAS INTERRUPTED.
Cm = = = = = = = =~ = e e e e e e e e o -
INTERRUPT 1
RELAG < $ECDC0s1)
RETURN ‘
C' —————————————————————————————
'C ° ROUTINE TO CONROL FRONT PANEL FUNCTIONS AND

DYSPLAY REGISTER VALUES. REGISTERS ARE DISPLAYED
C FOLLOWING EACH PANEL OPERATION,

MALG < MA
PRINT PCLGs MALGo MDLGy ACLG

| W)

O A O O O O 0 60

25

"PROGRAM 1 ¢ CONTINUED)

REQUEST PANEL OPERATION AND SWITCH VALUES. .
OPERySWS < FUN2(OPERy SWS)

0 => ENTER WAIT STATE.

=> LDAD PC FROM SWITCHES

LOAD "A FROM SWITCHES

=> STORE SWITCHES INTO MEMORY AT ADDRESS IN
" MA AND INCREMENT VALUE IN MA BY 1 '

4 => DISPLAY MEMORY POINTED TO BY MAs AND

INCREMENT WA BY 1 o

SET RUN FLAG = 1 AND RESUME EXECUTING

PROGRAM FROM THE ADDRESS IN PC

6 => SINGLE STEP NEXT MACHINE INSTRUCTION

OPER

1]

[SSIER S
1}
v

Ut
il
v

OPER 2 1 > 5459 540, 505

505 OPER 2 3 > 535, 530, 510

5108 QGPER 3 5 > 525, 5205 515

" SINGLE STEP THE MACHINE INSTRUCTION POINTED TO
. BY PROGRAM COUNTER,

515 > 12

SET RUN FLAG = 1 AND RESUME PROCESSING WITH
INSTRUCTION POINTED TO BY PROGRAM COUNTER.

520 RFLAG < $ECDC1,1)

528

G

-530.

535

540

545

26
. PROGRAM 1 (CONTINUED)

> 10
DISPLAY MEMORY LOCATION AND INCREMENT MA

MO < M $DLCD MA
BUS1 < MA3 INC < BUSLS BUS2 < INC3 MA < BUS2

> 500

STORE SWS INTO MEMORY AND INCREMENT MA

MD < SHWS

M $DCD MA < MD _

BUS1 < MA3 INC < BUS1; BUS2 < INC; MA < BUS2
> 500

LOAD MA FROM SWS

MA < BHC13)/SUS
> 500

LOAD PC FROM SHS

PC < $WC13)/SHKS
> 500

PUT MACHINE INTD WAIT STATES NEED TO INTERRUPT
TO GET 0OUT.

RFLAG < $ECD(D,1)

20

27
PROGRAM 1 (CONTINUED)

" OPER < WAITC.OPER)
> 500
END

" INTEGER FUNCTION FUN2C OPER,SWS)

INTEGER DPER,SWSsFUN2

‘DATA MASK / Z0003FFFF /

1
2

1

2

100

OUTPUT “ENTER OPERATION REQUEST~
INPUT OPER |
TF (OPER «LT. 0 oO0R.
 DPER .GTo 6) DUTPUT “INVALID REQUEST®:

_ 60 70 20
IF (UPER c‘GEo 1 -GANDQ R
OPER LLE. 3) OUTPUT “ENTER SWITCHES IN HEX“s

READ € 105,100) SHS
FORMAT € Z)

SWS = IANDC SWSy MASK)

FUN2 = IORC ISLC OPERy18)y SWS)

RETURN '

END

28

PROGRAM 1 ¢ CONTINUED)

INTEGER FUNCTION WAIT (RFLAG)

INTEGER RFLAG
DATA J /Z0F001000 7/

$10. CAL1s8 J
RETURN
END

TV, SUMMARY AND CONCLUSIONS

SDSS was developed to petmit descfiption and simulation of‘digitaT
networks at a Register-Transfer Tlevel. The result of this’ deveTopment
is a powerful and versatile system. The des1gner is free to choose
virtually any hardware configuration.. The hardware qomponents that .
may be defined are register;, scaTafs, Tighte, switches, random and
read-only memories, buses, and logical fuﬁctions:‘ Registers,‘Tights,
and switches may contain‘up to 32 bits, TncTusiVe The memories may |
have any wordsize up to 32 b1ts, 1ncTus1ve and contawn any number of

words. Buses may contain up to 64 bits, 1ncTus1ve Severa] Tog1caT ;

~ functions to perform arithmetic operat1ons dre included within SDSS..

For those operations not ava11ab1e, it is poss1b1e to 1ncorporate

standard Fortran FUNCTION subprograms to prov1de those operat1ons

Any or all of the registers, sw1tches, scaTars,_and memories may be -

initialized prior to initiation of the simulation to provide éfA_
starting point for the digital network.. . | _ o

Having decided upon a hardware conf1gurat1on the des1gner must _
specify aTT data paths and data operations wh1ch w111 be perm1tted
Operations available incTude the boo]ean operators (AND NAND, OR,_;.
NOR, and XOR), sh1ft1ng and rotat1on, concatenat1on, compress1on,
and bit selection. All of these’ opcfat1ons may be performed in

directly connected transfers and in bused transfers.

30
A control sequence must be specified to define the particular

transfers to. be made, and the order in which they are to be made.

'Only those transfers which are along data paths which'hqve been

defined are allowed; that is, transfers must be made along existing
hardware routes.
© It is possible to describe a sequence of transfers which will

interpret stored programs, or which will simply process data values.

The former case is commonly called a computer, whereas the Tatter is

representatfve of numerical algorithms and instrumentation systems.
Once the control sequence has been defined, SDSS will perform
syntax checking on each statement. Valid statements will be compiied,
while invalid statements will be flagged in error. Use of any hard-
wéfe components that.were not defined explicitly will cause an error,
aé will any transfers aﬂoné non-existant data paths.
| Having obtained a valid' description, syntax-wise, the digital
network may be simulated to verify or refute the logical description.
.Simu]atiqn.qonsiéts of a step-by-step execution of. each control

sequence operation. If desired, the results following any operation
N .

‘may be displayed. Any number of test cases may be used to verify the

désign. Should the design be incorrect, it is a simple matter to

track down the logic error(s).

Several other features are available in SDSS. Hardware interrupt

routines may be defined to process random, exceptional conditions

31
generated from outside of the digital system. F011ow1ng‘the process-

ing of the interrupt, the interrupted routine may be resumed. SDSS

'a11OWS3the contents of all hardware components to be displayed at any

time; the values may be displayed in hexidecimal or decimal notation.

The introduction of bit strings into the description is simplified by

' the several forms available in which bit strings may be defined.

' SDSS will provide a useful instructional aid for those learning

the concepts of sequential 1dgic networks. The syntactical restric-

tions plus the-one-to-one pprrespondehce to hardware circﬁitry prohib-
jtg_the.design of networks that can not be realized. Such concepts

és bused transfers, hardwired and micro-programmed control units, and
machine organization can be explored easily. The ability to simulate
a désign provides perhaps the most efficient means of'verifying
concébts and designs utilizing these concepts.

A number of digital networks have been described and simulated.

under SDSS.. From these simulations a number of recommendations can

be ﬁade for,future 1mprovehents in SDSS.

Some means of inputting data values direc%]y into the network
during simulation is necessary. Using.a Fortran FUNCTION subprogram
Qbécures the operation, and suffers from the inability to simulate a
direct memory access operation, or set switches. (An 'INPUT' state-

Ment; suitable for inclusion in SDSS, is described in Appendix C.)

32
A statement sim11ar to the Fortran 'CONTINUE' statement would

be very handy to provide a null statement cbntaining a label. Such a

)

statement'WOUld be useful as a targef for several branches all coming

th tﬁe.samé point, such.as a 'PRINT' statement. Currently, a tranéfer

of tﬁe fOrm{_

| A<
is ﬁeceésary: Such a statement obscures the hardware somewhat.

A'mqre versatile branch statement, analogous to the APL branch
statement, would make branching of control easier to describe. Such a
branch statement wou1dnperform boolean operations and reduction upon

the data values to compute a single bit result. This single bit would

* control the branch. If no branch is taken, control would fall through

_to the next SDSS statement.

At the present, a processing unit (itself defined in SDSS) can
not have a stack dedicated to its exclusive use; to utilize a stack, a

portion of main mémory must be used. By permitting multiple memories

to be defined;_it would be an easy matter to allow stacks, as well as

consjder memory 1nter]eév1ng concepts. (
The most obvious deficiency in SDSS appears to be the Tack of all
timing information. Many operations do not take place exclusive-of all
others, but are 1n1t1§ted while other operations are concurrently taking
place; results may not be available until several machine cycles later.

Such transfers are impossible to simulate in SDSS.

APPENDICES

L - Ll e id]

APPENDIX A

SMALL.UIGITAL SYSTEM SIMULATOR

LANGUAGE REFERENCE MANUAL

35

-~ "THE SMALL DIGITAL SYSTEM SIMULATOR { SDSS) LANGUAGE
AND €OMPILER IS USED T8 AID IN THE DESIGN NF SMALL DIGITAL
'SYSTEMS BY PROVIDING A CONCISE, EASILY-READ DESCRIPTION OF
" THE REGISTER-TRANSFERS WHICH TAKE PLACE WITHIN THE SYSTEM.
THIS ‘DESTGN MAY THEN BE TESTED BY SIHULATION TO DETERMINE
IF THE DESIGN IS CORRECT. }

. ' SOME GENERAL FEATURES 0OF THE SDSS LANGUAGE AND

COMPILER ARES ' '

1) ALL CONTROL SEQUENCE OPERATIONS SPECIFIED 1IN
SDSS CORRESPOND TO A MICRO-OPERATION WITHIN AN ACTUAL
DIGITAL SYTEM. EACH OPERATION IS WRITTEN AT THE
REGISTER~TRANSFER LEVELs PROVIDING ENOUGH DETATL SO
THAT IT IS EASY TO FOLLOW EACH OPERATION, YET NOT
HAVING SO MUCH DETATL THAT THE OVERALL OPERATION OF
THE SYSTEM IS OBSCURED. - '

2) SEVERAL TYPES OF HARDWARE ELEMENTS WITH
“ARBITRARY SIZES MAY BE DEFINED.
‘ 3) DATA PATHS MuST BE DEFINED TO ALLOW THE
TRANSFER OF DATA VALUES BETWEEN HAROWARE ELEMENTS.

4) OPERATIONS THAT ARE NOT AVAILABLE WITHIN 5DSS
HAY BE IMPLEMENTED BY MEANS OF A FORTRAN EUNCTION
SUBPROGRAM

5) REAL-TIME INTERRUPTS MAY BE SIMULATED.

6) AN EXTENSIVE ARRAY OF DATA TRANSFERS AND.
BRANCHING CAPASILITY IS AVAILABLE.

36

Al NOTATION 7O BE USED

IN THE FOLLOWING DESCRIPTION OF SDSS STATEMENT
SYNTAX,; THE NOTATION: ' ‘
<{NAHMED>

TS USED TO MEAN THAT THE QUANTITY °“<NAMED” IS TO BF
REPLACED BY A DESIGNER-SELECTED VALUE.
,' QUANTITIES WRITTEN WITHIN BRACKETS [.]‘ARE
OPTIONAL QUANTITIES: THEY MAY BE OMITTED IF DESIRED.
- QUANTITIES WRITTEN WITHIN BRACES -{ } IMPLY THAT
EXACTLY ONE OF THE ENCLOSED TERMS MUST BE CHOSEN. |
" BRACKETS AND BRACES MAY BE NESTED TO ANY LEVEL.
QUANTITES FOLLOWED BY AN ELIPSIS € oo) MEAN THAT
THE QUANTITY MAY BE REPEATED AS NECESSRY. . ')

A2~ CHARACTER SETs STATEMENT FORMAT, AND UPER&TORS

- — - e A D ————— - - e A 4O MNP I N DS OB NS WE W NEN R R XED A e WA O3 WD M O s

fHE CHARACTERS ALLOWED BY SDSS ARE THE FOLLOWINGS

ALPHABETICS® A - 27
NUMERICS: 0 - 9
SPECTIAL CHARACTERSS 5 2 o = €)

37

THE ALPHANUMERIC CHARACTERS CONSIST OF THE
ALPHABETICS PLUS THE NUMERICS.

AN SD'SS STATEMENT FOLLOWS THE SAME GENERAL FORMAT AS
ALLOWED IN FORTRANS

A STAMNDARD B80-CHARACTER INPUT RECORD IS USED FOR SDSS

© . STATEMENTS.

" IF COLUMN 1 CONTAINS THE CHARACTER “C°, THE CONTENTS

OF THE RECORD ARE IGNORED EXCEPT FOR LISTING PURPOSES, AND
MAY. CONTAIN ANY DESIRED INFORMATION. | |

COLUMNS 1 -5 ARE USED TO CONTAIN STATEMENT LABELS.
A LABEL CONSISTS OF FROM 1 TO 5 NUMERICS; ALL SPACES
WITHIN THE LABEL FIELD ARE IGNORED. A LABEL IS REQUIRED
ON A STATEMENT ONLY IF THAT STATEMENT IS THE TARGET OF A
BRANCH STATEMENT. LABELS MAY HAVE VALUES IN THE RANGE OF
FROK 1 T0 99999, INCLUSIVE. -

 COLUMN 6 TS THE CONTINUATION COLUMN. IF COLUMN 6

CONTAINS ANY CHARACTER OTHER THAN A BLANK OR A ZERO, THE
RECORD IS ASSUMED TO BE A CONTINUATION OF THE PREVIOUS
RECORD- A TOTAL' OF 10 RECORDS MAY BE USED TO CONTAIN AN
SDSS STATEMENT. CONTINUATION RECORDS MAY NOT CONTAIN
LABELS. '

'COLUMNS 7 — 72 ARE USED TO CONTAIN THE SDSS STATEMENT
ETSELF. , 4 '

COLUMNS 73 - B0 ARE IGNORED BY THE COMPILERs -AND MAY
BE USED FOR ANY DESIRED PURPOSE. -

IN ADDITION, COMPLETELY BLANK LINES ARE PERWITTED IN
SDSS. A BLANK LINE MAY NOT BE CONTINUED.
| COMMENT LINES MAY NOT APPEAR WITHIN A CONTINUED
STATEMENT. o

38

BLANKS ARE IGNORED IN SDSS STATEMENTS EXCEPT WHEN
THEY ARE CONTAINED WITHIN TEXT STRINGS. BLANKS MAY BE
USED TO IMPROVE THE. READABILITY OF THE SYSTEM DESCRIPTION.
A NUMBER OF OPERATORS ARE DEFINED IN THE SDSS
" LANGUAGE. SEVERAL CONSIST OF THE DOLLAR SIGN € °$°)
FOLLOWED BY A ONE TO THREE ALPHABETIC CHARACTER MNEMONIC.
THESE OPERATORS ARES '

BODLEAN OPERATORS: $AND LOGICAL AND

$NND 2 LOGICAL WMAND

$0R : LOGICAL OR

$NOR 2 LOGICAL NOR

$XOR ¢ LOGICAL EXCLUSIVE-OR

$NOT 2 LOGICAL NEGATION
SHIFT OPERATORS $SL 3 LEFT SHIFT

$SR 2 SHIFT RIGHT
ROTATE OPERATORS $RL 2 ROTATE LEFT

$¢RR 3 ROTATE RIGHT

®

CONSTANT GENERATORS: $A ALPHA CONSTANT GENERATOR

1]

sW : OMEGA CONSTANT GENERATOR
$E 3 EPSILON CONSTANT GENERATOR
$ECD 3

ENCODE CONSTANT GENERATOR
MEMORY REFERENCE
OPERATORS $DCD

THE USAGE OF THE CONSTANT GENERATORS IS DETAILED IN
SECTION A4, °CONSTANTS’. THE USAGE OF THE OTHER °$°:
- OPERATORS IS DESCRIBED IN SECTION A5.3.45 “TRANSFER

39

STATEMENTS®, AND SECTION AS5.3.5, “BRANCH STATEMENTS®,
TWO OTHER OPERATORS ARE USED IN $DSS. THEY ARE THE
- COMPRESSION OPERATORy; DESCRIBED IN SECTION AS5.3.15 AND THE
 REDUCTION OPERATORs DESCRIBED IN SECTION AS5.3.3.

A3 SYMBOLIC NARES

——— - - — - oo

_ A SYMBOLIC MAME CONSISTS OF ONE ALPHABETIC CHARACTER
FOLLOWED BY ANY NUMBER, INCLUDING ZERO, OF ALPHANUMERIC
‘CHARACTERS. HOWEVERy ONLY THE FIRST FOUR CHARACTERS OF A
SYMBOLIC NAME ARE RETAINED BY THE COMPILER. THUS, EACH
NAME SHOULD DIFFER IN THE FIRST FOUR POSITIONS.

A4 CONSTANTS

—— e " — > e s e

CONSTANTS ARE USED TO DENOTE A NUMERIC VALUE WHICH IS
HARDWIRED INTO THE DIGITAL SYSTEM. EXCEPT FOR A FEW
SPECIAL CASES WHICH WILL BE NOTED LATER, THE SDSS, LANGUAGE
DOES NOT RECOGONIZE NUMERIC VALUES AS BEING OTHER THAN
SIMPLE BINARY BIT STRINGS. THUS, IT IS UP 7O THE DESIGNER
TO DETERMINE WHAT A BIT STRING REPRESENTS (SUCH AS A 27§
COMPLEMENT NUMBER). THIS FEATURE IS REFLECTED IN THE
MANNER IN WHICH CONSTANTS ARE SPECIFIED.

40

SEVERAL FORMS OF CONSTANTS ARE ALLO&EDo' THEY ARE:

A4.1 - UNSIGNED INTEGER CDNSTANT

 THIS FORM IS COMPOSED OF FROW 1 TO 10 DECIMAL DIGITS
(_ NUMERICS)3 EMBEDDED BLANKS ARE IGNORED. YALUES OF FROM
0 TO 4294967295 (2%%32 — 1) MAY BE REPRESENTED BY AN
UNSIGNED INTEGER CONSTANT. UNLESS GTHERWISE STATED IN
THIS MANUAL, ALL NURERTC 'CONSTANTS WILL BE UNSIGNED
INTEGERS.

A4o2 CONSTANTS FORMED BY ALPHA GENERATDR

" THIS FORM CAUSES THE GENERATION OF A BIT STRING
CONSISTING OF ONE OR MORE 1°S FOLLOWED BY ZERO OR MORE
0°S. TWO VARIATIONS OF THE ALPHA CONSTANT ARE AVAILABLES

A) 3A (<HONES>, <#BITS>)

WHERE ‘BOTH <#ONES> AND <#BITS> ARE UNSIGNED
INTEGERS. THIS FORHM SPECIFIED THATY THE .
LEFTHMDST <#DNES> BITS OF A BIT STRING. (#BITS)
BITS LONG ARE 7O BE SET TD 1°S. ANY -
REMAINING BITS ARE TD BE SET- TD 0%Ses . THE

- VALUE OF <#BITS> MAY BE FROW 1 T0 32

0°S.

BY

A4.3

o . -

41

INCLUSIVE. THE VALUE OF <#ONESD MAY BE FROM
1 TO <#BITS>y INCLUSIVE. '

$4 (. <HONES> D

WHERE <#ONES> IS AN UNSIGNED INTEGER. ' THIS
ABBREVIATED FORM REQUIRES THAT THE LENGTH OF
THE BIT STRING BE IMPLICITLY AVAILABLE FROM
SOME OTHER PORTION OF THE SDSS STATEMENT. OF
THIS LENGTHs; THE LEFTAOST <F¥ONES> BITS ARE
SET TO 1°S, AND ANV REMAINING BITS ARE SET TO
0°S. THE VALUE OF <#DNES> MAY NOT EXCEED THE
IMPLICIT LENGTH. THE IMPLICIT LENGTH MAY NOT

" EXCEED 64 BITS.

CONSTANTS FORMED BY OHEGA GENERATUR

. M CES - G T WY WD MIp Mty e €% e R e

THIS CONSTANT GENERATOR CREATES A BIT STRING
CONSISTING OF ONE OR MORE 1°S PRECEEDED BY ZERD OR MORE
TWO FORMS ARE AVAILABLES g

A

$W ¢ CHONESD, <H#BITSY>)

WHERE <#ONES> AND <#BITS> ARE BOTH UNSIGNED
INTEGER CONSTANTS. THIS: FORH SPECIFIES THAT
THE RIGHTHOST C#ONES)> BITS OF A BIT STRING
<#BITS> BITS LONG WILL BE SET TO 175, AND ANY

42

REMAINING BITS WILL BE SET TO 0°S. THE VALUE
DF <#BITS> MAY BE FROM 1 TO 32, INGLUSIVE.
THE VALUE OF CHONES> HAY BE FROM 1 TO.
<HBITSD>s INCLUSIVE.

BY $4 (CHONES>)

MHERE <#ONES> .IS AN UMSTIGNED INTEGER, . THIS
ABBR;VlATéﬁ FORHM REQUIRES THAT THE LENGTH OF
THE BIT STRING BE . IMPLICITLV ABBREVIATED FORM -
REQUIRES THAT THE LENGTH OF THE BIT STRING BE
IMPLICITLY AVAILABLE FROM SOME OTHER PORTION
OF THE SDSS STATEMENT.. OF THIS LENGTHg THE

" RIGHTMOST <#ONES> BITS ARE SET TO 1°Sy AND
ANY REMAINING BITS ARE SET TO 0°So THE VALUE
OF <HONES> MUST NOT EXCEED THE NUMBER OF BITS
SPECIFIED BY THE IWPLICIT LENGTH. THE
IMPLICIT LENGTH CAN NOT EXCEED 64 BITS.

Abo4 CBNSTANTS FORMED BY EPSILDN GENER&TOR

THIS CONSTANT GENERATOR HAS TWO FORMS WHICH. ARE
INTERPRETED DIFFERENTLY. THEY AREZ '

A) $E (<#ONES>)

43

WHERE <H#ONES> IS AN UNSIGNED INTEGER. - THIS
FORM GENERATES A BIT STRINGs KNOMN AS A FULL
VECTOR, WHICH IS <#BITS> BITS LONG. EACH: BIT
DF THIS STRING IS SET TO A “i1°. THE VALUE OF
C¥ONES>.MUST BE IN THE RANGE OF 1 T0 32, ’
INCLUSIVE.

B) $E (<BIT>, <HBITS> I

!
WHERE BOTH <BIT> AND <#BITS> ARE UNSIGNED
INTEGERS. - THIS FORM GENERATES A BIT STRING
WHICH IS <#BITS> LONG. ALL BITS IN .THIS
STRING ARE SET TO 0°S EXCEPT FOR THE <BIT>°TH
BITy WHICH IS SET TO A °1°, NOTE THAT BIT-0
IS THE MOST SIGNIFICANT BIT IN THE STRING..
"THE VALUE OF <#BITS> MUST BE IN THE RANGE OF
1 T0 32, INCLUSIVEe THE VALUE OF <BIT> MUST
BE IN THE RANGE OF O 70 <#BITS>-1, INCLUSIVE.
THIS FORM OF THE CONSTANT IS KNOWN AS A FULL
VECTOR.

A4 .5 CONSTANTS FORMED BY ENCODE GENERATOR

—— o — —— e e M - - -y S e - - - e

. THIS CONSTANT GENERATOR ALLOWS ANY ARBITR&BV BIT
STRING TO BE SPECIFIED. THIS CONSTANT HAY BE GENERATED IN
TWO FORMS:

44

A) $ECD ¢ <VALUED, <#BITS>)

8)

WHERE <VALUE> AND <#BITS> ARE UNSIGNED
INTEGERS. THIS FORM GENERATES A BIT STRING

WHICH IS <#BITS> BITS LONG., <#BITS> MUST BE
IN THE RANGE OF 1 TO 32, INCLUSIVEo THE
CONSTANT GENERATED IS THE BINARY CODED VALUE
OF <VALUE>. THE NUMER&C NUMERIC VYALUE OF
<VALUED> MUST BE IN THE RANGE OF 0 TO '
4294967295 (2%%32 - 1 Jo INCLUSIVE. THE:
BINARY VALUE OF <VALUE> RMUST GCCUP? NG MORE
BITS THAN THOSE SPECIFIED BY <#BITSD.

!

$ECD (<VALUE>)

WHERE <VALUE> IS AN UNSIGNED INTEGER. THIS
ABBREVIATED FORM REQUIRES THAT AM INMPLICIT
LENGTH BE AVAILABLE FROM SOME DTHER PORTION
OF THE SDSS STYATEMENT.. AS BEFORE, THE NUMBER
OF BITS REQUIRED TO CONTAIN <VALUE> MUST NOT
EXCEED THE NUMBER OF BITS GIVEM BY THE
IMPLICIT LENGTH. <VALUE> HUST BE IN THE
RANGE OF 0 TO 4294967295 (2#%32-1),

45

EXAMPLES OF VALID CONSTANTSS

CONSTANT BINARY VALUE
0 0
100 1100100
$A(5510) 11111006000
“$W(3510) 0000000111
$EC4) 1111
$EC255) 00100

$ECD(1234515)

000010021010010

46
A5 TYPES OF SDSS STATEMENTS

. e - - - S — T M _— -

ALL STATEMENTS IN THE SDSS LANGUAGE CAN BE CLASSIFIED
INTO FOUR GROUPS: '

1) SYSTEM DEFINITION STATEMENTS. THESE
STATEMENTS DEFINE THE HARDWARE ELEMENTS WHICH
COMPDOSE THE DIGITAL SYSTEM UNDER SIRULATION.

2) MEMORY INITIALIZATION STATEMENT. . THIS
STATEMENT ALLOWS MEMORIES YO BE INITIALIZED
PRIDR TO THE SIAULATION OF THE SVYSTEM 1IN
ORDER 70 SIMULATE AN INITIAL PROGRANH LOAD.

3> CONTROL SEQUENCE STATEMENTS. THESE
STATEMENTS DEFINE THE SEQUENCE OF
MICRO-OPERATIONS TO BE PERFORMED BY THE
DIGITAL SYSTEM. '

4) HOUSEKEEPING STATEMENTS. THESE STATEMENTS
PERFORM SUCH DPERATIONS AS DISPLAY THE
CONTENTS OF HARDWARE ELEMENTS, AND DEFINE
INTERRUPT HANDLING ROUTINES.

EACH STATEMENT TYPE WILL BE DESCRIBED IN DETAIL
DELOW.

47

A5 .1 SYSTEM DEFINITION STATEMENTS

- w— VS N WP . A Y T W NS R v s A I S . SR S “Wien . T SO

BEFORE ANY DIGITAL SYSTEM CAN BE SIMULATED, THE
HARDWARE ELEMENTS WHICH COMPOSE THE SYSTEW MUST BE
DEFINED. THE ELEMENTS WHICH MAY BE DEFINED IN SDSS ARE
THE FOLLOWING: '

REGISTERS
SCALARS

PANEL LIGHTS

PANEL SWITCHES
RANDOM ACCESS MEMORY
READ-ONLY MEMORY
LOGICAL FUNCTIONS
DATA PATHS

MO SYSTEM DEFINITION STATERENTS HMAY HAVE &'LABELQ
.DEFINITION STATEMENTS MAY APPEAR 1IN ANV.DRdERa HOWEVER,
ALL SYSTEM DEFINITION STATEHMENTS ﬁUST PRECEED STATERENTS
OF ANY OTHER TYPE» ;

48

A5.1.1 REGISTERS

A REGISTER IS DEFINED BY MEANS OF THE “REGISTER”
STATEMENT. A REGISTER MAY CONTAIN FROM 1 TO 32 BITS,
INCLUSIVE; AND MAY BE GIVEN AN INITIAL VALUE IF DESIRED.

_ THE. “REGISTER® STATEMENT HAS THE FORH3 f

REGISTER <NAME> ((SIZE).)[INITI&L { <CONSTANT>)] |

WHERE <NAME> IS THE UNIQUE NAME ASSIGNED TO
) THE REGISTER |
«STZE> - IS THE SIZE, IN BITS, OF THE

REGISTER. IT MAY HAYE A VALUE
" OF FROW 1 0 32, INCLUSIVE.
INITIAL SPECIFIES THAT AN INTTIAL
VALUE IS TO BE ASSIGNED TO THE
REGISTER. | -
CCONSTANT> IS ANY OF THE CONSTANTS DEFINED
IN SECTION A4y AND GIVES THE
THE INITIAL VALUE DESIRED.

IF THE LENGTH OF THE CONSTANT IS SPECIFIED, THEN THIS
LENGTH MUST BE NO GREATER THAN THE NUMBER OF BITS IN THE
REGISTER. IF NO LENGTH IS SPECIFIED IN THE CONSTANT; THEN
THE LENGTH OF THE REGISTER WILL BE USED AS THE IMPLICAT
LENGTH. IF A CONSTANT REQUIRES MORE BITS TO REPRESENT THE
CONSTANT THAN ARE AVAILABLE IN

49 -

TWO OR MORE REGISTERS HAY BE DEFINED ON ONE
"*REGISTER” STATEMENT BY SEPARATING EACH DEFINITION WITH
COMMAS .. : : ‘

. A MAXTIAUM OF 50 REGISTERS MAY BE DEFINED. AS MANY
. "REGISTER” STATEMENTS AS NECESSARY MAY BE USED TO DEFINE
'THESE REGISTERS. ..

EXAMPLES OF VALID liEGISTER DEFINITIONSS

COLUMN
678
REGISTER REG1(10)
REGISTER A123456(15) INITIAL. (D)
REGISTER A2€10), Y14(25) INITIAL
1 ($AC5))5 BC20)

. A5.1.2 SCALAR

‘A SCALAR ELEMENT IS ONE WHICH STORES ONLY ONE BIT OF
INFORMATION. AN OPTIONAL INITIAL VALUE HAY BE USED.TO
" INITIALIZE THE SCALAR TO EITHER A °1° OR A “0°. SCALAR
ELEMENTS ' ARE DEFINED VIA THE °SCALAR® STATEWENT, WHICH HAS
THE FORMS S

50

SCALAR <NARE> [INIYIAL ¢ <CONSTANT>)]

WHERE <NAME> IS THE UNIQUE NAME ASSIGNED Yo'
- © THE SCALAR. _
INITIAL SPECIFIES THAT AN INITIAL VALUE
IS TO BE ASSIGNED TO THE SCALAR.
CCONSTANT> IS EITHER A “1° DR A 0% THIS
VALUE IS USED AS THE INITIAL
YALUE OF THE SCALAR.

MORE THAT ONE SCALAR. MAY BE DEFINED BY -A SINGLE
*SCALAR® STATEMENT BY SEPARATING EACH DEFINITION WITH
COMMAS - ' ' g |

A MAXIMUM OF 50 SCALARS MAY BE DEFINED. AS KANY
.*SCALAR® STATEMENTS AS MECESSARY MAY BE USED TO DEFINE
THESE SCALARS. '

EXAMPLES OF VALID SCALAR DEFINITIONSS

COLUMN
678
SCALAR A - ,
SCALAR J INITIAL €0)
SCALAR Ky L INITIAL (1) H

51
A5 o103 PANEL SWITCHES

——— —— - - O 23 W X - A -

 PANEL "SWITCHES PERMIT THE SINULATION OF MANUALLY
ENTERING INFORMATION THROUGH THE FRONT PANEL INTO THE
'SYSTEM UNDER SIMULATION. A SET OF PANEL. SWITCHES MAY BE
THOUGHT OF AS A COLLECTION OF SINGLE SWITCHES, EACH -
CAPABLE OF HOLDING ONE BIT OF DATA INFORMATION. PANEL
SWITCHES MAY BE GIVEN AN OPTIONAL INITIAL *VALUE. SWITCHES
' ARE DEFINED VIA THE “SWITCHES® STATEMENT, WHICH HAS THE’
FORM: :

1

"SWITCHES <NAME> (<SIZE>) .[INIIIAL'K <cnmsvnmx)-5]

WHERE <NAME> IS THE UNTQUE NAME ASSIGNED TO
- THE SET OF SWITCHES. |
<SIZE> IS THE NUHBER OF INDIVIDUAL SHITCHES

MAKING UP THE SEV. <SIZE> HMAY HAVE A
VALUE OF FROM 1 70 32, INCLUSIVE.
INITIAL INDICATES THAT AN INITIAL VYALUE IS TU.
‘BE ASSIGNED TO THE SWITCHES.
CCONSTANT> IS A VALID CONSTANT AS DEFINED IN
SECTION A4y AND GIVES THE INIfI&L
VALUE DESIRED. '

. IF A LENGTH IS SPECIFTED IN- THE CONSTANT, IT HUST NOT
EXCEED THE STZE OF THE SWITCHES. IF NO LENGTH IS
SPECIFIED; THE LENGTH OF THE SWITCHES IS USED AS THE .
IMPLICIT LENGTH. TF THE CONSTANT. REQUIRES MORE BITS FOR.

52

ITS REPRESENTATION THAN ARE AVAILABLE IN THE SHITCHESy THE
SWITCHES WILL NOT BE INITIALIZEDS ' '

‘TWO OR MORE SETS OF SWITCHES HAY BE DEFINED ON ONE
.'SHITCHES’ STATEMENT BV SEPARATING EACH DEFINITION HITH

CDMMAS«
UP 70 5 SETS OF SWITCHES MAY BE DEFINED. AS NANY

"SWITCHES® STATEMENTS AS NECESSARY HMAY BE USED VO 'DEFINE
THESE SWITCHES. '

EXAMPLES DF VALID SWITCH DEFINITIONSS

COLUMN
678
'SWITCHES AC10) - |
SWITCHES BC15) INITIAL € 0.3
SWITCHES CC18)INITIALC$AC5))s
1 © SHSC16) INITIAL C($EC16))

AS5.104 PANEL LIGHTS

o2 - ——— e D RS A e ——

PANEL LIGHTS PERWIT A VISUAL DISPLAY OF THE CONTENTS
OF VARIQUS MEMORY ELEMENTS WITHIN THE SYSTEM UNDER |
STMULATION. PANEL LIGHTS ARE DEFINED VIA THE “LIGHTS®
" STATEMENT, WHICH HAS THE FORHE '

53
LIGHTS <NAME> € <STZE>)

<SIZE> IS . THE NUHBER OF BITSy; OR INDIVIDUAL
BULBS IN THE SET OF LIGHTS. I(SIZE)
MAY - HAVE ANY VALUE FROM 1 TO 325
INCLUSIVE.

UP TO FIVE SETS OF LIGHTS MAY BE DEFINED. AS HANY

" *LTGHTS® STATEMENTS AS NECESSARY HMAY BE USED. '

TWO OR MORE SETS OF LIGHTS MAY BE DEFINED VIA nme

ALTGHTS ® STATEMENT BY SEPARATING EACH DEFINITION WITH.

COMMAS .. ,
LIGHTS MAY NOT BE ASSIGNED AN INITIAL VALUE .

EXAMPLES OF VALID LIGHTS DEFINITIONS:

COLUMN
678
LIGHTS L1(18)
- LIGHTS L2(10)s L21 { 32 2 -
1 L6SC12) '

A5.1.5

54
RANDOH ACCESS MEMORY

ONE RANDOM ACCESS HEMORY ¢ RAM) MAY BE DEFINED FOR
- EACH DIGITAL SYSTEM, -A RAM IS DEFINED BY MEANS OF . THE
"RAM® STATEMENT, WHICH HAS THE FORMS :

RAM <NAME> { <HBITS>s CAHORDS>) MAR = <HARREGD,

WHERE <NAMED>
<H#BITSS

<H#WDRDS>

<MARREGY

<MDRREG>

MDR .= <HDRREG>

1S- THE NAHE ASSIGNED TO THE
MEMORY o | ' S

IS THE NUMBER OF BITS PER WORD

OF RAMo. AND MUSYT BE IN THE RANGE |
OF 1 TO 32, INCLUSIVE. .
IS THE TOTAL NUMBER DF WORDS IN
THE MEHORY. <#HOROS> MUST BE
GREATER THAMN ZERO, AND IS LIWITED
ONLY BY THE SIZE OF THE MEMORY
OF THE HDST COMPUTER.

IS THE NAME OF ‘THE REGISTER TO B
USED AS THE MEMORY ADDRESS . |
REGISTER. THIS .REGISTER WILL
CONTAIN THE ADDRESS OF THE. LOCATION
WITHIN THE .RAR WHICH. WILL BE
ACCESSED IN A MEMORY REFERENCE

F

"DPERATIONM.

IS THE NAME. OF THE HMEHORY DATA
REGISTERS THXS‘REGISTER HILL BE

55

USED TO SUPPLY - DATA -TO THE.RﬁMv
OR TO RECIEVE DATA FROM THE
RAMy IN A MEMORY REFERENCE
OPERATION,

THE REGISTERS <MARREG> AND <HDRREG> NEED NOT BE
DEFINED AT THE TIME THE - “RAR® STATEMENT IS ENCOUNTERED.
- HOWEVER, THEY MUST BE .DEFINED BY A.°REGISTER® STATEMENT
PRIOR TG THE CONCLUSION -OF OF THE SYSTEM DEFINITION
STATEMENTS. THE <MARREG> REGISTER SHOULD.CONTAIN ENOUGH
BITS TO ADDRESS ALL WORDS IN THE .RAM. THE <MDRREGY
REGISTER WUST CONTAIN EXACTLY AS MANY BITS AS THE HORDSIZE
OF THE RAM. . .

| SHOULD THE <MARREG> REGISTER NOT CONTAIN ENOUGH-BITS
TO ACCESS ALL OF THE HEHODRY, THAT PORTION OF THE MEMORY
WITH ADDRESES IN ACCESS OF THE MAXTIHUH ADDRESSABLE VALUE
CAN 'NOT BE ACCESSED. ' |

" THE THREE OPERANDS IN A “RAM® STATEMENT #MAY APPEAR IN

ANY ORDERa : ; 1

EXAMPLES OF VALID RAH DEFINITIONSS B

COLUMN
678
RAM MEW { 18,1024 JoMAR=MA,HDR=MD
RAM MAR=REG1, RAM(1658192),
* MDR=REG2

56

NOTE THAT IF BOTH °“RAN® STATEMENTS APPEARED IN THE
SAME SYSTEM DESCRIPTIONs, THE SECOND ONE WOULD BE IN ERRORS
ONLY ONE RAM MAY BE DEFINED FOR EACH SYSTEH..

A °RAM® STATEMENT. IMPLICITLY DEFINES oxnecv DATA
PATHS CONNECTING THE <HARREG> REGISTER WITH THE MEMORY
THE MEMORY WITH THE <MDRREG>, AND THE CHARREG> REGISTER'
WITH THE MEMORY. THE THO REGISTERS <MDRREG> AND <HMARREG>

ARE THE ONLY ALLOWED HEANS OF COMWUNICATION WITH THE RAM.

A5.1.6 REQD"OM.Y HEKRORY

ONE READ-ONLY (ROM) WEMORY MAY BE DEFINED FOR EACH-
. DIGITAL SYSTEM. A ROM IS DEFINED BY MEANS OF THE “ROH°
STATMENT; WHICH HAS THE FORME

ROM € <EBITSD, CHWORDS> 3o MAR = <HMARREGDs
' MDR = <HDRREGY

WHERE EACH OPERAND HAS THE SAHE MEANING AS IT DOES IN
A "RAM® STATEMENT. ALL THE RULES. OF DEFINITION OF A RAH
APPLY TO A ROHM. NOTE THAT IT IS POSSIBLE FOR BOTH A RAH
AND A ROM TO HAVE THE SAME REGISTER(S) FOR THEIR :MEWORY
ADDRESSING AND MEMORY DATA REGISTERS.

A °ROM® STATEMENT.IMPLICITLY DEFINES DIRECT-DATA
PATHS CONNECTING THE ROM WITH THE <HDRREG> REGISTER, AND

L il

57

THE <MARREG> REGISTER WITH THE ROM. THE THO REGISTERS

<MDRREG> AND <MARREG> ARE THE ONLY HEANS OF COMMUNICATING
WITH THE ROM.

«

“A5.1,7 - LOGICAL. FUNCTIOWNS

— . -

A LOGICAL FUNCTION, IN CONTRAST TO BOOLEAN. OPERATORSs
IS AN OPERATION THAT NORMALLY CAN NOT BE. PERFORMED IN ONE
MACHINE CYCLE TIME. .SUCH OPERATIONS IMCLUDE ADDITION,
MULTIPLICATION, AND DIVISION. . THESE -OPERATIONS MUST BE
PERFORMED BY A SUBSYSTEM OF THE HACHINE. THIS SUBSYSTEM
MAY BE EITHER A HARDMIRED CIRCUIT ROUTINE, OR A
SOFTWARE-CONTROLLED PROCESS. SDSS. PROVIDES FOR THE
INCLUSION OF LOGICAL FUNCTIONS TO DO SUCH OPERATIONS.
SDSS INCLUDES SEVERAL LOGICAL FUNGTIONS WHICH MAY BE
REFERENCED DIRECTLY BY THE DESIGMER. THEY ARES DIRECTLY
BY THE DESIGNER. THEY ARE?
. : ' |
ADD -- TO ADD THO VALUES TOGETHER USING 2°S
COMPLENENT ARITHMETIC. o
INC -- TO INCREMENT A VALUE BY 1 USING 2°S
COMPLEMENT ARTITHHETIC.
DEC —- TO DECREMENT A VALUE BY 1 USING 2°S
COMPLEMENT ARITHHETIC. '

~EACH ﬁF THESE FUNCTION HAVE THREE OTHER NARES 8Y
WHICH THE SAME OPERATION MAY BE INVOKED. THE OTHER NAMES
ARE: ' - -

58

FOR ADD: ADD1, ADD2, ADD3
FOR INC: INC1l, INC2, INC3

FOR DEC: DEC1s DEC2s DEC3 A

. 'THESE 12 FUNGCTIONS ARE KNOKN AS THE BUILT-IN-
FUNCTIONS (BIF®S Yo' -~ |

'THUS, IT IS POSSIBLE TO HAVE FOUR DIFFERENT.HARDYARE
UNITS IN THE SAHE DIGITAL SYSTEM TO PERFORN THE SAME BASIC
OPERATION; BUT HAVING NO INTERACTION AMONG THEH. |

FOR THESE 12 FUNCTIONS; NO INDICATION OF OVERFLON OR
UNDERFLOW IS GIVEN. 1IT IS UP TG THE DESTIGNER TO DETERHINE
THE VALIDITY OF THE RESULTS. |

~ SHOULD SOME OPERATION BE DESIRED THAT IS NOT

AVALIABLE WHTHIN SDSS, THE DESIGNER CAN CREATE IT HIMSELF
BY MEANS OF A STANDARD FORTRAN FUNCTION SUBPROGRAMg AND
INCLUDE THIS SUBROUTINE AT PROGRAM LOAD TIME.C SEE SECTION
A6). | , :
T ALL FUNCTIONS, INCLUDING BIF“S, WUST BE DEFINED TO-
. THE 'SDSS COMPILER -BEFORE THEY MAY BE USED IN THE SYSTEM
 DESCRIPTION. TO DEFINE A .FUNCTIONs THE SDSS “FUNCTION®
STATEMENT IS USED. IT HAS THE FORHS 2

FUNCTION <NAME> ¢ <#ARGS>y <#BITSD>)

WHERE <#BITS> IS THE NUHBER OF BITS IN THE RESULT
© RETURNED BY THE FUNCTION. <#BITS> MUST
BE IN THE RANGE OF 1 TO 32, INCLUSIVE.
CHARGSD> IS THE NUMHBER OF ARGUMENTS REQUIRED
 BY ‘THE FUNCTION. -ALL FUNCTIONS REQUIRE
AT LEAST ONE ARGUMENT. '

59

, THE BUILT—IN FUNCTIUNS REQUIRE A FIXEB NUMBER GF
ARGUMENTS 3 '

FUNCTION NUMBER 'OF ARGUMENTS - .’

ADD, ADD1s ADD2s ADD3
INCy INC1y, INC2, INC3 - 1
DECs DEC1; DEC2s DEC3 . 1

IF THE NAME OF A BIF IS USED AS SOME OTHER HARDWARE
ELEMENT ¢ SUCH AS A REGISTER) PRIOR TO BEING DEFINED AS. A
FUNCTION THEN THAT NAME AUTOMATICALLY CEASES 7O BE A
FUNCTION. .SIMILARILYy IF A NAME HAS BEEN DEFINED AS A
FUNCTIDN;AND DTHER ELEHWENT MAY USE THAT NAME,

~ IT IS POSSIBLE TO REDEFINE THE NAME OF A BiF 70 8E
THE NAME OF A DESIGNER-SUPPLIED FUNCTION. TO PO THIS,
SIMPLY PRECEED THE NAME OF THE BIF BV.AN ﬂS?EBISK ¢ “%°)3~
THE NAﬁE IS NO LDNGER ASSOCTATED WITH THE BI#ATO WHICH IT
PREVIOUSLY REFERED.

‘THE USAGE DF A FUNCTION IN THE CONTROL SEQUENCE
| STATEMENTS IS OESCRIBED IN SECTION A5.3.4.

UpP T0O 12 EXTERNAL LOGICAL FUNCTIONS, IN ADDITION 7O
ANY BIF°S, MAY BE DEFINED. TWO OR HMORE FUNCTIONS MAY BE
DEFINEQ ON THE SAME “FUNCTION® STATEMENT BY SEPARATING
EACH DEFINITION BY COMMAS.

VALID FUNCTTION DEFINITIONS:

'COLUANS \ *
678 |
FUNCTION ADD(2519)
FUNCTION, INCC1,18)5 SUB(2517)
FUNCTION #*0EC(3,10)

“NOTE IN THE LAST EXAMPLE THE BIF °DEC~” IS REQEFINED
TO 8E AN EXTERNAL FUNCTION HAVING 3 ARGUMENTS AND
: RFTURNING A VALUE 10 BITS LUNG@ : :

PROGRAMMING NOTES

UNDER THE CURRENT IMPLEMENTATION OF SDSS, THERE
IS NO PROVISION BY WHICH DATA. VALUES MAY BE
“INPUT INTO THE SYSTEM DURING SIMULATION. ONE
WAY TO OBTAIN DATA VALUES IS T0 USE A FORTRAN
FUNCTION SUBPROGRAM WHICH WILL REQUEST AND
OBTAIN A DATA VALUE, AND RETURN IT TO THE
SIMULATION AS ITS RESULT. SUCH A FORTRAN
ROUTINE TQ PERFORM THIS FUNCTION COULD BES

FUNCTION INPLCI)
INPUT I

INPL = I

RETURN

END

THIS FUNCTION COULD BE CALLED BY THE DIGITAL
SYSTEM WITH THE TRANSFER:S

A < INPL CAD

61

7

SEE SECTION A5.3.4 FOR DETAILS ON THE TRANSFER
STATEMENT. S '

A5.1.8 DATA PATHS

—— - B N o b

TN ORDER TO TRANSFER INFORMATION FRON ONE HARDWARE
ELEMENT TO ANDTHER, A DATA PATH.BETWEEN THE TWO ELEMENTS
MUST EXIST. TWO TYPE' OF DATA PATHS ARE AVAILABLE IN SDSS3
THEY ARE THE DIRECTLY-CONNECTED DATA PATH, AND THE
BUS-CONNECTED DATA PATH. ,
| A DIRECTLY-CONNECTED DATA PATH IS ONE ON WHICH. DNLY
ONE UNIQUE HARDWARE ELEMENT MAY PLACE DATA, AND FROH WHICH
ONLY ONE UNIQUE ELEMENT MAY EXTRACT DATA. SUCH. 4 PATH IS
. DEPICTED IN FIGURE Al. THE ARRDH INDICATES THE DATA; PATH.

e kERE Fe&Ek.

* % * L

* %x % * FIGURE Al

% A Akzz==z=z===z==D% B %

* % ¥ & DIRECTLY CONNECTED
* * % %

&

Lol Txk, DAYA PATH

 EACH SUCH DATA PATH IS UNIDIRECTIONAL DATA MAY BE
TRANSFERED IN ONLY ONE DIRECTION. 1IN ORDER TO ALLOW TWO
ELEMENTS TD “TALK® WITH EACH OTHER, THO DATA PATHS HUST BE
DEFINEDy; ONE FOR EACH DIRECTION. ’

62

A BUS-CONNECTED DATA PATH ALLOWS. ANY DF SEVERAL
ELEMENTS € BUT ONLY ONE AT A TIWE) TO PLACE DATA VALUES
ON THE 8US, AND ONE OR MORE ELEMENTS (POSSIBLY

" SIMULTANEOUSLY > TO EXTRACT DATA VALUES FROM THE BUS. A
' BUS-CONNECTED DATA PATH MAY BE DEPICTED AS IN FIGURE A2.
THE BUS IS NORMALLY AT LEAST AS WIDE C THAT IS, HAY
'CONTAIN AT LEAST AS HANY BITS 3 AS THE LARGEST ELEMENT
THAT IS TO BE CONNECTED TO THE BUS. '

]
i

b 2228 - THehk.
¥ i ¥. & £
¥ A #H==s==Ppsmsz====D% B %
% & % % . o
fF ki & 3 2 208
% i
* . |
Bk A g & x
% Z====== DR \
¥ L * %
F3 g ======%
FhkExk %
¥
¥
fkkk % SRR
% . & k=z=zmz===Dk- &
¥ D f======D% % £ %
* * k{mszz===k £+
LR X 32 & Tl de e
BUS
FIGURE A2

BUS-CONNECTED DATA PATH

AS BEFORE, EACH CONNECTION IS UNIDIRECTIONAL. NOTE
 THAT IN FIGURE A2 THAT ELEMENTS C_AND E MAY BOTH SUPPLY
DATA TO THE BUS AND EXTRACT DATA FROH THE BUS. ELEMENTS A
AND D MAY ONLY SUPPLY DATA TO THE BUS, WHILE ELEMENT B MAY

ONLY RECIEVE DATA FROM THE BUS. THE BUS IS REPRESENTED AS -

THE VERTICAL LINE IN FIGURE A25

BOTH BUSED AND DIRECTLY CONNECTED DATA PATHS PROVIDE
FOR THE CONCATENATION OF DATA SOURCES AND DESTINATIONS.
‘TW0 ITEMS MAY BE CONCATENATED TOGETHER TO FORM A SINGLE
BIT STRING. THE RESULTING BIT STRING IS THEN TREATED AS A
SINGLE BIT STRING IN ALL OPERATIONS. ' - '
TO DEFINE A DIRECTLY-CONNECTED DATA PATH, THE SDSS
. “CONNECT” STATEMENT IS USED. TO DEFINE A BUS-CONNECTED -
DATA PATHy, THE SDSS sTnjEﬁENT “BUS” IS USED. '

A50108.1 CONNECT STATEMENT

 THE °CONNECT® STATEMENT.IS USED TO DEFINE DIRECTLY
CONNECTED DATA PATHS. THE STATEMENT HAS THE FORM:

CONNECT € KPATH> Dy { <PATHD)5 ocoo -

WHERE <PATH> IS DNE OF NINE BASIC DATA PATH
SPECIFICATIONS. EACH <PATH> DEFINES ONE UNIDIRECTIONAL
DATA PATH. THE ALLOWED FORMS FOR <PATH> ARE THE |
FOLLOWING?

WHERE

64

1) <ORG1>3 <DEST1>

"2) CORG1>3 <DEST1>p CDEST2>

3) <ORG1>, <ORG2>3 <DEST1D .

4) CORG1>s <ORG2>3 CDEST1>, <DEST2>

5) $<SR> < <H#S/R>) <ORG1d3 <DESTI>

6) $<SR> (<H#S/R>) <ORG1>3 <DEST1>; <DEST2>

7) $<SR> (<HS/R>) <ORG1>; <ORG2>3 <DESTL>

- 8) $<SR> (<#S/R>) <ORG1>p <ORGEZ>; <DEST1>, <DEST2D
9) <ORG1> <OP> <ORG2>3 <DEST1D> ‘

<SR

CORG1>
&

" <0RG2>

<DESTI1>
&

. KDEST2>

IS A SHIFT DR ROTATE DPER&TORQ AND MAY BE ONE
OF2 SLy, SRy RLy OR RRo

SPECIFY THE DATA SOURCES TO BE USED.

FOR THIS DATA PATH. THE SOURCES MAY BE

THE NAMES OF REGISTERS, SWMITCHESs SCALARS,

OR FUNCTIONS. A CONSTANT HAY' ALSO BE USED AS
A DATA SOURCE. 1IF A CONSTAWT IS To BE USED
AS A DATA SOURCE, THEN THE TRANSFER PATH HUST
ALLOW FOR THE CONSTANT. TO 00 THIS, A ZERO
(°0°) TS USED FOR <ORG1> AND' / OR <ORG2>.

THE CONSTANT ITSELF IS NOT SPECIFIED UNTIL
THE ACTUAL DATA TRANSFER STATEMENT IS
ENCOUNTERED. ANY NUMBER OF DIFFERENT
CONSTANTS MAY BE USED AS DATA SOURCES FOR THE
TRANSFER ALONG A DATA PATH SO DEFINED. °

ARE THE NAMES OF THE DATA DESTINATION
ELEMENTS. DESTINATIONS HAY BE . THE
NAMES OF REGISTERS, SCALARS; FUNCTIONSs
OR LIGHTS.

65

<#S/R> IS THE NUMBER 0F SINGLE SHIFTS BOR
ROTATIONS DESIREDe

"<OP> IS A BODLEAN OPERATOR AND HUST BE ONE
OF: $AND; $NND, $OR, SNOR, $XOR.

' THE SEMICOLON SEPARATES THE DATA SOURCE FROM THE
DESTINATION WITHIN EACH PATH FORM. COMMAS ARE USED 7O
INDICATE CONCATENATION OF ELEMENTS 10 FORH SOURCES AND
DESTINATIONS . | :

FORMS 1 THROUGH 4 ARE USED TO.CONNECT ONE ELEMENT
"DIRECTLY TO ANOTHER. THE ONLY OPERATION UPON THE DATA
ALONG THIS PATH IS NEGATION. '

CFORMS 5 THROUGH 8 ARE.USED WHEN THE DATA ssuncs BITS
ARE TO BE SHIFTED OR ROTATED BEFORE BEING .STORED IN THE
SPECIFIED DESTINATION. ANY SHIFT OR ROTATION OPERATOR MAY
BE uséD'IN THESE. FORASe '
FORM 9 IS USED WHEN A BOOLEAN OPERATION IS TO BE
' PERFORMED ON THE TWO DATA SOURGES SPECIFIED. THE
RESULTING VALUE IS THEN STORED IN THE DESIGNATIED
DESTINATION, :

THE “CONNECT” STATEMENT SAYS NOTHING ABOUT THE SIZES
' OF THE ELEMENTS THAT ARE CONNECTED. A DATA PATH: BETUEEN
TWO ELEMENTS IS ASSUMED TO BE CAPABLE OF TRANSFERING ANY
OR ALL BITS OF THE SOURCE TO THE DESTINATION. ASSUMING
THAT A AND B ARE REGISTERS OF 10 AND 20 BITS,
. RESPECTIVELY, THEN IT IS POSSIBLE TO TRANSFER THE ENTIRE
CONTENTS OF A, OR A PORTION OF Ay OR A SINGLE BIT OF 4 TG
ANY EQUAL-SIZED PORTION OF B ALONG THE SINGLE DATA PATH
GIVEN BY: °CONNECT (A3B)>°. DATA TRANSFERS ARE DESCRIBED
IN SECTION AS5.3.1.

66

THE FOLLUWING RESTRICTIONS MUST BE ADHERED TO WHEN

USING THE

v

2)

3)

4)
- 5)

6)

“CONNECT® STATEMENTS

DATA PATHS MUST CONNECT ALL ARGUMENTS TO ALL
FUNCTIONS THAT UTILIZE THE hRGUMENTQ DATA PATH

Forn #1 MUST BE USED TO DO THIS. THE ARGUMENT

IS SPECIFIED AS THE SOURCE, AND THE FUNCTION IS
SPECIFIED AS THE DESTINATION. THE FUNCTION NAME
MUST BE CONNECTED YO THE DESTINATION BY A DATA
PATH OF FORM #1 OR #2.

- A FUNCTION MAY NOT BE CONNECTYED ?0 A FUNCYIUNa

A FUNCTION NAME MAY NOT BE. USED IN A

--,CUNC&TENATED SOURCGE OR. DESTINATIﬂN

SPECIFICATION, OR IN A SHIFT OR ROTATE DATA
PATH. o S o
LIGHTS MAY NOT BE USED AS DATA SOURCES.
SWITCHES MAY NOT BE USED AS A DATA DESTINATION.
THE NAMES OF BUSES AND HEMORIES MAY NOT BE USED
IN A “CONNECT® STATEMENT.

A HARDWARE ELEMENT MAY NOT BE CONCATENATED WITH
ITSELF WHEN USED AS A DATA DESTINATION. IT MAY

" BE CONCATENATED WITH ITSELF WHEN USED AS A DATA
SOURCE.

IT IS NOT NECESSRY TO HAVE DEFINED ALL HARDWARE
ELEMENTS AT THE TIME THE °CONNECT® STATEMENT IS
ENCOUNTERED. HOWEVER, ALL ELEMENTS WUST BE DEFINED PRIOR
10 .THE CONCLUSION OF THE SYSTEM DEFINITION STATEMENTS.

APPROXIMATELY 200 DATA PATHS MAY BE DEFINED. THE
EXACT NUMBER. ALLOWED IS DEPENDENT UPON HOW MANY PATHS OF
EACH TYPE ARE USED WITHIN THE SYSTEM DEFINITION SECTION.

67

VALID “CONNECT® STATEMENTSS

. COLUKN
678 o |
CONNECT CA3B)» CAp B3CDs CAsB3CsD)
CONNECT C$SLC1)ASA)s CSRRC2)ByD3B5D)
S (A SAND B3 C) |
" CONNECT € 03A)5 ($SLC4ID,08 D)

THIS LAST °CONNECT® STATERENT SPECIFIES THAT ONE -OR
MORE ¢ AS YET UNSPECIFIED) CONSTANTS ARE TO BE TRANSFERED
T0 THE DESTINATION “A°. THE SECOND PATH STATES THAT A
CONSTANT IS TO BE CONCATENATED WITH °D°, FORMING THE LOW
ORDER BITS OF THE RESULTING STRING. THIS STRING IS THEN
SHIETED LEFT FOUR BITS. THIS TVYPE OF PATH ALLOWS A
SHIFTING OPERATION THAT SETS THE BITS SHIFTED INTO “D° TO
BE SOMETHING OTHER THAN A STRING OF ALL 1°S OR 0°S.

68

A5010802 BUS STATEMENT

—— . o - —— .- e T e mun

THE “BUS” STATEMENT IS USED TO DEFINE BUS-CONNECTED

. DATA PATHS. THE “BUS” STATEMENT HAS THE FOLLOWING TWO
.FORMSS '

1) BUS <NAMED> (<SIZED>)y (IN= <IN>p <INDs ooe Dy
(0UT= <OUTDy; <OUTDy ooo 2

'.2) BUS SNAMEDy (IN= <INDy, <INDy ocoo o i
(UUTz <DUT)9 <GUT>9 o000)

WHCRE <NAME> IS THE UNIQUE NAME OF THE BUS.
<SIZE> IS THE SIZEg IN BITS OF THE BUS,
SIZE MUST BE 1IN THE "RANGE OF. 1 TO 64,

INCLUSIVE.
<IN> IS AN INPUT SPECIFICATION DEFINING
o A DATA SOURCE WHICH IS TO BE PLACED
THE BUS,

<OUT> IS AN OUTPUT SPECIFICATION DEFINING THE
ELEMENTS WHICH. MAY EXTRACT DATA
FROM THE BUS.

THE SPECIFICATIONS <IN> AND <DUT> HAY HAVE ONE OF
FOLLOWING FORMSS - | .

THE

69

0
<NAMED _
| $<SR> (<#SR>) <NAMED S
B o CNAME> | (<NAWES)
$<SR> € <#SR>) (' P)
| 0 0
| s<op>
CNAMED| [(<NAME>
C 94)
\ 0 0 J

WHERE <NANE> IS THE NAME OF SOME HARDWARE ELEMENT.
| <SR> IS A SHIFT OR ROTATION OPERATOR, AND
. MAY BE ONE OF: SLo, SRy RL, RR.
. <#SR> IS THE NUMBER OF SHIFTS OR ROTATES
| 1O BE PERFORMED. o
0 . . 'SPECIFIES THAT A CONSTANT WILL BE -
" USED AS THE DATA SOURCE FOR THIS
INPUT. THE CONSTANT ITSELF IS NOT
GIVEN AT THIS TIMEs, BUT IS SPECIFIED
AT THE TIME THE DATA TRANSFER IS
ACTUALLY PERFORMED. ONCE THE BUS
" HAS “0° SPECIFIED AS AN INPUT, ANY
NUMBER OF CONSTANTS MAY BE USED AS
| INPUT TO THAT BUS. -
<0P> IS A BOOLEAN ODPERATOR, AND MAY BE DNE
| OF: ANDs NNDs NORs ORy XORo

NAMES OR CONSTANT SPECIFICATIONS C THE °0°) FHATli\RE
ENCLOSED WITHIN PARENTHESIS INDICATE THAT THE TWO ELEMENTS

|

70

ARE TO BE CONCATENATED TOGETHER3 THE LEFTHOST NAME OR
CONSTANT BECOMES THE MORE SIGNIFICANY PORTION OF THE

. RESULTING BIT STRING.

FORM 1 OF THE “BUS° STATEMENT IS THE COMPLETE

" DEFINITION FOR A BUS. ALL NECESSARY INFORMATION TO DEFINE

THE BUS IS PROVIDED. FORM 2 IS USED SHOULD MORE SOURCES
AND 7 OR DESTINATIONS BE REQUIRED THAN WILL FIT IN ONE
SDSS STATEMENT. 1IF THIS FORH IS USED, THEN IT IS :
PERMISSIBLE TO OMIT ONE OF THE OPERANDS “(IN=cc0o)” OR
“(0UTZ0000)° IF THAT OPERAND IS NOT NEEDED.

A °BUS® STATEMENT OF FORM 1 MUST ALWAYS APPEAR IF A
BUS IS TO BE DEFINED. IF FORM 2 IS USED TO EXTEND THE
NUMBER OF CONNECTIONS, IT HUST USE THE SAME NAME AS USED
IN & FORM 1 “BUS” STATEMENT. THE FORH 2 STATEMENT. MAY
APPEAR PRIOR TO THE FORM 1 STATEMENT. S

THE FOLLOWING RESTRICTIONS APPLY TO THE °BUS”®
STATEMENT 2 ' |

1> THE NAME OF A MEMORY HUST NOT APPEAR IN A BUS

| STATEMENT. | ;

2) A CONSTANT € “0°.) HAY NOT BE GIVEN AS AN QUTPUT
' SPECIFICATION. - L

3) A HARDMARE ELEMENT HAY NOT BE CONCATENATED WITH
© ITSELF WHEN .IT IS USED AS AN <OUT>
~ SPECIFICATIGN. o o

4) SWITCHES MAY NOT BE USED AS AN <OUT>

‘SPECIFICATION. |

5) - LIGHTS MAY NOT BE USED AS AN.<IN> SPECIFICATION.

6) A BUS MAY BE CONNECTED TO ANOTHER BUS. HOWEVER,
" A BUS MAY NOT BE USED AS A CONNECTION T0 ITSELF.

71

THE PHYSIC&L ARRANGEHMENT OF THE HARDHARE THAT IS
CUNNECTED TO A BUS MAY BE VISUALIZED AS FOLLOWS: IF
SOMETHING IS CONNECTED AS AN INPUT TO THE BUS, THEN alLL
 DPERATIONS (IF ANY) WILL BE PERFORMED PRICGR TGO THE DATA
BEING PLACED -ONTO THE BUS. SIMILARILY, FOR AN DUTPUT FROH
. THE BUS, DATA IS5 TAKEN FROM THE BUS, AND THEN OPERATED

UPON BEFDRE BEING PLACED IN THE DESIRED DESTINATION
CELEMENT. . -

ALL ﬂATA VALUES PLACED UPON THE BUS ARE POSITIONED IN

~THE LEAST SIGNIFICANY PORTION OF THE BUS;"LIKE&ISEw WHEN

. DATA IS BEING TAKEN FROM THE BUS, THE LEAST SIGNIFICANT

' BITS OF THE BUS ARE USED TO SUPPLY . THE DATA BITS. THE BUS
SHOULD BE AT LEAST AS WIDE AS THE LARGEST BIT STRING WHICH
IS TO BE PLACED ON THE BUS. o . '
GIVEN A BUS-TO-BUS CONNECTION, IT.IS NOT NECESSARY TO
DUPLICATE THE CONNECTION SPECIFICATION. IN BOTH BUSES
INVOLVED. FOR EXAHPLE, IN THE FOLLOWING “BUS® STATEMENTSS

BUS ACL0)5 COUT= By ooo Do CINT coo)
" BUS BC10)s CIN = Bs coo Js COUT= ooo)

THE PATHS SHOWN ARE IDENTICAL; EITHER ONE OF -THEM MAY. BE
"OMITTED. DUPLICATE CONNECTIONS C EITHER BUSED OR DIRECTLY
'CONNECTED) ARE ACCEPTED BY SDSS. y

'IF IT IS DESIRED TO PLACE THE CONTENTS OF A -SINGLE.
BUS. ONTO THE CONCATENATED COMBINATION OF THO BUSES, THE
PATHZ

(OUT=(ABUSsBBUS)y cos)

72

IS REQUIRED IN THE °BUS” STATEHENT DEFINING THE.SOURCE
BUS. SIMILARILY, TO CONCATENATE THWO BUSES TO SUPPLY DATA
TO A THIRD, THE PATHZ '

(IN:-'(ABUSVBBUS)O ‘000 J

IS REQUIRED IN THE “BUS® STATEMENT. DEFINING THE THE
RECIEVING BUS. h

,EXAMPLES OF VALID °“BUS” STATEHENTSS

COLUMN . l
6738 : : o !
BUS ABUSC18)s; CIN= Ay Bp (DsCly 0 Dy
o (OUT= F3EoCHpI)Y o
BUS BBUS,(OUT= $SLC1)sA $RRC2)(BsCls J o
¢ CIN=0) |

BUS BBUS(20)» C(IN=TEST);(OUT=DUM)
"BUS CBUS(32)s CIN= $AND;" SNMDs $XORs $ORD,
% COUT=ACCUM)

THIS LAST CASE COULD BE SIMPLY A.COLLECTION.POINT FOR

- THE DUTPUT OF FROM ALL THE BOOLEAN OPERATORS, AND HAVE

ONLY DNE.ELEMENT (PERHAPS THE ACCUMULATOR) AS THE QUTPUT
OF THE BUS. : '

73

AS.2 ' MEMORY INITIALIZATION

' SDSS PROVIDES THE CAPABILITY OF INITIALIZING BOTH

. RANDOM ACCESS AND READ-ONLY MEMORIES PRIDR TO THE
SIMULATION OF THE SYSTEM. THE “FILL” STATEMENT IS USED
FOR THIS PURPOSE. WHEN USED FOR -A READ-ONLY - MEMORY, THE
“FILL® IS THE ONLY MEANS BY WHICH THE MEMORY HAY HAVE ITS
'CONTENTS SPECIFIED. FOR A RANDOM-ACCESS MEMORY, THE

" "FILL” STATEMENT MAY SIMULATE AN INITIAL PROGRAM LOAD .
PROCEDURE FOR THE DIGITAL SYSTEM. ‘

A “FILL® STATEMENT, IF PRESENT, HUST FOLLOW ALL
sisrem DEFINITION STATEMENTS, AND PRECEED ALL CONTROL
SEQUENCE AND HOUSEKEEPING STATEMENTS.. -)

' . THE “FILL” STATEMENT HAS THE FORM:

FILL CMEMORYD (KLOD>p<HID)s (KLODPs<CHID)p ooo

WHERE <MEMDRYD ‘IS THE NAME OF THE BEMORY BEING

INITIALTZED.
<LD> SPECIFY THE LOW AND HIGH ADDRESSES
& OF A SECTION OF THE MEMORY WHICH IS
<HI> T0 BE INITIALIZED. BOTH <LO> AND

<HI> MUST SPECIFY LOCATIONS WITHIN
THE MEMORY. .THE VALUE OF <HI> MUST
BE NO SMALLER THAN THAT OF <LO>.

'ALL WORDS WITHIN THE RANGE DF <LO> TO <HIDs
INCLUSTVE, wILL BE INITIALIZED. AS MANY SECTIONS OF
' MEMORY AS DESIRED MAY B8E INITIALIZED BY ONE "FILL®
STATEMENT. THE SECTIONS OF MEMORY TO BE INITIALIZED MAY
BE IN ANY ORDER, AND MAY DVERLAP EACH OTHER. -

74

IF IT IS DESIRED TO INITIALIZE ONLY ONE WORD OF
MEMORY s THEN <LD> = <HID.

THERE IS NO LIMIT TO THE NUMBER OF "FILL® STATEMENTS.

" THE .FILL OPERATION IS INITIATED AT THE TIME THE
_SIMULATION IS REQUESTED, BUT PRIOR TO-ANY OPERATIONS
SPECIFIED BY THE HOUSEKEEPING OR CONTROL SEQUENCE
STATEMENTS.

THE DATA VALUES WHICH ARE USED TO INITIALIZE THE
MEMDRY ARE READ FROM THE M:INF DATA CONTROL BLOCK ¢ DCB).
IT.IS THE RESPONSIBILITY OF THE DESIGNER TO ENSURE THAT
MIINF IS PROPERLY ASSIGNED VIA A SYSTEM ASSIGNMENT.CONTROL
STATEMENT - { SEE SECTION A6).

- _THE DATA RECORDS READ THROUGH THE H3INF DCB ARE QUITE
FREE-FORMAT. A STANDARD B0-CHARACTER RECORD IS READ:.ANY
EXCESS. CHARACTERS ARE IGNORED. DATA VALUES MAY BE WRITTEN
_IN EITHER HEXIDECTMAL DR DECIMAL FORHAT.

TO SPECTFY THE FORMAT TO BE USEDs A SINGLE LETTER IS
PLACED IN COLUMN 1 OF THE DATA RECORD. TO ‘SPECIFY A
HEXIDECIMAL INPUT, THE CHARACTER °X” IS USED$ TO SPECIFY A
DECIMAL INPUTs THE CHARACTER °T° IS USED. (°T° IMPLIES
BASE TEN. <D FOR DECIMAL IS NOT USED SINCE THE .
MEXIDECIMAL SYSTER sts “D° AS A VALID DIGIT.) owcs A
DATA FORMAT HAS BEEN SPECIFIED, IT THEN APPLIES TO ALL
DATA VALUES ON THE CURRENT RECORD.. THE FORMAT WILL REMAIN -
IN EFFECT DVER SUBSEQUENT RECURDS UNTIL EXPLICITLY
CHANGED .

IF NG FORMAT IS SPECIFIED ON THE FIRST DATA RECURQo
THE HEXIDECIHAL FORMAT IS ASSUHED BY DEFAULT.

ALL DATA VALUES ARE TERMINATED WHEN EITHER A SPACE OR
A BLANK IS ENCOUNTERED, OR WHEN THE END OF THE RECORD. IS
REACHED. ALL BLANKS PRECEEDING A DATA VALUE ARE IGNORED.

75

A COMMA IMMEDIATELY FOLLOWING THE LAST DATA VALUE ﬁN A
RECORD INDICATES THAT ANOTHER VALUE IS T0 BE DéTAINED FROM
THAT RECORD. SINCE NO VALUE IS EXPLICITLY GIVEN, A ZERO
:'QILL'BE'ASSUMEDu FOR EXARPLE, THE DATA RECORDS ‘

1y 23354

" CONTAINS THE 5 DATA VALUESS: 1,293,%, AND O, IN THAT ORDER.
- CONSECUTIVE COMMAS, WITH OR WEITHOUT INTERVENING
BLANKSs RESULT IN THE GENERATION OF ZEROS. - FOR EXAMPLE,
THE RECORD: SR '

1525 999 9 3»

"CONTAINS THE DATA VALUES: 1525090005093y AND 0p IN THIS
ORDER. | o
IF AN END-OF-FILE IS ENCOUNTERED ON THE M3INF DCB
PRIOR 7O COMPLETION OF THE INITIALIZATION, ZEROS ARE
"GENERATED AS THE INITIAL VALUES UNTIL ALL REMAINING HEHORY
LOCATIONS ARE FILLED. THIS PROVIDES A CONVENIENT MEANS 7O -
. SET LARGE BLOCKS OF MEMORY TO ZERO. - '

ANY INITIAL VALUE WHICH IS TOO LARGE TO BE CONTAINED
WITHIN THE MEMDRY WORDSIZE C AS DEFINED IN A “RAH° OR
ROM STATEMENT) WILL HAVE ﬂIGH'ORDER,EITs TRUNGATED SO
THAT THE RESULTING VALUE WILL FIT.WITHIN THE MEMORY .
WORDSIZE. ' '

76

EXAMPLES OF VALID “FILL” STATEMENTSS

~ COLUMN
678

CFILL MEM1 (0,100), € 109, 109)
FILL MEM2 (100,120)s (110, 115)

. CONTROL. SEQUENCE STATENENTS ARE USED TO DESCRIBE THE
'INDIVIDUAL MICRO-OPERATIONS WHICH ARE INVOLVED DURING THE
OPERATION OF A DIGITAL SYSTEM. CONTROL SEQUENCE
STATEMENTS MAY BE GROUPED AS FOLLOWS:®

1) TRANSFER STATEMENTS. THESE STATEMENTS SPECIFY
HOW DATA IS TO BE MANIPULATED AND TRANSFERED
FROM ONE HARDWARE ELEMENT Té ANOTHER. ,TRANSFER
STATEMENTS ARE DESCRIBED IN SECTION AS5.3.4.

'2): BRANCH STATEMENTS. THESE STATEMENTS ARE QSED T0
MODIFY THE ORDER IN WHICH THE TRANSFER '
STATEMENTS ARE EXECUTED. BRANCH STAYEHENTS ARE
DESCRIBED IN SECTION A5:3.5.

3) “HALT® STATEMENT. THE °HALT® STATEMENY IS.USED
' TO TERMINATE OPERATION OF A DIGITAL SYSTEM. THE
“HALT ® STATEMENT IS DESCRIBED IN SECTION 553396°

77

ANY CONTROL SEQUENCE STATEMENT MAY HAVE A LABEL°l ONLY
THOSE STATEMENTS WHICH ARE TARGETS OF BRANCH STATEMENTS
ARE REQUIRED TO HAVE A LABEL.

THE OPERATIONS OF COMPRESSION AND REDUCTION9 AND THE
BIT SELECTION NOTATION PROVIDE CONVENIENT MEANS OF
' SPECIFYING USEFUL OPERATIONS. THESE DPERATIONS AND
NOTATION WILL NOW BE DEFINED. -

A5.3.1 COMPRESSION

— e e w—— —— - . O Yo D W wm -

THE APPLICATION OF COMPRESSION PROVIDES A MEANS OF
SELECTING DONLY CERTAIN BITS LOCATIONS FROW A MULTIPLE-BIT
ELEMENT.. THESE LOCATLONS WILL THEN BE USED AS DATA
SOURCES OR DESTINATIONS IN A TRANSFER STATEMENT. ¢ SEE
SECTION A5.3.4 FOR USAGE OF COMPRESSION IN & TRANFER
STATEMENT.)

A COMPRESSION IS REQUESTED BY THE FOLLOWING NOTATIONS

KCONSTANT> 7 <NANED>

WHERE <CONSTANT> IS ANY CONSTANTT GENERATED BY A CONSTANT
GENERATGR ($A, $Hs $Ep, OR SECD). A
'LENGTH MAY BE SPECIFIED IN <CONSTANT>.
IF SO THEN THE LENGTH MUST SPECIFY
EXACTLY THE SAME NUMBER OF BITS AS THERE
ARE IN THE ELEMENT BEING COHPRESSED. IF

l

78 -
NO LENGTH IS SPECIFIED IN <CONSTANT>y
THEN THE LENGTH OF THE ELEMENT WILL BE
USED AS THE IMPLICIT LENGTH.

- KNAMED Is THE NAKE OF THE MULTIPLE- BIT ELEMENT
BEING CORPRESSEDS

THE COMPRESSION OPERATION IS SIMPLE. IF <CONSTANT

IS WRITTEN AS A BINARY STRINGy, THEN, FOR EVERY:-“T° IN THE \
STRINGs THE CORRESPONDING BIT LOCATION IN <NAME> IS
SELECTED. THOSE BIT POSITIONS IN <NAME> WHICH CORRESPOND
70 0°S IN THE CONSTANT.ARE IGNORED. HHAT .IS DONE TO THE
BIT POSITIONS THUS SELECTED DEPENDS ON THE USAGE DF THE
COMPRESSION OPERATOR IN A. TRANSFER STATEMENT. '

 AS AN EXAMPLE OF COMPRESSION, ASSUME “A° TO BE A
10-BIT REGISTER. THEN THE COMPRESSION | ‘

3U(5) 7 A
V.SELECTS THE LAST 5 BIT POSITIONS OF "A°, THE‘CQﬂPRéSSIDN
$AC3) /7 A
sELECTS TAE.FIRST é BIT POSITIONS UF;fA’o. THE COMPRESSION
$ECDC 682,10) /7 A

W

SELECTS EVERY DTHER BIT POSITION OF “A°s BEGINNING WITH
THE HOST SIGNIFICANT BIT OF A%, | -
MULTIPLE COMPRESSIONS ARE LEGAL. THEY HAVE ‘THE FORN3

79

<CONSTANT> /f(QDNSTANT$ 7 ooo [/ <NAMED

IN SUCH A CASE, COMPRESSION PROCEEDS FROH RIGHT TO LEFT,
. EACH CONSTANT MUST. SPECIFY NO- MORE: BITS THAN REMAIN AFTER
THE . COMPRESSTION TO ITS RIGHT HAS TAKEN PLACE. - FOR
EXAMPLEs IF “A” IS A 10-BIT REGISTERs THEN

$EC3)Y 7 $ECDC 24B,10) / A

SPECTIFIES BITS 45 5, AND 6 OR “A°. |

SPECIAL CONSIDERATIONS HUST BE GIVEN TO THE
COMPRESSION OF A BUS. IF THE BUS CONTAINS NO MORE THAN 32
BITS, THEN ANY OF THE FOUR CONSTANTS GENERATORS HAV BE
"USED TO COMPRESS THE BUS. IF THE BUS CONTAINS. HORE THAN
32 BITSs,. THEN ONLY .THE $A AND $4 CONSTANTS GENERATORS MAY
BE USED TO COMPRESS THE BUS, AND AN EXPLICIT LENGTH HUST
NOT BE GIVEN IN THE CONSTANT. IF A LENGTH IS GIVEN IN
SUCH A CASEs AN ERROR WILL RESULT. |

A50302 BIT SELECTION

- — . — - S a— A o —

. BIT SELECTION IS A NOTATION USED YO SELECT A SINGLE
BIT POSITION FROM A MULTIPLE-BIT HARDWARE ELEMENT. THE
NOTATION USED IS: -

<NAME> (<BIT>)

80

" WHERE <NAME> IS THE NAME OF THE ELEWENT.
| ¢BIT> SPECIFIES THE BIT POSITION YO BE SELECTED.
. <BIT> MAY HAVE A VALUE OF FROM 0 TG N-1,
WHERE N IS° THE NUMBER OF BITS IN <NAMED.

WHAT IS DONE WITH THIS BIT POSITION DEPENDS UPON TITS
USAGE IN A TRANSFER OR BRANCH STATEMENT.

FOR EXAMPLES OF VALID BIT SELECTIONS; ASSURE THAT “B~.
IS A 10-BIT ELEMENT. THEN: -

BCO) SELECTS THE MOST SIGNIFICANT BIT OF “B°.
BC9) SELECTS THE LEAST SIGNIFICANT BIT OF °B°.
B(8) SELECTS THE NEXT TQ LEAST SIGNIFICANT

" BIT DF “8°. ' '

y

A5.3.3 REDUCTION

G o e i o ar s e e £ W D €20

THE REDUCTION OPERATOR GENERATES- A SINGLE. BIT RESULT-
FROM A MULTIPLE BIT HARDWARE ELEMENT. THE REDUCTIODN;
OPERATOR IS INVOLKED AS SHOHN BELDWS

<OP> 7 <NAMED
WHERE <0OP> IS ONE OF THE BOOLEAN GPERATORS: $AND, $ORs

$NNDs $NORs $XOR.
<NAME> IS THE NAME OF A MULTIPLE-BIT ELEMENT.

81

THE REDUCTION OPERATION IS A SHORTHAND ﬁDTATIDﬂ FOR
THE - EXPRESSIONS Y

CHCO)KOPY (o 0o (HIN=-3)KOPOTH(N~2)<KOPPH(N=1)) oes 3

WHERE, H IS A MULTIPLE BIT ELEMENT THAT IS N BITS LONG.

THE OPERATOR <OP> IS ALWAYS APPLIED IN A
RIGHT-TO-LEFT MANNER ACROSS ALL BITS OF THE ELEHENT.
REDUCTION MAY BE USED ONLY WITHIN BRANCH STATEMENTS.

A5.3.4 TRANSFER STATEMENTS

- W D WD T LD . A S T S i o

A TRANSFER STATEMENT SPECIFIES DATA HOVEMENT C WITH

POSSIBLE DATA MANIPULATION) ALONG A DATA PATH. THE DATA -
PATH MUST HAVE BEEN DEFINED PREVIOUSLY VIA A °CONNECY® OR

“BUS” STATEMENT. EVERY TRANSFER SPECIFIES A DATA SOURCE
AND A DATA DESTINATION. EACH TRANSFER MAY BE WRITTEN AS:

CDESTINATION> < <SOURCE>

WHERE <DESTINATION> DENOTES THE HARDWARE ELEMENTS
' WHICH ARE TO RECIEVE THE DATA
. VALUE SPECIFIED BY <SOURCED.
'<SOURCE> DESIGNATES THE DATA ORIGIN, ANbM
MAY INCLUDE OPERATIONS ON THAT
DATA. '

82
< IS THE TRANSFER OPERATOR.

TWO OR MORE TRANSFERS MAY BE EXECUTED
“SIMULTANEOUSLY® BY WRITING THEW ON THE SAME SDSS SOURCE
'RECORDS EACH TRANSFER MUST BE SEPARATED FROM THE OTHERS BY
SEWICOLONS. SUCH.A SET OF TRANSFERS IS CALL A COMPOUND
TRANSFER. 'A COMPOUND TRANSFER MAY EXTEND OVER
CONTINUATION LINES, IF NECESSARY. -

" A.TRANSFER MUST TAKE PLACE ALONG A DATA PATH. IF THE
PATH IS A DIRECTLY-CONNECTED PATH ¢ DEFINED VIA A
*CONNECT® STATEMENT) THEN THE TRANSFER STATEHENT MUST
EXPLICITLY SPECIFY SOURCE ELEMENT(S)s POSSIBLE DATA
OPERATIONS, AND THE DESTINATION ELEMENTS INTO WHICH THE
. DATA VALUE IS 10 BE PLACED. EACH DIRECTLV-CONMECTED
TRANSFER DENOTES A COMPLETE TRANSFER.

IF THE TRANSFER IS ALONG A BUSED DATA PATHg THEN A
WINIMUM OF TWO TRANSFERS ARE NECESSARY TO SPECIFY THE
TOTAL TRANSFER. (FOR EXAMPLE, ONE TRANSFER LOADS A BUS
_ FROM A REGISTER; THE OTHER .TAKES DATA FROM THAT BUS, AND
DEPOSITS IT INTO A REGISTER.) THUS, A COMPOUND TRANSFER
" IS ALWAYS REQUIRED WHEN DEALING WITH BUSED TRANSFERS.
| IT TS LEGAL TO COWBINE BUSED TRANSFERS WITH NON-BUSED
' TRANSFERS IN A SINGLE COMPOUND TRANSFER STATEMENT,
PROVIDED THERE.IS NO CONFLICT OF HARDWARE RESOURCES.

' THERE ARE NO TIMING CONSIDERATIONS WITHIN SDSS3 EACH
 COMPOUND TRANSFER WILL CONSUME AS MUCH °“TIME® AS NECESSARY

TO COMPLETE THE ENTIRE SET OF TRANSFERS. DURING THIS

- TIME; ALL BUSES WILL MAINTAIN THEIR ﬂSSIGNED VALUES. NUTE

THAT THE BUS WILL NDT RETAIN ITS ASSIGNED VALUE AFTER ALL
THE TRANSFERS HAVE BEEN COMPLETED. |

83.

THE “TIME® REQUIRED TO COMPLETE EACH COMPOUND
TRANFSER STATEMENT IS THE TIME REQUIRED BY THE “SLOWEST®
SINGLE TRANSFER WITHIN THE COMPOUND TRANSFER. THE . |
FOLLOWING CONTROL SEQUENCE STATEMENT WILL NOT BE INITIATED
UNTIL THE CURRENT STATEMENT IS COMPLETED. IT IS NOT
' POSSIBLE TO INITIATE A TRANSFER (FOR EXAMPLE, AN EXTENDED
PRECISTON FLOATING POINT DIVISION) AND PICK UP THE
"RESULTS | AT SOME LATER TIME.

THERE IS NO COMFLICT BETHEEN TWD OR MORE TRANSFERS
WITHIN A SINGLE COMFOUND TRANSFER WHEN THEY ALL REFER -TO
THE SAME ELEMENT AS THEIR DATA SOURCE, AND ONE TRANSFER
REFERS TO THE SAME ELEMENT AS ITS DATA DESTINATION. EACH
TRANSFER WILL USE THE VALUE FOUND IN THE ELEMENT AT THE
INITIATION OF THE COMPOUND TRANSFER. - THE ELEWENT WILL NOT:
HAVE' ITS VﬂLUE CHANGED UNTIL THE RESULTS HAVE BEEN
COMPUTED FOR ALL THE OTHER TRANSFERS s

" THE FORMS ALLOWED FOR DIRECTLY CONNECTED AND BUSED
| TRANSFERS DIFFER SOMEWHAT. EACH WILL BE DESCRIBED BELOW.

A5.304,1 DIRECTLY CONNECTED TRANSFERS

A TRANSFER ALONG A DIRECTLY CONNECTED DATA PATH HAS
- THE GENERAL FORM:

<DESTINATION> < <SOURCED

. WHERE <DESTINATION> SPECIFIES THOSE HARDWARE ELEMENTS

<SOURCE>

84

WHICH ARE TO RECIEVE THE BIT STRING
GENERATED BY <SOURCED.

SPECIFIES THE HARDWARE ELEMENTS
WHICH CONTAIN THE DATA VALUES TO BE.

TRANSFERED, AND ANY OPERATIONS TO BE
PERFORMED UPON THOSE - VALUES.

- THE QUANTITY <DESTINATION> MAY HAVE ANY OF THE

"FOLLOWING FORMS:

<REGISTERY] _ <REGISTER$\
ECGMPRESSION) | E}compa&ssxon>
' [KLIGHTS> B o7 | <LIBHTS>
"<SCALARD ; LSCALARD ‘L'
KREGISTERD _ <REGISTERY -

. ¢ <BIT>) | T P BIT)

I CLIGHTS> <LIGHTS> | J
N .

WHERE <REGISTERD
' CLIGHTSD>
KCOMPRESSIOND

IS THE NAME OF A REGISTER,

IS THE NAME OF A SET OF LIGHTS.

IS A VALID COMPRESSION OPERATION ON

A REGISTER OR LIGHTS. WHEN A L
COMPRESSION IS USED IN A DESTINATION, IT
MERELY SPECIFIES THOSE BITS WHICH ARE

TO ACCEPT NEW DATA VALUES. ANY
REMAINING BITS IN THE DESTINATION

85

ARE NOY MODIFIED.

NOTE: CURRENT IWMPLEMENTATION OF SDSS
PERMITS ONLY SINGLE COMPRESSIONS IN DATA
DESTINATIONS. HMULTIPLE COMPRESSIONS ARE NOT

VALID. C , I
<BIT . IS A BIT SELECTION ON THE LIGHTS
OR REGISTER.

<SCALARD - IS THE NAME OF A SCALAR ELEHENT.

THE COMMA C ») ABOVE INDICATES CONCATENATION. FOR
EXAMPLE,; TWO REGISTERS HAY BE CONCATENATED TOGETHER TO
' FORM A SINGLE DESTINATION. EACH COMPONENT IN A
CONCATENATED DESTINATION IS TREATED INDEPENDENTLY OF THE
OTHER. THAT IS, ANY ELEMENT ON THE LEFT-HAND SIDE OF THE
SPECIFICATIONS ABOVE HAY BE CONCATENATED WITH ANY ELEMENT
ON THE RIGHT-HAND SIDE. ' ©

GIVEN THE FOLLOWING SYSTEM DEFINITION STATEMENTS:

REGISTER A(C10)y B(5)
SCALAR L

LIGHTS LGS (3D

THEN THE FOLLOWING ARE YALID DESTINATIONSZ

86

A | SPECIFIES 10 BIT DESTINATION
L ' ‘ 1 '
AsB .) i5

$HC3)/A 8. . |

Lo$W(3,5)/8B 4

LGSsL : . ' 4

. & DIRECTLY CONNECTED TRANSFER MAY HAVE A DATA SOURCE
GIVEN BY ONE OF THE FOUR FORMS GIVEN IN FIGURE A3, NOTE
THAT TERM DEFINITIONS APPLY TO ALL FOUR FORHS.

Form 1

(- ' .
CREGISTER o [<REGISTER?
[(COMPRESSION J x [<compresszon>]
¢SWITCHES > | <SWITCHES>
- | ¢SCALAR> | CSCALAR>
[$NOT] { B , [$N0T] 4
<CONSTANT> : . ' <CONSTANT> .
' <REGISTER> : <REGISTER> -
Z (<BIT>) = | - (<BIT>)
| ¢SWITCHES>) o | <SWITCHES > |
. N - ’ ! " :
Form 2

SL | o <REGISTER > * | <REGISTER»

(¢#S> -, ¢BIT-IN>) , _ . S

k) L ~ <SWITCHES>| |<SWITCHES>

wy o - | <CONSTANT - J<consTanT>

(<#R>)~ N S o

RR I < SCALAR > < SCALAR

, | o~ . FIGURE A3 _
_ VALID SOURGE SYNTAX FOR DIRECTLY-CONNECTED' DATA TRANSFERS <~

/8

Form 3

{REGISTER® < ‘ CREGISTER> \
K{COMPRESSION% : $AND [(COMPRES,SION%
© 9 [KSWITCHES>[| |- _ <SWITCHES>
$NND | .
¢SCALAR> - ¢SCALAR > S
o ' A $OR J S '
ﬁNOT] CCONSTANT> - |swor .~ <CONSTANT »
| : $NOR |] : .
¢ REGISTER > . <REGISTER>
(<BIT)) $XOR | (<BIT>)
¢SWITCHES> f . , ¢ SWITCHES> _
.OO
‘ c
- Form 4

- K$NOTj [<COMPRESSTON>] CFUNCTION> (<ARG> [, <ARG> ; ...])

PR (Geneimed)

89

TABLE Al

DEFINITION OF TERMS USED IN FIGURE A3 .|

SNOT

KCOMPRESSIOND>
CREGISTERD
<SCALARD
KCONSTANT

<BIT>

CES>

<BIT-IND>

SPECIFIES A BIT-BY~BIT LOGICAL NEGATION
OF THE SOURCE BITS AFTER ANY BIT
SELECTION OR COMPRESSION HAS TAKEN
PLACE. ' .

IS A VALID COMPRESSION OF A REGISTER.
OR SET OF SWITCHES. o
IS THE NAME DOF A REGISTER.

IS THE NAME OF A SCALAR.

IS A CONSTANT GENERATED BY A CONSTANT
GENERATOR o

SPECIFIES A DESIRED BIT IN A REGISTER
OR SHITCHES.

SPECIFIES THE NUMBER OF SINGLE .BIT
SHIFTS TO BE PERFORWED. THE DIRECTION
OF THE SHIFT IS DETERMINED BY THE
OPERATOR $SL C FOR LEFT ‘SHIFT) OR
$SR ¢ FORR RIGHT SHIFT).

SPECIFIES THE VALUE OF THE BIT

WHICH WILL BE FED INTO THE VACATED
POSITION FOLLOWING A SHIFT. . THE
VALUE OF <BIT-N> MAY S8E EITHER 0

OR 1.

r

CHRD

 <FUNCTION>
<ARG>

90

TABLE Al (CONTINUED)

SPECIFIES THE NUMBER OF SINGLE BIY
ROTATIONS TO BE PERFORMED UPON

THE DATA SOURCE. THE DIRECTION OF.

THE ROTATION IS GIVEN BY #RL ¢ FOR
ROTATE LEFT) OR #RR (FOR ROTVATE
RIGHT Jo -
IS THE NAME OF A FUNCTION.

IS THE NAME OF AN ARGUMENT 7O THE
FUNCTION. IT MAY BE THE NAME OF A

REGISTER SHITCHES, OR SCALAR. AT

LEAST ONE ARGUMENT MUST BE GIVEN

el e,

L)

91 .
" FORM 1 IS USED TO MOVE DATA FROM ONE HARDWARE ELEMENT
TO ANOTHER WITH NO OPERATIONS OTHER THAN NEGATIONOR
COMPRESSION. EACH OPERAND IN A CONCATENATED SOURCE IS
TREATED INDEPENDENTLY OF THE OTHER IN FORMING THE SOURCE.
BIT STRING. ' :

" FORM 2 IS USED TO PROVIDE SHIFTING AND ROTATION OF A
DATA STRING. IF A REGISTER, SHITCHES, OR CONSTANT Is.
SPECIFIED, THEN ALL BITS OF THE ELEMENT ARE USED IN THE
SHEITING OR ROTATION. . ’ |

FORM 3 APPLIES A BOOLEAN OPERATOR TO THE THO BIT
STRINGS SPECTFIED. THE TWO OPERANDS MUST HAVE EQUAL
LENGTHS EXCEPT FOR THE SPECIAL CASE IN WHICH ONE OPERAND
IS EXACTLY ONE BIT LONG. IN THIS CASEs, THE SINGLE BIT IS
EXPANDED TO THE SIZE OF THE MULTIPLE-BIT ELEHENT PRIOR T0
. THE BOOLEAN OPERATOR BEING APPLIED. NEGATION, IF
SPECIFIEDs IS APPLIED PRIOR TO THE BOOLEAN OPERATION,

FORM 4 IS USED TO REFERENCE A LOGICAL FUNCTION, -AS
MANY ARGUMENTS AS NEEDED MAY BE SUPPLIED IN A FUNCTION.

IT IS IMPOSSIBLE TO HODIFY THE ARGUMENTS OF A _
FUNCTION WITHIN AN EXTERNAL FUNCTION SUBPROGRAM. ONLY THE
DESTINATION ELEMENT(S) WILL BE WODIFIED BY A FUNCTION
REFERNCE
" 'EACH DIRECT TRANSFER MUST BE MADE ALONG A DATA PATH
DEFINED AY A “CONNECT® STATEMENT. 1IN ORDER TO DETERMINE
IF A TRANSFER CAN BE MADE, THE FOLLONING PROCEDURE MAY BE
FOLLOWED:

1) IF THE TRANSFER CONTAINS A FUNCTION
REFERENCEs THEN EACH ARGUMENT RUST BE - .
CONMECTED TO THE FUNCTION, AND THE FUNCTION

NAME MUST BE CONNECTED TO THE DESTINATION(S)
ELEMENTS. '

92

2) FOR ANY OTHER TRANSFERS, REMOVE ALL
COMPRESSIONS, BIT SELECTIONS; NEGATIONS, AND
BIT-IN SPECIFICATIONS: REPLACE ALL CONSTANTS
8Y THE CHARACTER “0°. THE REMAINING DATA
SOURCE AND DESTINATION SPECIFICATIGNS HUST
APPEAR TOGETHER IN A °CONNECT® DATA PATH IN
ORDER FOR THE TRANSFER TD BE VALID.

FOR -EXAMPLE, GIVEN THE TRANSFER?

r .

$H{355)/B,CC10) < $AC10)/D $AND $NOT B

APPLYING STEPS 1 AND. 2 ABOVE RESULTS IN THE REDUCTION OF
THIS TRANSFER TO ONE OF THE FORM:

BsC < D SAND B

THUS» THE ORIGINAL TRANSFER REQUIRES THE °CONNECT® DATA
PATH® ' ' ' :

CONNECY C D %AND B3BsC)

RECALL THAT THE DATA SBURCE IN A "CONNECT® DATA PATH IS ON
hTHé LEFT OF THE “3°,; AND THE DESTIMNATION IS TOQ THE RIGH%;
| ' THERE ARE TWO SPECIAL DIRECTLY CONNECTED TR&NSFERS

WHICH ARE USED TO REFERENCE A MEMDRY. THEY AREZS

CMEMORYD> $DCD <MARREGY < <MDRREG> o
CMDRREGD < <MEMORY> $DCD <MARREGD

93

THE FORMER TRANSFER DEPOSITS THE QUANTITY IN THE
KMDRREG> REGISTER INTO THE MEMORY AT THE LOCATION GIVEN BY
| THE CONTENTS OF THE <HARREG> REGISTER: THE LATTER
TRANSFER FETCHES THE CONTENTS OF MEMORY LOCATION GIVEN BY
THE CONTENTS OF THE <MARREG> REGISTER AMD DEPOSITS IT INTO
THE <MDRREG> REGISTER. OF COURSE, A MEMORY DEPOSIT IS
. ILLEGAL FOR A READ-ONLY MEMORY. ‘

THESE TRANSFERS ARE ALONG A DIRECTLY-CONNECTED DATA
PATH WHICH WAS TMPLICITLY DEFINED BY A °RAM® OR °ROM”
STATEMENT. THE NAMES OF <MARREG> AND <MDRREG> MUST BE THE
SAME AS WERE ORIGINALLY DESIGNATED ON THE °RAM°/.°ROM°
STATEMENT. USE DF ANY OTHER REGISTER, OR ANY OTHER
ELEMENT NAME TS ILLEGAL. |

THESE TWO TRANSFERS ARE THE ONLY CONTROL SEQUENCE
STATEMENTS IN WHICH -THE NAME OF A MEMORY HAY APPEAR, AND
THE ONLY STATEMENTS IN WHICH THE MEMORY REFERENCE OPERATOR
°$DCD” MAY BE USED. .

 EVERY TRANSFER STATEMENT ALONG A DIRECTLY CONNECTED
'DATA PATH MUST SPECIFY EXACTLY THE SAME NUMBER OF BITS IN
THE DATA DESTINATION AS IT DOES IN THE DATA SOURCE. ALL
COMPRESSIONS, CONCATENATIONS; AND OPERATIONS ON THE DATA
ARE PERFORMED PRIOR TO THE COMPARISON OF THE LENGTHS.
NOTE THAT THE COMPRESSION OPERATION MAYV BE USED TO HATCH
THE SIZES OF THE SOURCE AND DESTINATION.

THE CONTENTS OF HARDWARE ELEMENTS USED AS DATA
SOURCES ARE NOT MODIFIED UNLESS THAT ELEMENT IS ALSO USED
AS THE DATA DESTINATION. IF AN ELEHENT USED AS A
DESTINATION HAS ONLY A PORTION OF ITS BITS SELECTEDs THEN
ONLY THOSE BITS WILL BE MGDIFIED. ’

94
ANY ELEMENT HAY BE NEGATED IN A TRANSFER WITHOUT
HAVING TO SPECIFY THE NEGATION HARDWARE IN A DATA PATH
DEFINITION. THIS IS BECAUSE THE NEGATION OF A BIT STRING
IS ALMOST ALWAYS AVAILABLE FOLLOWING MOST DIGITAL
OPERATIONS. THUS, IT IS NOT EXPLICITLY DECLARED.
_ A SINGLE HAROWARE ELEMENT HAY BE CONCATENATED WITH
ITSELF WHEN USED AS A DATA SOURCE. IT MAY NOT BE
CONCATENNATED WITH ITSELF WHEN USED AS A DATA DESTIN&?IONon
' THE FOLLDMING ARE EXAMPLES OF VALID DIRECTLY
CONNECTED TRANSFERS. NOTE THAT ‘ALL HARDWAE ELEMENTS AND
DATA PATHS ARE DEFINED IN THIS EXAMPLE. .

"REGISTER AC10)s B(5)y C(10)

. SCALAR L , ' o
CONNECT € A38 D5 C AsB3C 3o $SLC2)ASA)
¢ (A SAND B3 A)5 CA SOR L3 B D)

THE FOLLOWING TRANSFERS ARE VALID?

B < $HCS) /7 A

8C4) < AC0)
€ < SACS) 7 AsB | | -
$WC5)/C < SAC5) 7 A SAND SNOT 85 A < $SLC2) A

THE FOLLOWING TRANSFERS ARE ILLEGAL.
A <3B

A < $SLAL) A
BC1) < L E

95

IN THESE THREE CASESs THERE IS NO DATA PATH ALONG
WHICH THE TRANSFER CAN BE MADE.

AS5.3.402 BUSED TRANSFERS

s wts e R o 2 2 v o —

A BUSED TRANSFER IS A TRANSFER WHICH UTILIZES A BUS
ALONG AT LEAST ONE PORTION OF ITS DATA PATH. A BUSED
TRANSFER MAY BE THOUGHT OF AS CONSISTING OF A SERIES OF
MICRO-~TRANFERS; ALL OF WHICH TAKE PLACE SIWULTANEOUSLY.

 5DSS REQUIRES THE COMPLETELY-BUSED STRUCTURE FOR ALL
BUSED TANSFERS; THAT IS, EACH MICRO-TRANSFER HUST SPECIFY
A BUS ¢ OR A CONCATENATED PAIR OF BUSES) FOR EITHER ITS
DATA SOURCE, OR DATA DESTINATION, OR BOTH. THUS, EACH
MICRO-TRANSFER ETTHER PLACES DATA ONTQ A BUS,” OR EXTRACTS
DATA FROM A BUS,

THE GENERAL FORM OF A BUSED MICRO-TRANSFER IS THE

SAME AS FOR A DIRECTLY-CONNECTED TRANSFER:

<DESTINATION> < <SOURCE> .

THE QUANTITIES ALLOWED FOR <DESTINATION> ARE
IDENTICAL TO THOSE ALLOWED FOR THE DATA DESTINATION IN A
DIRECTLY CONNECTED TRANSFER. IN ADDITION, <OESTINATION>
MAY ALSO BE:

WHERE <FUNCTIONY
©XOP>

<BUS>

SQID>

"SAND (1)

96

<BUS>
<oP>

<0P> ¢ <ID>)b
<BUS>; <BUSD
<FUNCTIOND

J

TS THE NAME OF A LOGICAL FUNCTION. THIS
IMPLIES THAT SOME ARGUMENT, LODCATED ON A.
BUS, IS BEING SUPPLIED TO THE FUNCTION
BY THIS TRANSFER.

IS A BOOLEAN OPERATOR: $AND, $NNDs $0R,
$NORs $XOR. THIS IMPLIES THAT SOME
OPERAND, LOCATED ON A BUS, IS BEING

'SU?PLIED‘TD THE DPERATOR AS INPUT DATA.

IS THE NAME OF A DATA BUS., THIS SIMPLY
MEANS THAT DATA IS T0 BE PLACED ONTD THE
BUS. ,

IS AN INTEGER IN THE RANGE OF 1 TO 255,
INCLUSIVE. SHOULD HORE THAT ONE BOOLEAN
DPERATION OF A GIVEN TYPE { FOR EXAMPLE,
TWO “AND°S) BE REQUIRED IM A-SINGLE
COMPDUND TRANSFER STATEMENMT, THIS <ID>
VALUE IS USED TO DISTINGUISH ONE"
OPERATOR FROM THE OTHER. FOR EXANPLE,
GIVEN THE TRANSFERSS ’

< A3 BANDC2) < B3 $SAND(1) < €3 -
$AND(2) < D

 THEN THE RESULTS OBTAINED WILL BE:

97
A $AND C ' B $AND D

AN OPERATOR NAHE APPEARING WITHOUT THE
<ID> TERM IS DIFFERENT FROM ALL
OPERATORS WITH THE <ID> TERM. THERE IS
ND POSSIBILITY.OF CONFLICT. BETHEEN BUSED

BOOLEAN OPERATORS AND DIRECTLY CONNECTED
OPERATORS . ' |

"IN A MICRO-TRANSFER THAT PLACED DATA ONTO A BUS,. THE
SOURCE BIT STRING IS ALIGNED SO THAT ITS LEAST SIGNIFIGANT.
BIT TS PLACED INTO THE LEAST SIGNIFICANT BIT OF THE-BUS.
ANY EXCESS BITS IN THE SOURCE STRING THAT CAN NOT FIT ONTO
THE BUS ARE LOST. ANY EXCESS BITS ON THE BUS THAT ARE NOT-
EXPLICITLY SET BY THE DATA STRING ARE AUTOMATICALLY SET TO
ZERODS. IT IS NOT POSSIBLE TO COMPRESS A BUS TO SELECT
WHCIH BIT POSITIONS ARE T0 RECIEVE DATA VALUES. ' ALL BIT
PGSTTIONS AR THE RECIEVING BUS ARE USED IN THE TRANSFER.

'THE QUANTITY <SOURCE> FOR A KICRO-TRANSFER MAY BE ANY
OF THE <SOURCE> SPECIFICATIONS GIVEN. BY FORM 1 AND FORH 2
- ¢ FIGURE A3) OF A DIRECTLY CONNECTED TRANSFER. IN
ADDITION, THE FOLLOWING ARE ALLOHED: |

98 - w
 <BUSY> 1)
‘}compaﬁssxowi

CFUNCTION>

KBUS> ¢ <BIT>) :
<OP> [(<ID>)] J‘

SL . 1

¢ <HS {, <BIT-IND 5} _
" | , : SRS
; <BUS> X»-(BUS)]

¢ <HR>)

{ re - - g - |)

WHERE <COMPRESSION> IS A VALID COMPRESSION OF THE BUS.
' IF THE BUS CONTAINS HORE THAN 32 BITS,
THEN ONLY °$A° AND “$4° CONSTANTS HMAY
BE USED IN A COMPRESSION OF THAT BUS.
¢ SEE SECTION A5.3.1)
 CFUNCTIOND IS THE NAME OF A LOGICAL FUNCTION,
THIS IMPLIES THAT THE OUTPUT OF THE
FUNCTION HAS BEEN COMPUTEDs AND IS, .
NOW AVAILABLE TO BE TRANSFERED TO SOME

DESTINATION.
<BUS> IS THE NAWME OF A BUS.
<BIT> IS A BIT SELECTION FROM THE BUS.

<HS> IS THE NUMBER OF SINGLE BIT SHIFTS To
| | BE PERFORMED. ‘)
<BIT-IN> IS THE BIT TO BE FED INTQ THE POSITIONCS)

<H#RD

<oP>

<1ID>

99 . . »

VACATED BY A SHIFT.

TS THE NUMBER OF SINGLE.BIT ROTATIONS
.10 BE PERFORMED. '

IS THE NAME OF A BOOLEAN OPERATOR; AND
‘ I,
IS ONE OF: $AND, $NND, $0R, $NOR, $XOR.

' THE USE OF. A BOOLEAN OPERATOR AS A DATA
'SOURCE MEANS THAT THE OPERATOR KS T3 BE

APPLIED TO THE TWO ARGUHMENTS ALREADY
SUPPLIED TO THE OPERATOR BY PREVIOUS
TRANSFERS WITHIN THIS COMPOUND TRANSFER
STATEMENT. THE RESULT OF THE OPERATOR IS
TO.BE USED AS THE BATA SOURCE FOR THE
TRANSFER. | S
IS AN IDENTIFICATION MUMBER -IN THE RANGE DF °
L TO 255, INCLUSIVE, WHICH SPECIFIES
WHICH BOOLEAN GPERATOR IS TGO BE USED.

SHOULD TW0O OR MORE BOOLEAN OPERATORS OF

THE SAME TYPE (FOR EXAMNPLE, TWO.$0R“S)

BE REQUIRED IN ONE COMPOUND TRANSFER

-STATEMENT, THIS VALUE DISTiNGUISHES_DNE
. FROM ONE ANOTHER. SEE THE EXAMPLE IN THE

DISCUSSION OF DESTINATIONS FOR BUSED

" TRANSFERS ABOVE.

If A SHIFT OR ROTATION OF A BUS IS REQUESTED, THE
 ENTIRE. BUS PARTICIPATES IN THE SHIFT OR ROTATION. - BUSES'
AND THE RESULTS FROM LOGICAL FUNCTIONS MAY BE COMPRESSED,
IF DESIRED, TO SELECT CERTAIN BIT POSITIONS FROM THE BUS
DR THE FUNCTION RESULT.
TO PERFOR#® A BOOLEAN OPERATION, EACH OF 2 OPERANDS-
MUST BE PLACED ON SEPARATE BUSES. THE CONTENTS OF EACH

100

BUS ARE THEN TRANSFERED TO THE BODLEAN DPERATGR. THE
RE SULT OF THE BOOLEAN OPERATION { DENOTED BY THE NAME OF
THE OPERATOR) IS THEN TRANSFERED TO A THIRD BUS. THIS
THIRD Bus MAY THEN BE TRANSFERED TO THE FINAL DESTINATION. .
" TO INVOKE A LOGICAL FUNCTIONs EACH ARGUMENT MUST BE

PLACED ONTO A SEPARATE BUS. THE CONTENTS OF EACH OF THESE
BUSES MUST THEN BE TRANSFERED TO THE FUNCTION. THE RESULT
OF THE FUNCTION C DENOTED BY THE NAME OF THE FUNCTION
ITSELF) MUST NOW BE TRANSFERED TO AN DUTPUT BUS. THE'
CONTENTS OF THIS OUTPUT BUS MAY NOMW BE TRANSFERED TO THE
FINAL DESTINATTON

SINCE EACH MICRO-TRANSFER IS ONLY A SINGLE COMPONENT
OF AN DVERALL MACRD-TRANSFERy AT LEAST TWD MICRO-TRANSFERS
ARE NECESSARY TO PERFORM A MACRO-TRANSFER. EACH BUSED
TRANSFER MUST BE EXPRESSED AS A COMPOUND TRANSFER. ALL
MICRO-TRANSFERS IN ONE COMPOUND TRANSFER STATEHENT ARE’
ASSUMED TO OCCUR SIMULTANEDUSLY. '

THE FOLLOWING RESTRICTIONS MUST BE ADHERED TO waew
USING MICRD-TRANSFERSS

i

1> EVERY BUSED MICRO-TRANSFER MUST SPECIY A BUS AS

. ITS DATA SOURCEs ITS DATA DESTINATION: OR BOTH.
2) -THE SET OF. MICRO~TRANSFERS WHICH .COMPOSE A

" MACRO-TRANSFER MUST BE WRITTEN IN.THE COMPOUND '
TRANSFER SUCH THATs AS THE TRANSFERS ARE SCANNED

FROM LEFT TO RIGHT» EVERY BUS THAT IS USED AS-A
DATA SOURCE HAS ALREADY BEEN ASSIGNED A VALUE BY

A PREVIOUS TRANSFER. .

3) ANY ELEMENT MAY BE USED AS A DESTINATION IN ONLY

ONE MICRO-TRANSFER IN A COHPOUND STATEHENT: A

BUS MAY BE USED AS A DATA SOURCE ANY NUHBER OF

TIMES ONCE IT HAS BEEN ASSIGNED A VALUE.

10T

4). A BUS WILL RETAIN WHATEVER VALUE IS PLACED UPON
THAT BUS FOR THE DURATION OF THE COMPOUND
TRANSFER. THAT VALUE IS LOST AT THE COMPLETION
OF THE COMPOUND TRANSFER: IT CAN NOT BE RETAINED

| PAST THE SINGLE COMPOUND STATEMENT. |

'5) IF TWO BUSES ARE CONCATENNATED, THEIR TOTAL
LENGTH CAN NOT EXCEED 64 BITS. A BUS MAY BE
CONCATENATED WITH ITSELF WHEN USED AS A DATA
SOURCE; IT MAY NOT BE CONCATENATED WITH ITSELF
WHEN IT IS USED AS A DATA DESTINATION.

6> ° THE DATA SOURCE AND DESTINATION IN A SINGLE
MICRO-TRANSFER MAY NOT BOTH BE CONCATENATED
BUSES. ONLY THE SURCE; OR THE DESTINATION HAY

' BE CONCATENATED:. THE DEFINITION OF CONNECTIONS
TO AND FROM BUSES PROHIBIT SUCH CONCATENATIONS.

IT IS LEGAL TO COMBINE MICRO-TRANSFERS AND. o
DIRECTLY-CONECTED TRANSFERS IN THE SAME COMPOUND TRANSFER
STATEMENT .

THE FOLLOWING SEGMENT -OF AN SDSS DESCRIPTION IS GIVEN
TO. ILLUSTRATE VARIOUS BUSED TRANSFERS. THE DESCRIPTION IS
"BASED UPON THE HARDWARE DIAGRAH SHOKN IN FIGURE A4.

oY 0 O

OO0 O O

102

REGISTER AC10)s B(10)
SCALAR L

BUS ABUSC10)s (IN=A,L)o(OUT=CBUS,$ANDyADDS.

& ' $SLCIXCBUS D

BUS BBUS(10)5C(IN=B),(0UT=CBUS, $AND,ADD)
FUNCTION ADD(2511) '

BUS CBUSC11)9C0UT=CLsA)yB)s CINSBBUS,ABUSS
* $AND, ADD)
TO MOVE THE CONTENTS OF A TD Booso
ABUS < A3 CBUS < ABUS:; B < CBUS

TO ADD A AND B TO GIVE RESQLT INTO C(LoAdoose

ABUS < A3 BBUS < B3 ADD < ABUS; ADD < BBUS:

*CBUS < ADD3 - L,A < CBUS

fD SHIFY A LEFT 1 BIT» FEED IN A “1°, AND PUT
RESULT INTO Aovces ° '

ABUS < A3 CBUS < $SL(1,1) ABUS; A < CBUS

o 1
THE FOLLOWING IS AN INVALID SEQUENCE OF

‘MICRO~TRANSFERS ATTEMPTING TO “AND” A AND NOT-B

TOGETHER, AND PLACE THE RESULT INTO Ao THE BUS

“ABUS® IS REFERENCED PRIOR TO BEING ASSIGNED A

‘VALUE. IF THE 2ND AND 3RD TRANSFERS HERE

EXCHANGED, THE SEQUENCE WOULD BE CDRRECT.

)

BBUS < $NOT B85 $AND < ABUS: ABUS < A3

103

=$AND < BBUS3; CBUS < $AND; A < €BUSS

END

ABUS BBUS

$SL(1) ADD $AND

CBUS

FIGURE A%

HARDHARE DIAGRAR FOR BUSED TRANSFERS

104

EVERY BUSED MICRO- TRANSFER MAY SPECIFY AN OPERATION
ON THE DATA. THE OPERATION MUST HAVE BEEN SPECIFIED AS
LEGAL IN A “BUS” STATEMENT. SEE SECTION A5.1.8.2 AND
THE EXAMPLE ABOVE.) -

EVERY BUSED MICRO-TRANSFER HUST TAKE PLACE ALONG A
DATA PATH THAT WAS DEFINED VIA A “BUS® STATEHENT. THE
FOLLOWING PROCEDURE MAY BE USED TO DETERMINE IF A
MICRO-TRANSFER HAS A VALID DATA PATH FOR THE TRANSFERS

1) REMOVE ALL COMPRESSIONS. BIT SELECTIONS

NEGATIONS, AND BIT-IN SPECIFICATIONS. REPLACE
_ ANY CONSTANTS WITH THE CHARACTER “0°. _

'2). IF THE DATA DESTINATION IS A BUS, THEN THE DATA
SOURCE MUST BE SPECIFIED IN AN “IN=° CONNECTION
'FOR THAT BUS. .

3). IF THE DATA SOURCE IS A BUS, THEN THE DATA
DESTINATION MUST BE SPECIFIED .AS AN °0DUT="°
CONNECTION FOR THAT BUS. '

A5 0305 BRANCH STATEMENTS

, BRANCH STATEMENTS ARE USED TO MDDIFY THE SEQUENCE OF
MACHINE OPERATIONS DURING THE SIMULATION OF A DIGITAL
SYSTEM., A BRANCH STATEMENT MAY BE UNCONDITIONAL, MEANING
THE BRANCH WILL BE TAKEN, -OR CONDITIONAL, MEANING THE
"BRANCH- IS DETERMINED BY VALUES WITHIN THE SYSTEM AT THE
TIME THE BRANCH STATEMENT IS ENCOUNTERED. '

105

A BRANCH STATEMENT MAY HAVE A. LABEL. ONLY THOSE
BRANCH STATEMENTS WHICH ARE A TARGET OF ANOTHER BRANCH
STATEMENT ARE REQUIRED TO BE LABELED.. IT IS NOT POSSIBLE
FOR A BRANCH STATEMENT TO CAUSE A BRANCH TO ITSELFs
| THERE ARE TWO FORMS OF BRANCH STATEMENTS AVAILABLE IN
SDSS. THEY WILL ‘BE DESCRIBED BELOH.)

A5e3050.1 UNCONDITIONAL BRANCH

v — - v - W S T A W NS e 2 " s S g e Gty

THE UNCONDITIONAL BRANCH STATEMENT HAS THE FORMS |
> <LABEL>

' WHERE <KLABEL> IS A VALID STATEMENT LABEL.

THE CONTROL SEQUENCE OPERATION WHICH IS PERFORMED
FOLLDWING THIS BRANCH STATEEENT'IS THE ONE LABELED BY
<LABELD. R . | | :
"IN ORDER TO BE ABLE TO EXECUTE THE SDSS STATEMENT
FOLLOWING THE UNCONDITIONAL BRANCH, THE NEXT STATEMENT
MUST BE LABELED OR gE'gN “INTERRUPT® STATEMENT.

-EXAMPLE OF A‘VALID UNCONDITIONAL BRANCH:

2 10

106

A506305.2 THREE-WAY CONDITIONAL BRANCH

- ———— T — - e D o . -

THE THREE-WAY CONdITIDNAL BRANCH ALLOWS TRANSFER OF
CONTRUL TU ONE DOF THREE POSSIBLE STATEHMENTS. THE FORM OF
. THIS BRANCH STATEMENT IS AS FOLLOWS?

<REGD

ERED% Ecomp%
f CSHSY
<SCALARD 3. CCONSTY > <L1>5<L2>5<L3D.
<REG |
o ¢ <BIT>)
<SWS> - _
WHERE <REG> - IS THE MAME.OF A REGISTER.
©KSHSD IS THE NAME OF A SET OF SWITCHES.

<SCALARD> IS THE NAME OF A SCALAR.
S CCUNP> IS A SINGLE OR MULTIPLE COMPRESSION il

OF THE REGISTER OR SWITCHES.

<RED> IS A REDUCTION DONE ON EITHER A
REGISTERy SHWITCHES,; OR ON THE “
COMPRESSION OF A REGISTER OR SWITCHES:

<BIT> SPECIFIES A BIT SELECTION FROM THE
REGISTER OR SWITCHES.

<CONST> IS ANY VALID CONSTANT AS DEFINED IN
SECTION A4. ALL CONSTANTS GEMNERATED
BY THE CBNS*ANTS GENERATORS MUST HAVE
A LENGTH SPECIFIED.

107

<L1>
<L2>
L3> SPECIFY VALID STATEMENT LABELS.

THE EXECUTION OF THE THREE-WAY BRANCH IS AS FOLLOWSS

© THE VALUE OF THE EXPRESSION TO THE LEFT OF THE COLON IS

EVALUATED. THE RESULTING VALUE IS THEN COMPARED TO ‘THE
<CONST>. CONTROL THEN PASSES TO THE STATEMENT LABELED
<L1>s <L2>, OR <L3>, IF THE EXPRESSION RESULT IS LESS
THAN, EQUAL TOs OR GREATER THAN THE <CONSTD>.

THE CONTROL SEQUENCE STATEMENT FOLLOWING THE
THREE-WAY BRANCH MUST HAVE A LABELs OR BE AN “INTERRUPT®
STATEMENT IN ORDER THAT THAT STATEMENT BE ACCESSABLE.

EXAMPLES OF VALID THREE-WAY BRANCH STA#E%ENTS:

COLUMN
678
A% 1000 > 15 25 2
SAND / B 2 1 > 10, 11, 10
L20>1, 251
$HC5)/C 3 $H(555) > 1005 104, 107
 AC6Y T 0 > 20, 30, 34 o 1

A5.3.6 HALT STATEHRENT

——— v o o o wy — A —— —— -

108
. THE “°HALT” STATEMENT IS USED TOD TERHINATE DPERATION
OF THE SYSTEM UNDER SIMULATION. THE “HALT” STATEMENT HAS

THE FORM:
HALT [?TEXT)]

WHERE <TEXT> IS ANY CHARACTER STRING. WHEN THE °HALT®
STATEMENT IS ENCOUNTERED IN THE COURSE OF
THE STMULATIONs THE MESSAGES:

HALT AT LINE NNNN

IS PRINTED VIA THE M:LO DCB., NNNN IS THE LINE NUMBER IN
WHICH THE “HALT” STATEMENT WAS ENCOUNTERED., IF KTEXT> 1IS.
PRESENT, IT IS PRINTED FOLLOWING THE ABOVE MESSAGE.

THE °“HALT® STATEMENY MAY HAVE A LABEL. : :

Ab .4 HOUSEKEEPING STATEMENTS

—— - D oy . . A T T —_— o~ ool o 2 720 s ot

HOUSEKEEPING STATEMENTS ARE STATENMENTS WHICH
COMMUNICATE WITH THE COMPILER DURING COMPILATION, OR
SPECTIFY ACTIONS THAT ARE TO TAKE PLACE. THESE ACTIONS
ARE, GENERALLY, NOT PART OF THE CONTROL SEQUENCE OR SYSTEMN
DEFINITION, AND ARE NOT TO BE CONSIDERED AS- SUCH.

HOUSEKEEPING STATEMENTS MAY BE PLACED AT ANY LOCATION
FOLLOWING ALL SYSTEM DEFINITION STATEHENTS AND MEMORY
INITIALIZATION (“FILL®) STATEMENTS. A HOUSEKEEPING

109

STATEMENT WILL TERMINATE THE SYSTE® DEFINITION SECTION AND
THE MEMORY. INITIALIZATION SECTIONs IF EITHER IS CURRENTLY

IN PROGRESS.

, HOUSEKEEPING STATENENYS CONSIST OF THE FGLLDHING
STATEMENT TYPESS

TO0 DISPLAY THE CONTENTS oF HARDNARE-

. PRINT -
ELEMENTS.

INTERRUPT —-.TO DEFINE THE BEGINNING OF AN INTERRUPT
ﬁUUTINEo !

RETURN - T0 RETURN FROM AN INTERRUPT ROUTINE TO THE

INTERRUPTED ROUTINE.
END = - - TO INDICATE TO SDSS THAT THERE ARE NO-MORE
' SYSTEM DESCRIPTION STATEMENTS TO READ.

- EACH STATEMENT TYPE WILL BE DESCRIBED BELOW.

ASc4.1 PRINT STATEMENT

— - 20 A m i A P SR S B N —

THE °PRINT® STATEMENT IS USED TO DISPLAY THE CURRENT
CUNTENTS OF A REGISTERy SCALAR,; SET OF LIGHTS, SET oF
SWITCHESy OR PORTIONS OF A MEMORY. VALUES MAY BE
DISPLKYED IN EITHER HEXIDECIMAL NOTATION OR DECIMAL
(BASE-10) NOTATIOM, JIF HEXIDECIMAL NOTATION IS CHOSEN,
EACH VALUE WILL BE pRINTED AS A 32-BIT VALUE3 ANY EXCESS
HIGH~-ORDER BiTS NOT NEEDED BY THE VALUE HILL BE SET V1@

110

ZEROS. IF DECIMAL NOTATION IS USED, THE VALUE NILL BE
DISPLAYED AS A 10-0IGIT POSITIVE INTEGER. ANY HIGH-ORDER
ZERDS WILL BE SUPPRESSED. _

THE DESIGNER HAS NO CONTROL OVER THE OUTPUT FORMAT,

EXCEPT FOR THE CHOICE OF NDTATIONe THE QUTPUY. PRODUCED. BY
THE' “PRINT~ STATEMENT IS FURMATED TO0 FIT A STANDARD 72
CHARAﬁTER WIDE TERMINALs

EACH “PRINT® STATEMENT WILL CAUSE THE MESSAGES
VALUES AT LINE: NNNN - °)

'TO:BE'PRINTED PRIOR TO THE VALUES OF THE ELEMENTS DESIREDo
NNNN IS THE LINE NUHMBER OF THE “PRINT® STATEMENT. ITSELFe
ALt OUTPUT PRODUCED BY THE ”PRINT” STATEMENT IS5,
WRITTEN‘THRDUGH THE M3LO DCB8.
THE ”PRINT‘~STATEﬁENT_HAS THE FORM:2

.
PRINT | 3| <ELEMENTD>, <ELEMENTDy ooo
X
WHERE (D) INDICATES THAT DECIMAL NOTATION IS TO BE USED.
¢X) INDICATES THAT HEXIDECIMAL NOTATION IS TO
BE USED. : j

CELEMENT> IS THE NAME OF AN ELEMENT WHOSE VALUE IS TO

| ~ BE DISPLAYED. <ELEMENT> MAY BE THE NANWE OF
A REGISTER; SWITCHESs; SCALARs; LIGHTSy; DR A
MEMORY. IF A MEMORY IS SPECIFIED, THEN
THE . NAME MUST BE FOLLOWED BY A RANGE OF
LOCATIONS WHICH ARE TO BE DISPLAYED. THIS
RANGE HAS THE FORH:

111

CHEMDRY> ¢ <LOD>, <HI>)

WHERE <LO> AND <HI> SPECIFY THE LOW AND
HIGH ADDRESSES OF THE HMEMORY SEGMENT TO BE
DISPLAYED. - BOTH MUST SPECIFY LOCATIONS
WITHIN THE MEMORY, AND THE VALUE OF <HI>
MUST NOT BE LESS THAN THAT OF <LO>.

IF NEITHER (D) OR (X) ARE SPECIFIEDs HEXIDECIMAL
'NOTATION IS ASSUMED. o " '

ANY NUMBER OF ELEMENTS AND HMEMORY SEGMENTS MAY BE .
DISPLAYED BY ONE °PRINT® STATEMENT. IF MORE "THAN ONE
ELEMENT IS T0O BE DISPLAYED, THEN ALL WILL BE DISPLAYED IN
THE SAME NUMBER BASE. TIF NO ELEMENTS ARE SPECIFIED, THE
STATEMENT WILL BE IGNORED. ,

'EXAMPLES OF VALID "PRINT® STATEMENTS:

COLUNMN
678"
PRINT A
PRINT (D) As By MEMORY(0,100), C

112

AS .4 .2 END STATEHMENT

—— i — vy - - e v AR T N

THE “END” STATEMENT IS USED TO INDICATE THE END OF
_ALL SOURCE STATEMENTS DESCRIBING THE SYSTEM. EVERY .-
DESCRIPTEION MUST CONTAIN 1 AND ONLY 1 “END® STATEMENT.
THE. “END” STATEMENT -MAY NOT HAVE A LABEL. IF THE “END”
STATEMENT IS ENCOUNTERED DURING A SIWULATION , IT TS
TREATED AS IF IT WERE A ~HALT® STATEMENT WITH NO TEXT
STRING FOLLOWING. - ,

THE “END° STATEMENT HAS THE FOLLOWING FORMS

END [(LMSEL)]

WHERE <LABEL> TS THE LABEL OF A STATEMENT. IF

o ' PRESENTs <LABELD SPECIFIES THE FIRST
STATEMENT WHICH IS TO BE EXECUTED.
WHEN SIMULATION BEGINS. IF
<LABEL> IS OMITTED, OR IS GIVEN AS
0y THEN THE FIRST STATEMENT FOLLOWING
ALL SYSTEM DEFINITION AND FILL
STATEMENTS WILL BE EXECUTED FIRST.

AS5.4.3 INTERRUPT STATEMENT

- ——— - i i —— o o e >

THE “INTERRUPT® STATEMENT IS USED TD DEFI_NE THE4
BEGINNING OF AN INTERRUPT ROUTINES; THAT IS, A‘HARDWARE

AN

AN e

13 .

ROUTINE WHICH WILL BE ENTERED UPON RECIEPT OF AN INTERRUPT
FROM OUTSIDE THE DIGITAL SYSTEM.

THE " “INTERRUPT® STATEMENT MUST FOLLOW ALL SVSTEM
DEFINITION STATEMENTS AND MEMORY INITIALIZATION ¢ FILL)

. STATEMENTS.

- 'THE INTERRUPT STATEMENT HAS THE FORM:
INTERRUPT <NUMBER>
WHERE <NUMBER> SPECIFIES A PARTICULAR INTERRUPT ROUTINE.

KNUMBERD> MUST BE IN THE RANGE OF 1 T0. 255, INCLﬁSIVEa

EACH INTERRUPT NUMBER MUST BE -SPECIFIED ONLY ONCE PER

DESIGN.. THIS NUMBER DISTINGUISHES EACH INTERRUPT ROUTINE
FROM ALL OTHER INTERRUPT ROUTINESS 7

AN “INTERRUPT” STATEMENT DEFINES THE BEGINNING OF A

'HARDWARE INTERRUP T-HANDLING ROUTINE. . THIS ROUTINE

CONSISTS OF ONE DR"MbRE CONTROL SEQUENCE STATEMENTS
DEFINING THE ACTION TO BE TAKEN UPON RECIEPT OF THE
INTERRUPT. THIS ACTION MAY BE AS SIMPLE AS SETTING A FLAG
TU INDICATE THAT THE INTERRUPT HAS OCCURED, OR AS COMPLEX
AS A ROUTINE YD HANDLE A POWER- FAILURE CONDITIONo

_ IF THE CONTROL SEQUENCE STATEMENT JUST PRIDR 70 THE
"INTERRUPT” STATEMENT DOES NOT -CAUSE A BRANCH TO SODME

OTHER PORTION OF THE CONTROL SEQUENCE, THEN CONTROL WILL

FALL THROUGH INTO THE INTRRUPT HANDLING ROUTINE.

WHEN AN INTERRUPY IS REQUESTED (SEE SECTfUN A6 o
THE CDNTROL SEQUENCE STATEMENT IMMEDIATELY FOLLOWING THE
INTERRUPT STA*EMENT'WILL BE EXECUTED NEXT. THE SDSS?
STA#EEENT WHICH WAS IN PROGRESS WHEN THE INTERRUPT UAS

114 S

RECIEVED WILL BE COMPLETED PRIOR TO THE INTERRUPT RDUTINE
BEING ENTERED,

EXAMPLES OF VALID °“INTERRUPT® STATEMENTSS

COLUMN
613 .

INTERRUPT 0 ‘ '

INTERRUPT "100 | ‘

AS=404 RETURN STATEMENT

THE “RETURN® STATEMENT IS USED TO RETURN TO THE
CONTROL SEQUENCE STATEMENT THAT WOULD HAVE BEEN EXECUTED
CNEXT IF AN INTERRUPY HAD NOT BEEN RECIEVED. THAY ISy IT
ALLOWS A RETURN TOQ THE MOST RECENTLY INTERRUPTED ROUTINE. -
_ - THE “RETURN” SfATEMENT MUST FOLLOW ALL SYSTEWM .
- DEFINITION STATEMENTS AND MEMORY INITIALIZATION
STATEMENTS.

THE “RETURN® STATEMENT HAS THWO FORMSS

FORM 18 RETURN
FORM 2: RETURN I

FORM 1 IS USED IF A RETURN TO THE MOST RECENTLY
INTERRUPTED ROUTINE IS DESIRED. THE STATEMENT YO WHICH
CONTRGL IS RETURNEU IS THE ONE FOLLOWING THE STATEMENT 1IN
HHICH THE INTERRUPT WAS DETECTED.

115

EACH INTERRUPT CAUSES A RETURN LOCATION TO BE STORED
INTO AN INTERNAL STACK. A HAXIMUM OF 20 INTERRUPTS MAY BE
STACKED UP HERE. SHOULD IT NOT BE DESIRED TO RETURN TO
THE MOST RECENTLY INTERRUPTED ROUTINE, BUT MERELY REMOVE
ITS LOCATION FROM THE STACK, FORM 2 IS USED. CONTROL WILL
THEN PROCEED WITH THE STATEMENT FOLLOWING THE “RETURN®
STATEMENT .

A6 COMPILATION AND STIMULATION PROCEDURES

D 0 - VB AR M o e O R S GNP T D MU D A i i S T T

THE COMPILER EXTSTS AS A LOAD MODULE CALL °SDSS”
UNDER ACCOUNT 197.. THERE IS NO PASSHORD. THE CURRENT
IMPLEMENTATION SUPPORTS ONLINE OPERATION ONLY; ANY ATTEWPT
TO COMPILE IN BATCH MODE WILL TERMINATE COMPILER ﬁ
OPERATION. | | -

THE COMPILER ACCEPTS ALL SOURCESTATEMENTS THROUGH
THE M3ST DCB. ALL SOURCE LISTINGS ARE WRITTEN THROUGH THE
MSLD DCB. ERROR MESSAGES ARE WRITTEN THROUGH THE M:DO
DCBo IF THE M:LO DCB IS ASSIGNED TO A FILE OR TO A DEVICE
OTHER THAN THE TERMINAL, ANY ERROR MESSAGES WILL BE
WRITTEN TO BOTH THE TERWINAL AND THE LO DEVICE/FILE. THE
COMPTLER OBJECT OUTPUT. IS WRITTEN THROUGH THE M36O DCB.

TQ CALL THE COMPILER, THE STANDARD CP-V TEL COMMAND
To INITIATE ANY LOAD MODULE IS USED?

SDSS.197 <SOURCE~FILE> OVER «GO-FILE> , <LISTING-QUTPUT>

116

. THE SDSS CDMPILER WILL NOW ASK FOR OPTIONS. THEI
LEGAL OPTIDNS ARES '

o LS - LIST SOURCE STATERMENTS
. NS - DO- NOT LIST SOURGE STATEMENTS
7 LD - LIST SYSTEM DEFINITION SYMMARY
ND -

DO NOT LIST SYSTEM DEFINITION SYHMARY
. ' . . I
. THE DEFAULT ORTIONS ARE NS AND ND. IF NO OPTIONS ARE
NECESSARYs SIMPLY TYPE. A CARRAIGE RETURN. . '

IF THE DESIGNER SPECIFIES “ME” FOR <SOURCE<FILED>s THE
COMPILER WILL NOW PROMPT WITH A COLON AND WAIT FOR A
SOURCE LINE. : - T

SOURCE STATEMENTS WILL BE ACCEPTED UNTIL AN “END®
STATEMENT OR AN END-DF-FILE IS ENCOUNTERED. ANY FOLLOWING
RECORDS WILL BE IGNORED. IF <SOURCE-FILE> WAS ASSIGNED TO
"ME”, THEN IT IS NECESSARY TO TVPE AN END-OF-FILE ON THE
TERMINAL FOLLOWING THE “END” STATEMENT. THE END-OF-FILE'
CHARACTER IS AN ESCAPE-F COMBINATION. '

IF NO ERRORS WERE DETECTED DURING COMPILATION, THE -
DESIGN MAY NOW BE TESTED BY SIMULATION.

TO PERFORM THE SIMULATIONs; THE OBJECT CODE PRODUCED
BY THE COMPILER (AND PLACED INTO THE °GO° FILE) MUST NOW
BE LOADED WITH THE SDSS LIBRAKY. THE LIBRARY IS CALLED
“#LIB° AND IS ON ACCOUNT. 197. THERE IS NO PASSWORD. IF
ANY EXTERNAL FUNCTION SUBPROGRAHS TO PERFORM LOGICAL:
FUNCTIONS ARE NEEDED, THEY MUST BE INCLUDED AT THIS TIME.
ANY OF THE HONEYWELL ROUTINES TO INITIATE PROGRAM
EXECUTION MAY BE USED FOR THIS PURPOSE.

THE SIMULATION WILL MAY BE DONE EITHER ON-LINE OR IN
BATCH MODE. HOWEVER, IF ANY INTERRUPTS WERE REQUESTED
THEN THE SIMULATION MUST BE RUN ON-LINE.

117

ALL "PRINT- STATEMENTS WILL DISPLAY DATA VIA THE M:LQ
DCB. ALL “FILL® STATERENTS WILL REQUEST DATA FROM THE
MIINF DCB. THESE DCB°S MAY BE ALLOWED TO DEFAULT TO THE
TERMINALs OR THEY MAY BE SET TO A FILE. (IN THE CASE OF
#M:L0, IT WILL DEFAULT TO THE LINE PRINTER IF THE
SIMULATION IS RUN IN BATCH MODE.) - ,

TO SIMULATE A REAL-TIME INTERRUPT, FIRST INITIATE
EXECUTIONS OF THE GO~-FILE. WHENEVER AN INTERRUPT IS
'DESIRED, DEPRESS THE “BREAK” KEY ON THE TERMINAL. THE
PROGRAM - WILL RESPOND BY REQUESTING AN INTERRUPT NUMBER.
THF INTERRUPT NUMBER IS THEN ENTERED ON THE TERMINAL.
THIS NUMBER MUST GORRESPOND WITH THE.NUMBER DEFINED BY - AN
“INTERRUPT° STATEMENT IN THE SYSTEM DESCRIPTION. IF THE
NUMBER IS VALID, CONTROL WILL THEN BRANCH TO THE FIRST
STATEMENT WITHIN THE INTERRUPT ROUTINE.:

. APPENDIX B

. RESULTS FROM A SIMULATION
WITH THE
COMPUTER OF CHAPTER III

119

A short program to sum three values in a Tist was wr1tten based f

upon the machine 1anguage of the computer described in Chapter II1.
This program, written in standard assembler format, is shown 1n_.

Figure §1.

LCC CODE LINE

©9000 08009 1. BEGIN LAC KNT .- PUT INDEX VALUE INTO INDEX
0001 38800 2. LIA " REGISTER IA |
0002 3D800 3. CLA : SET AC = 0
[0003 1A00D 4. LOOP TAD TABLE+3,I-ADD TABLE ELEMENT USING INDEX -
0004 39000 5. INA INCREMENT IA BY 1
0005 00009 - 6. ISZ KNT ADD 13 IF = 0, ARE DONE
0006 30003 7. JMP LOOP GO BACK FOR MORE .
. 0007 2800D ° 8. DAC RESULT STORE SUM IN MEMORY .
0008 38000 ° 9. HALT . ALL DONE.....
0009 3FFFD 10. KNT DC -3 . LOOP COUNTER
000A 00005 11. TABLE DC 5,3,-6 VALUES TO BE SUMED
000B 00003 |
000C 3FFFA | _ U
000D 12. RESULT DS 1 RESERVE 1 WORD FOR SUM .
13. END BEGIN Lo

FIGURE Bl
ASSEMBLY PROGRAM' TO SUM THREE VALUES

Th1s program uses 1ndex1ng, in Tine 4 to se]ect a part1cu]ar value.

from TABLE. The assembler notat1on is somewhat arb1trary, as there 1s
in fact no assembler for this mach1ne. '

The program waslmanua11y'entered into the computer through the

front panel as part of the simulation. (The program cou]dlhave been‘“_

| o
loaded by a 'FILL' statement.) The 'PRINT' statements in the original
.deséription in Chapter III request a display of all register contenfs
following eaéh 1nstrﬁct10n fetch, as well as after each operatdon'on
_the front panel. | |
The results of the simulation are given below. Note that the

1ast-fhree operations on the front'pane1 (at the end of the simulation
outpuf) displays the memory location containing the sum of the three
values, and causes the computer to enter a "WAIT' state. The only exit

from this ‘WAIT' state is by an external interrupt.

2P CLG

: 121
! SDSS.197 MACHINE OVER ROMS,FILE

SDSS ve-LO 13:35 MAR 23, '77
OPTIONS:LS,LD
N O ERRORS

' LINK ROMS,FUNCTIONSR; #L1B.197 OVER LMN
LINKING ROMS
LINKING FUNCTIONSR
LINKING #L1B
*P1' ASSOCIATED.
LINKING SYSIEM LIB

!' R

! LMN.
VALUES AT LINE 225

PCLG = BOBOIFCO MALG = WUWYYBIFCO MDLG =
ACLG = DROOEFCO :
ENTEK OPERATION KEWUEST
22
ENTER SWIICHES IN HEX
29

VALUES AT LINE 225

PBBBIFCH MALG = 000oR0B0 MDLG
ACLG PPRYBFCO
ENTER OPEKATION KEWUEST
?3
ENTER SWITCHES IN HEX
? 05009

VALUES AT LINE 225

VOBBIFCY MALG = 00U0bRODI1 MDLG

PCLG = =
ACLG = GBPBBFCD

ENTER OPERATION KEWUEST |
? 3

ENTERK SWITCHES IN HEKX
? 35¥20 :

000 38FCO

VOB 3BFCY

' QPVBBBEY

122

VALUES AT LINE 225

F CLG VORBIFCO MALG = 00000002 MDLG = @RP384
, . = »38
ACLC = DOBRDBFCO I8800

ENTEK OPERATIUON REWUE ST
?3 '

ENTER SWITCHES IN HEX
? 30400

VALUES AT LINE 225

2

P CLG DOOVIFCY MALG = DOVRVYB3 MDLG = 0003D8BO -
ACLG PYBOBFCB

-ENTEK OPERATION REWUEST
73

ENTER SWITCHES IN HEX -
? 1A0GD

VALUES AT LINE 225

PCLG = 0ORUB1IFCO MALG = 0000024 MDLG = 0R@1A080D
ACLG = WOOVEFCO :
ENTER OPEKATION KEWUEST -
?3
ENTER SWITCHES IN HEX
?.390800

VALUES AT LINE 225

PCLG = POBOIFCY MALG = Q00BRBBS: MDLG = 20839000
ACLG = 0QBOBFCY

ENTER OPERATION REWUESIT
?3

ENTER SWITCHES IN HEX
? PYOBY

- 123,
"VALUES AT LINE 225

PCLG YORVIFCO | - MALG = ©0boRoOY%6 MDL G
ACLG PDUOOEFCY o
ENTER QPEKATION REGWUEST
?3 ,
ENTER SWITCHES AN HEA .
? 30YR3 ' |

DoRRBBYY

VALUES AT LINE 2205

PCLG = ODBBO1IFCO MALG = 00RBOOBOT . MDLG
= 0PROBFCY
ENTEK OPERATION REWUEST

P0O3VB03

ENTER SWITCHES IN HEX
? 28000

VALUES AT LINE 225

PCLG = Q0QBI1FCO MALG = UWQRV0LS P MDLG = 40u2800D
ACLG = OPUBBFCO
ENTER OPEKATION KEWUEST
7?73
ENTER SwWITCHES IN HEX
? 38¥00

VALUES Al LINE 225

PCLG = Q0UBRALIFCY - MALG = DbOOBOBVY MDLG'= PPV 38000
ACLG = BB0UBFCY
ENTER OPERATION -REWUEST
? 3
ENTER SWITCHES IN HEX-
? 3FFFD

124

V ALUES AT LINE 225

PBOIFFFD

i

P CLG POBO1FCH MALG = QOZ000OVYA MDL G
ACLG QVPBBFCY
ENTER OPERATION REWUEST
?3
ENTER SWITCHES IN HEX
? pRBRYS

VALUES AT LINE 225

P0BRIOS

i

P CLG VRBBIFCUY ~ MALG = Q000008B. . MDLG
ACLG VPPBBFCO -
ENTER OPERATION REWUEST
?3 .
ENTER SWITCHES IN HEX
? POV 3

" VALUES AT LINE 225

P CLG = 0v0@B1FCO MALG = 02BVYYeC MDLG
ACLG = 00BVBFCO
ENTER OPERATION KEWUEST
7?73
ENTER SWITCHES IN HEX
? 3FFFA

VoLBEYG3

VALUES AT LINE 225

P CLG
ACLG
ENTE
? 1
ENTER SWITCHES IN HEX
?0 ~

PBBO1IFCO MALG = Q000000D MDLC = QBO3FFFA
VOO BFCO

OPERATION KEGQUEST

X onou

VALUES AT LINE

PCLG =
ACLG =

ENTER OPERATION

75

V ALUES

< - > T
> DOOC
pesh
[
[1’]
w: Wonon

og
O
oo

V ALUES

— > T
D>DOO
oo

VALUES

>
« o
tonw i

VALUES

i C
AC
IaAa

i n

BYoVBYYG
BoOVBFCOY

AT LINE

PRVBBRDA
PBVVBFCUY
PPV2BFCO

AT LINE

BoVVRBYI
BYV3FFFD
PRAZ2BFCY

AT LINE

PRVBVLRDE
DRB3FFFD
POA3FFFD

AT LINE

PBBLVVYL3
PROLVYROR
POV 3FFFD

AT LINE

QBBLRVL 4
VBOODBOBS
PO 3FFFD

225

125

MALG

KEWQUE ST

42

42

42

MA
IK
KFLA

MA
IR
RFLA

MA
IR
RFLA

MA
IR
KFLA

MA
IR
RFLA

Honon

WounoH

o

BoLALOVBD

VYBLOCYO
VRBVBROY
VBVBYOVI

VBYVBBBL

VYUY 388
POLVVBY L

0RBVRYO2
PBO3DYYD
VBB

DRBVBOD3

VOB 1AVBD.

VBBV Y

PRVRLBO 4
PYV390BY
QpooRRG1

MDLG

It n

[{ 1}

PBYIFFFA

RVOVBYYY
DoRVOVBI

BYB388VY

0BYoRBBL 1

PBB3DBOG
D003 1

QBD1ABLD

©boBYLY1

28039000
Bo0BRoO0

V ALUES

> > < > >
! o > @) 9!
-
c.
m
TANTIY HoHou 7 nonou oo

o
o)
Hoaou

g
(@}
o

AT LINE

QoVLBBS
PRDBDBAS
POOIFFFE

AT LINE

POYYBAVE

DPOVBOVBS

BOBIFFFE

> AT LINE

PRYBBY 3
PPYVOBBS
POBIFFFE

AT LINE

PLOBORY 4
PROOBADY
0RO IFFFE

AT. LINE

PYYYRBYS
BULBBBYLY
POO3FFFF

AT LINE

BPBUOVY 6
PoOOBRDY
OBO3IFFFF

42

42

42

42

126

MA
IR

" RFLA

MA
ik -
KFLA

MA
IR
RFLA

MA

Ik
RFLA

MA
Ik
RFLA

MA
Ik
RFLA

[{ I |

noou

mwonon

BORRYVYS
PLBo0BY
POPOLOBI

VOBRVLD6
VB3B3
PEBVBVOI

VVYORVB3
QB0 1ABBD
PoBBRBD 1

0OBYBBY 4
P0G 3Y00Y
00000

OBLVYBYS
BBYBOLOY
VoORVLOYYI

PBOVOOV6
000300083
0RVOBBY1

™MD

(1]

nn

WoVRVBBY
PBOOBRB0

VUL 30003
PVVOBOY

POV1ARBD
PO0RRRDY

POB3IIBOD
20020000

BBLVBLBLY
VBBYVOLY

2003000 C
0000000y

VALUES

-
o
honon

VALUES

= T
DO
nonon

VALUES

>
(@]
[T]

PC
AC

n n #

>
(@]
o H

V ALUE

‘n

PCLG
ACLG

AT LINE

POBVLOVOD 3
DRBYVLYS
VRV 3IFFFF

AT LINE

NRBOVBB 4
DooBRD2
PODIFFFF

AT LINE

DRPOBVRAS
RPVEUDD 2
DBBOVOY

AT LINE

2OOVBRLT
BVROVLB2
DBRYVALY

AT LINE

DROBRVOY
PRAPLBB 2

ARV AVY

AT LINE

DOVVOBBY
nevRVRB2

42

42

42

127

MA
1R
RFLA

Houn o

MA
Ik
RFLA

W nou

MA
Ik
RFLA

i nn

MA
Ik
KFLA

inon

MA
IR
RFLA

MALG =

BoPVOVB3
VYD 1ABBD
DYLOBYVG I

PBRVOVB 4
POA30BVG
DPOLBRBI

POBBBYRS
DpoVVLBYY
POBLARBI

WoBLEBYRT

VOB 2808D
VRRVBVYI

POBOVODE
00038920
P0PVORO 1

PORRVBBY

MDLC

o

iou

VYD 1ABDD
BoVoLBVEO

000395000
QOOBERY |

PRRBOBOY
PIOYODY |

BBB250YD
POVVHDD 1

RO 38000
PRROVA01

000 38V

ENTER
?2

ENTER
? Q00D

VALUES

P CLG =
ACLG =

ENTER
7?4

V ALUES

FCLG
ACLG

ENTEE
? 0

128

OPERATION KEWUE ST

SWITCHES IN HEX

AT LINE 225

PoRBVBOY MAL G

‘p00p0002

OPERATION REGQUE ST

AT LINE 225

PoOVBR0Y MALG
POYRVRY2
OPERATION KREQUEST

1l

PRVEBBBD

POOVBRBOE

MDLG

MDLG

P @3B0O0

P0oVRBO2

APPENDIX C

SOME NOTES ON THE SDSS COMPILER

130

THIS APPENDIX CONTAINS SOME USEFUL INFORMATION
CONCERNING THE SDSS COMPILER ITSELF. IT IS WRITTEN FOR
THOSE PERSONS WHO WILL BE MODIFYING AND IMPROVING SDSS- IN |
THE -FUTURE. A BASIC UNDERSTANDING OF THE SIGMA - 7 AND
THE SDSS SOURCE CODE ‘IS ASSUMED.

/SDS$ ITSELF IS A COMPILERS LT ACCEPTS, PROGRANS ‘
WRTTTEN IN SDSS AS SOURCE DATAy AND PRODUCES SIGHA — 7
DBJECT CODE AS OUTPUT. - T

SDSS IS A 1-PASS COMPILER. AS SUCHs SDSS PERFORMS NO
GLOBAL OPTIMIZATION OF OBJECT CODE OVER ADJACENT
STATEMENTS. THIS RESULTS IN A CONSIDERABLE -AMOUNT OF
INEFFIGIENCY IN THE GENERATED CODE, BUT THE COMPILER WAS
MUCH EASIER TO WRITE THAN HOULD H&VE BEEN A MULTI-PASS
COMPILER.

WITH TWO EXCEPTIONS, SDSS IS WRITTEN ENTIRELY IN.
FORTRAN. THE TWO EXCEPTIONS ARE A SERIES OF ASSEﬁBL?
:&GUTINES WHICH PERFORM FUNCTIONS DIFFICULT OR IMPOSSIBLE
.70 PERFORM ENTIRELY IN FORTRAN ¢ SUCH AS I/0 ROUTINES AND
DISK FILE MANIPULATION), CALLED °SDSS°,; AND THE CONVERSON
FROM CHARACTER INTEGER. TO BINARY.INTEGER IN ROUTINE:
*DECMAL“. RDUTINE °DECIMAL® CONTAINS SEVERAL LINES OF
IN-LINE ASSEMBLY CODE TO ENABLE THE CONVERSION TO PROCESS

- VALUES UP TO 2#532 -1, WHICH OCCUPY A.32-BIT INTEGERs

SDSS IS CONSTRUCTED IN A MODULAR FASHION. HOST BAJOR
FUNCTIONS ARE PERFORMED IN A SEPARATE SUBROUTINE, WHICH
MAY CALL OTHER SUBROUTINES TO HELP IT OUT. APPROXIMATELY
ONE-HALF -OF SDSS IS WRITTEN IN A STRUCTURED FORHM; THAT
IS; IT IS WRITTEN, IN FORTRANs IN A FORM ANALOGOUS TO
PL/17S “DU-WHILE® AND EXTENDED °IF~THEN~ELSE® STATEMENYS.
FORTRAN “GO-TO° STATEMENTS ARE LIMITED TO THOSE NECESSARY
TO IMPLEMENT THE ABOVE STATEMENT FORHS. USE OF THIS

131

VZSTRUCTURED.anm GREATLY SIMPLIFIES THE EFFORT OF WRITTING
AND MODIFYING THE SOURCE CODE. IT IS HIGHLY RECOMMENDED
THAT ALL ADDITIONS AND MODIFICATIONS .TO THE COMPILER BE
WRITTEN. IN A STRUCTURED FORM. CTHE OTHER HALF OF THE
COMPILER WAS WRITTEN IN A VERY UNSTRUCTURED FORM, AND- IS |
 CORRESPONDINGLY MORE DIFFICULY TO UNDERSTAND AND MODIFY.)
‘ THE USE OF -VARIOUS DISK FILES FACILITATE THE '
COMPTLATION PROCESS. FOR EXAMPLE y ALL ERROR. CDNDITIBNS
CAUSE DATA 'TO SE WRITTEN TO A KEYED DISK FILE. .THE KEY Is
COMPOSED OF THE LINE NUMBER OF THE. RECORD IN WHICH THE
ERROR WAS DETECTEDs AND A VALUE INDICATING WHICH ERROR
THIS IN IN THE PARTICULAR RECORD 1, 25 ETCo do WHEN ‘THE
END OF THE STATEMENT HAS BEEN REACHED, A CHECK IS ALWAYS:
MADE' TO SEE IF THE STATEMENT SHOULD BE WRITTEN OUT. ANY
(ERRORS ALWAYS CAUSES THE STATEMENT TO BE WRITTEN.. AT THIS
POINT, ANY ERROR MESSAGES CAN BE WRITTEN IMMEDTATELY = .
FOLLOWING THE STATEMENT IN WHICH THEY WERE DETECTED, AND
IN THE SAME DRDER IN WHICH THEY WERE DETECTED.

ANOTHER USE OF THE DISK FILES IS IN BUILDING A TABLE -
OF ALL CONSTANTS GENERATED BY SDSS DURING COMPILATION., 1IN
ORDER TQO PREVENT FORTRAN FROM FILLING UP AN ARRAY WITH
THESE CONSTANTSs AND CAUSING THE COMPILER TO QUIT, THE
_ARRAY, IS WRITTEN TO DISK SHOULD IT EVER BECOME FILLED. .
THE ARRAY IS NOW EMPTY; AND CAN BE FILLED AGAIN. IF IT IS
NECESSARY T0 LOOK UP THE LOCATION OF A CONSTANT, THE
VALUES IN THE ARRAY ARE CHECKED FIRST, FOLLOWED BY A
SEARCH OF THE COPIES OF THE ARRAY ON DISK. THIS ENTIRE
. OPERATION IS CONTROLLED BY SUBROUTINE “CONST“.

THIS SAME METHOD COULD HAVE BEEN EXTENDED TO ALL THE
TABLES CONTAINING NECESSARY VALUES, SUCH AS THE TABLE OF
REGISTERS. HOWEVER, THIS WAS NOT DONE. DUE TO. THE

132

. COMPLEXTITY OF HAVING.AS MANY SETS OF THIS ROUTINE AS WOULD
BE NECESSARY FOR ALL THE TABLES., THUS THERE ARE LIMITS ON
THE MAXINUM NUMBER OF MOST ELEMENTS.

THE OBJECT CODE THAT IS GENERATED BY THE COMPILER IS
QUITE WELL DOCUMENTED WITHIN THE SOURCE PROGRAM AT THE
POINT WHERE IT IS GENERATED. EACH.LOADER ITEM IS DEFINED
BY A MNEMONIC CODE ALONG WITH ITS OPERANDS, AND IS :
ACCOMPANIED BY A HEXIDECIMAL VERSTION OF WHAT SHOULD BE -
GENERATED. | - '

THERE IS ONE COMPILER OPTION WHICH WAS NOT DESCRIBED
"IN THE LANGUAGE REFERENCE HMANUAL. THIS. THE THE “L0°
.OPTION. USE OF THIS OPTION CAUSES THE COMPILER TO
GENERATE INTERNAL SYMBOL TABLES OF ALL THE ELEMENTS'

' DEFINED BY THE DESIGN, AND ALL TEMPORARY LOCATIONS DEFINED
BY THE COMPILER. THIS FEATURE IS OF GREAT USE. IN
DEBUGGING THE COMPILER AND THE GENERATED CODE UNDER THE
“BELTA” PROCESSOR ON THE SIGHA - 7,

' USE OF THE “LO” OPTIONS ALSD -FORCES THE “LS® OPTION.
USE DF THE °NS” OPTION PROHIBITS THE GENERTION OF INTERNAL
SYMBOL TABLES. | L o

SDSS ALSO CONTAINS A BUILD-IN DEBUGGING OPTION. THE
'SDSS STATEMENT . N

*TRACE ON

MAY BE PLACED INTO THE SYSTEMN DESCRIPTIONQV USE OF THIS

- STATEMENT CAUSES THE COMPILER TO GENERATE A TRACE OF EVERY
, SUQROUTINE ENTRY AND EXIT, ALONG WITH THE VALUES. OF
SEVERAL VARIABLES AT THE ENTRY AND EXIT POINTS. USE OF
THIS ST#TEMENT,CAN CAUSE THE PRODUCTION OF LARGE AMOUNTS
OF INFORMATION. THUS, IT IS TO BE USED CAUTIOBSLY.

133
T TERMINATE THE TRACING OPTION AT ANY TIME; THE
 STATEMENT

. %*TRACE OFF

IS USED. : . .
 SDSS IS CURRENTLY SET UP. TO.ALLOW THE INCLUSION OF AN
“INPUT” STATEMENT. SUCH A STATEMENT WOULD B8E INTERPRETED
AS AN “INPUT® STATEMENT, AND A SUBROUTINE, CALLED °INPUT®,
‘WOULD BE CALLEN. THIS.SUBROUTINE SIMPLY PRINTS 0UT &
MESSAGE STATING THAT “INPUT® STATEMENTS ARE NOT ACCEPTED
BY SDSS, AND . THEN IGNORES THE STATEMENT. 7O IMPLEMENT AN
"INPUT” STATEMENT, ALL THAT WOULD HAVE TQ BE DONE IS YO -
REPLACE THIS ONE. SUBRDUTINE WITH DNE WHICH WOULD GENERATE
08JECT CODE. : .
AN “INPUT® STATEMENT MIGHT HAVE. THE FORM:

<NAKE>
INPUT. I SR 9 oeo

<MEMURY> ¢ <LO>s <HID)

WHERE <NAMED> IS THE NAME OF A REGISTERy SCALARv
. ~ OR SWITCHES. :
KMEMORY> IS THENAME OF A RANDOM-ACCESS MEMORY. .

<LO> 1S THE FIRST LOCATION IN THE MEMORY
. . TO-BE READ INTO.
CHID IS THE LAST LOCATION IN THE MEMORY

TO BE READ 'INTO.

IT IS ENVISIONED THAT THIS STATEMENT WOULD CAUSE THE
GENERATION OF AN ARGUMENT LIST AND A BRANCH TO A LIBRARY

'134

‘SUBRDUTINE wHIPH NOULD DO THE ACTUAL DATA INPUT OPERATION.
IT MIGHT BE NICE FOR THE SUBROUTINE TO REQUEST DATA FROM
THE . TERMINAL BY NAME (SO-AS TO PREVENT CONFUSION BY THE
DESIGNER AS TO WHICH VALUE HE WAS TYPING IN 3. THE

" SUBROUTINE WOULD ALSO HAVE TO MASK OFF ANY HIGH ORDER BITS
" THAT EXCEED THE SIZE OF THE ELEMENT WHICH IS 10 RECIEVE
' THE VALUE. SUCH A SUBROUTINE WOULD NOT BE DIFFICULT To
IHPLEMENT. IT MIGHT EVEN BE POSSIBLE TO UTILIZE ROUITNE
. "HFILLMEN® FROM THE LIBRARY TO PERFORM. MOST OF THE

' NECESSRY' DPERATIONS»

_THE. OBJECT CODE GENERATED BY SDSS MUST BE L INKED WITH

THE SDSS. LIBRARY IN ORDER T@ PRODUCE THE STMULATION Loap
 MODULE. THE LIBRARY: ROUTINES CONSIST OF ASSEMBLY ROUTINES
TO 'PERFORM 'SUCH FUNGTIONS AS INITIALIZATION OF VALUES, -
HANDLING INTERRUPTS, AND PERFORMING 1/0 DPERATIDNS AS
' DICTATFD BY “PRINT” STATEMENTS.

' THE COMPILER GENERATES TWO SEPARATE ROWS AS QUTPUT.
THE FIRST .CONSISTS OF THE MACHINE CODE NECESSARY TO . f
' PERFQRH:THE SIMULATIONs AND CONTAINS ALL CONSTANTS DEFINED

BY THE COMPILER, THE PHYSICALLY FIRST MACHINE INSTRUCTION

GENERATED IS LABELED BY THE EXTERNAL NAME “#MAINPGM”.. THE
FIRST INSTRUCTION TO BE EXECUTED HHEN THE STMULATION IS
INTTIATED IS LABELED “#START®. #START IS ALWAYS LOCATED
AT A HIGHER CORE ADDRESS THAN IS #MAINPGH. THE SEQUENCE
OF CODE FOLLOWING #START CALL ANY INITIALIZATION ROUTINES,
AND THEN BRANCHES TO THE FIRST INSTRUCTION OF THE
SIMULATION CODE. THIS FIRST INSTRUCTION MAY NOT BE AT
AMAINPGM SINLE IT IS POSSIBLE TO SPEGIFY ANOTHER STATEMENT
AS THE FIRST TO BE EXECUTED ON THE ZEND® STATEMENT.

~ THE. SECOND ROM IS DEFINED BY THE EXTERNAL NAME:
“#DATA". THIS ROM CONTAINS ALL THE DATA REGIONS NECESSARY

135

FDR THE SIMULATION. ALL HARDWARE ELEMENTS ARE DEFINED AT
“THE BEGINNING OF THIS MODULE, AND ANY TEMPORARY STORAGE
LOCATIONS ARE DEFINED FOLLOWING THE ELEMENT LOCATIONS.
FOR THE LOCATION OF THE ELEMENTS WITHIN THIS MODULE,
SIMPLY REQUEST A SYSTEM DEFINITION SUMMARY WITH THE
COMPILER OPTION “LD . |

. REFERENCES

137

.~ Barbacci, M. B.,'and D. P. Siewiorek, 'Automated Exploration of

_the Design Space for Regisfer:Transfer (RT)'Systems',
Proceedings of the First Annual Symposium of Computer

" Architecture, Gainsville, Florida, December, 1973.

. ‘Be11, C. G., and A. Newell, Computer Structures: Readings and

Examples. New York: McGraw-Hill, 1971.

. Gentry, M., 'ACompiler for AHPL Control Seqﬁences', PhD disser-

tation, University of Arizona, June, 1971.

Hill, F. J.,‘ahd G. R. Peterson, Digital Systems: Hardware

Organiiation and Design. New York: John Wiley and Sons, 1973.

Knudson, M., 'PMSL - An Interactive Language for High Level
" Description and Analysis of Computer Systems’ Technical’
Report, Compufer Science Department, Carnige-Mellon
~University, 1974.°
Su, Stephen Y. H., 'A Survéy of Computer Hardware Descriptive
Languages in the USA', oméuten, Vol 7, #12, December 1974,
pp. 45-51.

N378 Crane, William P
851 A register-transfer
cop.2 descriptive language

and simulator for digi-
tal networks

DATE "ars is
AN 8 gj TpastAg
B Yavkr S eadat

#Kifm @W”%u)

JET L g Playeunl 7 u558
O eclsliozac W

1378
ﬂgs/

