Site characteristics and effect on elk and mule deer use of the Gardiner winter range, Montana by Allen Francis McNeal A thesis submitted in partial fulfillment of the requirements for the degree. Master of Science in Range Science y Montana State University © Copyright by Allen Francis McNeal (1984) Abstract: A two year study was initiated in the spring of 1980 to evaluate elk and mule deer use of the Gardiner winter range, an integral portion of the northern Yellowstone winter range. The study was designed to determine the association of elk and mule deer with habitat parameters. Twenty-eight vegetation and landform variables were characterized into six habitat types; five were sagebrush-grassland and the sixth was a forest habitat type. Sagebrush-grassland habitat types were modified to include three subspecies of big sagebrush (Artemisia tridentata) and black sagebrush (Artemisia nova). All habitat types were considered to be near climax condition. Sagebrush taxa were important forage sources, as indicated by animal use observations and sagebrush form class designations. Animal use of the area was dependent on winter severity although there was apparent elk and mule deer preference for certain habitat types. Elk and mule deer use was specifically associated with environmental characteristics within habitat types. Elk use, as measured by elk pellet-counts, was most highly correlated with grass cover (r = .66). Five site variables entering a stepwise regression analysis accounted for 71 percent (R^2) of the variation in elk pellet-counts by site.. Mule deer use was most highly correlated With elevation (r = -.52), reflecting their physical inability to negotiate deep snow. Eight site variables accounted for 82 percent (R^2) of the variation in mule deer pellet-counts. Data analyses indicate elk selected feeding sites on the winter range where the relationship of food intake to energy expenditure was optimized. Deer selected activity areas where energy expenditure was minimized and security was optimized on this exposed winter range.  SITE CHARACTERISTICS AND EFFECT ON ELK AND MULE DEER USE OF THE GARDINER WINTER RANGE, MONTANA Z by Allen F ranc is McNeal A th e s i s submitted i n p a r t i a l fu l f i l lm e n t of the requ irem ents f o r the degree. Master of Sc ience i n Range Science MONTANA STATE UNIVERSITY Bozeman, Montana June 1,984 APPROVAL of a th e s i s submitted by Allen F ranc is McNeal This t h e s i s has been read by each member of the t h e s i s committee and has been found to be s a t i s f a c t o r y r e g a r d in g c o n te n t , E n g l ish usage, format, c i t a t i o n s , b ib l io g rap h ic s ty le , and consis tency , and i s ready fo r subm ission to the College o f Graduate S tud ies . Date Chairperson, Graduate Committee Approval fo r the Major Department C a w * V ~ Date Head, Major Department Approved fo r the College of Graduate S tud ies D ate G rad u a te Dean iii STATEMENT OF PERMISSION TO USE In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l l m e n t o f th e r e q u i r e m e n t s f o r a m a s t e r ’s d eg re e a t Montana S t a t e U n iv e r s i t y , I agree t h a t the L ib rary s h a l l make i t a v a i la b le to borrowers under the r u l e s of the L ibrary . B r ie f q u o ta t io n s from t h i s th e s i s a re a llow ab le w ithout s p e c ia l perm ission , provided t h a t a ccu ra te acknowledgement of source i s made. Perm ission fo r ex ten s ive q u o ta t io n from or rep roduc tion of t h i s th e s i s may be granted by my major p ro fesso r , o r i n h i s absence, by the D irec to r of L ib ra r ie s when, in the opin ion of e i th e r , the proposed use of the m a te r ia l i s f o r s ch o la r ly purposes. Any copying or use of the m a t e r i a l i n t h i s t h e s i s f o r f i n a n c i a l g a in s h a l l n o t be a l lo w ed , w ithou t my w r i t t e n perm ission. Date. Signature. J To my p a r e n t s , Harry and Ora, f o r t h e i r h e lp , p e r c e p t i o n , and f a i t h through the long months of a n t ic ip a t io n . VVITA Allen F ranc is McNeal was born (1952) and ra i s e d i n the G a l la t in Valley where he grew to ap p re c ia te the in t r i c a c y and d e l i c a te na ture of th e s u r ro u n d in g e n v iro n m en t . He sp en t many f i n e h o u rs w i th h i s p a r e n t s , F. H. (H arry ) and Ora Helen (Veenker) McNeal, and s i s t e r Linda Rae (McNeal) Svensrud, enjoying a v a r i e ty of outdoor a c t i v i t i e s . He didn’t r e a l i z e th e re was s p e c i f i c term inology app lied to events he observed o c c u r r i n g i n n a tu r e u n t i l a f t e r he e n t e r e d Montana S t a t e U n ive rs i ty , from which he graduated i n 1975 w ith a Bachelor of Science degree i n Zoology. His graduate ca ree r was i n i t i a t e d i n 1979. v i ACKNOWLEDGEMENTS' A h e a r t f e l t th an k s t o my a d v i s o r , Dr. C ar l Wam b o l t , f o r h i s f r ie n d sh ip and guidance throughout the study. G ra te fu l ap p re c ia t io n i s extended to my committee members, Drs. Jack Taylor, Brian S in d e la r , C l i f f Montagne, and Bob Moore, f o r h e l p f u l m a n u s c r ip t c r i t i q u e . A v e ry s p e c i a l th an k s t o G eo rg ia Ziemba f o r i r r e p l a c e a b l e a s s i s t a n c e with da ta a n a ly s is . Thanks to Drs. Jack Taylor and Dick Mackie fo r bending an e a r to he lp i n i t i a t e t h i s study. I would l i k e to e x p r e s s my a p p r e c i a t i o n t o t h e U. S. F o r e s t Serv ice Gardiner d i s t r i c t o f f ic e and Bozeman su p e rv iso r ’s o f f ic e fo r f in a n c ia l a s s is ta n c e and coopera tion during t h i s s tudy . Last, but d e f i n i t e l y not l e a s t , I thank my f a th e r apd Jeanne Blee fo r the end less tim e spent typ ing t h i s behemoth. TABLE OF CONTENTS INTRODUCTION............................................................. ............................................... LITERATURE REVIEW ............................................................................... . . . . 3 P re face ............................................................. ............................................... 3 Winter Environment - H ab ita t ............................................................. 4 - Weather - Snow. , Forage and N u tr i t io n . . . . Food H ab its ............................................ ...................................... . . . . . iq Foraging S t r a t e g i e s .................................................... 11 Cover. . ........................................... 12 Human In f luence - D irec t C o n t a c t ........................................................ 13 - L ivestock Grazing. ............................................ 14 - Logging.................................................................. . 17 W ild l i fe Range Impacts . ...................................................................... 18 STUDY AREA DESCRIPTION. . . ..................................................... 21 Location ............................................................. - .................. .... 21 Geology. .................................................................................................. 22, Climate................................................................................................... 24 Topography and S o i l s ........................................................................... . 25- V egeta tion . . . ........................................................................ 27 Animals..................................................................................... 30 Human I n f l u e n c e s .............................................................................. 32 Management .................................................... . . . . . . . . . . . 33 METHODS AND MATERIALS...................................................................... .... . . ' . 37 Data C o lle c t io n . . . ........................................................................ 37 V egeta tion Measurements............................................................................... 38 Animal Use Measurements'............................................................. 42 Landform D esc rip tion ................................................ . . . . . . . 44 Data C o m p i la t io n .......................................................................... 45 S t a t i s t i c a l A n a l y s i s ......................................................... 45 v i i Page V D U l v i i i TABLE OF CONTENTS - (Continued) RESULTS AND DISCUSSION................................................................. 47 Preface . . . ...................... ' ...................................................... * . . „ 47 V egeta tion - V isual Observations .................................................... 47 - H ab ita t Types . . . . . . . . ................................. 50 - Composition ............................... . . . . . . . . . 56 - Sagebrush Burns . . . . . . ....................................... 59 - Annual V a r ia t io n .................................................................. 63 - C o r re la t io n s .................................................................. 65 Animal Use . . ....................................................................... 69 Animal Use - Summer. . . . . . . . . . . . . 69; - W inter......................................................... 72 M ig r a t i o n ..................... 72 - Feeding H ab its ; .................................................................. 75 - I m p a c t s .............................................................................. 82 Animal Use Compared w ith S i t e V ariab les . . . . . . . . . . 84 SUMMARY AND CONCLUSIONS..................................... 101 REFERENCES CITED. ................................................................................................ 106 APPENDICES......................................................... .... . ■...................... .... 119 Appendix A - P lan t Species on the Study Area . . . . . . . 120 Appendix B - H istory of the Study A r e a ............................................ 124 Appendix C - P lan t Composition on the Study Area . . . . . 128 Appendix D - Elk and Deer Pel le t -C o u n ts ............................................ 132 Page LIST OF TABLES Table Page 1 P e r c e n t a g e o f t o t a l mean c o v e r f o r t h r e e f o r a g e c la s s e s and s ix dominant taxa eva lua ted i n 1980 ................ 51 2 Mean a n n u a l p r o d u c t i o n i n k g / h a o f t h r e e f o r a g e c l a s s e s and s i x dom inan t t a x a e v a lu a t e d i n 1980 57 and 1981.......................... ............................................................................. 3 Com parison o f v e g e t a t i o n p ro d u c t io n and cove r from two b u rn e d s i t e s w i t h e n v i r o n m e n t a l l y p a i r e d unburned s i t e s ........................................................................................ 60 4 P e rc e n ta g e change i n p ro d u c t io n and f l o w e r in g cu lm s o f dom inan t h e rb aceo u s s p e c i e s i n f o u r h a b i t a t ty p e s from 1980 to 1981 .......................................................................................... 64 5 C o r r e l a t i o n m a t r i x o f s i t e v a r i a b l e s on t h e G a rd in e r w in t e r r a n g e .............................. 66 6 P e rc e n ta g e u t i l i z a t i o n o f 17 tagged s ag eb ru sh taxon by brow se form c l a s s , p o s tw in t e r 1982. . .............................. . 80 7 C on tingency t a b l e o f s ag eb ru sh form c la s s de s igna tion s from 1980 and 1981 browse t r a n s e c t s ..................................... 81 8 C o r r e l a t i o n c o e f f i c i e n t s o f e lk and d e e r p e l l e t - g r o u p c o u n ts o b ta in e d i n 1980 and 1981 and a s s o c i a t e d w i th v e g e t a t i o n and o t h e r s i t e c h a r a c t e r i s t i c s ........................ 89 9 S ign if ic an ce l e v e l s of F -va lues obtained by a n a ly s is of v a r i a n c e of s i x c a t e g o r i e s e v a lu a t e d f o r e lk and d ee r use ................................................................................................................. 91 10 R eg re s s io n a n a l y s i s o f e lk p e l l e t - c o u n t s w i th a l l v a r ia b le s s tud ied , and the r e s u l t i n g equation .................... 94 i x LIST OF TABLES - (Continued) Table ^aSe 11 R e g re s s io n a n a l y s i s o f d e e r p e l l e t - c o u n t s w i th a l l v a r ia b le s s tud ied , and the r e s u l t i n g equation .................... 97 12 P lan t sp ec ie s i d e n t i f i e d on th e Gardiner study a rea . . . 121 13 P lan t and m isce llaneous composition of s ix h a b i t a t types e v a lu a t e d f o r p ro d u c t io n , p e r c e n ta g e cove r ( b a s a l f o r g r a s s and f o rb , canopy f o r sh ru b ) , and e i t h e r f r e q u en cy o r d e n s i t y on t h e G a rd in e r s tu d y a r e a . .............................. 129 14 Elk and deer mean p e l le t - c o u n ts ob ta ined i n 1980 and 1981 w ith in f i v e main c a te g o r ie s of environmental v a r ia b le s , w i th sam ple number f o r e ach v a r i a b l e ............................. ... . 133 LIST OF FIGURES Figure Page 1 Panorama of the Gardiner study a r e a ........................................... 21 2 Map o f th e G a rd in e r s tu dy a r e a show ing to p o g ra p h ic f e a t u r e s ......................................................................................................... 26 3 Transect fo r v e g e ta t io n and p e l le t -g ro u p a n a ly s is . . . . 39 4 E lk and d e e r use o f s i x h a b i t a t ty p e s , a s d e te rm in e d by mean p e l le t -g ro u p coun ts .............................. 86 x i x i i ABSTRACT A two year study was i n i t i a t e d i n th e sp ring o f 1980 to eva lua te e lk and mule d e e r use o f t h e G a rd in e r w in t e r r a n g e , an i n t e g r a l p o r t i o n o f th e n o r th e r n Y e l lo w s to n e w in t e r range . The s tudy was d e s ig n ed to d e te rm in e th e a s s o c i a t i o n o f e lk and mule d e e r w i th h a b i t a t p a r a m e te r s . T w e n ty -e ig h t v e g e ta t io n and landform v a r ia b le s were c h a r a c t e r i z e d i n t o s i x h a b i t a t ty p e s ; f i v e w ere s a g e b ru sh - g r a s s l a n d and th e s i x t h was a f o r e s t h a b i t a t ty p e . S ageb ru sh - g rass land h a b i t a t types were modified to inc lude th ree subspec ies of b ig s a g e b ru sh (A r t e m i s i a t r i d e n t a t a ) and black sagebrush (A rtem isia nova). All h a b i t a t types were considered to be near c lim ax condition . Sagebrush taxa were im po rtan t forage sources, as in d ic a te d by animal use ob se rva tion s and sagebrush form c la s s des igna tion s . Animal use of the a rea was dependent on w in te r s e v e r i ty although th e re was apparent e lk and mule deer p re fe rence fo r c e r t a in h a b i t a t types. Elk and mule d e e r u s e was s p e c i f i c a l l y a s s o c i a t e d w i t h e n v i r o n m e n t a l c h a r a c t e r i s t i c s w i t h i n h a b i t a t ty p e s . E lk u se , a s m easu red by e lk p e l le t - c o u n ts , was most h igh ly c o r r e la te d w ith g ra s s cover ( r = .66). Five s i t e v a r ia b le s e n te r in g a s tepw ise re g re s s io n a n a ly s i s accounted f o r 71 p e r c e n t (R2 ) o f th e v a r i a t i o n i n e lk p e l l e t - c o u n t s by s i t e . Mule d e e r u se was m ost h ig h ly c o r r e l a t e d With e l e v a t i o n ( r = - .5 2 ) , r e f l e c t i n g t h e i r p h y s i c a l i n a b i l i t y to n e g o t i a t e deep snow. E ig h t s i t e v a r ia b le s accounted f o r 82 percen t (R- ) of the v a r i a t i o n in mule deer p e l le t - c o u n ts . Data ana lyses in d ic a te e lk s e le c te d feed ing s i t e s on th e w in t e r ra n g e where th e r e l a t i o n s h i p o f food i n t a k e t o energy expend itu re was optim ized. Deer s e le c te d a c t i v i t y a re a s where energy expend itu re was minimized and s e c u r i ty was optim ized on t h i s exposed w in te r range. II INTRODUCTION Jud ic iou s management of range ecosystems o f te n in c o rp o ra te s the e v a l u a t i o n o f w i l d l i f e r e q u i r e m e n t s and im p a c ts . Many f a c t o r s i n f l u e n c e w i l d l i f e a c t i v i t i e s i n th e dynamic e n v i ro n m e n ts th ey in h ab i t . C e r ta in of these environmental f a c to r s in f lu en ce an an im al 's s e l e c t i o n o f a p p r o p r i a t e s i t e s f o r i t s d i u r n a l a c t i v i t i e s . The r e l a t i v e im p ac t o f e n v i ro n m e n ta l f a c t o r s on a n im a l b eh av io r depends on the un ique q u a l i t i e s o f an a r e a i n c o m b in a t io n w i th th e season of the year. Winter o f te n provides environmental s t r e s s e s t h a t prove to be a r i g o r o u s t e s t o f e n du ran ce f o r a n im a l s , e s p e c i a l l y i n th e Rocky M ounta ins. The s t r e s s e s o f w in t e r a r e p a r t i c u l a r l y s e r i o u s f o r h e rb iv o ro u s a n im a ls such as u n g u la te s . Rocky M ounta in s l k ( Cervus e la o h u s n e l s o n i ) and Rocky M ountain mule d e e r (O dooo lleu s hemionus h em io n a s ) a r e o f t e n a f f e c t e d by deep snow and th e r e s t r i c t i o n i t imposes on a c t i v i t y l e v e l s during w in te r months. These an imals must sometimes adapt to very severe c o n d i t i o n s by a l t e r i n g u se p a t t e r n s , and u n d e r s t a n d in g t h e i r r e s u l t i n g b e h av io r i s e s s e n t i a l to any comprehensive management program. T h is s tu d y was conduc ted on t h e G a rd in e r w in t e r range i n s o u th w e s te r n Montana, an a r e a i d e a l l y s u i t e d f o r e x am in in g w in t e r behavior of e lk and mule deer. The study a rea encompasses a po r t ion o f th e n o r th e r n Y e l lo w s to n e w in t e r range . A v a r i e t y o f u n g u la te s u t i l i z e s the Gardiner w in te r range, but e lk a re most abundant during mpst w in te rs . These e lk comprise a p o r t io n of the l a r g e s t rem ain ing 2herds found in North America, those i n and around Yellowstone National Park. T h is s tu d y was d e s ig n ed to e x p l a i n why th e s e e lk , and th e abundant mule deer, s e l e c t the s p e c i f i c h a b i t a t types they u t i l i z e on the w in te r ing area. D e f in i te w in te r use p a t te rn s ' helped i n conceiving the hypo thesis th a t s p e c i f i c v e g e t a t i o n and la n d fo rm p a r a m e te r s can exp la in e lk and mule deer use p a t te rn s . The pu rpo se of th e s tu d y was to e v a lu a t e th e a s s o c i a t i o n o f e lk and mule d e e r w i th h a b i t a t p a r a m e te r s on th e G a rd in e r w in t e r range . The primary o b je c t iv e was to determ ine p r e f e r e n t i a l e lk and mule deer use of s p e c i f i c h a b i t a t ty p e s by c h a r a c t e r i z i n g t h e v e g e t a t i o n and landform av a i lab le . A secondary o b je c t iv e was to eva lu a te the cu rren t cond it ion and p o te n t i a l of the w in te r range fo r e lk and mule deer use. 3LITERATURE REVIEW Preface When r e v i e w in g Rocky M ountain e l k (Cervus e laohus nelson!) and Rocky Mountain mule deer (Odocoileus hem ionus h em ionu s I l i t e r a t u r e , one i s s t r u c k n o t on ly by th e mass o f i n f o r m a t i o n c o n c e rn in g th e s e popular big game an im als , but a lso by t h e i r wide d i s t r i b u t i o n among d iv e r s e e n v i ro n m e n ts . Wecker (1964) em p h a s iz e s t h a t each o rgan ism te n d s to be r e s t r i c t e d i n d i s t r i b u t i o n by i t s b e h a v io r a l apd p h y s i o l o g i c a l r e s p o n s e s to th e env ironm en t. C learly , these spec ie s a r e q u i t e f l e x i b l e i n t h e i r h a b i t a t r e q u i r e m e n t s w i th an a b i l i t y to adapt to a v a r i e ty of environmental d i s s im i l a r i t i e s . With cu rren t game management p ro te c t in g v iab le popu la tions , the d is tu rbance or removal of s u i t a b le h a b i t a t appears to be the only s ig n i f i c a n t environmental f a c t o r t h a t th e e x c e p t i o n a l r e s i l i e n c e o f th e s e s p e c i e s c anno t t o l e r a t e . Use o f an a r e a i s d e te rm in e d by an im a l b e h av io r p a t t e r n s . Behavior i s the f i r s t and most common way in d iv idu a l organisms a d ju s t to t h e i r environments (Geist 1981). Because almost any environmental f l u x can i n f l u e n c e an im a l b e h av io r a t a p o in t i n t im e , d e te rm in in g what ha s caused ^ b e h a v io r a l a d ju s tm e n t to t h e m u l t i - f a c e t e d e n v i ro n m e n ts e lk and mule d e e r i n h a b i t can be r a t h e r an i n d e f i n i t e undertaking. However, l i t e r a t u r e p rov ides the b a s is fo r understanding g e n e r a l a n im a l use c h a r a c t e r i s t i c s unde r v a ry in g e n v i ro n m e n ta l cond it io n s , 4A thorough unders tand ing o f a n im a l-h ab i ta t i n t e r a c t i o n s w i th in a p a r t i c u l a r a rea r e q u i r e s an ev a lu a t io n of w i l d l i f e h a b i t a t on a s i t e - s p e c i f i c b a s i s , t h e im p o r ta n c e o f which canno t be o v e r -em p h a s iz ed . Drawing from prev ious s tu d ie s conduc ted i n s i m i l a r e n v i ro n m e n ts i s u se fu l to the ex ten t of unders tand ing genera l p r in c ip le s , but applying management s t r a t e g i e s developed i n one geographic a rea to another a rea “ u s t be done w ith caution . Regional d i f f e r e n c e s and y e a r ly v a r ia t io n in complex environm enta l cond it ion s may cause the dynamics and even g e n e t i c s o f d i f f e r e n t a n im a l p o p u l a t i o n s to v a ry . In v iew o f t h i s v a r i a b i l i t y , a n im a l u se w i l l no t be c o n s i s t e n t i n a l l l o c a t i o n s and h a b i t a t s . Assuming an im a l use i n one a r e a w i l l p a r a l l e l t h a t from a n o th e r a r e a may be a m is ta k e , even i f t h a t a r e a i s th e a d j a c e n t d ra inage . Winter Environment - H ab ita t G e i s t (1981) o b s e rv e s t h a t mule d e e r move s e a s o n a l l y be tw een a r e a s o f f a v o r a b l e m ic r o c l im a t e s and f o r a g e r e s o u r c e s so a s to maximize gain (e.g. on summer ranges) or minimize maintenance co s ts (e.g. on w in te r ranges). Cole (1969) s t a t e s th a t no r th e rn Yellowstone w in t e r e lk d i s t r i b u t i o n o c c u r s a lo n g an e l e v a t i o n a l g r a d i e n t i n r e l a t i o n to s u i t a b l e fo rag ing a reas , developed h a b i t s , the presence of - o th e r e lk , c o n d i t io n e d r e s p o n s e s t o human d is tu rbance , and v a r ia b le w e a th e r i n f l u e n c e s on th e a v a i l a b i l i t y o f food . W in te r i n th e no rthe rn Rocky Mountains i s the tim e of year when re sou rce s a re most l i m i t e d f o r u n g u la t e s . Th is s e a so n i s c h a r a c t e r i z e d by deep snow covering fo rage , w ith cold, o f ten windy tem peratures . G i lb e r t e t a l . ( 1970) l i s t two f a c t o r s making w in t e r a c r i t i c a l p e r io d : I) f o r a g e 5n u t r i t i o n a l q u a l i t y and abundance a r e a t t h e i r l o w e s t , and 2) snow l i m i t s the amount of range a cc e s s ib le f o r use. DeNio (1938) concludes t h a t most game animals a re r e s t r i c t e d i n w in te r to l e s s than 20 percen t of the a re a av a i lab le on summer range i n th e n o r t h e r n Rocky M ountain r e g io n . A pp rox im a te ly 1.2 m i l l i o n ha a r e a v a i l a b l e a s summer ra n g e i n th e Y e l low s tone e co sy s tem , bu t Houston (1978) d e sc r ib e s the w in te r range as only 100,000 ha in s ize . D is c u s s in g th e same w in t e r r a n g e , G reer e t a l . (I 970) n o te t h a t f o r s h o r t periods during severe w in te rs an im als a re l im i t e d to a 20- 30,000 ha a r e a . A nim als a r e g e n e r a l l y fo r c e d t o lo w e r e l e v a t i o n s t o e scape th e d e e p e s t snow. In th e South Fork o f th e F la th e a d a r e a o f Montana, Gaffney (1941) recogn izes the w in te r range as being confined to ^ reas below 1981 ip in e le v a t io n on south and west exposures, and below 1676 m on north and e a s t exposures. Houston (1974) con s id e rs th e northern Yellowstone w in te r range l im i t e d to a reas below 2591 m in e leva tion . Winter Environment - Weather Moen (1973) emphasizes t h a t the e f f e c t of weather on an organism invo lves the exchange of thermal energy between the organism and i t s I en v iro n m en t . The f o u r modes o f t h i s energy exchange a r e r a d i a t i o n , c o n d u c t io n , c o n v e c t io n , and e v a p o r a t io n . To com pensa te f o r t h i s exchange, an animal can in c re ase or degrease body hea t production by a d ju s t in g i t s phys ica l a c t i v i t y and i t s m etabolic r a t e . Mule deer reduce food consumption during w in te r and remain in a maintenance s t a t e r a th e r than a p roduction s t a t e (Short 1981). Even i n a maintenance s t a t e , the s t r e s s of s u s ta in in g therm al homeostasis 6during w in te r i s e n e r g e t ic a l ly co s t ly . Based on obse rva tion s , Mautz e t a l . ( 1976) assume a w h i t e - t a i l e d deer fawn may undergo a 20 pe rcen t w e ig h t l o s s ove r a 100-day w in t e r p e r io d . D eC a le s to e t a l . (1977) r e p o r t t h a t once e n e r g y - r i c h f a t r e s e r v e s a r e d e p l e t e d , m usc le ca tabo lism prov ides an inadequate source of energy fo r a s ta rv in g deer to s u s ta in i t s e l f . As B e a l l n o te s i n 1974, l i t t l e work h a s been done to e v a lu a t e i n t e r a c t i o n s of b ig game w ith t h e i r n a tu ra l energy environment. Most s t u d i e s o f t h i s ene rgy exchange have been a ch ie v ed u t i l i z i n g d ee r . E m p i r i c a l l y t h i n k in g , d e e r and e lk w in t e r m e ta b o l ism shou ld be somewhat s i m i l a r , a l th o u g h t h e r e a r e n o ta b le d i f f e r e n c e s due to a c t i v i t y l e v e l s , n u t r i t i o n , and s ize . T heo re t ic a l ly , i t should be l e s s expensive from the e n e rg e t ic po in t of view fo r a la rg e homeotherm to l i v e in a low tem pera ture than i t would f o r a sm all one (Beall 1974). Where d e e r f e e d and r e s t i s v e ry much a f u n c t i o n o f w ea th e r (G eis t 1981). Loveless (1964) has observed mule deer feed ing up-s lope in su n l ig h t when a i r tem pera ture i s below -17.8°C (0°F), but seeking s h e l t e r d u r in g p e r io d s w i th w ind above 40.2 km /h r (25 mph) and t e m p e r a t u r e s below - 9 . 3°C ( 15°F). B e a l l (1974) n o t e s t h a t e lk had l i t t l e r e a c t io n to wind v e lo c i t i e s below 16.1 km/hr (10 mph), but did seek s h e l t e r a t h ig h e r wind v e l o c i t i e s , depend ing on am b ien t a i r tem perature . When the wind c h i l l f a c to r approaches -28.9° to - 3 1.7°C (-20° to -25°F), e lk seek s h e l t e r in t im ber or s te ep -s id ed draws. He f u r t h e r s t a t e s t h a t bo th th e rm a l and s o l a r r a d i a t i o n a r e im p o r t a n t components of the e lk ’s w in te r environment. 7To i l l u s t r a t e the e f f e c t of d i e t and wind, Moen (1968) g enera te s h ea t lo s s curves f o r a 50 kg w h i t e - t a i l e d deer (Odocoileus v i r g in ia n a ) s t a n d i n g i n an open f i e l d unde r c l e a r n o c tu rn a l s k i e s , w i th an a i r tem pera ture o f -20°C. He observes th a t a f u l l - f e d deer can w ith s tand wind v e l o c i t i e s over tw ice as g re a t a s a deer on a maintenance d ie t . A deer on a s ta r v a t io n d i e t would be i n a negative energy balance a t a w ind v e l o c i t y o f 2 mph. C le a r l y , hom eotherm s m ust e a t to s t a y warm (Gordon I 968). Winter Environment - Snow Snow not only i n i t i a t e s movement toward w in te r range (Anderson 1954, G i l b e r t e t a l . 1970) and i n f l u e n c e s d i s p e r s a l f rom w in t e r i n g a r e a s (S tev en s 1966, Ward e t a l . 1975), bu t i t s d ep th and c o n d i t i o n can be a dominant in f lu en ce c o n t ro l l in g both e lk and mule deer use of an a r e a . K e l s a l l (1969) s u g g e s t s t h a t l a r g e r a n im a l s such as moose a re ph y s ica l ly capable of n eg o t ia t in g deeper snow than mule deer. He found t h a t movements o f d e e r and moose were s e r i o u s l y impeded when snow depths were approx im ate ly 70 pe rcen t of t h e i r r e sp e c t iv e chest h e igh ts . The l a r g e r e lk would th e re fo re be l e s s seve re ly hampered by snow cond it ion than the r e l a t i v e l y sho r t- legged mule deer. Ward e t a l . (1 975 ) s t a t e t h a t t h e d e p t h and p h y s i c a l c h a r a c t e r i s t i c s of snow d e te rm in e th e d i s t r i b u t i o n , movements, and feed ing h a b i t s of e lk on t h e i r range. Gaffney (1941) r e p o r t s sev e ra l f a c t o r s d e t e r m in in g th e amount o f snow i n w hich e l k can w in t e r s u cc e ss fu l ly : I) th e composition, h e igh t , and volume of the p a la tab le v e g e t a t i o n ; 2 ) c o n d i t i o n o f th e snow - - packed , c r u s t e d , o r l o o s e ; 3) age and cond i t io n of the an im als; 4) topography. He goes on to say 8the in f lu ence of topography i s not g re a t u n t i l snow reaches a depth of 77 cm, but he a lso p o in ts out th a t e lk can n eg o t ia te 30 to 46 cm more snow on th e f l a t s than on a h i l l s i d e . B e a l l (1974) n o t e s t h a t e lk move from a r e a s when snow d e p th s r e a c h 46 cm, w h i l e Anderson (1954) r e p o r t s t h a t 15 t o 25 cm of snow can cause e lk t o b eg in m ig r a t i n g o u t o f Y e l lo w s to n e Park . A f te r r e a c h in g a w in t e r r a n g e i n th e Lo lo N a t io n a l F o r e s t , Bohne (1974) o b s e rv e s t h a t e lk move f r e e l y ove r much of th e a r e a u n t i l snow i s b e l l y - d e e p or c r u s t e d . A lthough p h y s i c a l l y c ap a b le o f n e g o t i a t i n g deep snow, e lk appa ren tly avoid th ese s i t u a t i o n s i f po ss ib le . In w e s t e r n Canada, Edwards ( 1956) d e te rm in e s t h a t deep snow appears to be a major f a c to r c o n t ro l l in g the abundance of mule deer. S ev e r in g h au s (I 947) c o n s id e r s snow d ep th to be th e c r i t i c a l w e a th e r f a c t o r a f f e c t i n g w in t e r m o r t a l i t y among w h i t e - t a i l e d d e e r i n th e A d irondacks . He p o i n t s o u t th e e f f e c t i s e s p e c i a l l y s e v e r e i f deep snow rem a in s f o r p ro longed p e r io d s l a t e i n t o t h e w in t e r s ea son , b ecau se a d e e r ’s v i t a l i t y d e c l i n e s a s w in t e r p r o g r e s s e s . Adverse weather i n March or April w i l l have a more severe e f f e c t on deer than i f those cond it ion s occur e a r l i e r i n the season. Snow d e p th s from 45.7 to 50.8 cm e s s e n t i a l l y p r e c lu d e d ee r use (G ilb e r t e t a l . 1970, Hayden-Wing 1979, Severinghaus 1947). S t r ic k ­ la n d and Diem (1975) s u g g e s t t h a t a s l i t t l e a s 30 cm of c r u s t e d snow may cau se mule d e e r to avo id an a r e a . In Idaho , Hayden-Wing (1979) th e o r iz e s t h a t deer use i s r e s t r i c t e d tp poorer q u a l i ty browse s i t e s where reduced snow depths allow them to balance t h e i r energy budgets, even though b e t t e r q u a l i ty browse i s nearby on deep snow s i t e s . 9Forage and N u tr i t io n One o f th e m ain c o n c lu s io n s em erg ing from th e s tu d y of an im a l behavior i s th a t most a c t i v i t i e s u l t im a te ly can be r e l a t e d to the way an an im a l a c q u i r e s s u s te n a n c e (G e is t 1981). P r o t e i n and energy a r e g en e ra l ly the n u t r i t i o n a l components of fo rage c r i t i c a l l y l im i t i n g to w i ld r u m in a n ts ( Wallmo e t a l . 1977). B e l l (1971) e x p l a i n s th e rum inant d ig e s t iv e s t r a te g y as maximizing the e f f ic ie n c y of p ro te in u s e . a t th e expense of th e su p e rab u n d an t supp ly o f energy found i n p l a n t c a r b o h y d r a t e s . However, u s a b le p l a n t en e rgy may a l s o be l i m i t i n g t o r u m in a n t s on poor q u a l i t y w in t e r ra n g e o r e a r l y s p r i n g range o f l u s h , w a te ry f e e d s h a v in g low dry m a t t e r c o n te n t (D ie tz 1965). The t h r e e c l a s s e s o f f o r a g e a r e c a t e g o r i z e d by Cook (1972) accord ing to a b i l i t y to f u l f i l l animal n u t r i t i o n a l needs. Genera lly speaking, shrubs on w in te r ranges fu rn ish animal p ro te in requ irem en ts but a re decided ly low i n energy fo r animal metabolism , while g ra s se s a r e a good s o u rc e of energy bu t a r e d e f i c i e n t i n o t h e r n u t r i t i o n a l r e q u i r e m e n t s . Fo rbs a r e g e n e r a l l y i n t e r m e d i a t e be tw een sh ru b s and g ra s se s in- meeting animal w in te r p ro te in and energy requirem ents. Describ ing e lk d ie t s , Hobbs e t a l . (1979) p re sen t the n u t r i t i o n a l i predicament of fo rag ing an im als i n th e w in te r . Expla in ing an observed in c re a se in browse consumption as w in te r progressed , the au thors note t h a t because th e d i f f e r e n c e b e tw een p r o t e i n c o n t e n t . o f browse and g ra s s in c reased , the r e l a t i v e b e n e f i t of consuming browse le aves and stems was g re a te r i n March than November. A consequence of inc reased l i g n in in tak e i s d e c l in in g dry m a tte r d i g e s t i b i l i t y . 10 The im p l ic a t io n of Leach's (1956) and Cook's (1972) work sugges ts t h a t d e e r and g r a z in g a n im a l s i n g e n e r a l r e q u i r e a d iv e r s e d i e t to meet t h e i r n u t r i t i o n a l requ irem en ts through the w in te r . Wallmo e t a l . (I 977) and Mautz e t a l . (1976) s u g g e s t th e n u t r i t i v e v a lu e o f f o r a g e i s a r e a l i s t i c means o f d e t e r m in in g d e e r w in t e r range c a r r y in g capac ity . Food Habits Food h a b i t s tu d ie s po in t out t h a t d i e t s of e lk and mule deer a re as v a r ied as the environments they in h a b i t . Kufeld (1973) provides a c o m p i l a t i o n o f 48 e lk food h a b i t s t u d i e s . K ufe ld e t a l . (1973) have compiled a v a i la b le in fo rm a t ion on food h a b i t s of Rocky Mountain mule deer. Elk a re g en e ra l ly browsers west of the C on tinen ta l Divide in the heav ily fo r e s te d w in te r in g a re a s having dense s e r a i - sh ru b underqtory communities (Lyon and Jensen 1980, McNeill 1972). Browse may form as much a s 90 p e r c e n t o f th e w in t e r d i e t (G affney 1941). A m a jo r i t y of the e lk ,w in te r d i e t i s comprised of g ra s se s on the e a s te rn s lopes of the Rocky Mountains where w in te r ranges a re more open-grass land (Greer e t a l . 1970, K n igh t 1970, C onstan 1972). As d e m o n s t r a t e d by M o rr is and Schwartz (1957), g ra s s may c o n s t i t u t e 100 percen t of the e lk d i e t on these e a s te rn w in te r ranges. The mule d e e r i s by p r e f e r e n c e a b row s ing a n im a l d u r in g t h e w in te r (Cowan 1947), although G eist (1981) sugges ts th a t s te reo typ ing them as s t r i c t l y browsers i s a g ro ss m istake, because deer may brow^e Z in some a reas but not i n o the rs . Actual browse consumed i s determined l a r g e l y by what i s a v a i l a b l e (W ilk in s 1957). S tu d i e s show w in t e r 11 d i e t s o f mule d e e r c o n t a i n from 62 to 78 p e r c e n t browse on f o r e s t e d w in t e r range (Lovaas 1958, W i lk in s 1957, C onstan 1972). On a g rass land dominated w in te r range, M orris and Schwartz (1957) show only 2.5 p e r c e n t browse i n th e d e e r d i e t , b u t a f o l l o w - u p s tu d y by N e l l i s Z and Ross (1969) on th e same w in t e r ra n g e i n d i c a t e s a s h i f t tow a rd s h igher browse consumption by deer. N e l l i s and Ross conclude th a t t h i s i n c r e a s e i n browse con sum p tion i s t h e r e s u l t o f a b e t t e r b a lan ce between deer numbers and the amount of p re fe r red fo rage fo l low ing a h e rd reduction . Foraging S t r a t e g ie s Mule d e e r i n c r e a s e th e energy p o t e n t i a l l y a v a i l a b l e to them by s e le c t in g foods c a r e fu l ly (Short 1981). B e l l (1971) observes th a t the s m a l l ru m in an t f e e d s v e ry s e l e c t i v e l y on th e mope e a s i l y d ig e s t e d p lan t p a r t s high in p ro te in , such a s le av e s , f r u i t s , and shoots which m ax im izes n u t r i t i o n from a r e l a t i v e l y s p a r s e i n t a k e o f food . Th is ob se rva tion i s not n e c e s sa r i ly v a l id f o r l a r g e r rum inan ts which can a f fo rd to be somewhat l e s s s e l e c t i v e i n consuming g r e a te r q u a n t i t i e s of stems and o th e r l e s s e a s i ly d ig e s ted food p a r ts . Deer p r e f e r to f e e d w here t h e r e i s no snow, bu t th e y may remove snow w ith t h e i r muzzles or by pawing w ith a f r o n t hoof (G eis t 1981). E lk a r e c a p a b le o f paw ing th ro u g h 9 1 to 122 cm of snow to fe ed (G a f f n e y 1941 , S m i th 1 930 ) , b u t t h e y g e n e r a l l y f e e d i n l e s s r e s t r i c t i v e cond itions . Of 19,067 e lk feed ing ob se rva tion s by Houston (1976), 94 percen t of the e lk were feed ing i n 30.5 cm of snow or l e s s . Both deer and e lk u t i l i z e wind-exposed s i t e s ' and exposed h i l l s i d e s as a c c e s s ib le feed ing a reas (Grimm 1939, G i lb e r t e t a l . 1970). 12 The most a c t iv e d a i ly feed ing pe riods a re e a r ly morning and l a t e evening (Beall 1974, Morgantini and Hudson 1979), but an im als may a lso fe e d th ro u g h th e d ay t im e when s e v e r e c o n d i t i o n s cau se a s h o r ta g e o f feed (Gaffney 1941). Elk and deer fo rag ing a c t i v i t y w i l l o ften occur i n th e p r o d u c t iv e b o t to m la n d s and sage b ru sh -g ra ss land s i n December- J an u a ry b u t w i l l s h i f t unde r f o r e s t cove r to e sc ap e snow c r u s t s and s e v e r e c o n d i t i o n s t h a t may d ev e lo p i n February-March (Houston 1976, Knight 1970, Constan 1972). Cover Cover of some form i s e s s e n t i a l to e lk and mule deer fo r therm al, escape, and s e c u r i ty reasons. Cover f o r e lk i s g en e ra l ly considered to be con ife rous f o r e s t (Black e t a l . 1976, Reynolds 1966). Mule deer w i l l use c o n i f e r o u s t r e e s a s w e l l a s s h ru b s f o r c o y e r a,n th e w in t e r (L o v e le s s 1 964). G e is t (1981) e x p l a i n s th e v a lu e o f lo ng , s t e e p h i l l s i d e s as escape t e r r a i n f o r mule deer. Elk apparen tly have a h igher s e c u r i ty requ irem ent fo r cover than d e e r (Lyon and J e n s e n 1980). E lk f l e d i n t o a r e a s w i th an average of 85 p e r c e n t t r e e canopy cove rage a s e scap e cove r ,in Coop's ( 1971) s tu dy . B lack e t a l . (1976) d e s c r i b e h id in g cove r a s v e g e t a t i o n c ap a b le o f c o n c e a l in g 90 p e r c e n t o f an e l k from human view a t a d is tance equal to or l e s s than 61 m. I f h id ing cover requ irem en ts a re s a t i s f a c to r y fo r elk , the same cover should be more than adequate fo r d e e r (B lack e t a l . 1976). B e a l l (1974) d e t e r m in e s t h a t e lk p u r p o s e f u l l y s e l e c t b edd ing s i t e s a c c o rd in g to th e th e rm a l c o m fo r t range needed., D uring c o ld e r p e r io d s e l k te n d to bed on more open s o u t h e r l y e x p o su re s d u r in g t h e 13 day and i n s m a l l c lum ps o f dense f o r e s t n e a r th e l a r g e s t t r e e s a t n igh t tp maximize the b e n e f i t s of s o la r and thermal r a d ia t io n . When am b ien t t e m p e r a t u r e s i n c r e a s e t h i s d i u r n a l b edd ing p a t t e r n i s reversed . Black e t a l . (1976) desc ribe deer w in te r therm al covpr as a f o r e s t s tand of a t l e a s t aap ling s iz e w ith 60 percen t grown closurg. Wallmo and Schoen (1981) m a in t a i n t h a t a l th o u g h th e rm a l cove r i s an im p o r t a n t a s p e c t o f f o r e s t e d h a b i t a t , c u r r e n t know ledge d i c t a t e s management m ust be based on b road p r i n c i p l e s r a t t i g r th an p r e c i s e p r e s c r ip t io n s . Many e lk c a lv e on th e upper p o r t i o n s o f th e w in t e r range pr ad jacen t t r a n s i t i o n a l range (Johnson 1951, Coop 1971). Calving cover as desc ribed by Johnson (1951) c o n s i s t s of s e c u r i ty cover fo r the cpw and c a l f i n q lo s e p r o x im i ty to su cq u le n b f o r a g e and w a te r . Fawniqg cover i s v ag u e ly d e s c r ib e d by E in a r s e n (1956) a s sh rub o r t r e e cover w ith su ccu len t v eg e ta t io n and water nearby. Human In f luence - D irec t Contact Elk and mule deer a re pever f a r from human in f lu en ce even in thp "na tu ra l" environments s e t a s id e , in p a r t , f o r th e i r use. Impacts qf human i n f l u e n c e ran g e frcm th e te m p e ra ry d i s t u r b a n c e caused by backpackers t c complete h a b i t a t e l i m i n a t i c n caused by s u b d iv i s i c n s . An a n im a l ’s t h r e s h o l d o f t o l e r a n c e f o r any d i s t u r b a n c e can be e s p e c i a l l y low i n th e w in t e r . Reed (1981) a d v i s e s t h a t mule d e e r s u f fe r a pronounced energy d e f i c i t i n severe w in te rs and can t o l e r a t e l i t t l e a d d i t io n a l energy co s t from d is tu rbance i f they a re to surv ive . The most obv iou s and e a s i l y r e c o g n iz e d human im p a c t i s d i r e c t in d iv id u a l con tac t upon an an im al’s sphere of s e cu r i ty . Ward (1976) 14 and Lemke (1975) bo th r e p o r t t h a t e l k p r e f e r to s t a y a t l e a s t 800 m from human a c t i v i t y , whether r e c r e a t io n a l or o therw ise . Daneke (1980) p o i n t s ou t t h a t heavy cove r m in im iz e s a d i s t u r b i n g i n f l u e n c e , in d ic a t in g e lk u sua lly move no f u r th e r than necessary to avoid people. A nim als can a l s o become h a b i t u a t e d to c e r t a i n a c t i v i t i e s , such as f isherm en or s ig h tse e in g t o u r i s t s , ye t b o l t from an u n fam il ia r human a c t i v i t y (Altman 1958, Beall .1974). S e n s i t i v i t y to the d is tan ce a human can approach a w ild animal, w i th o u t c a u s in g i t to f l e e , w i l l v a ry w i th th e type o f h a b i t a t , s p e c i f i c experience of the in d iv id u a l or group, and i t s Reproductive and n u t r i t i o n a l s t a t u s (Altman 1958). Hayden-Wing (1979) d e sc r ib e s a c o n t r a c t i o n o f e lk d i s t r i b u t i o n due to human a c t i v i t y on a w in t e r range which c o n se q u e n t ly expanded a s soon a s th e human a c t i v i t y ceased. Animals soon r e tu rn to normal a c t i v i t y a reas once a temporary d i s t u r b a n c e , such a s h u n t e r s , h a s p a ssed (Lemke 1975, Ward 1 976, Morgantini and Hudson 1979). Human In f luence - L ivestock Grazing A l te ra t io n s of animal h a b i t a t by man's a c t i v i t i e s can be sybtj.e or d e v a s t a t i n g , b u t any change i s p o t e n t i a l l y h a rm fu l i f w i l d l i f e requ irem en ts i n an a re a a re misunderstood. Winter range, because of i t s s c a r c i t y and i n t e n s i t y o f a n im a l u se , i s s e n s i t i v e to la n d management d e c is io n s (Black e t a l . 1976). L iv e s to c k g r a z in g i s a l a n d management p r a c t i c e t h a t can have s ig n i f i c a n t im pacts on w i l d l i f e use of w in te r ranges. A major aspec t of the c o n f l i c t between domestic l iv e s to c k g raz ing and w ild ungu la tes i s com petit ion fo r fo rage (Holechek 1980). Even though big game and 15 l iv e s to ck may not occupy a w in te r range concu rren tly , t h e y . may be in d i r e c t c o m p e t i t i o n f o r th e same f o r a g e p l a n t s ( J e n se n e t a l . 1972). Southern Colorado da ta i n Cooperrider (1982) show a 52 pe rcen t d ie ta ry o v e r l a p w i th summer c a t t l e d i e t s and e lk w i n t e r - s p r i n g d i e t s . The same study r e p o r ts a 25 percen t overlap between summer c a t t l e d i e t s and deer w in te r - s p r in g d ie ts . Smith and Ju lande r (1953) r e p o r t th%t th e s i m i l a r i t y o f d e e r and sheep d i e t s i s s u r e to cause c o n f l i c t wherever the supply of p re fe r re d fo rage i s inadequate to s a t i s f y the requ irem en ts of both animal species . J en sen e t a l . (1972) conc lude t h a t sheep g r a z in g i s c o m p a t ib le w ith b ig game w in te r use of s im i l a r fo rage mix provided sheep sp r ing g r a z in g i s r e s t r i c t e d to th e e a r l y g row ing sea son . Anderson and S c h e r z in g e r (1975) a l s o a t t r i b u t e t h e i r s u c c e s s w i th c a t t l e s p r i n g g raz ing on e lk w in te r range to removing c a t t l e a t the c o r re c t s tage qf p l a n t p h e n o lo g ic a l deve lopm en t. However, i n a f o r a g e c o m p e t i t i v e s i t u a t i o n , an in ten se l iv e s to c k management system should be employed i f w i l d l i f e a r e to b e n e f i t ; g r a z in g v e g e t a t i o n a t c r i t i c a l g row th s t a g e s c au se s no t on ly i n s u f f i c i e n t r e g ro w th d u r in g th e g row ing season, but a lso causes a decrease in p lan t growth the fo l low ing year ( W i l s o n e t a l . 1966 , B l a i s d e l l and P e c h a n e c 1949 ) . C e r t a i n environments may not be,conducive to a s p r in g -w in te r g raz ing schedule. Cook and S toddart (1963) in d ic a te th a t a r id s a l t - d e s e r t shrub rapges a re b e s t a d ap te d t o w in t e r g r a z in g and i f used on ly i n th e w in t e r would have about tw ice the g raz ing capac ity of sp r ing use. C o m p e t i t io n f o r sp ace can a l s o be an im p o r t a n t f a c t o r i n l iv e s to c k - w i l d l i f e i n t e r a c t i o n (Lonner and Mackie 1983)* Elk have 16 been seen g raz ing i n p rox im ity to c a t t l e (Ward e t a l . 1973, Delguidice and Rodiek 1982), but in p o r t io n s of Montana, Mackie (1970) and Lonner (1975) m a in ta in t h a t e lk p r e f e r e n t i a l l y avoid a re a s being concu rren tly g ra zed by c a t t l e and a r e a s where c a t t l e g r a z in g r e c e n t l y o c cu r red . Mule deer do not seem to e x h ib i t toe avoidance behavior to l iv e s to ck th a t e lk do (Compton 1975). The s u b s t a n t i a l i n c r e a s e i n e l k u se of an Oregon w in t e r range th rough use o f a c a t t l e g r a z in g sy s tem r e p o r t e d by Anderson and Scherz inger (1975) w arran ts c lo s e r in spec tion . Associated mule deer use d id n o t re sp o n d , bu t e lk numbers i n c r e a s e d i n a 10- y e a r p e r io d from 320 to 1190 a n im a l s , w i th a c o n c u r r e n t 2.6 t im e s i n c r e a s e i n c a t t l e a n im a l u n i t months g ra z ed . These r e m a rk a b le i n c r e a s e s accom pan ied by r e p o r t e d e c o l o g i c a l im provem en ts a r e a t t r i b u t e d to improvement o f w in te r fo rage q u a l i ty f o r elk . Three d e t a i l s mentioned i n t h e i r r e p o r t a re i n t e r e s t i n g to bear i n ,mind: I) th e study a rea i s a n a t u r a l g r a s s l a n d w i th s p a r s e l y o c c u r r i n g s h ru b s , 2 ) th e a r e a r e c e iv e s 45.7 cm (18 inches) annual p r e c ip i t a t i o n w ith 1/3 occurring during the p lan t growing season, and 3) the w in te r in g a re a was closed to a l l v eh ic le t r a f f i c during e lk occupancy. Houston (1971) sp ecu la te s th a t tu rn -o f - th e century high sagebrush d e n s i t i e s i n t h e G a rd in e r a r e a o f th e n o r th e r n Y e l lo w s to n e w in t e r range were the r e s u l t of domestic l iv e s to c k grazing. He considers th,e d e c l i n e i n s ag eb ru sh d e n s i t y a f t e r l i v e s t o c k rem ova l a s a r e t u r n to more "na tu ra l" cond itions . The Gardiner a re a i s an a r id sh rub-s teppe , w ith c e r t a in po r t io n s of the w in te r range re c e iv in g l e s s than 30.5 cm (12 inches) annual p r e c ip i t a t i o n (Houston 1974). Smith (1949) r e p o r t s 17 mule d e e r g r a z in g a lo n e caused a r e d u c t i o n i n s h ru b s on a n o r th e r n Utah s a g e b r u s h - g r a s s l a n d ra n g e , bu t l i v e s t o c k g r a z in g p lu s d e e r reduced herbs and in c reased shrubs. Human In f luence - Logging Logging p r a c t i c e s s i g n i f i c a n t ly a l t e r w i l d l i f e h a b i ta t . Animals h a b i t u a t e to th e a c t i v i t y o f lo g g in g (B e a l l 1974, H ershey and Leege 1976), bu t p o t e n t i a l changes i n h a b i t a t use o ccu r a f t e r th e lo g g in g op e ra t io n i s completed. Various s i l v i c u l t u r a l t e c h n iq u e s i n f l u e n c e animal po s t- logg ing use. Ju x tapo s i t io n , s ize , shape, and c le a n l in e s s o f a t im b e r c u t h e lp d e te rm in e a lo g g ed a r e a s u s e f u l n e s s to a n im a ls (Beall 1974, Reynolds 1969, Marcum 1976, Lyon 1976). R epo rted b e n e f i t s o f lo g g in g to d e e r and e lk f o c u s on an inc reased , b e t t e r q u a l i ty , forage supply (Raster 1972, Pgngelly 1963). However, a n im a l use o f c r e a t e d o p en in g s i s tem pered by th e s e c u r i t y le v e l provided (Lyon and Jensen 1980) D e t r im e n t a l im p a c ts o f lo g g in g can be many. Removal o f t r e e canopy by lo g g in g i n c r e a s e s snow d e p th s n o t i c e a b l y ( P e n g e l ly 1972). E lk avo id an ce r e a c t i o n t o p o s t—lo g g in g cond it ion s a re a t t r i b u t e d by B ea ll (1974) to removal of choice bedding s i t e s and poor s la sh c lean­ up. A d i s t i n c t negative c o r r e la t io n i s noted by Leege (1976) between the percentage of summer range logged and e lk counts on an adjoining- w in te r range. Even-aged regrowth, when mature f o r t im ber y ie ld , and i n t e r m e d i a t e s t a g e s o f t im b e r r e g ro w th a re bo th im p o v e r ish ed d e e r h a b i t a t (Wallmo and Schoen 1981). Permanent e s tab l ishm en t of logg ing roads and the decreased h id ing cover q u a l i ty of even-aged t im b e r r o t a t i o n s h a s re d u c ed e lk h a b i t a t 18 s e c u r i t y and f o r c e d more r e s t r i c t i v e hunting r e g u la t io n s i n Montana (Lonner and Cada 1982). However, e lk do no t n e c e s s a r i l y avo id ro a d s un le ss th e re i s human a c t i v i t y on them (Gruell and Roby 1976, Daneke 1980). Perry and Overly (1976) e s t im a te c o n s tru c t io n of roads i n e lk h a b i t a t can n ega t iv e ly impact more than 259 ha (640 acrqs) of h^hit&b p e r 1.6 km (I m i le ) o f ro ad , u n l e s s p r o t e c t i v e g u i d e l i n e s a r e c o n s id e re d . Marcum (1976) r e p o r t s a r e a s where r o a d s a r e c lo s e d to v e h i c u l a r t r a f f i c r e c e i v e g r e a t e r e lk use th a n a r e a s where r e a d s remain open, e sp e c ia l ly during hun ting seasons. B lack e t a l . (1976) s u g g e s t c a r e f u l s tu d y o f e l k and d ee r u se before a d e c is ion i s taken to a l t e r the cover - p a r t i c u l a r l y thermal cover . A w e l l u sed e lk w in t e r r a n g e i s a l i m i t e d , c r i t i c a l l y im p o r t a n t a r e a end sh o u ld be p r o t e c t e d from t im b e r h a r v e s t (B e a l l 1974, Zahn 1974, Bohne 1974, Lemke 1975). W ild l i fe Ranee Impacts Grazing an im als e x e r t an in f lu en ce upon th e p roduc tive rangeland sys tem by t h e i r d e f o l i a t i o n o f p l a n t s th rough e a t i n g apd p h y s i c a l damage, by t h e i r d i g e s t i v e p r o c e s s e s , and by t h e i r movements (Heady 1975). A review by E l l i so n (I960) i n d i c a t e s th a t any damage caused by g r a z in g a n im a l s depends on i n t e n s i t y , f r e q u e n cy , and t im e o f u t i l i z a t i o n and a lso upon in d iv id u a l p lan t sp ec ie s response to fo rage removal. P lan ts a re l e a s t s u s c e p t ib le to heavy concen tra t io n s of big game a n im a ls d u r in g th e dorm an t w in t e r p e r io d b ecau se g r a z in g o r c l i p p i n g p l a n t s a f t e r th e f o o d - s t o r a g e cycle has been completed has the l e a s t e f f e c t on subsequent p roduction (S toddart e t a l . 1975). 19 B l a i s d e l l and P e c h a n e c (1949 ) r e p o r t l a t e f a l l c l i p p i n g (October 30) had a n e g l i g i b l e e f f e c t on b l u e b u n ch w h e a t g r a s ? (A g ro p v ro n s p i c a t u m ) and a r r o w l e a f b a l s a m r o o t (B a lsam o rh iz a s a g i t t a t a ) . C erta in shrubs can w ith s tand repea ted heavy u t i l i z a t i o n during the w in te r (S toddart e t a l . 1975, Wright 1970) which may even promote subsequent in c re a sed forage p roduction (G arrison 1953, W illard and McKell 1973). In g e n e r a l , d e f o l i a t i o n e a r l y in th e g row ing s e a so n , when b ig game may s t i l l be on a w in t e r r a n g e , i s l e s s d e t r im e n t a l th a n l a t e r use (S toddart e t a l . 1975). Removal of v eg e ta t iv e p a r t s has the l e a s t e f f e c t during the f i r s t 2^ -3 weeks of the growing season, but c l ip p ing a f t e r th e s e g row th s t a g e s can be q u i t e d e t r im e n t a l to a p l a n t ( B l a i s d e l l and Pechanec 1949, M c I lv an ie 1942, W ilson e t a l . 1966}. Cpok and S tqddart (I960) found sp r ing d e f o l i a t i o n e sp e c ia l ly severe oq b ig s a g e b ru sh ( A r t e m is i a t r i d e n t a t a ) . A l a t e s p r i n g d i s p e r s a l by la rg e numbers of e lk and deer could thus be p o t e n t i a l l y damaging tp a w in te r range. , G affney (1941) c o n s i d e r s abou t 8094 ha of th e Sou th Fork o f th e F l a th e a d e lk w in t e r ra n g e to be i n a bad ly d e p l e t e d c o n d i t io n . He r e p o r t s t h a t no t on ly a r e p r e f e r r e d browse p l a n t s b e in g k i l l e d by overuse but bunchgrasses a re being damaged from e a r ly sp r ing grazing. R o b in e t te e t , a l . (1952) a t t r i b u t e th e l o s s o f 40 p e r c e n t o f one mule d e e r h e rd to ov e rb rpw sed ra n g e , w h ich th ey compare t o a 10 p e r c e n t lo s s of deer fo l low ing a severe w in te r on good cond i t io n browse range. Many o f th e e a r l y a u th o r s d i s c u s s i n g th e n o r t h e r n Y e l lo w s to n e w in t e r range d e s c r i b e i t s d e t e r i o r a t e d c o n d i t i o n (Rush I 932, Grimm 20 1939, K i t ta m s 1953), which p rom pted l a r g e e l k h e rd r e d u c t i o n s c o n t in u in g th ro u g h 1968. A f te r e x am in in g o v e r 200 s i t e s , Houston (1971) concluded t h a t very l i t t l e of the no rthe rn Yellowstone w in te r range was i n a dep le ted condition . In s tead , he considered r id g e top s and o th e r h a r s h to p o ed ap h ic s i t e s p r e v io u s ly c o n s id e r e d a^uspd , z o o t ic or topoedaphic climax cond it ion s (Houston 1974). Yellowstone Park now m ain ta in s a po licy of n a tu ra l r e g u la t io n f o r i t s ungulates, e f t e r concluding th a t h e rb ivo re s a re not causing r e t r o g r e s s iv e changes of v eg e ta t io n on some Park w in te r ranges (Cole 1978). Grazing an im als can in c re a se com pac t ion o f s o i l s to s u r p r i s i n g depths, e sp e c ia l ly during sp r ing or o th e r moist seasons (S toddart e t a l . 1975). S o il compaction r e s t r i c t s s o i l m ois tu re , ro o t development, and s e ed l in g emergence and v igo r (S toddar t e t a l . 1975, Barton e t a,l. 1966, McNeal and Weaver 1982). P o s s i b l e s o i l c om pac t ion caused by "yarded" e l k o r mule d e e r i n e a r l y s p r in g i s an i n t e r e s t i n g , unexplored t o p i c . An e s t im a ted 47 pe rcen t of the e a r th ’s land su rfa ce i s rangeland (W i l l i a m s e t a l . 1968). The know ledge to p r e s e rv e l a n d r e s o u r c e s p a r t l y in v o lv e s e a r l y d e t e c t i o n o f changes i n p l a n t s , s o i l , and a n im a l s , and th e s k i l l t o r e t u r n a m easure o f s t a b i l i t y to th e ecosystem (S toddart e t a l . 1975). Although e lk and mule deer w in te r r a n g e s a r e on ly a sm a l l f r a c t i o n o f o u r r a n g e la n d , th e b e n e f i t s o f p re se rv ing such a sm all land resou rce a re re tu rned i n many ways (Sw ift 1941, Robinette e t a l . 1952, Reed 1981). 21 STUDY AREA DESCRIPTION Location The s tu d y a r e a i s l o c a t e d i n th e G a l l a t i n N a t io n a l F o r e s t n e a r th e town o f G a rd in e r i n s o u th w e s t e r n Montana (F ig u re I) . The s tu d y a r e a i s bounded by L i t t l e T r a i l Creek on th e n o r th , Yellow s to n e N a t io n a l Park on the so u th , and U. S. Highway 89 w hich f o l l o w s th e Y e l low s tone R iv e r on th e w es t . Deep w in t e r snow i n th e Absaroka M ounta ins fo rm s th e l e s s w e l l - d e f i n e d e a s t e r n boundary . The a r e a encompassed con ta in s about 5830 ha (14,000 acres) o f National Fores t w ith approxim ate ly 1416 ha (3500 ac re s ) of p r iv a te land in term ixed . F igure I . Panorama of the Gardiner study a rea . The panoram a i n F ig u re I was ta k e n from w i t h i n Y e l low s tone National Park look ing towards the study area. View i s to the north on th e l e f t s i d e o f th e panorama and to th e e a s t on th e r i g h t s id e . G a rd in e r i s l o c a t e d j u s t ou t o f th e p i c t u r e on th e lo w e r l e f t . The Park boundary l i n e f o l l o w s th e Y e l lo w s to n e R ive r i n th e im m ed ia te foreground to the fo re s te d r idge on the f a r r ig h t . Bear Creek i s the fo re s te d channel in the m id d le - r ig h t of the panorama. 22 G ard in e r i s s i t u a t e d i n th e Y e l lo w s to n e R iv e r Vjalley a t 1615 m (5300 f e e t ) e l e v a t i o n su r ro u n d ed by p eak s r e a c h in g 3353 m (11,000 f e e t ) . A r a i n shadow c r e a t e d by th e s e m oun ta in peaks makes th e benches and ad jacen t s lopes of the Gardiner v a l le y a p re fe r red w in te r range fo r an im als fo rced out of h igher e l e v a t io n s •by deepening saow. M ig ra to ry h e rd s sum m ering i n Y e l lo w s to n e Park and th e a d j a c e n t A b sa ro k a -B e a r to o th W i ld e rn e s s Area comprise the m a jo r i ty of animals u t i l i z i n g the study area. A nim als a p p ro a ch in g th e G a rd in e r v a l l e y a r r i v e a long d e ep ly entrenched stream channels or ad jacen t s teep -s loped mountain^ ii) tp a r e l a t i v e l y wide (4-6 km) v a l l e y o f open s lo p e s and benches g ra d in g in to the Yellowstone River. Upon e n te r in g t h i s r e l a t i v e l y snqw-free v a l l e y th ey a r e c o n f ro n te d w i th s a g e b ru s h - g r a s s cove red s lo p e s apd t e r r a c e s w i th a s c a t t e r i n g o f c o n i f e r s . The p r o t e p t i v e cover of continous f o r e s t i s about 762 m (2500 f e e t ) above the v a l le y f lo o r on th e uppe r l i m i t o f th e w in t e r i n g a r e a , where snow c o v e r may be over I m deep. A la rg e p a r t of the an im als ' fo rag ing t im e i s consequently spent pn the r e l a t i v e l y exposed sagebrush dominated range during the w i n t e r . T h e r e f o r e , a n i m a l s become e s p e c i a l l y s u s c e p t i b l e to environmental s t r e s s e s . Geology T r a n s fo rm a t io n s which o c c u r re d d u r in g g e o lo g ic t im e s a r e r e s p o n s i b l e f o r making th e G a rd in e r a r e a a w in t e r ra n g e . G eo log ic fo rc e s which formed the vo lcan ic Yellowstone p la te au to the south and the s p e c ta cu la r Beartoo th Mountains to the e a s t had a s i g n i f i c a n t r p le 23 i n s h ap in g th e G a rd in e r a r e a . The s tu d y a r e a a d j o i n s t h e s e two d i s t i n c t geo log ic un i ts . The Beartooth Mountains which shape the study a re a 's n o r th e a s te rn boundary r e s u l t from an u p l i f t e d g r a n i t i c b lock . T h is n o r th w e s t t r e n d i n g u p l i f t (Foose e t a l . 1961) fo rm s a r i d g e a p p ro x im a te ly 64.4 km (40 m i l e s ) lo n g w i th more c o n t in u o u s a r e a above 3048 m (10,000 f e e t ) i n e l e v a t i o n th a n anyw here e l s e i n t h e U n ited S t a t e s (Koch 1972). In a d d i t io n to pre-Cambrian rocks, pa leozo ic l im es tones and do lom ites c o n s t i tu t e the prominent backbone of these im pressive mountains ( R i t t e r 1967). N ea r ly th e e n t i r e B e a r to o th range i s o u t l i n e d by f a u l t s , one of which r u n s e a s t and w e s t th rough th e lo w e r p o r t i o n o f L i t t l e T r a i l Creek (F r a s e r e t a l . I 969), T h is f a u l t a c t i o n i n l a t e C re ta c eo u s o r e a r l y T e r t i a r y t im e s (W ilson 1934), ra is ec ) th e &rea n o r th of th e f a u l t , and dropped and fo lded the a re a to the South. The Yellowstone ^tiver flowed over the dropped a rea carv ing out the broad v a l le y of the Gardiner w in te r range. Lava flow ing northw est from the vo lcan ic Absaroka Mountains or from f a r t h e r s o u th i n th e Park " d u r in g th e P l io c e n e (?) epoch ponded in the Gardiner v a l ley " (F raser e t a l . 1969). At l e a s t f iv e d i f f e r e n t ep isodes surged in to the v a l le y and formed i t s broad b a s a l t benches. On these same benches P le is to cene -ag ed t r a v e r t i n e was formed from hot carbon ife rous sp r ing water. Mining f o r th i s d eco ra t iv e rock began i n t h e I 930 's (W hitho rn 1968) and s t i l l c o n t in u e s on t h e w in t e r range today. 24 Three P le is to cene g l a c i a l advances f i r s t d esc r ibed by Blackwelder (1915) a f fe c te d the Yellowstone area. The second and th i r d of these , t h e W isconson B u l l Lake and P in e d a le , a p p l i e d f i n i s h i n g to u c h e s to topography of the Gardiner w in te r range. During P inedale time, major ip e s tream s from four sources converged near Gardiner (P ierce 1979). P i e r c e ' s (1979) work s u g g e s t s i c e was a t l e a s t 1100 m th i c k and covered the e n t i r e area. Choice f o r a g in g s i t e s f o r w i n t e r i n g w i l d l i f e w ere c r e a t e d a s g l a c i a l scou r ing and t i l l d ep o s i t io n smoothed the su r fa ce of Deckard and T rav e r t in e F la ts . Eroded outwash channels now provide r e l a t i v e l y le v e l feed ing and r e s t i n g a re a s on the o the rw ise s teep mountainsides. M ora in a l d e p o s i t s d i s s e c t e d by m e l t - w a t e r c h a n n e ls c o n t r i b u t e topographic r e l i e f i n the exposed Bear Creek and Eagie Creek a reas . Climate The G a rd in e r a r e a i s humid w i th a summer w a te r d e f i c i e n c y f o l l o w in g T h o r n th w a i t e ' s (1948) c l a s s i f i c a t i o n . A lthough G a rd in e r summers can be dry, conventional showers o f te n provide some growing season m ois tu re . During w in te r months when storms a re more widespread and severe , snow may be 1-2 m deep i n nearby mountains y e t absent in Gardiner. F a m e s ' (1975) annua l p r e c i p i t a t i o n map of the a re a i l l u s t r a t e s the r a in shadow c rea ted i n the Gardiner v a l le y w ith ipohye ts c lo se ly fo l low ing lane} con tours and g r e a t ly in c re a s in g wit% e lev a t ion . Annual p r e c i p i t a t i o n a lo n g th e Y e l lo w s to n e R iv e r go rge a v e r ag e s 30.5 cut (12 in c h e s ) , w h i le th e b a s a l t b enches g e t abou t 40.6 cm (16 in ch es ) . 25 apd s u r r o u n d in g m o u n ta in s r e c e i v e up to 76.1 cm (30 in c h e s ) . About h a l f of t h i s m ois tu re g en e ra l ly f a l l s as snow. The U. S. Weather Bureau s t a t i o n . a t Mammoth, lo c a ted about 3po m h ighe r and 8 km upstream from Gardiner, a f fo rd s a good approximation of cond it ion s on the Gardiner w in te r range. Weatiier d a ta r^preppntinjg 94 y e a r s a c c u m u la t io n show annua l a v e rag e p r e c i p i t a t i o n o f 41.? cm (16.25 in c h e s ) w i th F eb ru a ry th e d r i e s t month, a v e r a g in g 2.7 cm (1.05 in c h e s ) and June th e w e t t e s t , a v e r a g in g 4.9 cm (1.9? in c h e s ) . T em p e ra tu re d a t a r e v e a l a mean, annua l t e m p e r a tu r e o f 4 .10C (39 .9°F) w ith January the c o ld e s t month averag ing -7.4°C (18.7°F) and Ju ly the w arm est a v e r a g in g 17.3°C (63.10F). The g row ing s e a so n i s from abou t m id -A p r i l to m id -S ep tem be r a l th o u g h a k i l l i n g f r o s t can o c cu r d u r in g any month. F a l l r e g ro w th can be s u b s t a n t i a l d u r in g a f a v o r a b l e " In d ia n summer", O v e ra l l , c l im a te combined w ith o th e r environmental f e a tu r e s of the study a rea c r e a te s a d iv e rse , y e t o f ten l im i t i n g p la n t environment. Topography and S o i l s Topography o f th e a r e a i s c h a r a c t e r i z e d by h igh s t e e p - s l o p e d mountains w ith nearby r e l a t i v e l y f l a t or r o l l i n g benchlands d is se c ted by d e ep ly e n t r e n c h e d s t r e a m s (F ig u re 2 ) . E l e v a t i o n s w i t h i n 5 km of th e Yellow s to n e R iv e r r i s e 1100 m above th e r i v e r f l o o r . S te ep , weakly d is s e c te d s lopes a re p reva len t. Slopes of 50-60 percen t r i s e from the Yellowstone River apd Bear Creek to the 1-2 km wide b a sa l t bench which ex tends from the P^rk l i n e northw est to L i t t l e T r a i l Creek. From Deckard and T rav e r t in e F la ts , s l o p e s a g a in r i s e a b r u p t l y i n t o th e A bsaroka M oun ta in s . M o r a in a l , AbsoreKe - Beortootb Figure 2. M ap of the G ardiner study area show ing topographic features w ith elevation expressed in m eters. 27 topography in th e Eagle Creek a re a provides a more g radual ascen t in to the mountains. Most of the study a rea has a south and west f a c in g aspec t. North and e a s t f a c i n g s lo p e s a r e m a in ly a lo n g s t r e am ch an n e ls and i n mountainous e lev a t io n s . Both convex and concave shaped s lopes of 2- 70 pe rcen t r i s e a re e x i s t e n t . S o i ls '! i n th e a r e a have been s t r o n g l y i n f l u e n c e d by g l a c i a l s c o u r in g , m o ra in a l d e p o s i t i o n and o u tw a sh s e d i m e n t s . P a r e n t l i t h o l o g i c m a t e r i a l s a r e a m ix tu r e o f g r a n i t e s and l im e s t o n e s from g l a c i a l a c t i o n i n a r e a s to th e s o u th and e a s t . Cold w in t e r s and dry summers c h a r a c te r iz e th e s o i l c l im a te . So il r e g o l i th depth ranges from a few c en t im e te rs i n g l a c i a l l y scoured a re a s to sev e ra l m eters in d ep o s i t io n a l a reas . G lac ia l t i l l has a sandy loam te x tu re and a high course fragment con ten t ranging i n s i z e from g r a v e l s to b o u ld e r s 3-4 m i n d ia m e te r . The s u r f a c e i s covered w i th g r a n i t e e r r a t i c s w h ich p ro b ab ly came from th e B lack Canyon of the Yellowstone (P ierce 1979). Most of the s o i l s i n th e a rea a re M o ll iso ls. So il f a m i l ie s range from l o a m y - s k e l e t a l A r id ic H a p l o b o r o l l s t o f i n e - l o a m y P a q h ic A rg ib o ro i l s . There a r e some I n c e p t i s o l s n e a r b ed ro ck o u tc ro p s and A lf i s o ls i n f o r e s te d a reas . Vegeta tion There i s a g r e a t d e a l o f p l a n t d i v e r s i t y i n t h e a r e a , from th e s e m i - a r i d v a l l e y f l o o r to th e s u b a lp i n e meadows. A l i j s t o f p l a n t s S o i l s d a t a c o l l e c t e d by G a l l a t i n N. F., U. S. F o r e s t S e rv ic e s o i l s crew, J u ly 1980. 28 i d e n t i f i e d on t h e s t u d y a r e a i s p r e s e n t e d i n A p p en d ix A. A c h a r a c t e r i z a t i o n o f v e g e t a t i o n i s p r e s e n t e d i n t h i s s e c t i o n w i th a q u a n t i t a t i v e d e s c r i p t i o n o f v e g e t a t i v e c o m p o s i t io n p r e s e n t e d i n R esu lts and D iscuss ion . Study a rea v e g e ta t io n i s predominantly sagebrush-g rass land . Over 54 pe rcen t of the a re a i s open sageb rush -g rass range w ith ano ther 14 p e r c e n t h av in g s a g e b ru sh dom inan ted under s to ry and a s c a t te r e d t r e e o v e r s t o r y . About 27 p e r c e n t o f th e s tu d y a r e a p ro v id e s p r o t e c t i v e o v e r s t o r y cove r o f c o n t in u o u s f o r e s t which b e g in s a t abou t 2300 m e lev a t io n on the upper periphery of the w in te r in g area. The rem ain ing 5 pe rcen t of the a rea has been c le a rc u t . Due t o m i c r o s i t e v a r i a t i o n , v e g e t a t i o n a l m o sa ic s a re c r e a t e d m a in ly by o ro g r a p h ic p r e c i p i t a t i o n , v a r ied topography and d i f f e r in g s o i l p ro p e r t ie s . This mosaic p rov ides a fiigh degree of v eg e ta t io n a l choice to an im als w in te r in g i n the area. V egeta tiona l asymmetry i s best d esc ribed i n te rm s of dominant shrubs and g rasses . A w ater l im i t e d environment occurs along th e Yellowstone River, e sp e c ia l ly from Gardiner upstream to the mouth o f Bear Creek. S a lin e seep on the s teep h i l l s i d e s has c rea ted a v eg e ta t iv e complex u su a l ly d e s c r ib e d a s a s a l t d e s e r t sh ru b type dom ina ted by greasew ood (S a ro o b a tu s v e r m i c u l a t u s ) . sp in y hopsage (G rav ia s n i n o s a ). Gardner s a l t b u s h (A t r i n l e x g a r d n e r i ) and i n l a n d s a l t g r a s s ( D i s t i c h l i s s t r i c t a ). T h is s i t e i s r e l a t i v e l y sm a l l bu t i t r e f l e c t s th e most r e s t r i c t i v e r e l a t i o n s h ip of p r e c ip i t a t i o n to e v ap o tran sp ira t io n on the area . 29 Three s u b s p e c i e s o f b ig s a g e b ru sh (A r t e m is i a t r i d e n t a t a ^ and black sagebrush (A rtem is ia nova) occur sympat r i e a l l y but w ith vary ing f r e q u e n cy . These deep r o o t e d sh ru b t a x a each have an optimum n ic h e but a l l a re im portan t components of the Gardiner w in te r range. Rubber r a b b i t b r u s h (.Ch.ry_s_oth a m n u s n a u s e o s u s ) f g r e e n r a b b i t b r u s h (C. iei.s.cp.difl o r u s ) and gray horsebrush (T e trad v m ia c a n e s c e n s ) a l s o o c cu r throughout the sagebrush dominated p o r t io n s of the area. Black sagebrush appears to be c lo se ly a s so c ia te d w ith q lacareous s o i l s over bu ried t r a v e r t in e . This Idw shrub dominates th e overs to ry on sandy t i l l covering t r a v e r t in e and i t i s a lso found downslope from th e s e a r e a s . Wyoming b ig s a g e b ru sh (A. t . w vom ingen s is l i s fpund on deep sandy loam s o i l s r e s u l t i n g from g l a c i a l outwash and more r e c en t ly p laced a l l u v i a l s i l t s . Basin big sagebrush (A.t. t r i d e n t a t a ) grows mainly downslope of b a s a l t ou tcrops, on lower po r t io n s of s teep s lopes or in o th e r a re a s where w ater flow i s enhanced. Mountain big sagebrush (A.t. vasevana^ i s th e m ost f r e q u e n t and dom inan t sh rub i n th e a r e a . I t grows throughout the study a rea and i s the only sagebrush taxon found above 2100 m. Bluebunch w h e a tg r a s s (Agroovron s p ic a tu m ) and Idaho f e s c u e CFestuca J^dahoensis) a re the two p r in c ip a l g ra ss sp ec ie s on the study area . Dominance by e i t h e r spec ie s appears to be r e l a t e d to a g re a te r to le ran ce f o r a r i d i t y by blue bunch w h e a tg r a s s . B luebunch d o m in a te s low er e le v a t io n s i t e s w ith s teep south fa c ing exposures, sandy s o i l or o th e r m o is tu re l im i t i n g f a c to r s . 30 Idaho f e s c u e i s t h e p r i n c i p a l g r a s s on n o r th f a c i n g s lo p e s and deep s i l t y s o i l s i t e s . Idaho fe scue i s a prominent g ra s s sp ec ie s a t h igher e le v a t io n s where m o is tu re a v a i l a b i l i t y i s not l im i t in g . Other p ro m in en t g r a s s e s i n l o c a l a r e a s a r e p r a i r i e J u n e g r a s s (K o e le r ia p y r a m id a t a ), n e e d le a n d th r e a d (S t i o a co m a ta ) and I n d i a n r i c e g r a s s (Orvzopsis hvm enoides). S c a t t e r e d t r e e s a t lo w e r e l e v a t i o n s a r e m a in ly Rocky M ountain ju n ip e r CJuriiperus scopulorum) and l im ber pine CPinus f le & i l i s ) . Near s tream s and a t h igher e le v a t io n s Douglas f i r CPseudotsnga m enzieslj I i s th e dom inan t o v e r s t o r y s p e c i e s . Above 2300 m m u l t i p l e - s p e c i e s m ix tu res o f Douglas f i r , w hitebark p ine CPinus a lb lo au lu a ) . Iodgepole pine CPinus c o n to r t s ) , and suba lp ine f i r CAbies la s io c a rp a ) occur. Dominant o v e r s t o r y and u n d e r s to r y v e g e t a t i o n was used to d i f f e r e n t i a t e h a b i t a t ty p e s i n th e a r e a . P f i s t e r e t a l . (1977) was C used a s a r e f e r e n c e f o r th e f o r e s t h a b i t a t ty p e s . M ueggler and S tew art 's (1980) sh rubland h a b i t a t types were modified to inc lude the subspec ies of b ig sagebrush fo r the non -fo res ted p o r t io n of the stuciy a rea . Animals The study a rea i s p a r t o f the no r the rn Yellowstone w in te r range which i s b e s t known f o r th e l a r g e number o f m ig r a t i n g e lk u t i l i z i n g i t . Most of these e lk summer i n th e broad expanse of Yellowstone Park while a sm a l le r number summer i n th e mountainous Absaroka-Beartooth Wilderness. Small summer herds fo rced to lower e le v a t io n by f a l l snow b eg in to c o n g re g a te on benches and exposed h i l l s i d e s a long th e Yellowstone River and i t s t r i b u t a r i e s . These cong rega ting herds a re c o l l e c t i v e l y known a s t h e n o r t h e r n Y e l lo w s to n e e l k h e rd , which i s c u r re n t ly e s t im a ted a t 16,000 animals^ . E lk may b eg in a r r i v i n g i n t h e G a rd in e r a r e a a s e a r l y as m id-. November. Many more e lk c o n t in u e t h e i r m ig r a t i o n i n s e a rc h o f l e s s severe cond it ion s as w in te r snows deepen. Some may t r a v e l as f a r &s 113 km to r e a c h th e G a rd ip e r a r e a (C r a ig h e a d ' e t a l . 1972). Deep mountainous snow may p e r s i s t w e ll in to the sp ring , however, by May, most o f th e e l k have l e f t th e s tu d y a r e a , moving back tow ard t h e i r r e sp e c t iv e summering area. Elk m ig ra t io n in la rg e numbers beyond the Park boundary may occur one year i n two or two years i n th re e (Houston 1978). Thus, th e re may be on ly a few hundred e lk , o r up to f o u r to f i v e th o u san d , u t i l i z i n g th e s tu d y a r e a i n a g iv e n w in t e r . W in te r range n o r th o f th e Park 1$ e s s e n t i a l in more severe w in te rs to compensate f o r unava ilab le w in te r ra n g e i n s i d e th e Park. The v a lu e o f th e s tudy a r e a and th e r e s t o f th e w in t e r range n o r th o f th e Park to e l k i s th u s e v id e n t . However, th e a r e a ' s a b i l i t y to f u r n i s h much needed w in t e r h a b i t a t i s a l s o im po rtan t to o th e r la rg e animal spec ies . Four hund red o r more mule d e e r a re c o n sp ic u o u s r e s i d e n t s u t i l i z i n g the Gardiner w in te r range. Elk may be more numerous most w in te rs on the study a rea , but deer m ig ra te to the w in te r range each year, a lthough t h e i r d i s t r i b u t i o n i s dependent on w in te r s eve r i ty . Dominance o f th e a r e a by e lk h a s d e t r a c t e d from th e a t t e n t i o n t h a t might o the rw ise have focused on t h i s s ig n i f i c a n t deer population. 2 DeSpain, Don. R esearch B i o l o g i s t , N a t io n a l Park S e r v i c e , p e r s o n a l communication, October 1982. 31 32 Most o f th e d e e r a p p ea r to spend summers i n t h e n ea rby m oun ta in s o f the W ilderness, the Park or the study a re a i t s e l f . They usua lly bogi'n to a r r iv e on the study a rea around the f i r s t o f October and may remain through June. Other b ig game anim als o cca s io n a l ly frequen t th e Gardiner w in te r range a s p a r t - t i m e r e s i d e n t s . Sm all bands o f b ig h o rn sheep ( Ovis .canadensis) can be found w in te r in g along th e b lu f f s o f the Yellowstone River and Bear Creek around Deckard F la t s (F igure I). These sheep a re p a r t o f th e n o r t h e r n Park sheep h e rd w hich c u r r e n t l y numbers a round 100 a n im a ls bu t can number tw ic e t h a t many. An o c c a s io n a l moose (A loes a l o e s ) may wander a c r o s s t h e a r e a , a l th o u g h i t seldom s t a y s long. During deep snow w in te rs , a few bison (Bison bison) m ig ra t ing ^own th e Yellowstone River v a l le y may c ro ss the Park boundary onto £h§ Deckard F la t s a rea and remain f o r sho r t periods of time. A dditional la rg e animal sp ec ie s p re sen t on th e a rea can have an i n d i r e c t in f lu en ce on the range resource . G rizz ly bear (Ursus a rc to s ) and black bear (Ul americanus) a re p resen t i n the f a l l and sp r ing when th e l a r g e h e r b i v o r e s a r e a l s o on th e w in t e r r a n g e . Coyote ( Canus l a t r a n s ) , b o b c a t (Lynx r u f u s ) and m o un ta in l i o n ( F e l l s c o n c o lo r ) c om p le te th e d i v e r s e l i s t o f l a r g e a n im a l s p e c i e s p r e s e n t on t h i s w in te r range. Human In f lu ences Man's a c t i v i t i e s have h i s t o r i c a l l y i n f r i n g e d on t r a d i t i o n a l w in t e r range i n t h e G a rd in e r a r e a (Appendix B). Man's im p ac t on th e w in t e r ra n g e i s e x e m p l i f i e d by th e town o f G a rd in e r i t s e l f and th e Park i t serves . Gardiner,' a town of about 350 people, and the nearby 33 m in ing community o f J a r d i n e w i th a p o p u la t i o n o f abou t 30, l i e d i r e c t l y .in the path of an im als m ig ra t in g out of the Park an£ nearby mountains. Animals must not only m ig ra te around th e se two towns, but they a re a lso confronted w ith thousands of people a t t r a c t e d each year to t h i s scen ic a re a to view w ild an im als. Gardiner had been a n , i n t e g r a l ex ten s ion of Yellowstone Park f o r t h r e e d ecades when Theodore R o o se v e l t d e d i c a t e d t h e P a rk 's n o r th e n t r a n c e t h e r e i n 1903. As th e P a rk 's n o r th e n t r a n c e , i t h a s accommodated m i l l io n s o f people t r a v e l l i n g through the w orld 's o ld e s t n a t i o n a l p a rk . Th is c lo s e a s s o c i a t i o n w i th th e Park no t on ly in f lu en ce s G ard iner 's economy, but i t a lso he lp s d i c t a t e management of m igratory an im als on ad jacen t pub l ic lands. Management At L. H a ines (1963) d e s c r i b e s t h e f i r s t decade o f Y e l low s tqne Park as one be se t w ith o f f i c i a l in d ec is ion . N everthe less , during the P a rk 's in f a n c y t h e r e were g r e a t e x p e c t a t i o n s o f p r e s e r v i n g an im a l popu la tions rem in is c en t of the once l a r g e Great P la in s herds. I t was soon e v id e n t t h a t e l k was t h e most p rom inen t s p e c i e s i n th e Yellowstone ecosystem. Management was d i re c ted a t in c re a s in g e lk and o t h e r u n g u l a t e n u m b e rs w i t h l i t t l e a t t e n t i o n g i v e n t o t h e consequences. Around the tu rn of the century , a d m in is t r a to r s began to recognize t h a t s e n s i t i v e m oun ta in h a b i t a t cou ld n o t w i t h s t a n d th e ran g e d e te r io r a t in g im pacts o f l iv e s to c k graz ing , in a d d i t io n to g raz ing by la rg e numbers o f w i ld l i f e , A Park su p e r in tenden t 's r e p o r t from 1905 (Rush 1932) mentions th e com pletion of a fence along th e G ard iner-Park I34 l in e exclud ing free-rranging l iv e s to c k from ad jacen t Park w in te r range. T h e r e a f t e r , p e o p le w ere amazed to se e w i l d l i f e a p p e a r in g on w in t e r range which i n previous y ea rs had been denuded by l iv e s to ck . i W in te r ra n g e n o r th o f th e Park was p e r c e iv e d a s c r i t i q a l to w i l d l i f e and e f f o r t s began i n 1917 to s e c u re t h i s l a n d f o r p u b l i c management. In 1926, a l l pub lic land s i n the a rea were w i th e r aw rji from homesteading and mining and were proclaimed N ational Fores t. E f fo r t s were made to purchase or t ra d e fo r p r iv a te landho ld ings to conso lida te pub lic lands on th e c ru c ia l w in te r ing a rea , a p ra c t ic e which continue^ today. Removal of most g raz ing p e rm its on w in te r range lands further- assured fo rage a v a i l a b i l i t y . Today, l iv e s to c k g raz ing i s not allpwed ! on National F o re s t lands i n the study area. Management o f th e a r e a h a s o c c a s i o n a l l y r e l i e d on c o n cep ts borrowed from the l iv e s to c k in du s try . Contract h u n te rs were h ired by th e N ational Park Serv ice to ex te rm ina te p red a to rs " th rea ten ing" th e j ex is tence of o th e r w i l d l i f e both i n and ou ts ide the Park (Wonderland 1905). Consequently, th e re were very few, i f any, mountain l io n and w o lves i n th e a r e a by th e e a r l y 1920 's . S a l t i n g to i n f l u e n c e b e t t e r d i s t r i b u t i o n and w in te r hay feed ing were continued i n to the 1930's fo r th e i n te n d e d a d v an tag e o f a l l u n g u la te s . The on ly r e a l b e n e f i t o f these management e f f o r t s was th e r e a l i z a t i o n t h a t w ild ungu la tes do not always respond to management or m an ipu la tion as domestic s tock tfo. ‘i Management o f th e w in t e r ra n g e h a s m a in ly been d i r e c t e d a t r e s t o r i n g d e p l e t e d range by c o n t r o l l i n g e lk numbers. The N a t io n a l Park S e rv ic e , U. S. F o r e s t S e rv ic e , and Montana D epar tm en t o f F is h , W ild l i fe and Parks a re a l l involved w ith some aspec t of the an im als ' I 35 l i v e s . S tudy a r e a la n d management i s c o n t r o l l e d by th e U. S. F o r e s t S e rv ic e , w h i l e a n im a l s on th o s e l a n d s a r e th e r e s p o n s i b i l i t y o f th e Montana Department of Fish, W ild l i f e and Parks. Sport hun ting has always been the accepted method f o r c o n t ro l l in g num bers o f e lk m ig r a t i n g o u t s i d e t h e Park . For many y e a r s l a r g e groups of e lk were o ccas iona lly caught on the open sagebrush f l a t s of t h e w i n t e r r a n g e , by u n r e s t r i c t e d n u m b e r s o f h u n t e r s . These d i s a g r e e a b l e e p i s o d e s gave r i s e to th e n o to r i o u s G a rd in e r " f i r i n g l in e " s t o r i e s surrounding th e hunt. Since 1963, a l a t e season p rov id ing 2-4 day weekend e lk hunts has o f t e n been a u t h o r i z e d i n th e G a rd in e r a r e a f o r s p e c i a l p e rm i t h o ld e r s 3 . A l i m i t e d number o f h u n t e r s i s a l lo w e d on th e h u n t in g d i s t r i c t , w hich i n c l u d e s th e s tu d y a r e a , making th e h un t more a e s th e t i c and l e s s d is ru p t iv e fo r w in te r in g an im als. Hunter success f o r the l a s t e ig h t y ea rs (1975-1983) ranges from 11 to 87 percen t, and during t h i s p e riod 7199 hun te rs have averaged 67 p e rcen t success. In a d d i t i o n to m o n i to r in g ran g e t r e n d s , l a n d management on th e study a rea has inc luded logg ing on the periphery of the w in te r range a t th e head o f E ag le Creek and i n B ear Creek. A lso , more th a n 809 ha (2000 a c r e s ) o f s ag eb ru sh ran g e h a s been burned d u r in g t h e l a s t f o u r y e a r s by th e U. S. F o r e s t S e rv ic e w i th th e o b j e c t i v e o f im p ro v in g range cond ition s f o r w i l d l i f e by in c re a s in g w in te r range forage (Tyeris 1981). The v a l i d i t y o f t h i s h y p o th e s i s w i l l be c o n s id e r e d w i th th e F o ss , Arnold . W i l d l i f e B i o l o g i s t , Montana D epar tm en t o f F is h , W ild l i fe and Parks, personal communication, A p ril 1983. 36 r e s u l t s o f t h i s s tu d y . By i n c r e a s i n g a v a i l a b l e f o r a g e th ro u g h burning, i t i s hoped more an im als w i l l remain on pu b l ic lands longer thereby decreas ing th e impact on p r iv a te ly owned -segments. 37 METHODS AND MATERIALS Data C o llec t ion T h is s tu d y was i n i t i a t e d i n June , 1980, a s a su rv ey of e lk and mule deer w in te r range, but s h o r t ly evolved in to an-a n a ly s is of animal use . F i e l d work was com p le ted i n June , 1982, w i th a p p ro x im a te ly e le v e n m onths s p e n t on th e s tu d y a r e a d u r in g t h i s two y e a r p e r io d . Almost nine months of f i e l d work were conducted during the summer a,nd f a l l p e r iods w ith the remaining; two months spent du ring the w in te r and sp r ing pe riod s . D e f i n i t e e lk ,and mule d e e r use p a t t e r n s w ere d i s c e r n i b l e upon i n i t i a l in sp e c t io n of the study area. These f in d in g s gave r i s e to th e hypo thesis t h a t an an im als ' p re fe rence of one a re a over another might be measured i n d i r e c t l y by I n v e s t i g a t i o n o f a s s o c i a t e d e n v i ro n m e n ta l p a r a m e te r s . R e a l i z in g a m u l t i t u d e o f e n v i ro n m e n ta l f a c t o r s can i n f l u e n c e an im a l u se , th e s tu d y m ethods were d e s ig n e d to m easu re animal a s s o c ia t io n w ith v eg e ta t io n and Iandform param eters . \ Th®^s t Udy a r e a wa6 d e l i n e a t e d by h a b i t a t ty p e a f t e r e x t e n s iv e v survey of a e r i a l photographs and ground reconnaissance. H abita t types recognized a re continuous over a t l e a s t 160 ha although ecotones and m i c r o s i t e i n c l u s i o n s e x i s t w i t h i n t h e d i f f e r e n t h a b i t a t ty p e s , Shrublaqd h a b i t a t types described by Mueggler and S tew art (1980) were modified to inc lude the th re e subspec ies of big sagebrush p resen t, in o rd e r to c o n s id e r d i f f e r e n c e s i n a n im a l use w i t h i n and among th e s ag eb ru sh taxon . M ueggler and S t e w a r t ' s (1980) r e s e a r c h c l a s s i f i e s 38 g r a s s l a n d s and s h ru b la n d s o f th e w e s t e r n t h i r d o f Montana based on p o te n t ia l n a tu ra l v eg e ta t io n . Twenty-e ight permanent t r a n s e c t s to sample v eg e ta t io n and animal use were e s ta b l i s h e d du ring the summer o f 1980. A s t r a t i f i e d random sampling procedure was employed to lo c a t e t r a n s e c t s i t e s . ' Transects, were t r a n s v e r s e l y p la c e d e v e ry 400 m a long n o r t h - s o u t h l i n e s throughout the area . These no r th -sou th l i n e s were approxim ately 800 to 1600 m a p a r t , moving from e a s t to west. , The 30.5 m l i n e i n t e r c e p t employed (F igure 3) was a m od if ica t ion of C an f ie ld 's (1941) method. Shrub d en s i ty p lo t s were 89 dm^(9.6 f t 2 ) c i r c u l a r hoops. P e l le t -g ro u p p lo t s were 3.6 m in r a d iu s (1/100 a c r e ) . A fte r b a se l in e v eg e ta t io n in fo rm a t ion was c o l le c te d i n 1980, the fo c u s o f f i e l d work a t t e m p te d t o d i s t i n g u i s h a s so c ia ted animal use. Animal u se was ob se rv ed d u r in g th e w i n t e r s o f 1980-81 and 1981-82. S e l e c t e d p e rm anen t t r a n s e c t s w ere re -exam ined during the summer of 1981 to de term ine y e a r - to -y e a r v a r i a t i o n in g ra s s and fo rb production. T h i r ty - s ix b e l t t r a n s e c t s modified from a d e s c r ip t io n by Groh and Dore (1945) were u t i l i z e d during the summer' o f 1981 to provide a d d i t io n a l browse and p e l le t -g ro u p in fo rm ation . V egeta tion Measurements To d e te rm in e v e g e t a t i o n p o t e n t i a l l y a v a i l a b l e t o w in t e r i n g an im als , v eg e ta t io n in fo rm a t ion was ga thered a f t e r the f i r s t o f Ju ly and c o n t in u e d u n t i l snow became l i m i t i n g . G ra s se s had s e t seed and m ost f o rb s had f lo w e re d by th e f i r s t o f J u ly . C o n sequen t ly , many e a r ly f low e r ing fo rb s were senescen t and sampling d id not provide a r e l i a b l e e s t i m a t e o f , t h e i r e a r l i e r s t a t u s . Sagebrush" p l a n t s w,ere. 39 Figure 3. Transect fo r v eg e ta t io n and p e l le t -g ro u p a n a ly s is . P e l le t -g roup p lo t (40 .7 m ) 2 5 ° N East Shrub d en s i tyNorth p lo t (89 dm ) 40 e s s e n t i a l l y in w in te r fo l ia g e having l o s t most ephemeral le aves except those on f low er s t a l k s (Qepuit and Caldwell 1973). P lan t cover was recorded by spec ie s l i n e in te r c e p t to the n ea res t 2 mm. G rass and f o rb cove r was o b ta in e d from b a s a l l i n e i n t e r c e p t , Shrub canopy cover in te r c e p t io n was measured and considered continuous i f canopy o p en in g s w ere l e s s th a n o r equa l to 15 cm. A m easure o f l e a f in te r c e p t io n was noted f o r decumbent, mat form ing spec ies , such as dense c lubm oss ( S e l a g i n e l l a d e n s a ). A plumb bob was used t o a c c u r a t e l y a s s e s s i n t e r c e p t s on s t e e p s lo p e s o r when th e l i n e was e leva ted due to shrubs. L i t t e r , ro ck , g r a v e l and b a re ground i n t e r c e p t s were a l s o r e c o rd e d . Dead v e g e t a t i v e or a n im a l m a t e r i a l fo rm in g a p r o t e c t i v e cover on the s o i l su rface was considered l i t t e r . Rock w^s dqnotjed as any mass g re a te r than 5 cm in w id th w hile g ravel was defined as stony m a te r ia l from 2 mm to 5 cm in w idth. Annual p r o d u c t i o n o f g r a s s and f o rb s p e c i e s was d e te rm in e d by c l ip p ing 10 re c ta n g u la r p lo t s o f 18.6 dm2 (2 f t 2) a t 3.05 m i n t e r v a l s a lo n g th e l i n e used f o r c o l l e c t i o n o f p l a n t i n t e r c e p t i o n d a ta . r C lipped p l a n t m a t e r i a l was o v e n -d r i e d a t 59° C and w eighed tP th e n e a re s t .01 gm. ' > Shrub d en s i ty was determined by counting only thqse p lan ts roo ted w i th in the shrub d en s ity p lo t (F igure 3). ■ Annual shrub production was i n t i a l l y c a lcu la ted by c l ip p ing c u r re n t annual growth and weighing the green c l ipp ing s . Leaders of deciduous shrubs encountered were c lipped and s t r ip p ed of le aves to e s t im a te w in te r forage production. 41 A p ro f ic ien cy in e s t im a t in g green weight of shrubs was developed a f t e r c l ip p in g seve ra l p la n ts from each shrub taxon. Ocular e s t im a te s o f p r o d u c t io n w ere th e n made by g ro u p in g l e a v e s o f e v e rg r e e n sh rub s and a l l c u r ren t year le a d e r s in to 5 gm increm ents. P e r iod ic c l ip p ing of e n t i r e shrubs showed the e s t im a te s to be w i th in 10 pe rcen t of the a c tu a l weight. Clipped shrub p roduc tion was oven d r ie d fo r conversion of green weight e s t im a te s to dry weight. Three-dimensional crown measurements as used by R ittenhouse and Sneva ( 1977) f o r Wyoming b ig s a g e b ru sh w ere r e c o rd e d f o r a l l sh rub s e n co u n te re d w i t h i n th e sh rub d e n s i t y p l o t s . These s h ru b s were a l s o assigned to one of th re e browse form c la s s e s determined by past animal use . The form c l a s s e s were none t o l i g h t , m o d e ra te , and heavy , depending on second year or o lde r growth e x h ib i t in g about 0-20 percent p a s t u se , 21-60 p e r c e n t p a s t u se , and g r e a t e r th an 60 p e r c e n t p a s t use, re sp ec t iv e ly . The 1981 b e l t t r a n s e c t s em ployed a 30.5 m l i n e . Shrub p l a n t s roo ted w i th in 1.5 m on e i th e r s ide of the l i n e were recorded to ob ta in d en s i ty . Crown measurements were a lso recorded fo r th ese p lan ts . ' Permanent t r a n s e c t s from 1980, r e p r e s e n t i n g a c r o s s s e c t i o n o f p ro d u c t io n v a lu e s i n each h a b i t a t ty p e , were r e c l i p p e d i n 1981 to e s t im a te annual v a r i a t i o n in g r a s s and f o rb p ro d u c t io n . V e g e ta t io n cover and browse d e n s i t i e s were assumed to be s im i l a r to those of the previous year and were not re-measured. T ransec ts were not e s ta b l is h ed i n th e f o r e s t h a b i t a t type u n t i l 1981. V egeta tion measurements t a k e n on a l l p r e v io u s t r a n s e c t s were r e c o rd e d f o r th e f o r e s t h a b i t a t type . A d d i t io n a l ly . , t r e e canopy 42 co ve rag e was m easu red u s in g a s p h e r i c a l d e n s io m e te r d e s c r ib e d by Lemmon (I 956). Animal Use Measurements Animal use i n t h i s study was considered a fu n c t io n of time spent by e lk and mule d e e r on v a r i o u s h a b i t a t ty p e s i n th e co u rse of t h e i r d iu rn a l a c t i v i t i e s . Consequently, knowing what those a c t i v i t i e s were became a necessary component of the study. Due to the na tu re of t h i s in v e s t ig a t io n , de te rm in ing animal w in te r use p a t te rn s involved summer surveys when few an im als were p re sen t on the w in te r range and p e r io d ic w in te r ob se rva tion s when animals were g ene ra l ly abundant. D uring th e summer and f a l l s u rv e y s , p e l l e t - g r o u p co u n ts w ere r e l i e d on f o r q u a n t i t a t i v e a n a l y s i s o f use . Four 40.25 m2 p e l l e t - g roup p l o t s i n c o r p o r a t e d i n th e pe rm anen t t r a n s e c t s (F ig u re 3) w ere used a t sampling s i t e s during the 1980 sum m er-fa ll period. In 1981, p e l le t -g ro u p counts were conducted w i th in the 92.9 m2 b e l t t r a n s e c t s adapted f o r browse den s ity counts. During both years , a t ' l e a s t one- h a l f of a p e l le t -g ro u p had to be w ith in a p lo t to be counted. E lk and d e e r p e l l e t - g r o u p s w e re c o u n te d and a s s e s s e d an a p p ro x im a te age on th e b a s i s o f f i r m n e s s , c o lo r and w e a th e r in g . P e l l e t - g r o u p s w ere aged a s e i t h e r new o r o ld . New would have been deposited w i th in the l a s t 3-4 months or c l a s s i f i e d p o s t-w in te r , and old was deposited during the previous w in te r or p re -w in te r . P e l l e t - groups were permanently lo ca ted throughout the study a re a i n I960 to } s u p p o r t t h e s e age a s s e s s m e n t s and a l s o t o e s t a b l i s h p e l l e t d e te r io r a t io n r a t e s on the a rea . 43 During the summer f i e l d season, general ob se rva tion of d i s t i n c t s ign s a lso in d ic a te d animal use p a t te rn s . When compared to the e n t i r e a r e a , c e r t a i n s e c t i o n s o f i n t e n s e browse u se , obv iou s t r a i l s , and a few sm a l l a r e a s o f range d e t e r i o r a t i o n a l l p o in te d t o a r e a s of h igh use . Th is e v id en c e o f heavy p a s t use was q u i t e d i s c e r n i b l e th e fo llow ing summer. S ev en te en s ag eb ru sh p l a n t s had been s e l e c t e d n e a r pe rm anen t t r a n s e c t s by th e second y e a r o f th e s tu d y a s a check, on sh rub u t i l i z a t i o n e s t i m a t e s . L eade rs o f a few p l a n t s w ere tagged and m easu red d u r in g th e f a l l to gauge a c t u a l u t i l i z a t i o n and t o a l s o provide a b a s is fo r a ccu ra te e s t im a te s . These p la n ts a lso monitored th e v a l i d i t y o f th e p r e v io u s ly d i s c u s s e d browse fo rm c l a s s e s f o r sageb ru sh p lan ts . S ix b ra n c h e s w ere tagged on each s e l e c t e d s ag eb ru sh p l a n t f o l l o w in g A ldous’s (1945) method. L ea f m a t e r i a l , seedhead , c u r r e n t y ea r’s le ad e r and secondary growth were each measured above the tag to the n e a re s t m i l l im e te r . These same branches were then re-measured the fo llow ing sp r in g to ob ta in a d i r e c t enumeration of u t i l i z a t i o n . F ie ld ob se rva tion s were conducted both w in te rs to observe animal b e h av io r . A nim als w ere t r a c k e d th ro u g h o u t th e a r e a w i th s p e c i a l emphasis on r e l a t i v e amounts of time spen t and type of a c t i v i t i e s i n th e v a r io u s h a b i t a t ty p e s . A c tua l o b s e r v a t i o n o f a n im a ls was aJrso used to s u b s ta n t i a t e these pe rcep tion s whenever po ss ib le . Grass and fo rb u t i l i z a t i o n e s t im a te s during th e w in te r employed a form o f o c u l a r e s t i m a t e by p l o t d e s c r ib e d by Pechanec and P ic k fo rd 44 (1937). An 89 dm2 c i r c u l a r m ic rop lo t was used to e s t im a te the a i r dry w e ig h t o f g r a s s and f o rb u t i l i z a t i o n a t tw e n ty - tw o f e e d in g s i t e s encountered. Three 1.85 m2 u t i l i z a t i o n exc lo su res were placed on tfye a r e a i n th e f a l l o f 1981. One 18.6 dm2 p l o t c l i p p e d w i t h i n and a d j a c e n t t o t h e s e c a g e s s e r v e d a s c h e c k s f o r 19^1^82 v t f p t e r u t i l i z a t i o n e s t im a te s . Landform D esc r ip t ion At each t r a n s e c t s i t e , both permanent and b e l t , c e r t a in landform c h a r a c t e r i s t i c s were q u an t i f ie d . T r a n s e c t e l e v a t i o n was a c c u r a t e l y d e r iv e d from U.S.G.S. to p o g ra p h ic maps. Due to m i c r o s i t e v a r i a t i o n , th e d im e n s io n s o f o t h e r la n d fo rm p a r a m e te r s were d e te rm in e d by th e m ost p r e v a l e n t c o n d i t i o n a t each t r a n s e c t s i t e . As an exam ple , tfre most p rev a len t s lope a t a s i t e was determined using a Kleinpmeter. A spect was d e te rm in e d from g r i d N orth u s in g a compass and f o l l o w in g g r i d d i v i s i o n s , as d e t a i l e d by Bohne (1974). S o i l r -g roups w ere c l a s s i f i e d a f t e r a d e s c r i p t i o n by Zacek e t a l . (1976). These s o i l - g r o u p s combine s o i l s u b - s u r f a c e t e x t u r e w i th to p o g ra p h ic f e a tu r e s . Two d e s c r i p t i v e c l a s s i f i c a t i o n s w e re em ployed to d e f in e d i f f e r e n c e s a m o n g la n d fo rm s. S lope c o n f i g u r a t i o n a t each s i t e was c h a r a c t e r i z e d a s : I) f l a t , 2) concave , 3) convex, o r 4) chang ing a s p e c t ( r o l l i n g ) . T opograph ic p o s i t i o n of a s i t e i n c lu d e d f i v e c a t e g o r i e s : I) bench , 2) m id s lo p e , 3) uppe r s lo p e , 4) r i d g e , and 5) swale. 45 Data Compilation A ll d a ta f o r c o n t in u o u s v a r i a b l e s w ere s c a l e d t o com parab le dimensions fo r each t ra n s e c t . Measurements on an a re a ba s is such as browse d e n s i t y , p e l l e t - g r o u p d e n s i t y and v eg e ta t io n production were converted to u n i t s per h e c ta re to equate va lues from the va rious p lo t s iz e s . Cover d a ta were c a lcu la ted a s a percen t of th e t o t a l . Browse g eom etry was deduced a s an e l l i p s o i d and c a l c u l a t e d i n in c r e m e n t s o f d e c im e te r s . Canopy a r e a was d e te rm in e d w i th th e Li Li f o rm u la , A = ir , where L1. and L9 a r e th e l o n g e s t canopy width and a pe rpend icu la r measurement, re sp e c t iv e ly , as described by R i t te n h o u s e and Sneva ( I 977). Shrub volume was computed u s in g th e H f o r m u l a , V = 4 /6 ( -2 - ) A, w h e re H i s t h e a v e r a g e h e i g h t o f photosy n th e t ic m a te r ia l . G enera l t r e n d s i n t h e d a t a w ere d is c o v e r e d from a v e r ag in g measurements f o r each t r a n s e c t and comparing the range of va lues among h a b i t a t types. For s t a t i s t i c a l comparisons, d a ta from each t r a n s e c t were considered a n . in d iv id u a l s e t of d a ta or case, and were compared w ith a l l o the r t r a n s e c t s fo r s i g n i f i c a n t d if f e ren ce s . Vegeta tion da ta were d iv id e d i n t o g r a s s , f o rb o r sh rub c a t e g o r i e s f o r s t a t i s t i c a l a n a ly s is . S t a t i s t i c a l Analysis S t a t i s t i c a l comparison of d a ta from t h i s study i s more a b s t r a c t th a n f i r s t im ag in ed due to m i c r o s i t e v a r i a t i o n and v a r y in g h a b i t a t s i z e g e n e r a t i n g unequa l sam ple s i z e s . The i n te n d e d pu rpo se of many s t a t i s t i c a l p ro c e d u re s does n o t a lw ay s le n d i t s e l f to d a t a from a n a tu ra l environment where sample s iz e of a s p e c i f i c v a r ia b le can not Ibe predeterm ined or c o n tro l le d by a form of random sampling. The need fo r cau tion in choosing ap p rop r ia te s t a t i s t i c a l procedures and a lso in i n t e r p r e t i n g r e s u l t s o f t h e s e t e s t s i s t h e r e f o r e e s s e n t i a l . Cautionary i n t e r p r e t a t i o n s of c e r t a i n s t a t i s t i c s from t h i s s tu dy i s d iscussed where ap p rop r ia te w ith the r e s u l t s . S c a t te r diagrams were p lo t te d comparing e lk and deer use witfi the e n v i ro n m e n ta l p a r a m e te r s sam pled . A n a ly s is of va riance and simple c o r r e la t io n s among the continuous v a r i a b le s were computed to t e s t fo r s i g n i f i c a n t d i f f e ren ce s . All v a r ia b le s were sub jec ted to a m u l t ip le r e g re s s io n procedure (s tep -w ise forward s e le c t io n ) suggested by Nia e t a l . ( I 975) to s e l e c t t h e e n v i ro n m e n ta l p a r a m e te r s sam p led t h a t w ere most i n f l u e n t i a l on e lk and deer use. 46 47 RESULTS AND DISCUSSION Preface T h is c h a p te r i s d iv id e d i n t o t h r e e m a jo r p a r t s . The f i r s t s e c t i o n d e t a i l s th e v e g e t a t i o n and la n d fo rm a v a i l a b l e , w h i le th e second d e sc r ib e s how e lk and mule deer use th a t environment. A th i r d s e c t io n s t a t i s t i c a l l y combines the environmental pa ram ete rs measured with a sso c ia ted animal use as a means of i n t e r p r e t in g tfye in f luence of these parameters on animal behavior. The G a rd in e r w in t e r range i s a un ique a r e a to s tu d y w i l d l i f e - e n v iro n m en t i n t e r a c t i o n due to th e number and v a r i e t y o f a n im a ls involved. Determining animal "preference" fo r va r iou s silpes a c tu a l ly becomes an a t tem p t to seg rega te in te n s e ly u t i l i z e d greq^ from pre^p l e s s in te n s e ly used. E n v i ro n m en ta l f a c t o r s e v a lu a t e d i n t h i s s tu d y a r e m a in ly v eg e ta t io n and landform param eters . V egeta tion success ion in the a rea d eve loped w i th th e e x i s t i n g c l i m a t e , p h y s io g rap h y , and c d ap h ic c h a r a c t e r i s t i c s un ique to th e G a rd in e r a r e a . However, p r e s e n t day v eg e ta t io n a lso developed i n con junc tion w ith h i s t o r i c a l w i l d l i f e use, in a d d i t io n to concen tra ted human in f lu en ce w i th in the l a s t century. Judgm ent o f th e n a t u r a l v e g e t a t i o n p o t e n t i a l o f th e a r e a must consequently be tempered w i th awareness of pas t use and the in tended p r e s e n t use. Vegeta tion - V isual Observations Edaphic and p h y s io g r a p h ic f e a t u r e s a p p ea r to be th e p r im a ry in f lu en ce s de te rm in ing p lan t spec ie s d i s t r i b u t i o n and dominance w i th in 48 the r e l a t i v e l y a r id Gardiner v a lley . Both c a te g o r ie s g r e a t ly im pac t ' th e e f f e c t i v e m o i s tu r e a v a i l a b l e to p l a n t s , e s p e c i a l l y a t lo w e r e l e v a t i o n s w here an n u a l p r e c i p i t a t i o n i s 31 to 38 cm. In c r e a s e d p r e c ip i t a t i o n w ith r i s i n g e l e v a t i o n a f f e c t s v e g e t a t i o n c o m p o s i t io n a lso . I n i t i a l i n s p e c t i o n s o f th e G a rd in e r w in t e r r a n g e r e v e a l e d th e ' un ique f e a t u r e o f t h r e e s u b s p e c i e s o f b ig s a g e b ru s h (A r te m is ia t r i d e n t a t a ) to g e th e r w ith b lack sagebrush (A rtem isia nova) growing in c lo s e p r o x im i ty on th e s tudy a r e a . S u b sp e c ie s o f b ig sag eb ru sh i n c l u d e m o u n t a in (A .t . s u b sp . v a s e y a n a ) f Wyoming (A.t. subsp . w v o m in g en s is ). and b a s in (A.t. sub sp . t r i d e n t a t a ). A ll s ag eb ru sh taxon a re found growing i n an e le v a t io n a l b e l t from the v a l le y f lo o r a t 1615 m to approx im ate ly 1950 m. These s ag eb ru sh taxon w ere i n i t i a l l y i d e n t i f i e d t a x o n o m ic a l ly fo l low ing the c l a s s i f i c a t i o n of B ee tle (I960) in a s s o c ia t i o n w ith use o f an u l t r a v i o l e t l i g h t (Winward and T i s d a l e I 969). F u r th e r taxon v e r i f i c a t i o n was l a t e r made w i th t h i n - l a y e r ch rom otdg raphy from specimens i n the a re a (Kelsey e t a l . 1976). M ountain b ig s ag eb ru sh i s th e m ost common dom inan t and w id e ly d i s p e r s e d o v e r s t o r y sh rub i n t h e a r e a . I t i s most p r o d u c t iv e a t e l e v a t i o n s from th e Y e l lo w s to n e R iv e r go rge a t 1600 m to 1950 m on g l a c i a l t i l l . I t s h igh e s t d e n s i t i e s i n t h i s e le v a t io n a l b e l t a re on s lopes of l e s s than 20 percen t or in sw ales where w ater s t r e s s i s l e s s s e v e re . M ountain b ig s ag eb ru sh i s t h e on ly s ag eb ru sh taxon g row ing a b o v e 'I 950 m where i t i s found i n t e r s p e r s e d w i th f o r e s t h a b i t a t s to 2700 m. 49 Wyoming b ig sagebrush and b lack sagebrush a re found growing on th e m ost a r i d s i t e s on th e w in t e r ra n g e . Winward (1980) p o in t s ou t t h a t Wyoming b ig s a g e b ru sh i s t h e most x e r i c t a x o n o f th e b ig sagebrush complex. Both taxa grow i n the 30.5 to 38.1 cm (12-15 inch) annual p r e c ip i t a t i o n zone. Wyoming b ig sagebrush i s g en e ra l ly found growing on gentle; s lopes of south or west f a c in g a spec t th a t r e c e iv e maximum s o la r r a d ia t io n . I t i s dom inan t on sandy loam s w hich a r e t y p i c a l o f g l a c i a t e d c r y s t a l l i n e t i l l from p re -C am b r ian ro c k i n th e a r e a . These a r e e v i d e n t l y a r e a s o f a l l u v i a l d e p o s i t s due to th e l a r g e s u b su r f a c e la y e r s o f w e ll so r ted sand. These s o i l s a re r e l a t i v e l y f r e e of coarse fragments , but th e re i s a d e f i n i t e compaction of the sandy C horizons. Calcium carbonate l a y e r in g de tec ted i n these a re a s i s g en e ra l ly j30 to 45 cm below th e s o i l s u r f a c e which p ro b ab ly i n d i c a t e s vg ry shsiilQw m oistu re p en e tra t ion . B lack s a g e b ru sh a p p e a r s t o have an a f f i n i t y f o r s t r o n g ly ca lca reous s o i l s (Winward 1980). Black sagebrush i n th e Gardener a re a th r iv e s on sandy loam s o i l s high in calcium. These, s o i l s e i th e r coyer or a re downslope from t r a v e r t in e d epo s its . T rave r t in e i s a calcium carbonate d epo s i t r e s u l t i n g from hot sp ring w ater emanations i n tt>e a r e a . An A r id ic C a l c i b o r o l l d ev e loped on g l a c i a l a l l u v i a l d e p o s i t s over t r a v e r t i n e h a s h igh c a lc iu m c a rb o n a te c o n c e n t r a t i o n s from th e su rface down through the horizons. Basin big sagebrush’s to le ran ce fo r high s o i l m o is tu re (Morris e t a l . 1976) i s d e m o n s t r a t e d i n th e G a rd in e r a re a . A reas dom ina ted by b a s in b ig s ag eb ru sh r e c e i v e c o n s i d e r a b l e am ounts o f s p r i n g r u n o f f . 50 Evidence of runo f f i s th e weak d i s s e c t io n of s teep (50 to 60 percen t) s lopes w ith moderate channel entrenchment i n lo c a l iz e d areas. Basin b ig s a g e b ru sh i s a l s o found i n s m a l l s t a n d s downs io p e o f b a s a l t ou tc rops or around ou tc rops and e r r a t i c s on more l e v e l ground. Idaho f e s c u e (F e s tu c a i d a h o e n s i s ) and b luebunch w h e a tg r a s s (Igrpjiyrpn sp ioatum ) a re the two dominant g ra sse s on the study area. Dominance o f e i t h e r i n t h e u n d e r s to r y v ege ta t io n appears r e l a t e d to m o i s tu r e a v a i l a b i l i t y . B luebunch w h e a tg r a s s i s p ro m in en t i n more x e r ic s i t u a t i o n s w h ile Idaho fescue i s th e predominant g ra s s i n more m e so p h y t ic c i r c u m s t a n c e s w i th a p p ro x im a te ly 38 cm o r more annua l p r e c i p i t a t i o n . E co tones w here bo th s p e c i e s a r e codom inan t occur , throughout the area. B luebunch w h e a tg r a s s i s t h e p r i n c i p a l g ram in o id i n t h e 30.5 to 35.6 cm p r e c i p i t a t i o n zone , w hich i s found from 1615 to 1830 m e l e v a t i o n . Above t h i s zone , b luebunch w h e a tg r a s s i s c o n sp icuou s on d r i e r south and west fa c in g a sp ec ts , s te ep s lopes , and sandy loam s o i l s i t e s . Idaho fescue i s th e predominant g ra s s on no rth and e a s t fa c ing s l o p e s and s i l t y loam s o i l s . W righ t and W righ t ' (1948) no ted i n th e B ridger Mountains t h a t blue bunch wheatgrass communities occupied south f a c i n g s lo p e s w h i le Id aho f e s c u e co m m un it ie s o c cu p ie d n o r th f a c in g slopes,. Idaho fescue i s th e dominant g ra s s i n sagebrush-g rass land and open f o r e s t a re a s above approx im ate ly 2300 m e leva tion . V egeta tion - H ab ita t Types Six major h a b i t a t types were v e g e ta t iv e ly analyzed on the s tu d y i a r e a (T ab le s I and 2). F ive o f th e s i x h a b i t a t ty p e s s t u d i e d w ere shrub h a b i t a t types as a consequence of sageb rush -g rass land prominence 51 and a p p a r e n t im p o r ta n c e to a n im a l s on th e s tu d y a r e a . M ueggler an# S tew art’s (1980) work was fu r th e r d i f f e r e n t i a t e d to in c lude subspecies of b ig sagebrush, in a d d i t io n to b lack sagebrush, because these taxa occupy s u b s ta n t i a l acreages and appear to be s ta b le popula tions . One f o r e s t h a b i t a t type i n v e s t i g a t e d i n 1981 f o l l o w s P f i s t e r e t a l . (1977). T ab le I i l l u s t r a t e s th e r e l a t i v e abundance o f th e m ajo r p l a n t s p e c i e s and fo r a g e c l a s s e s i n each h a b i t a t type . S ageb ru sh i s a prominant component of t o t a l cover i n a l l of the sage b rush -g rass land Table I. Percentage of t o t a l mean cover1 f o r th ree fo rage c la s s e s an# s ix dominant taxa evaluated in 1980. r Habitat2 type Dominant taxon^ cover Foraee class InnvAr» A.t.va A.t.wy A .t . t r Arno Feid Agsp Grass Forb Shrutp Total A.t . va/Feid 6.7 0.2 0.1 - 6.8 1.5 11.2 2.6 7.2 21.0 Arno/Agsp 0.8 0.7 - 17.0 0.3 1.0 3.8 1.8 18.8 24.4 A. t . va/Agsp 13.1 - - 0.2 1.1 1.6 5.0 1.2 14.4 20,6 A.t.wy/Agsp 4.6 14.6 - - 0.4 2.4 6.i: 2.3 19.5 27.9 A.t . tr/Agsp 2.8 - 20,1 - - 1.8 2.0 0.1 22.8 24.9 Psme/Feid3 1.5. - - - 3.6 0.8 7.0 6.1 1.8 14.9 I A,.t.va/Feid an# A.t.va/Agsp include data from burned areas: cover i s IpasaJ7 for grass and forb, canopy for shrub. Common names of s c ien t i f ic name abbreviations are: A.Lva - mountain big sagebrush; Feid - Idaho fescue; Arno - b lack sagebrush; Agsp - Blue bunch w heatgrass; A.t.wy - Wyoming b ig sagebrush; A.L t r - basin big sagebrush; Psme - Douglas f i r . %)ata from 1981. 52 h a b i t a t ty p e s . Low fo r b cove r v a lu e s a r e a r e f l e c t i o n o f f o rb d e s s i c a t i o n and d i s i n t e g r a t i o n by th e t im e o f s am p l in g i n th e r e l a t i v e l y a r id shrub h a b i t a t types. Forb ground cover i s r e l a t i v e l y i n s i g n i f i c a n t by the d a te s m ig ra t ing animals reach the study a rea . Mean shrub canopy cover fo r mountain big sagebrush h a b i t a t types i s somewhat Aess in Table I compared to Mueggler and S tew a rt 's (I960) s tu d y o f p r i s t i n e Montana sh rub h a b i t a t ty p e s . M ountain b ig sage b r u s h / I d ah o f e s c u e sh rub canopy co v e r i s 66 p e r c e n t l e s s on th e study area , while mountain big sage b rush / b l ue bun ch w heatgrass ha^ a 20 - pe rcep t r e d u c t io n from shrub cover repo r ted by Mueggler and S tew art (1980). G rass and f o r b cove r m easu rem en ts i n T ab le I a r e g r e a t l y reduced in comparison to t h e i r work, because basa l cover was measured i n t h i s study as opposed to canopy cover in th e i r s . The l a r g e s t h a b i t a t t y p e d e l i n e a t e d i s m o u n ta in b i g s a g e b ru s h / Id a h o f e s c u e . The m a j o r i t y o f t h i s h a b i t a t type l i e s between 1830 and 2290 m e lev a t io n on r o l l i n g topography p r im ar i ly i n the Eagle Creek and Deckard F l a t s a re a s (Figure 2). This h a b i t a t tyPS encompasses approx im ate ly 1980 ha of the study area. S o i l s may or may not have coarse fragments, but they a re g en e ra l ly s i l t loams. M ountain b ig s a g e b ru s h / Id a h o f e s q u e i s th e o n ly sh rub h a b i t a t ty p e e n co u n te re d w here sag eb ru sh c o v e r i s l e s s th a n g r a s s cover . O ther s h ru b s o c c a s i o n a l l y e n c o u n t e r e d a r e r u b b e r r a b b i t b r u s h (C hryso tham nus n a u s e o s u s ), g re e n r a b b i t b r u s h (C. v i s c i d i f l o r u s l and g ray h o r s e b ru s h ( T e trad v m ia c an e s c e n s ) . P rom inen t g ra m in o id s a r e b luebunch w h e a tg r a s s , p r a i r i e j u n e g r a s s (K o e le r i a o v r a m id a t a ), and Sandberg b lu e g r a s s ( Poa s a n d b e r g i i ). Fo rb s a r e g e n e r a l l y s c a r c e a t 53 th e lo w e r , more a r i d e l e v a t i o n s . In h ig h e r e l e v a t i o n s , a r r o w le a f b a l s a m ro o t (B a ls a m o rh iz a s a a i t t a t a ) and s i l k y l u p i n e ( L u o in u s se r io eu s ) a re common. B lack s a g e b ru s h /b lu e b u n ch w h e a tg r a s s i s th e second l a r g e s t h a b i t a t type i n th e a r e a . I t i s l o c a t e d m a in ly i n th e TravertjLnp F l a t s a r e a be tw een P h e lp s Creek and L i t t l e T r a i l C reek and w es t to U. S. Highway 89. This h a b i t a t type covers an a rea approx im ate ly 1130 ha i n s i z e . Rocky M ounta in j u n i p e r ( J u n io e r u s sco o u lo ru m l i s s p o r a d i c a l l y s c a t t e r e d th ro u g h o u t th e a r e a . O cca s io n a l p a tc h e s o f l im b e r p in e (P inu s f l e x i l i s ). w i th an a v e rag e o f 16 p e r c e n t canopy coverage, p rov ides the only t r e e cover on the h a b i t a t type. I s l a n d s o f a l l t h r e e s u b s p e c ie s o f b ig s a g e b ru sh a re found g r o w in g i n a l l u v i a l o u tw a sh c h a n n e l s Qf T r a v e r t i n e F l a t s . Occasional shrubs a re rubber ra b b i tb ru sh and green r a b b i tbrpsh. Gppss cover i s s p o t ty w ith p r a i r i e Junegrass prominent i n lo c a l iz e d sandy a reas . Needleandthread (S tio a comata) and Ind ian r i c e g r a s s (Orvzoosis. hvmenoides) a re o th e r c o n tr ib u t in g graminoids: Although no t abundant, s t e m le s s go ldenw eed (H anlopappus a c a u l i s ) and Hood ph lox (Ph lox hjoodjLi) a r e th e most p ro m in en t f o rb s i n t h i s r e l a t i v e l y d ry h a b i t a t type. M ounta in b ig s a g e b ru s h /b lu e b u n c h w h e a tg r a s s i s a h a b i t a t type p r im a r i l y l o c a t e d on s t e e p (>20 p e r c e n t ) s lo p e s o f s o u th and w e s t f a c i n g a s p e c t s . T h is h a b i t a t type i s s i t u a t e d p r i m a r i l y in th e e l e v a t i o n a l b e l t from 1950 to 2130 m e l e v a t i o n w here th e Absaroka M oun ta in s b eg in to r i s e from th e b a s a l t f l a t s below, . i t s t r e t c h e s 54 almost the e n t i r e width of the study a rea from the Park boundary l in e to L i t t l e T ra i l Creek. I t i s approx im ate ly 650 ha in s ize . M ounta in b ig s a g e b ru sh i s t h e p redom inan t sh rub w i th ru b b e r ra b b i tb ru sh and green rabb i tb ru sh the only o the r shrubs, of consequence on t h i s r e l a t i v e l y dry h a b i t a t type. Needleandthread i s abundant in a re a s w ith sandy te x tu red su rface s o i l . P r a i r i e Junegrass i s common throughout th e h a b i t a t type. Hairy go ldenas te r (Hetero theca v i l lo s a ) i s abundant on d r i e r s i t e s while a r row lea f balsamroot and s i lk y lup ine a re common fo rb s on w e t te r s i t e s . Most of the h a b i t a t type s o i l s have an abundance of su r fa ce rock and s o i l course fragments. Wyoming b ig s a g e b ru s h /b lu e b u n c h w h ea tg ra sq i s l o c a t e d on th e n o r th w e s t end o f T r a v e r t i n e F l a t s and a l s o n ea r th e mouth o f Bear Creek. A lthough on ly a p p ro x im a te ly 280 Iaa i n s i z e , t h e s e two ^ r e s s occupy an im p o r t a n t e c o l o g i c a l n ic h e on th e G ardene r w in t e r range . This h a b i t a t type supports r e l a t i v e l y p roductive v e g e ta t io n on sandy Ioem s o i l s in s p i t e of occupying some of the most x e r ic s i t e s on the study a rea . All th re e subspec ies of b ig sagebrush a re found growing in t h i s h a b i t a t ty p e and c o n s t i t u t e the. m a j o r i t y of th e s h ru b s p r e s e n t . Judging from morphological c h a r a c t e r i s t i c s th e re appears to be some h y b r id iz a t io n among the th ree subspec ies . Beetle .(I960) noted cases of h y b r id iz a t io n . Bluebunch wheatgrass makes up over on e - th ird o f t o t a l g ra ss cpver w ith p r a i r i e Junegrass and needleandthread the only a d d i t io n a l g ra s se s of consequence. Occassional Idaho fescue p lan ts in d ic a te t h i s h a b i t a t marks the l im i t of Idaho fe scue ’s to le ra n ce to a r id i t y . As w ith o the r 55 d ry s i t e s , t h i s h a b i t a t e x h i b i t s a p a u c i t y o f f o r b s . Most o f th e a rea occupied by t h i s h a b i t a t type i s on r e l a t i v e l y g en t le s lopes . B a s in b ig s a g e b ru s h /b lu e b u n c h w h e a tg r a s s i s found e x c l u s i v e l y a l o n g t h e s t e e p , s o u t h f a c i n g s l o p e o f B ea r C re ek . I t i s a p p ro x im a te ly 180 ha i n s i z e . T h is p o r t i o n o f th e w in t e r range i s c h a rac te r iz ed by s lopes o f '50-60 pe rcen t w ith a reas of exposed bedrock and scr$e rock. I t re c e iv e s a la rg e p o r t io n of the sp r ing runo f f from dra inages between Eagle and Bear Creeks. Consequently, t h i s a rea i s s u b i r r ig a te d during May and June. Steep s lopes , sou th e r ly exposure, and pauc ity of developed s o i l combine to make the r e s t of the summer season very dry. P e r e n n ia l he rb cove r i s s p a r s e due to th e r e l a t i v e s c a r c i t y o f d eve loped s o i l s and e x t r e m e s i n g row ing c o n d i t i o n s . ■ T a l l ^up £o 2.5 m) b a s in b ig sagebrush p la n ts a re r e g u la r ly d i s t r i b u t e d w ith la rg e i n d i v i d u a l bunches o f b luebuneh w h e a tg r a s s s c a t t e r e d on th e ground s u r f a c e . I n d i a n r i c e g r a s s and p r a i r i e j u n e g r a s s a r e th e on ly o th e r g ra sse s of s ig n i f ic a n c e . Forbs a re r a r e i n the a rea . D ouglas f i r ( P se u d o tsu e a m e n z i e s i i ) / I d a h o f e s c u e v e g e t a t i o n t r a n s e c t s were only conducted during the 1981 summer. This h a b i ta t type e x te n d s from a p p ro x im a te ly 2000 m to ove r 2400 m e l e v a t i o n i n some a r e a s . I t o c c u r s on a l l s l o p e s and a s p e c t s on m id - to upper s lopes . Overall i t occupies around 400 ha. Canopy cover o f Douglas f i r i s r e l a t i v e l y open w i th canopy coverage measurements rang ing from 23 to 86 pe rcen t , w ith a mean of 60 percen t coverage. Limber pine i s a s so c ia te d w ith t h i s h a b i t a t type a t I lower e le v a t io n s w ith w hitebark pine (Pinus a lb i c a u l i s ) an# subalp ine 56 f i r (A b ies l a s i o c a r p a ) found s c a t t e r e d i n th e uppe r e l e v a t i o n s . B luebunch w h e a tg r a s s and m oun ta in b ig s ag eb ru sh a r e p ro m in en t unders to ry spec ie s , e sp e c ia l ly a t lower e lev a t io n s and on sou^h fa c in g a sp e c ts . V e g e ta t io n on o t h e r l a n d i n t h e s tu d y a r e a was n o t e v a lu a te d , i n c l u d i n g a p p ro x im a te ly 360 ha u n a v a i l a b l e to a n im a l use due to th e two town s i t e s , a d d i t io n a l p r iv a te re s id en ce s , and a c t iv e mine s i t e s . Approximately 180 ha a re occupied by r i p a r i a n h a b i ta t . The rem ain ing 1460 ha of the study a rea a re subalp ine and a lp in e h a b i t a t . V egeta tion - Composition A com p ila t ion of v eg e ta t iv e composition by h a b i t a t type from a l l t r a n s e c t s i s p ro v id ed i n Appendix C. Tab le 2 su m m ariz e s v e g e t a t i v e p roduction i n the a rea fo r 1980 and 1981. These numbers e x h ib i t ttie r e l a t i v e dom inance o f th e p r i n c i p a l p l a n t s p e c i e s i n each h a b i t a t type. C o l le c t iv e ly , the two dominant spec ie s comprise a major p o r t io n of t o t a l p roduction in each h a b i t a t type. M ounta in b ig s a g e b ru s h / I d a h o f e s c u e and b a s in b ig s a g e b ru s h / bluebunch wheatgrass a re the only shrub h a b i t a t types e x h ib i t in g much d iscrepancy between shrub and g ra s s production. Abundance of g ra ss in mountain big sagebrush/Idaho fescue i s explained by r e l a t i v e l y jnesic c o n d i t i o n s accom pan ied w i th re d u ced sh rub p ro d u c t io n i n l o c a l i z e d a r e a s o f c o n c e n t r a t e d a n im a l u se . B as in b ig s a g e b r u s h / b luebupch w heatgrass shrub and g ra s s p roduction va lues r e f l e c t th e dominance of l a r g e b a s in b ig s ag eb ru sh p l a n t s w i th r o b u s t s o l i t a r y b luebunch wheatgrass p la n ts s c a t te r e d beneath them. 57 Table 2. Mean annual p roduc tion1 in kg/ha of th re e fo rage c la s s e s and s ix dominant taxa evaluated in 1980 and 1981. Habitat^ type Dominant taxon^ nroduction Forage class nroduction A.t . va A.t.wy A. t . t r Arno Feid Agsp Gpass Forb Shrub Total A.t . va/Feid 220 I 22 - 335 116 586 257 265 1108 Arno/Agsp 9 2 T 258 21 86 215 88 282 5p5 A.t.va/Agsp 300 — I - 64 164 397 235 340 972 A.t.wy/Agsp 44 338 10 - 11 211 361 48 395 804 A.t . tr/Agsp 26 - 637 - - 216 223 11 698 932 Psme/Feid3 135 - - - 142 J l 270 198 139 607 1A.t.va/Feid and A.t.va/Agsp include data from burned areas. p A.t.va - mountain big sagebrush; Feid - Idaho fescue ; Arno r, b^ack sagebrush; Agsp - bluebunch w heatgrass; A.t.wy - Wyoming big sagebrush; A.t.tr - basin big sagebrush; Psme - Douglas f i r . ^Data from 1981 only. T = Trace (<0.5 kg/ha). H igher f o r b v a lu e s f o r m o un ta in b ig sagebrush/Idaho fescue and m oun ta in b ig s a g e b ru s h /b lu e b u n c h w h e a tg r a s s g e n e r a l l y r e p r e s e n t prevalence of a r row leaf balsamroot and s i lk y lup ine . Forb va lues In Douglas f i r / I d a h o f e s c u e a r e a c c o u n te d f o r by a v a r i e t y of f o r b sp ec ie s and a slower fo rb d e s s i c a t io n r a t e under f o r e s t canopy. Low fo r b v a lu e s i n o th e r h a b i t a t ty p e s n o t on ly r e f l e c t a p a u c i ty o f f o rb s , bu t a l s o th e r a p id d e c o m p o s i t io n o f f o r b s i n th e exppsed sagebrush a re a s i n the l a t t e r p a r t o f summer. 58 Wyoming b ig sage b r u s h /b lu e bunch wheatgrass i s the only h a b i t a t type w i th a p p r e c i a b l e am ounts o f a l l t h r e e s u b s p e c i e s o f b ig s ag eb ru sh . R e la t iv e ly - low p r o d u c t io n v a lu es f o r blaqk sagebrush i n the b lack sagehrush/bluebunch wheatgrass h a b i t a t type, i n comparison to i t s h igh cove r v a lu e s (T ab le I ) , r e f l e c t i t s low s t a ^ u r q ^nd spread ing growth form. Comparison of bas in b ig sageb rush /b lu ebunch wheatgrass p roduction v a lu es w ith Daubenmire’s ( I 970) c l a s s i f i c a t i o n o f s tq p p e v e g e t a t i o n communities shows the study a rea had only h a l f the g ra s s production but com parab le t o t a l p ro d u c t io n . D 'aubenmire 's (1970) s^udy was conduc ted i n e a s t e r n W ashing ton . A lthough th e two a r e a s a r e no t env ironm enta lly comparable, th e re i s some value i n making comparison^ because h a b i t a t t y p in g was a l s o used i n h i s r e s e a r c h . S o i l s &n h i s study were loams or stony loams and the s tudy s i t e s do not appear to have been as env ironm enta lly l im i t i n g a s the south face of Bear Creek where basin b ig sagebrush/bluebunch w heatgrass was im portan t on the s tu d y area. Comparison of Table 2 da ta w ith p roduction da ta means repo r ted by Mueggler and S tew art (1980) shows t o t a l p roduction i n the mountain big s ag eb ru sh h a b i t a t ty p e s a r e e q u a l l y com parab le , a l th o u g h t h e r e a r e d i f f e r e n c e s be tw een p ro d u c t io n o f f o r a g e c l a s s e s . P ro d u c t io n i n Table 2 fo r mountain big sage b rush / Idaho fescue i s 29 pe rcen t more fo r g ra ss , 59 pe rcen t l e s s f o r fo rb s , and 68 pe rcen t more f o r shrubs than c o m p a r a b l e n u m b e rs p r e s e n t e d i n M uegg le r and S t e w a r t (1980). Com parison o f m oun ta in b ig s a g e b ru s h /b lu e b u n c h w h e a tg r a s s numbers 59 r e v e a l s g r a s s p r o d u c t io n i s e s s e n t i a l l y e q u a l , f o r b p ro d u c t io n 15 p e r c e n t more, and sh rub p r o d u c t io n 14 p e r c e n t more th a n t h e i r d a ta . The Eco log ica l S i t e Method used by the So il Conservation Serv ice (SCS) fo r de te rm in ing climax com position was not used as a g u id e lin e f o r a s s e s s i n g ra n g e c o n d i t i o n on th e s tu d y a r e a . A f t e r d i s c u s s i o n s w i th SCS p e r s o n n e l^ , i t was conc luded t h a t t h i s method does no t adequate ly account fo r the c l im a te , topoedaphic cond it ion s , or c la s s of animal use i n the Gardiner area.' Consequently, a cond it ion r a t i n g o f any o f th e s e h a b i t a t ty p e s from th e SCS te c h n iq u e (Zacek e t a l . 1976) would n o t r e f l e c t th e a c t u a l e c o l o g i c a l s t a t u s o f th e s tu d y a rea . P lan t communities on th e study a rea appear to be s t a b l e and near c l im a x s t a t u s a? d e te rm in e d by th e q o p ip o s i t io n # f ^oiBlnant p l a n t sp ec ie s p re sen t (Appendix C, Tables I and 2), Signs o f d e t e r io r a t in g range c o n d i t i o n ( r e t r o g r e s s i o n ) i n l o c a l i z e d a r e a s i s p ro b ab ly a t t r i b u t a b l e to human i n f l u e n c e such a s mine s i t e s , ro ad c u t s , e t c . Overall, w ild ungulate use has no t s i g n i f i c a n t l y a l t e r e d v e g e t a t i v e composition on the study area. Vegeta tion - Sagebrush Burns P ro d u c t io n and cove r v a lu e s i n T ab le s I, and 2 in c lu d e d a t a c o l le c te d from sagebrush s i t e s burned in p a s t years . Since 1979, the U.S. Fo res t Serv ice has implemented a program of c o n t ro l le d sagebrush burns to promote in c re ased fo rage p roduction f o r w in te r in g ungula tes . ^ P h i l l i p i , Dennis . S t a t e Range p o n s e r v a t i o n i s t , S o i l C o n se rv a t io n Serv ice , personal communication, August 1981. 60 V e g e ta t io n r e g ro w th i n two burned a r e a s h a s beeij compared w i th v eg e ta t io n of s im ila r unburned s i t e s (Table 3). Data p resen ted i n Table 3 were c o l le c te d i n 1980 from t ra n s e c t $ lo c a ted i n the mountain b ig sagebrush/Idaho fescue h a b i t a t type. ' All o f th e s i t e s w ere on g l a c i a l t i l l i n t h e E ag le Creek a r e a . Unburned s i t e s w ere n e a r th e burned a r e a s . T r a n s e c t s on unburned s i t e s wer© s i t u a t e d on a p p ro x im a te ly th e same p e r c e n t s lo p e , p o s i t i o n on th e slope, and a spec t , as t r a n s e c t s w i th in burned areas . The sp ring 1980 burn was a co n tro l le d f i r e while the summer 1974 burn r e s u l t e d from a w i ld f i r e on Ju ly 29. Data from T ab le 3 r e v e a l a d e c r e a s e i n g r a s s p rom inence on th e 1980 sp r ing burn. Idaho fescue and p ra i r ie ' June g ra ss composition was Table 3. Comparison of vegetation production and cover from two burned s i t e s with environmentally paired unburned s ites. Location Production (ke/hal Cover of t o t a l I Grass Forb Shrub Total Graes Forb Shrub Toiial Spring 1980 burn s i t e 387 479 17 883 5.2 4.2 0.1 9.5 Unburned s i t e 511 191* 227° 929 13.7 4.4 10.6 28.7 Sunmer 1974 burn s i t e 851 175 4 " SCOOO 13.9 1.9 0.4 16.2 Unburned s i t e 823 143 634° 1600°° 11.9 1 . 8 14.3 28.0 ^Production values s ign if ican tly d iffe ren t from the paired s i t e value, a t the .01 probability level. 00Production values s ign if ican tly d iffe ren t from the paired s i t e value, a t the .10 probability level. 61 n o t i c e a b l y l e s s i n t h e burned a r e a compared to s u r ro u n d in g a r e a s . I d a h o f e s c u e p r o d u c t i o n and c o v e r w e re 3 2 and 31 p e r c e n t , r e s p e c t iv e ly , of the unburned s i t e . P r a i r ip juneg ra ss production and cove r w ere 27 and 9 p e rp e n t , r e s p e c t i v e l y , o f th e ynburned s i t e . Damage to Id aho f e s c u e by f i r e h a s b een ob se rv ed and e x p la in e d i n o the r s tu d ie s (Conrad and Poultan 1966, B la i s d e l l 1953). Mueggler and B la i s d e l l (1958) noted t h a t burning sagebrush a reas caused an i n c r e a s e i n f o r b s l a s t i n g a t l e a s t t h r e e y e a r s . S i lk y lup ine , pu rp leda isy fleabane (E rigeron corvmbosus), arid w este rn yarrow (.AphiIIriri m i l l e f o l i u m ) w ere among th e f o r b s show ing in c r e a s e d p r o d u c t io n on th e 1980 burn . I n c r e a s e d f o rb p r o d u c t io n i n sh rub h a b i t a t s on the Gardiner w in te r range has l i t t l e p o te n t i a l b en e f i t to e lk ri&d BylG dri^r. As n o ted e a r l i e r , summer d e s s i p a t i o n and d i s i n t P g r p t i on o f 'm o s t f o rb s p e p i e s ! 'paves n e g l i g i b l e amounts o f s tand ing herbage a v a i l a b le to w in te r ing animals. Herbaceous spec ie s p roduction and cover i n the six; year old burn was a p p ro x im a te ly equa l to t h a t o f .u n b u rn ed a r e a s . Idaho f e s c u e production and cover was equal to rJ k and 78 percen t, re s p e c t iv e ly , of ' com parab le d a ta from th e unburned s i t e . I n c r e a s e d p ro d u c t io n and cover o f b luebunch w h e a tg r a s s on th e burned s i t e a c co u n te d f o r th e r e l a t i v e l y equa l g r a s s p ro d u c t io n and cove r b e tw een t h e two s i t e s . B fuebunch w h e a tg r a s s i s l e s s a f f e c t e d by f i r e th a n Idaho f e s c u e (Conrad and Poulton 1966). Eviden tly , depressed Idaho fescue presence 62 i n t h e v e g e t a t i o n n ic h e was com pensa ted f o r by i n c r e a s e d b luebunch wheatgrass abundance. M ountain b ig s a g e b ru sh has e s s e n t i a l l y been e l im in a t e d i n t h e burned areas . Sagebrush den s ity around the periphery of the s ix year o ld bu rn was .03 s e e d l i n g p l a n t s p e r s q u a re m e te r . S e v e n ty - s ix p e r c e n t o f sh rub p ro d u c t io n i n th e r e s t o f th e bu rn was e i t h e r ra b b i tb ru sh or gray horse brush, sp ec ie s which a re undamaged and o f te n benef i ted by sp rou ting a f t e r f i r e , (V a l le n t in e 1977). T o ta l p r o d u c t io n i n t h e 1974 bu rn , compared t o t h e p a i r e d unburned s i t e , i s s i g n i f i c a n t l y d i f f e r e n t a t th e .10 p r o b a b i l i t y le v e l . However, the only r e a l d i f f e r en c e between th e two s i t e s i s in shrub production. In the t e s t fo r d i f f e r e n c e s between two independent samples (Snedecor and Cochran 1980) t h e . s ig n if ic a n ce of t depends on th e number o f o b s e r v a t i o n s . C on sequen t ly , d i f f e r e n c e s i n g r a s s and f o rb d a t a be tw een th e p a i r e d s i t e s would a c t u a l l y be w e ig h ted more h e a v i l y , b ecause g r a s s and f o rb p r o d u c t io n were e s t i m a t e d from t e n p lo t s w h ile shrub p roduc tion was e s t im a ted from only four p lo ts . From th e s e d a t a , i t a p p e a r s t h a t t h e r e may be ho p o t e n t i a l b e n e f i t , t o an im als from inc reased herbage production i n burn s i t e s on the study area. Total v eg e ta l cover may be g re a t ly reduced the f i r s t y ea r w ith f i r e , as i t was in th e sp r ing 1980 burn, and t h i s reduc tion may p e r s i s t . However, s ag eb ru sh c o m p o s i t io n a p p e a r s to be th e on ly component of the p lan t community s ig n i f i c a n t l y a l t e r e d by f i r e on the w in t e r range . Because s i z e o f th e c o n t r o l l e d bu rn s r a n g e from s p o t 63 burns to more than 20 ha, the p o te n t ia l e f f e c t s of sagebrush removal on w i l d l i f e use w i l l be d i s c u s s e d f u r t h e r i n t h i s c h a p te r unde r Animal Use. Vegeta tion - Annual V ar ia t ion Weather v a r i a t i o n has a pronounced in f lu en ce on p la n t production and v igor. P r e c ip i t a t i o n in sou thw este rn Montana during the period of most a c t iv e p lan t growth may co n tr ib u te more to t o t a l p roduction than th a t f a l l i n g a t o the r tim es (Mueggler 1967). May p r e c ip i t a t i o n i n the Gardiner a rea was 62 and 88 percen t above the mean fo r 1980 and 1981, r e sp e c t iv e ly . June p r e c ip i t a t i o n was 30 percen t below normal i n 1.980 and 31 p e r c e n t above norm al i n 1981. Three y e a r s o f below ave rage g row ing sea so n p r e c i p i t a t i o n p re c ed ed t h e s e two y e a r s o f i n c r e a s e d m ois tu re . The p e r c e n ta g e change i n h e rb a c eo u s p ro d u c t io n and g r a s s v ig o r from 1980 to 1981 i s p resen ted i n Table 4. Number o f f low ering g ra s s cu lm s i s a s e n s i t i v e i n d i c a t i o n o f v ig o r (M ueggler 1970). E leven r e p r e s e n ta t iv e t r a n s e c t s were re c l ip p ed i n 1981. Flowering culms were counted only on c lipped g ra ss p la n ts . G rass p ro d u c t io n i n c r e a s e d i n t e n o f th e e l e v e n t r a n s e c t s r e c l i p p e d . Forb p ro d u c t io n changes w ere l e s s w e l l d e f in e d . Forb p ro d u c t io n showed s l i g h t i n c r e a s e s on f i v e of e le v e n t r a n s e c t s , bu t s ince p roduction was r e l a t i v e l y s c a n ty , sm a l l changes t r a n s l a t e d t o h ig h percentages. i 64 Table 4 . P e rc e n ta g e change dominant herbaceous to 1981• i n p ro d u c t io n and f l o w e r i n g cu lm s o f sp ec ie s i n fou r h a b i t a t types from 1980 H ab ita t tvoe^ Item A .t .v a /F e id Arno/Agsp A. t . v a / Agsp A . t . t r / Agsp Herbaceous p roduction Grass +55 +71 +54 -42 Forb -44 Flowerine culms +44 +28 +135 Agsp1 +145 +28 +155 -32 Feid1 +11,219 +1800 +1371 - A .t.va - m o un ta in b ig s a g e b ru sh , Fe id - Idaho f e s c u e ; Arno - b la c k sagebrush ; Agsp - bluebunch w heatgrass; A . t . t r - b a s in b ig sagebrush. A no ther f a c t o r c o n t r i b u t i n g t o i n c r e a s e d g r a s s p ro d u c t io n and v ig o r cou ld have been th e below av e rag e number o f u n g u la t e s on the ' s tu d y a r e a d u r in g th e w in t e r o f 1980-81. However, e a r l y g row ing s e a so n m o i s t u r e r e c e iv e d i n 1980 and 1981 i s b e l i e v e d to be th e primary exp lana t ion fo r the in c reased g ra s s p roduction and v igor opted throughout the study area. Annual v a r i a t i o n i p p lan t production ^nd v igo r has an im po rtan t r e l a t i o n s h ip w ith da ta a n a ly s i s throughout the R e s u l t s sec t ion , 6? Vegeta tion - C o rre la t io n s P lap t r e l a t io n s h ip s among the fo rage c la s s e s and w ith num erica lly c o n t in u o u s e n v i ro n m e n ta l p a r a m e te r s a r c shown i n T ab le 5. Jh e se c o r r e la t io n c o e f f i c i e n t s he lp c h a r a c te r iz e the y e g e ta t io n component of t h e G a p f l ip e r w i n t e r r a n g e . Many o f t h e c o r r e l a t i o n s show r e la t io n s h ip s t h a t would be expected i n any p lpn t community. Other c o r r e la t io n s demonstrate the v e g e ta t io n 's ad ap ta t io n to the landform C h a r a c te r i s t i c s p e c u l i a r to the Gardiner area. The p o s i t i v e r e l a t i o n s h i p b e tw e e n g r a s s c o v e r and g r a s s p ro d u c t io n ( r = .65) i s an exam ple of an e x p ec te d h ig h c o r r e l a t i o n . A no ther would be th e n e g a t i v e r e l a t i o n s h i p be tw een g r a s s cover and sh rub cove r w i th r = - .6 3 . T h is n e g a t i v e r e l a t i o n s h i p r e f l e c t s th e a r i d i t y i n the shrub h a b i ta t s . An i n t e r e s t i n g note i s th g t fo rb coyer compared w i th f o r b p ro d u c t io n h a s an r v a lu e of .32, T h is r e l a t i v e l y low c o r r e l a t i o n p ro b ab ly i s due t o th e f a c t t h a t b a s a l cove r was r e c o rd e d f o r h e rb a ceo u s v e g e t a t i o n . B asa l cover o f an a r r o w l^ a f balsamroot p la n t might be i d e n t i c a l to th a t of an e lk t h i s t l e (Clrsium f o l i o s u m ) n e a rb y , bu t p r o d u c t io n o f each p l a n t woujd be q u i t e d i s s im i la r . Of th e t h r e e f o r a g e c l a s s e s , g r a s s p ro d u c t io n i s most h ig h ly c o r re la te d w ith t o t a l production. S im ila r ly , fo rb cover i s the most h igh ly c o r r e la te d w ith t o t a l cover. These c o r r e la t io n s i l l u s t r a t e the ro le of prominent bunchgrasses i n forage production and the importance of the ground covering fo rb s i n th e v eg e ta t io n component of the area. G rass and f o r b cove r i s n e g a t i v e l y c o r r e l a t e d w i th a l l sh rub p a r a m e te r s . However, bo th g r a s s and f o r b p ro d u c t io n a r e s l i g h t l y Tab le 5 . C o r r e l a t i o n m a t r ix o f s i t e v a r i a b l e s on t h e G a rd in e r w i n t e r ran g e . S i t e v a r i a b l e Cover P ro d u c tio n =FruK S ie c ie s ------------- E T ^— G rass Forb .Shrub T o ta l G rass Forb Shrub T o ta l D e n s ity Volume H e ig h t A rea number S lop e r a t i o n Bare ground L i t t e r G rave l Rock G rass c o v e r 1 .0 0 . lg * * -.63** .PO .65** Forb c o v e r 1 .0 0 -.?6» .k2** -.11 Shrub co v er 1 .0 0 .35* - .5 7 * * ! to ta l c ov er 1 .0 0 - . ? 3 G rass p ro d u c t io n Fo rb p ro d u c tio n Shrub p ro d u c t io n T o ta l p ro d u c t io n Shrub d e n s i ty Shrub volume 1 .0 0 Shrub h e ig h t Shrub a re a S p ec ie s number S lope E le v a t io n Bare ground L i t t e r G ravel Rock .18 -.ii8*» -.35* -.87** -.Oil - .0 6 — .16 .32* -.21 - .0 7 -.Oii -.26* -.0 8 -.32* -.32* .6k** - .2 5 .58** .Oii .07 .12 .Oii .15 - .0 8 .16 -.11 .Oil -.11 .01 -.IlO** .6ii*» -.53** .27* .08 .35 1.0C —.lii • li8** -.2 ii .08 .01 .01 1.00 • 2ii .08 .69** .60** • 7ii** 1.00 —. ii6** .66** .ii?** .56** 1.00 -.37** -.ii5** -.ii3** 1.00 .75** .85** 1.00 .83** 1.00 .31* -.32* -.13 .21 .32* -.36** -.29* .37** -.1 7 .11 -.Oii .27* -.16 -Jj6** -.53** .10 -.27* .05 -•55** .35* .16 -.1 2 - .2 2 -.23 — *03 — .20 —.09 —.lit .25* -.15 -.03 . a .22 -.2 2 -.01 .29* .21 .37** -.23 .33* -.2 5 -.06 -.65** .ill** .10 -.16 -.57** .30* .51** — .06 .2i| .17 — •IL -.0 1 -.13 .31* -.38** -.27** -.27** .06 -.36** .52** _.3l|* - .1 6 .ill** .09 -.19 -.26* .09 .51** -.12 .35** .18 -.12 -•13 - .1 2 .52** -.25 .ii8** .16 -.23 -.35* .06 .73** 1.00 .01 .35* .13 .ii7** - .2 3 -.38** 1.00 .ii2** -.32* -.1 5 .oil .55*» 1.00 -.26 1.00 .38** -.26* .lii .12 —.30* —.30* 1.00 -.75** —.ill** 1.00 -.06 1.00 cn * S ig n i f i c a n t a t t h e .0 5 p r o b a b i l i t y l e v e l ** S ig n i f i c a n t a t t h e .0 1 p r o b a b i l i t y l e v e l 67 p o s i t i v e l y r e l a t e d t o sh rub s i z e p a r a m e te r s , p o s s i b ly i n d i c a t i n g , th e te n dency f o r h e rb a c e o u s p l a n t s t o c l u s t e r a round th e base o f l a r g e r s ag eb ru sh p l a n t s . A ll sh rub s i z e p a r a m e te r s a r e h ig h ly c o r r e l a t e d w i t h one a n o t h e r . C o n v e r s e l y , s h r u b d e n s i t y i s n e g a t i v e l y a s s o c i a t e d w i th sh rub s i z e . O ther c o r r e l a t i o n s h e lp t o e x p l a i n some o f th e d i s t i n c t i v e c h a r a c t e r i s t i c s o f th e s tu d y a r e a . S lope te n d s t o i n c r e a s e w i th e l e v a t i o n , i n d i c a t i n g th e a b r u p t r i s e of th e Absaroka M ountains. Number o f p l a n t s p e c i e s a l s o s i g n i f i c a n t l y i n c r e a s e s w i t h e l e v a t i o n , w h ic h r e f l e c t s m o re me s i c c o n d i t i o n s a t h i g h e r e l e v a t i o n s . T o ta l p r o d u c t io n and g r a s s p ro d u c t io n s i g n i f i c a n t l y d e c l i n e , a s s h r u b d e n s i t y i n c r e a s e s . B l a c k s a g e b r u s h / b l u e b u n c h w h e a tg r a s s h a s th e h i g h e s t d e n s i t y o f sh ru b s on th e s tudy a re a . Y e t , o v f e r a l l p r o d u c t i o n i s t h e l o w e s t o f any h a b i t a t t y p e because o f b la c k s a g e b ru s h 's g row th form i n a d d i t i o n to th e low g r a s s p r o d u c t io n on t h i s a r i d s i t e . A no ther f a c t o r a c c o u n t in g f o r t h e s e n e g a t i v e a s s o c i a t i o n s i s t h a t some o f t h e h i g h e s t g r a s s p r o d u c i n g s i t e s i n o t h e r h a b i t a t t y p e s a r e a r e a s w h e re a n im a l s c o n g re g a te and d e p l e t e th e sh rub component. G r a s s p r o d u c t i o n i s s i g n i f i c a n t l y a s s o c i a t e d w i t h s h r u b volume i n c r e a s e s which e x p r e s s e s t h e tendency f o r g r a s s p l a n t s to grow u n d e rn e a th l a r g e r o b u s t s ag eb ru sh p l a n t s . G rass p l a n t s I68 a r e n o t o n ly p r o t e c t e d from g r a z in g unde r s ag eb ru sh p la n t 's , bu t a r e a l s o s h i e l d e d f r o m t h e d r y i n g e f f e c t s o f t h e s u n and w in d . S h ru b p a r a m e t e r s a r e a l l n e g a t i v e l y c o r r e l a t e d w i t h l i t t e s r a c c u m u la t io n w hich p o s s i b l y r e f l e c t s s a g e b ru sh ’s s low c y c l i n g o f n u t r i e n t s back i n t o t h e eco sy s tem . T o t a l p r o d u c t i o n i n c r e a s e s s i g n i f i c a n t l y w i t h i n c r e a s e d ij r o c k c o v e r due. p r i m a r i l y t o s h r u b p r o d u c t i o n . B ig s a g e b r u s h p l a n t s i n c r e a s e a round a r e a s o f exposed ro ck , o f which t h e r e a r e S c o n s id e r a b l e q u a n t i t i e s on th e s tu d y a r e a . Rock o u tc ro p s , l a r g e I e r r a t i c s f r o m g l a c i a t i o n , and e v e n o l d m ine s i t e s c o n t r i b u t e ro c k s u r f a c e to g a t h e r a d d i t i o n a l r u n o f f m o i s t u r e which, seems to b e n e f i t b ig s a g eb ru sh . M o s t o f t h e c o r r e l a t i o n s d i s c u s s e d i l l u s t r a t e p l a n t c o m p e t i t i o n f o r m o i s tu r e i n th e d ry G a rd in e r e n v iro n m en t . Yet,, m i c r o s i t e v a r i a t i o n h a s c r e a t e d a u n iq u e and d i v e r s e p l a n t e n v i r o n m e n t . G e n e r a l l y s p e a k i n g , v e g e t a t i o n a d a p t e d t o t h e : a r e a a p p e a r s t o be i n r e l a t i v e l y g o o d r a n g e c o n d i t i o n , ' - p ro b ab ly c l o s e l y a p p r o x im a t i n g c l i m a x c o n d i t i o n s . V e g e t a t i o n c o n d i t i o n i s s u r p r i s i n g l y good d e s p i t e t h e l a r g e num ber o f a n i m a l s u s i n g t h e a r e a . The e x p l a n a t i o n l i e s i n t h e way a n im a ls use th e s tu d y a re a . 69 Animal Use Animal ob se rva tion s and in d ic a t io n s o f animal use were documented th ro u g h o u t th e s tu d y p e r io d . An e f f o r t was made to o b se rv e a n im a ls w ithou t being de tec ted , whenever they were encountered. A major p a r t of the summer period was spen t on the lower e le v a t io n s of the w in te r range where animal summer use i s in frequen t . However, s u f f i c i e n t t im e was spent on the upper e lev a t io n periphery to i d e n t i f y animal a c t i v i t y p a t te rn s and areas. Observation of animal w in te r use was conducted during p e r iod ic f i e l d t r i p s to th e s tu d y a re a . B ecause th e s e f i e l d t r i p s were be lieved i n s u f f i c i e n t to adequate ly sample animal use under a l l w in te r cond itions , o b se rva tion s were not num erica l ly analyzed in comparison w ith s i t e v a r ia b le s . Rather, ob se rva tion s were used to s u b s ta n t ia te or i n t e r p r e t these data. Animal Use - Summer Although the m a jo r i ty of animal use occurs during w in te r months on the study a rea , th e re i s a lso s u b s t a n t i a l summer use of the w in te r range periphery . Both e lk and mule deer a re s c a t te r e d throughout the Douglas f i r and suba lp ine h a b i t a t s during summer month's. Some of the m ig ra t in g an im als appear to use the upper periphery as in te rm ed ia te range while o th e rs remain in the a rea through the e n t i r e summer. A m a jo r i t y o f e lk on th e s tu d y a r e a began a r e v e r s e m ig r a t i o n back i n t o th e m o u n ta in s a s soon a s snow and w e a th e r c o n d i t i o n s moderated during both y ea rs of the study. This movement began slow ly w i th a few a n im a ls bu t grew i n num bers a s w e a th e r c o n t in u e d to moderate. Some e lk c rossed the Yellowstone River on t h e i r rou te back 70 i n t o th e Park . O th e rs began d r i f t i n g i n t o th e m o u n ta in s to w a rd s Crevice Creek, o f ten t r a v e l l i n g through snow dr if ts over I m deep. Some e lk rem a in ed on th e s tu d y a r e a t a k in g adv an tag e o f th e v e g e t a t i o n g reenup i n A p r i l and May. These e lk s lo w ly f o l l o w e d g reenup a s i t p ro g r e s s e d upward i n e l e v a t i o n and s c a t t e r e d i n t o t h e f o r e s t . In bo th June 1980 and 1981 t h e r e were o v e r 300 e lk i n th e North Fork of Bear Creek-Monitor Peak a re a which i s . oh th e periphery o f th e w in t e r ra n g e . These e lk d i s p e r s e d to w a rd th e end o f Jun e , p o s s i b ly i n d i c a t i n g th ey summer i n t h e h igh a l p i n e a r e a s o f th e W ilderness and were w a i t in g f o r snowmelt. The number o f e lk a c t u a l l y r e m a in in g on th e s tu d y a r e a f o r th e e n t i r e summer appears r e l a t e d to w in te r numbers. There were over 2000 e lk on t h e s tu d y a r e a d u r in g t h e w in t e r of 1979-805 ' w h i le th e f o l l o w in g w in t e r t h e r e were on ly a b o u t 500. A p p ro x im a te ly 100 e lk w ere u s in g t h e E a g le - P h e lp s C reeks a r e a d u r in g t h e summer of 1980 w h i le d u r in g th e summer o f 1981 a b o u t 40 e lk w ere i n th e same a r e a , in d ic a t in g " re s id en t" summer herds may be augmented by m ig ra ting e lk . In the summer o f 1980, a group o f 35 y e a r l in g e lk w ith 15 spike b u l l s was ob se rv ed i n t h e E ag le Creek a r e a . Th is e x c e s s i v e number of y e a r l i n g s among th e l o c a l e lk s u g g e s t s many o f t h e s e y e a r l i n g s probably remsined on the study a rea when the cow herds m igrated back t o t h e P a rk o r W i l d e r n e s s . M a r t i n k a ( 19 6 5 ) a l s o o b s e r v e d a d i s p r o p o r t i o n a t e number of y e a r l i n g e l k i n r e s i d e n t h e rd s d u r in g a study of the sou thern Park e lk herd near Jackson Hole, Wyoming. E r ick so n , Glenn. W i l d l i f e B i o l o g i s t , Montana D epar tm en t o f F i s h , W ild l i fe , and Parks, personal communication, Ju ly 198I . 71 F o r e s t e d a r e a s o f E ag le , D av is , and P h e lp s C reeks a l s o s e r v e as c a lv i n g g rounds . Cows w i th newborn c a lv e s were o f t e n o b se rv ed i n th ese d ra inages , which a re ty p ic a l of e lk ca lv ing a re a s as described by Johngon (1951). On June 11, 1980, seven ty -p lus cows and y e a r l in g s w ere ob se rv ed moving o f f th e s tu d y a r e a , i n t o th e N orth Fork o f Bear Creek. At l e a s t e i g h t newborn c a lv e s w ere i n th e g roup i n d i c a t i n g t h i s a r e a a l s o s e r v e s a s c a lv i n g g rounds f o r some o f th e m ig r a to r y e lk . P ropose# U.S. F o r e s t S e rv ic e t im b e r s a l e s i n th e Eag le Creek drainage would p o t e n t i a l l y remove v i t a l ca lv ing s e c i i r i ty cover i n th e a rea , i n a d d i t io n to accompanying com plica tions from logg ing c r i t i c a l w in te r range (See Human In fluence i n L i t e r a tu r e Review). Mule deer m ig ra t io n from the Gardiner w in te r range occurred only when th e s n o w l in e re c ed ed i n t h e s p r i n g d u r in g bo th y e a r s o f thg study. Deer fo llow ed sp r ing greenup as i t advanced upslope, but they only u t i l i z e d a re a s t h a t were r e l a t i v e l y snow-free. Many deer a lso tended t o r e m a in on th e low e l e v a t i o n s a g e b r u s h - g r a s s i a n d o f th e w in te r range in to mid-May, fo rag ing mainly on herbaceous v ege ta t io n . Most of th e d e e r had moved up i n t o th e f o r e s t e d a r e a s by th e f i r s t o f J u n e , . a f t e r which t im e v e ry few does w i th faw ns w ere observed. These ob se rva tion s a re not n e c e s sa r i ly an in d ic a t io n th a t d e e r do n o t g iv e b i r t h on th e s tu d y a re a . R a th e r , i t i s b e l i e v e d to be a r e f l e c t i o n o f d e e r s c a t t e r i n g th ro u g h o u t th e immense a r e a a v a i l a b le . There w ere r e l a t i v e l y few d e e r s i g h t i n g s on t h e s tu d y a r e a i n comparison to e lk s ig h t in g s during summer months. Deer observed w q r e 72 mostly s o l i t a r y or occa s iona lly in groups of two to f iv e . Perhaps 20 to 30 deer used the ^tudy a rea during each summer. Animal Use - Winter A n ip a l use d u r in g th e two w in t e r s o f th e s tu d y was q u i t e d i f f e r e n t because of v a r i a t io n i n snow a c c u m u la t io n . P r e c i p i t a t i o n l e v e l s u n t i l the f i r s t of December were near normal in both 1980 and 1981. However, December through March p r e c i p i t a t i o n d u r in g 1980-81 was only 29 pe rcen t of the 93 year mean w ith v i r t u a l l y no snow f a l l i n g i n January. December through March p r e c ip i t a t i o n i n 1981-82, on the o the r hand, was 121 pe rcen t of normal w ith above average snowfall in a l l months. The c o n t r a s t i n weather allowed th e ob se rva tion of extremes from l i g h t to heavy a n im a l use be tw een th e two y e a r s . V i r t u a l l y no Park e lk ap p ea red on t h e G a rd in e r w in t e r range i n 1980-81 compared to a p p ro x im a te ly 3000 u s in g th e a r e a d u r in g th e 1981-82 w in t e r . Mule deer numbers were approxim ately the same each w in te r a lthough deer use of the w in te r range was much more r e s t r i c t e d i n 1981- 82. Animal Use - M igration M ig r a t io n p a t t e r n s to t h e w in t e r range p la y a key r o l e i n d e t e r m in in g e lk use o f th e s tu d y a r e a . E lk m ig r a t i n g n o r th on th e e a s t s ide of the Yellowstone River converge on th e Gardiner Valley in, the Deckard F l a t s area. Those a r r iv in g on the west s id e of the r i v e r c o n g re g a te a lo n g th e Park l i n e , moving n o r th as num bers b u i ld , E lk c ro s s ing in to the study a re a from the west s id e may only spend a few h o u rs t r a v e r s i n g p a r t s o f i t a lo n g m ig r a t i o n r o u t e s , w h i le o th e r s remain longe r . 73 Elk m ig ra t io n to the Gardiner v a l le y i s desc ribed by Craighead e t a l . (1972). B a s i c a l l y , e lk r e a c h th e G a rd in e r v a l l e y e i t h e r on th e e a s t o r w e s t s i d e o f th e Y e l lo w s to n e R iv e r , d epend ing on where th ey s t a r t e d i n th e Park . Elk movement c o r r i d o r s on th e s tu d y a r e a a r e i l l u s t r a t e d i n Johnson (1981), but an exp lana tion of these co r r id o r s h e lp s to d e s c r i b e e lk use o f th e a r e a . E lk m ig r a t i o n p a t t e r n s w ere l a r g e l y a s s e s s e d from o b s e r v a t i o n s d u r in g t h e second w in t e r o f th e s tudy. Most e lk reach ing the Crevice Mountain a rea continued towards the Bear Creek d r a in a g e u p s t re am from J a r d in e . i f snow d e p th s were l e s s thap 2/3 m. I f shows were deeper a t these m igra to ry e lev a t io n s , e lk tended t o move down to th e Deckard F l a t s a r e a . Any e lk movement f a r t h e r north from Deckard F l a t s c rossed Bear Creek downstream from J a r d in e and c o n t in u e d i n t o E ag le Creek. Deckard F l a t s i s th u s a key s t a g i n g a r e a f o r e lk movement n o r th of th e Park , e s p e c i a l l y d u r in g more severe w in te rs . Elk e n te r in g th e west s ide of the Gardiner v a l le y must c ross th e Yellowstone River to reach the study area. Some e lk c rossed the r i v e r near the mouth of Bear Creek and s c a t te r e d onto Deckard F la t s or in to the Eagle Creek area. . Most e lk crossed the r i v e r and U.S. Highway 89 near the a i r s t r i p about 2 km north of Gardiner. Few of the e lk c ro s s ing near the a i r s t r i p appear to remain i n the a r e a long . Most e lk moved up i n t o L i t t l e T r a i l Creek and t r a v e r s e d ove r i n t o B a s s e t t Creek. E lk werp a l s o no ted c r o s s i n g th e r i v e r a t n igh t to feed i n th e L i t t l e T ra i l Creek a re a and then re tu rn in g to the 74 Park b e fo r e d a y l i g h t . E v id e n t ly th e r i v e r and highway a r e no t b a r r i e r s to noc tu rna l movement. Mule deer m ig ra t io n to th e study a rea was much l e s s w e ll defined than e lk movement, although deer numbers on the a re a were r e l a t i v e l y constan t through both w in te rs . I t appears most deer using the study a rea m ig ra te from the nearby W ilderness or Park land s on the e a s t s id e o f th e Y e l lo w s to n e R ive r . Deer began a c c u m u la t in g i n t h e f o r e s t e d a re a s i n mid-rOctober both years of the study even before th e re was any app rec iab le snow accumulation. Movements a f t e r October were g ene ra l ly to lower e le v a t io n s i n accordance w ith snow depths. Deer were r a r e ly observed i n snow over 1/3 m deep. Human im pacts in f lu en c in g w in te r animal d i s t r i b u t i o n ranged from w i l d l i f e s i g h t s e e r s , v e h i c l e t r a f f i c , m in ing a c t i v i t y , to p eo p le sea rch ing fo r shed a n t le r s . However, l a t e e lk hun ting a c t iv i t i e s were by f a r th e m ost s i g n i f i c a n t human in f l u e n c e . Deer were p f t e n d i s lo d g e d from f e e d in g a r e a s by h u n te r a c t i v i t y , bu t t h e e f f e c t was g ene ra l ly sh o r t term. E lk w ere d i s p l a c e d to h ig h e r e l e v a t i o n f o r e s t e d a r e a s which i n 1981-82 meant n eg o t ia t in g over I m of snow. Elk re tu rn ed to feed i p the sageb rush -g rass land a t n igh t, but they a lso fed on upper e le v a t io n s o u th f a c i n g e x p o su re s . F eed ing s i t e s i n a s much a s 1.5 m o f snow w ere o b se rv ed i n 1981-82 a t o ve r 2500 m e l e v a t i o n . D e sp i te th e ev iden t ha rdsh ip imposed on an im als , the c u rren t method of conducting l a t e hunts d id not appear to s i g n i f i c a n t l y a l t e r e lk m ig ra t io n out of the Park during the more severe w in te r o f 1981-82. 75 The p r a c t ic e of c lo s ing Deckard F l a t s to hun ting during the l a t e e l k h u n t , i n i t i a t e d i n 1980—81, sh o u ld p ro b ab ly be c o n t in u e d . Th is p ra c t ic e a l lpw s e lk a needed feed ing and r e s t i n g b u ffe r zone below the deep snows o f h ig h e r e l e v a t i o n s . However, v e g e t a t i o n t r e n d s on D eck a rd F l a t s s h o u ld be c l o s e l y m o n i to r e d a s e l k may becojne c o n c e n t r a t e d i n th e a r e a f o r p ro lo n g ed p e r io d s and th u s cau se e c o lo g ic a l reg re ss ion . Animal Use - Feeding Habits Even w ith the d isp lacem ent caused by l a t e hunts , fe ed ing a c t i v i t y was most concen tra ted below 2100 m in sageb rush -g rass range i n 1981- 82. Elk a p p ea red t o spend more t im e f e e d in g i n a r e a s w i th 1 /3 m p r l e s s snow accum ulation , although they are c e r t a in ly capable of feed ing i n much d e ep e r snow. The few s c a t t e r e d e lk on t h e a r e e i n 1980-81 s p e n t m ost o f t h e i r t im e above 2100 m e l e v a t i o n , b u t many f e e d in g s i t e s were observed i n mountain b ig sagebrush h a b i t a t types a t lower e l e v a t i o n s . Deer were s c a t t e r e d up t o 2300 m e l e v a t i o n d u r in g th e 1980-81 w in te r , and they were a lso o f te n observed feed ing i n sagebrush . a re a s . Deer f e e d in g h a b i t s a r e d i f f i c u l t t o d i s c e r n (G e i s t I 98I ), but s ag eb ru sh a p p e a r s to c o n s t i t u t e a s u b s t a n t i a l p a r t o f t h e i r d i e t on the study area. Deer use of mountain big sagebrush was noted as e a r ly as mid-October on the w in te r range. Deer used b lack sagebrush and a l l t h r e e s u b s p e c ie s o f b ig s a g e b ru sh , bu t Wyoming b ig s ag eb ru sh and mountain big sagebrush rece ived the p o s t use. Not only did deer feed on s ag e b ru sh , bu t th ey a l s o used dense s t a n d s o f b ig s ag eb ru sh a s r e s t i n g a reas . Sagebrush prov ides the only v eg e ta t iv e cover on much 76 o f th e e l e v a t i o n a l zone d e e r a r e r e s t r i c t e d t o i n w i n t e r s such as 1981-82. Grass u t i l i z a t i o n was p rev a len t a t e lk feed ing s i t e s during both yea rs of the study. U t i l i z a t i o n e s t im a te s in d ic a ted a p re fe rence f o r Idaho fescue and bluebunch w heatgrass e a r ly in th e w in te r . Elk seemed to s e l e c t fo rage in p ropo r t ion to i t s abundance when g ra s s re sou rces became dep le ted as w in te r progressed i n 1982. There was a s u r p r i s i n g amount o f s ag eb ru sh u t i l i z a t i o n a t e lk feed ing s i t e s . Elk were observed browsing on sagebrush during t h e i r f e e d in g a c t i v i t i e s . G reer e t a l . (1970) found t h a t b ig s ag eb ru sh com p rised from a t r a c e to f i v e p e r c e n t o f Park e l k d i e t s , w i th th e h igh p e r c e n ta g e c o r r e l a t e d w i th h igh p o p u la t i o n d e n s i t y . E lk w ere u s in g s a g e b ru sh on t h e s tu d y a r e a even d u r in g t h e w in t e r o f 1980-^1 when t h e r e w ere l e s s th a n .07 e lk p e r h e c t a r e . S ageb ru sh use on th e Gardiner w in te r range by e lk perhaps r e f l e c t s a sp e c ia l need a f t e r the long m ig ra t io n fo r n u t r i e n t s not provided by g rass . There i s l i t t l e o the r browse of consequence on the s tudy area. A v a i l a b l e f o r a g e r e c e iv e d v e ry l i t t l e use on th e s tudy a r e a during the w in te r of 1980-81 due to th e r e l a t i v e l y sm all number of e lk p resen t. Yet, up to an e s t im a ted 50 percen t of the g ra s s was consumed i n lo c a l iz e d a re a s on Deckard F l a t s where approxim ate ly 300 e lk were concen tra ted f o r two weeks in February. However, by i n i t i a l grqenup i n 1981 on ly an e s t im a t e d a v e rag e f i v e p e r c e n t o f h e rb aceou s v e g e t a t i o n had been g ra z ed i n o th e r u t i l i z a t i o n p l o t s on th e w in t e r range. Of s ix tagged mountain b ig sagebrush p la n ts s c a t te r e d over the study area , s ix pe rcen t of the p rev ious y ea r 's growth was browsed by 77 s p r in g . A lthough th e sam ple s i z e was s m a l l , t h e s e m easu rem en ts appeared to correspond w ith sagebrush u t i l i z a t i o n on most of the study d rea by the sp r ing of 1981. The w in te r of 1981-82 provided a completely d i f f e r e n t p ic tu re of a p im a l v e g e t a t i o n use . Animal p r e f e r e n c e f o r f e e d in g s i t e s was c l e a r l y i n d i c a t e d by heavy f o r a g in g i n c e r t a i n a r e a s compared to .others. The d e l in e a t io n between p r e f e r r e d f e e d in g s i t e s and o t h e r s C losely approximated h a b i t a t type boundaries. S ix t e e n u t i l i z a t i o n p l o t s com bined w i t h u t i l i z a t i o n c ag e c l i p p i n g s p ro v id e d th e b a s i s f o r g r a s s use e s t i m a t e s . S p r in g 1982 p ro d u c t io n d a t a from i n and o u t s i d e one u t i l i z a t i o n cage l o c a t e d i n th e mountain big sagebrush/bluebunch wheatgrass h a b i t a t type in d ic a te ^ 81 p e r c e n t u t i l i z a t i o n f o r b l u e b u n c h w h e a t g r a s p . A s i m f j a f u t i l i z a t i o n cage i n t h e Wyoming b ig sagebrush /b luebunch wheatgrpss h a b i t a t type had 29 percen t u t i l i z a t i o n of bluebunch wheatgrass neap i t . Bluebunch wheatgrass showed an e s t im a ted 32 pe rcen t u t i l i z a t i o n i n the nearby black sagebrush/bluebunch wheatgrass h a b i t a t type. Of c o u r s e , u t i l i z a t i o n w i t h i n a h a b i t a t type a l s o v a r i e d . The most d r a s t i c example was i n the mountain big sagebrush/Idaho fescue h a b i t a t type. An e s t im a ted 80 p e rcen t of Idaho fescue had been grazed on most o f Deckard F l a t s by th e s p r i n g o f 1982. However, c l i p p i n g s near a u t i l i z a t i o n cage i n th e 1974 w i ld f i r e burned a re a in d ic a ted 38 I percen t u t i l i z a t i o n of Idaho fescue . ' Grass u t i l i z a t i o n throughout the w i l d f i r e burn ap p ea red t o be c o n s id e r a b ly l e s s th a n t h a t found i n n earby s ag eb ru sh a r e a s . Th is p a t t e r n o f d e c r e a s e d u t i l i z a t i o n was 78 a lso noted i n o th e r p re sc r ib ed burn a re a s which r e f l e c t s the la ck o f observed animal w in te r use of sagebrush burns. E lk d id f e e d i n burned a r e a s . However, e lk d id n o t g e n e r a l l y spend c o n c e n t r a t e d f e e d in g t im e i n b u rn s , a s th ey would i n a d j a c e n t s ag eb ru sh a r e a s . As T ab le 3 i l l u s t r a t e d , bu rned a r e a s (lid have r e l a t i v e l y high g ra ss p roduction as secondary s u c c e s s i o n p ro g r e s s e d , s u g g e s t i n g o t h e r p o s s i b l e e x p l a n a t i o n s f o r d e c r e a s e d e l k w in t e r u t i l i z a t i o n in burned a re a s . A v e rag e snow d e p th i n b u r n s was l e s s t h a n d e p t h s fo u n d accumulated between b ig sagebrush p lan ts . However, snow accumulation under b ig s a g e b ru sh c an o p ie s was l e s s t h a n th e u n ifo rm snow d e p th s found on burned s i t e s . S ageb ru sh c an o p ie s c r e a t e d a v a r i a b l e snow c ru s t whereas the c ru s t in g i n burned a re a s was more co n s is ten t , EJ7k; f e e d in g s i t e s were o f t e n l o c a t e d n e a r th e base o f b i ^ s ag eb ru sh p la n ts , which was a lso observed by Houston (1976) in th e Park. Mule deer a c tu a l ly appeared to avoid the burned a re a s during the w in te r . Deer were po ss ib ly r e s t r i c t e d by snow c ru s t in g i n the burns, bu t a l s o by th e l a c k of th e rm a l and s e c u r i t y cove r p ro v id ed by b ig s a g eb ru sh . Deer cou ld be app roached more c l o s e l y when f e e d in g o r r e s t i n g i n b ig s ag eb ru sh th a n i n a r e a s w i th o u t i t , such a s IrU r e l a t i v e l y low growing black sagebrush areas. An e x a m p le o f t h e s e o b s e r v a t i o n s i s a g r o u p o f 18 d e e r encountered i n March 1980 feed ing around the periphery or in f in g e r s o f un touched b ig s ag eb ru sh o f a bu rn . Deer s t a n d i n g i n th e exposed f i n g e r s o f b ig s a g e b ru sh spooked when app roached w i t h i n 100 m, bound ing a p p ro x im a te ly 100 m a c r o s s th e bu rned a r e a and s to p p in g i n 79 sagebrush on the f a r edge of the burn. Other deer i n th e surrounding sagebrush moved o f f when approached w i th in 75 m, by walking w i th in the s ag eb ru sh around th e p e r ip h e ry o f th e bu rn to r e j o i n t h e o th e r d e e r . Big sagebrush canopy cover perhaps provides needed s e c u r i ty fo r deer i n th e exposed Gardiner a rea , e s p e c ia l ly with a l l the human a c t i v i t y during the w in te r . One to t h r e e y e a r o ld s a g e b ru sh bu rn s w ere used e x t e n s i v e l y by bo th d e e r and e lk d u r in g s p r i n g g reenup . Anim als w ere a t t r a c t e d to these burns by a two to th re e week e a r l i e r greenup, which Daubenmire (1968) a t t r i b u t e s tp in c re a s e d s o i l t e m p e r a tu r e cau sed by b la ck ened and unshaded s o i l in burns. Also, r e le a s e of p lan t n u t r i e n t s through burning may make subsequent fo rage more p a la ta b le (V a l len tin e 1977), but t h i s e f f e c t i s only sho r t- te rm . Big sagebrush achieves a d e f i n i t e hedged appearance w ith repeated herbage removal (Cook and S toddart 1960). Many b ig sagebrush p la n ts in the Gardiner a rea d e f i n i t e l y have a hedged appearance, e sp e c ia l ly below 2100 m e lev a t ion . Seventeen sagebrush p la n ts had been tagged by th e f a l l o f I 981 as a check on fo rm c l a s s d e s i g n a t i o n s a s s ig n e d tp s ag eb ru sh p l a n t s t a l l i e d i n summer d e n s i t y p l o t s . R e s u l t s from rem easuring sagebrush le ad e r s in th e sp r ing of 1982 a re presen ted i n Table 6. Percentage u t i l i z a t i o n was determined by d iv id in g the leng th browsed by the t o t a l leng th tagged. Form c la s s e s t im a t io n s a re those ass igned to p la n ts when tagged. A lthough th e sam ple s i z e was s m a l l , d a t a i n T ab le 6 seem to in d ic a te form c la s s d e s ig n a t io n s a s s ig n e d t o tagged s ag eb ru sh a r e a f a i r r e p re s e n ta t io n of p a s t animal use. Annual growth u t i l i z a t i o n of 80 Table 6 . Percentage u t i l i z a t i o n of 17 tagged sagebrush taxon by browse form c la s s , p o s tw in te r 1982. Taxon^ Form c la s s U t i l i z a t i o n (2) Current y e a r ' s growth Woody growth A. t . v a l i g h t 36 0 Arno l i g h t 10 0 A. t . v a moderate 47 .14 A.t.wy moderate 46 7 A. t . v a heavy 93 16 A. t.wy heavy 100 . 54 I A .t.va - m oun ta in b ig s a g e b ru s h ; Arno - b la c k s a g e b ru sh ; A.t.wy - Wyoming b ig sagebrush. heavy form c l a s s p la n ts was tw ice as high as t h a t of p la n ts placed i n the moderate form c la s s . Consumption o f woody growth a lso inc reased g r e a t ly as browsing in c reased on p a r t i c u l a r p lan ts . A ll o f th e ta g g ed s ag eb ru sh p l a n t s showed am ounts of u se c h a r a c t e r i s t i c o f th e p r e - a s s ig n e d form c l a s s e s , e x c e p t t h a t o f th e l i g h t mountain b ig sagebrush c la s s . Most of the u t i l i z a t i o n measured on l i g h t form c la s s p la n ts was from removal of l e a f m a te r ia l . Animal b ro w s in g o f s ag eb ru sh tw ig s rem oves much of th e p l a n t s r e s e r v e c a r b o h y d r a t e s because a h igh p e r c e n ta g e of the s to red carbohydrates a re near twig growth p o in ts in b ig sagebrush (Coyne and Cook 1970). T h eo re t ic a l ly then, a cons ide rab le amount of b ig sagebrush l e a f m a t e r i a l cou ld be removed d u r in g th e w in t e r w i th o u t s e r i o u s l y e f f e c t in g growth form. Browsing o f le ad e r growth would cause the more hedged a p p ea ran ce d i s t i n g u i s h i n g m o de ra te and heavy form c l a s s e s . 81 When an im als a re concen tra ted on th e study area , l i g h t l y browsed big s ag eb ru sh p l a n t s may r e c e i v e more use th a n i n i t i a l l y i n d i c a t e d by form c la s s . Big sagebrush can o ccas iona lly w iths tand cons ide rab le use during the f a l l and w in te r (Wright 1970). Heavily used sagebrush p la n ts in th e G a rd in e r a r e a p ro b ab ly r e c e i v e some use ev e ry w in t e r , bu t g re h e a v i l y u t i l i z e d on ly when deep snow c o n c e n t r a t e s d e e r , and l a r g e numbers o f e lk a re p resen t. Other p la n ts ev id en t ly re c e iv e muqh use on ly when a n im a l s a r e c o n c e n t r a t e d on th e a r e a . Heavy form c l a s s p la n ts a re found in te r s p e r s e d w ith l i g h t form c la s s p lan ts . V a r ia b i l i ty of u t i l i z a t i o n among and w i th in the sagebrush taxon ha s been n o ted i n o th e r r e g io n s (W righ t 1970, Cook e t a l . 1954) and v a r i o u s e x p l a n a t i o n s have been p ropo sed (P ow e ll 1970, Welch and Pede rson 1981, Nagy e t a l . 1984). Data i n T ab le 7 r e v e a l s t h e v a r i a b i l i t y o b se rv ed be tw een and w i t h i n th e s a g e b ru sh taxon on th e Table 7. Contingency ta b le of sagebrush form c la s s d e s igna tion s from 1980 and 1981 browse t r a n s e c ts . Taxod Form c la s s va lues . observed/eynentAriS- Light Moderate Heavy A. t . v a 654/617 292/298 46/77 A.t.wy 16/63 47/30 38/8 A. t . t r 15/12 3/6 1/2 Arno 120/113 47/55 15/14 I A .t.va - m oun ta in b ig s a g e b ru sh ; A.t.wy - Wyoming b ig s a g e b ru s h ; A . t . t r - basin b ig sagebrush; Arno - b lack sagebrush. 2 Chi s q u a re = 179.3 w i th 6 d . f . , s i g n i f i c a n t a t t h e .01 p r o b a b i l i t y l e v e l . 82 study area. Form c la s s d e s ign a t ion s were assigned to sagebrush p la n ts encountered in browse t ra n s e c ts . Observed v a lu e s i n d i c a t e t h e r e l a t i v e abundance o f th e v a r i o u s sagebrush taxa on the study area. Mountain big sagebrush comprises 77 p e r c e n t o f s ag eb ru sh p l a n t s c l a s s i f i e d t o fo rm c l a s s . B as in b ig s a g eb ru sh , Wyoming b ig s ag e b ru sh , and b la ck s a g e b ru sh make up 2, 8, and 14 pe rcen t of c l a s s i f i e d p la n ts , re sp ec t iv e ly ; I t a p p e a r s o n ly Wyoming b ig s a g e b ru sh i s u t i l i z e d h e a v i l y i n p ropo r t ion to i t s abundance. However, the only a re a s where basin b ig sagebrush, Wyoming big sagebrush, and black sagebrush grow i s below 1950 m e le v a t io n where concen tra ted feed ing a c t i v i t y occurs. Mountain b ig s ag eb ru sh g row s to o v e r 2500 m. T h i r ty p e r c e n t o f th e m oun ta in b ig sagebrush browse t r a n s e c t s were conducted above 2100 m e lev a t io n where w in te r snow depths g re a t ly c u r t a i l feed ing a c t i v i t y . Form c l$ s s d e s i g n a t i o n s i n d i c a t e m oun ta in b ig s ag eb ru sh has approximately the same p r o p o r t i o n of u se a s Wyoming b ig s ag eb ru sh below 1950 m e lev a t io n . Sageb rush r e c e i v e s c o n s id e r a b l e use on t h e s tu d y a r e a a s i n d i c a t e d n o t on ly by a c t u a l use o f tagged p l a n t s , b u t a l s o form c l a s s e s s y m b o l iz in g p a s t use . R e l a t i v e l y l i g h t u se o f s ag eb ru sh i n 1980-81 w ith average numbers of deer on the a rea in d ic a te sagebrush i s a l s o im p o r t a n t to e l k a s a food s o u rc e . I n d i c a t i o n s o f p a s t use a r e too ex ten s ive to a t t r i b u t e a l l use so le ly to mule deer . Animal Use - Imnants Animal im pacts on th e study a re a a re g re a t ly minimized due to the season of use, p a t te rn s of use dependent on w in te r s e v e r i ty , and human 83 a c t i v i t y . Deer a re g en e ra l ly s c a t te r e d i n sm all groups over as much o f th e a r e a a s snow d e p th s a l lo w . Large numbers o f e lk do n o t r e a c h th e G a rd in e r a r e a y e a r l y . Human a c t i v i t y k eep s e l k d ay t im e f e e d in g and r e s t i n g a c t i v i t y r e s t r i c t e d mainly to upper e le v a t io n s , le s s en in g th e p o t e n t i a l im pac t on lo w e r e l e v a t i o n f e e d in g a r e a s . Damage to herbaceous v e g e ta t io n i s l a rg e ly prevented by m ig ra t io n of most e lk soon a f t e r greenup. Sheer num bers o f a n im a ls do cau se damage i n l o c a l i z e d a r e a s . Major trava lw ays a re t r a i l s sometimes 20 to 30 cm deep beaten in to the ground by pass ing hooves through th e years . A sm all percentage of the Rocky Mountain ju n ip e r a re hedged or h igh lined . Some a r e a s on s o u th and w e s t f a c i n g s l o p e s n e a r f o r e s t cover e x h ib i t l e s s p e renn ia l g ra ss cover than nearby a reas . These a re pj,tes g en e ra l ly l e s s than 10 ha i n s iz e t h a t i n i t i a t e sp r in g growth apoper th an o th e r s i t e s i n m ig r a t i o n a r e a s , and a re c lo s e to e scap e cover . S p r in g d e e r g r a z in g p ro b a b ly c o n t r i b u t e s t o a d e c l i n e i n g r a s s abundance on the s i t e s . B ig s a g e b ru sh on Deckard F l a t s i s t h e on ly p l a n t s p e c i e s t h a t a p p e a r s to have s i g n i f i c a n t l y d e c r e a s e d i n abundance from w i ld u n g u la te use on t h e s tudy a re a . F iv e t r a n s e c t s on Deckard F l a t s showed mountain and Wyoming b ig sagebrush c o n s t i t u t e 4.6 percen t of t o t a l cover w h i l e th e same ta x a on t h e o p p o s i t e s i d e o f Bear Creek make up 11.3 p e r c e n t o f t o t a l cove r . G rass c o v e r i s com parab le on bo th areas. 84 Animal Use Compared w ith S i t e V ariab les P e l le t-g ro u p counts were used to q u a n t i t a t i v e ly a s se s s animal use on th e s tu d y a re a . Low ( i n N e f f 1968) found 24.1 p e r c e n t o f marked p e l l e t - g r o u p s w ere s t i l l r e c o g n iz a b l e a f t e r f i v e y e a r s . On th e G a rd in e r w i n t e r r a n g e , 77.8 and 71.4 p e r c e n t o f f l a g g e d e lk and d e e r p e l le t -g ro u p s , re sp e c t iv e ly , were s t i l l recogn izab le a f t e r tyo yeays. Thus, p e l l e t - c o u n t s on th e s tu d y a r e a r e p r e s e n t s e v e r a l y e a r s o f animal use and should d ep ic t an average of animal a c t i v i t y . Less than two p e r c e n t o f th e p e l l e t - g r o u p s coun ted w ere i d e n t i f i e d a s b e in g deposited during th e summer, so most of the p e l le t -g ro u p s rep re sen t w in te r use. Neff (1968) p re s en ts a review of the p e l le t - c o u n t technique fo r d e t e r m in in g v a r i o u s b ig game t r e n d s . N e ff ( 1968) and C o l l i n s and Urness (1979) have advised re s e a rc h e r s to use cau tion when in f e r r i n g animal h a b i t a t p re fe rence from f e c a l counts because d e fe ca t io n r a t e s depend on animal a c t i v i t y and tim e of year (C o ll in s and Urness 1979, I r b y 1981). In t h i s s tu d y , t im e o f f e c a l d e p o s i t i o n sh o u ld no t b i a s th e d a t a , s in c e most p e l l e t s w ere w in t e r d e p o s i t e d . D i f f e r e n c e s i n a n im a l a c t i v i t y l e v e l s be tw een th e h a b i t a t ty p e s would be th e on ly reason p e l le t - c o u n ts might not a c cu ra te ly rep re sen t e lk and deer use of the d i f f e r e n t h a b i t a t types. Observing pronghorn an te lope , Irby (1981) concluded t h a t p e l l e t - counts could be an adequate index of time spen t i n an a re a i f an im als u t i l i s e the same a re a s fo r r e s t i n g and a c t i v i t y . I f an imals feed i n one a rea and r e s t i n ano ther, p e l l e t - c o u n t s would presumably be biased to w a rd s t h e f e e d in g a r e a s . F o l lo w in g t h i s r e a s o n in g , th e Douglas 85 f ir /I d a h o fe scu e h a b ita t type would be the on ly area s tu d ied on th e w in ter range where tim e sp en t m ight be under r ep resen ted by e lk pe lle t-coun ts . Elk appeared to spend more time r e s t in g than feed ing in t h i s h a b ita t type. I t i s b e lie v e d th a t p e l l e t—coun ts a c cu ra te ly assess mule deer w inter use of a l l hab itat types stud ied . Mean e lk and mule deer p e lle t-g ro u p counts from a l l h a b i ta t types sam pled d u r in g th e two y e a r s tu d y a r e i l l u s t r a t e d i n F ig u re 4. The mean counts correspond w ith observed anim al use of the v a rio u s h a b i ta t ty p e s . S in ce a l l sh rub h a b i t a t ty p e s a r e e q u a l ly a c c e s s ib le to a n im a ls d u r in g w in te r m on ths, th e d i f f e r e n c e s i n mean p e l l e t - g r o u p cdunts a re be lieved to re p re se n t anim al p re fe rence fo r c e r ta in a reas . The s i g n i f i c a n t d i f f e r e n c e s be tw een means may be som ewhat c o n fu s in g w ith o u t e x p la n a t io n (F ig u re 4). Sm aller mean d if fe re n c e s being s ig n i f ic a n t ly d i f f e r e n t when la r g e r mean d if fe re n c e s a re not can be e x p la in e d by h a b i t a t s i z e . P r o p o r t io n a te ly more t r a n s e c t s w ere sam pled on l a r g e r h a b i t a t ty p e s due to sam p lin g te c h n iq u e . For example, 39 p e lle t-g ro u p t r a n s e c ts were conducted in th e mountain b ig sagebrush /Idaho fe scue h a b i ta t type compared to only f iv e t r a n s e c ts in th e r e l a t iv e ly sm all b a sin b ig sagebrush/bluebunch w heatg rass h a b i ta t type. The l e a s t s ig n i f i c a n t d if f e r e n c e (LSD) t e s t s betw een means are influenced by sample s ize . Since the degrees of freedom are l e s s in comparing two sm aller hab ita t types, the d ifference between the means must be p ro p o r t io n a te ly la r g e r to be con sid ered s t a t i s t i c a l l y s ig n if ic a n t. There are more degrees o f freedom involved when a larger 86 F igure 4 . Elk and deer use of s ix h a b i ta t types, as determ ined by mean p e lle t-g ro u p counts. A .t .v a /F e id 2543 Arno/Agsp A .t.va /A gsp A.t.wy/Agsp .2239 ab « A .t .tr /A g sp 1435 A .t .v a /F e id Arno/Agsp A .t.va /A gsp V X N V l 2820 I A .t .tr /A g sp Psmc/Feid 1000 P elle t-g roup s/h a ^Numbers among each animal sp ec ie s fo llow ed by a d i f f e r e n t l e t t e r a re s ig n if ic a n t ly d i f f e r e n t a t the .05 p ro b a b ili ty le v e l . p^Common names o f th e s e s c i e n t i f i c name a b b r e v ia t i o n s a r e : A .t.v a - mountain b ig sagebrush, Feid - Idaho fescue , Arno - b lack sagebrush, Agsp - bluebunch w heatg rass, A.t.wy - Wyoming b ig sagebrush, A .t.tr - basin b ig sagebrush, Psme - Douglas f i r . 87 h a b i t a t type i s com pared w ith a n o th e r mean, so t h a t a s m a l le r d iffe ren c e can be considered s ig n i f ic a n t . In th e h a b i t a t ty p e p e l l e t - c o u n t means f o r d e e r , b o th m o un ta in b ig sag eb ru sh h a b i t a t ty p e s a p p ea r to be d i f f e r e n t from b a s in b ig s a g e b ru sh /b lu e b u n c h w h e a tg ra s s . Only m oun ta in b ig s a g e b ru sh /Id a h o fe scue i s s ig n i f ic a n t ly d i f f e r e n t b ecau se o f sam ple s i z e . However, th e m oun ta in b ig s a g e b ru sh /b lu e b u n c h w heatgrass mean compared w ith b a s in b ig s a g e b ru sh /b lu e b u n c h w h e a tg ra s s i s c lo s e to th e a s s ig n e d s ig n if ic a n c e le v e l , w ith the mean d if fe ren c e only 61 p e lle t-g ro u p s /h a l e s s than th a t re q u ired a t the .05 p ro b a b il i ty le v e l . E lk and d e e r use o f th e b a s in b ig sag eb ru sh a r e a was th e lo w e s t o f a l l h a b i t a t ty p e s . Both an im a l s p e c ie s d id f e e d i n th e a r e a , bu t g e n e r a l ly j u s t w h ile t r a v e l l i n g th ro u g h th e rough t e r r a i n o f B ear C reek. D oug las f i r / I d a h o f e s c u e had th e second lo w e s t f e c a l c o u n ts f o r bo th an im a l s p e c ie s . As p r e v io u s ly m en tion ed , e lk u se o f t h i s h a b i ta t type may be underrep resen ted by p e lle t-c o u n ts . Deep snow kept deer out of most of th i s h a b i ta t . ty p e in 1981- 82. . The b lack sagebrush/b luebunch w heatg rass h a b i ta t type s tra d d le s one o f th e m a jo r e lk m ig r a t io n r o u t e s i n t o L i t t l e T r a i l Qreek p a r t i a l ly e x p la in in g th e r e l a t iv e ly h igh p e lle t-c o u n ts . However, e lk d id freq u en t th e a re a to feed and r e s t . Elk use was a lso r e la t iv e ly h igh in both mountain b ig sagebrush h a b i ta t types and Wyoming b ig sage b ru sh / b lue bunch w heatgrass. These w ere a l s o th e h a b i t a t ty p e s w ith th e h ig h e s t g r a s s cover and p ro d u c t io n i n th e s tu d y a re a (T ab le s I and 2 ). M ountain b ig s a g e b ru sh /b lu e b u n c h w h e a tg ra s s had th e h ig h e s t g r a s s cover and 88- p ro d u c t io n a lo n g w ith th e h ig h e s t o v e r a l l e lk u se . P e l l e t - c o u n t s i n , the Wyoming b ig sage b rush /Idaho fescue type may r e f l e c t e lk sea rch ing ou t t h i s r e l a t i v e l y sm a ll h a b i t a t ty p e f o r n o t o n ly th e g r a s s , bu t a lso the sagebrush av a ila b le . Deer use o f th e Wyoming b ig sage b ru s h /b lu e bunch w h e a tg ra s s h a b i t a t ty p e a p p e a rs to show t h e i r p r e f e r e n c e f o r t h i s a re a . Sagebrush u t i l i z a t i o n i s heavy in th e h a b i ta t type, but th e a re a a lso p ro v id e s some o f th e b e s t co v e r i n sag eb ru sh h a b i t a t s on th e w in te r range. R e la tiv e ly la rg e sagebrush p la n ts provide therm al and r e s t in g cover w hile nearby breaks and r o l l i n g topography o f f e r escape te r r a in . Much o f th e h a b i t a t ty p e i s on s o u th and w e s t e x p o su re s g e n e r a l ly w ithou t snow accum ulation. Some s i t e s w ith in th e mountain b ig sagebrush and b lack sagebrush h a b i ta t types had high p e l le t- c o u n ts w h ile o th e rs had le s s , r e f l e c t in g f a i r l y s e le c t iv e deer use w ith in th e se types. Most deer use in th ese h a b i t a t ty p e s was on so u th o r w e s t e x p o su re s and a r e a s n e a r cover. I n t e n s iv e l y u sed s i t e s i n th e b la c k sage b ru s h /b lu e bunch w h e a tg ra s s h a b i ta t type were near is la n d s o f b ig sagebrush or around Douglas f i r s tan d s . Animal use appeared to be g e n e ra lly re la te d to h a b i ta t type, but more s p e c i f i c a l l y w ith c e r t a i n c h a r a c t e r i s t i c s w i t h i n t y p e s . I n f o rm a t io n i n T ab le 8 shows th e c o r r e l a t i o n o f a l l c o n tin u o u s num erical param eters measured w ith e lk and deer p e lle t^g ro u p counts. E lk use i s h ig h ly c o r r e l a t e d w ith a number o f v e g e ta t io n p a ra m e te r s . I t i s more c lo s e ly a s s o c ia te d w ith g r a s s co v e r ( r= .66 ) th a n any o th e r p a ra m e te r m easu red . E lk u se i s a l s o p o s i t i v e l y 89 Table 8 . C o rre la tio n c o e f f ic ie n ts o f e lk and deer p e lle t-g ro u p counts ob ta ined in 1980 and 1981 and a sso c ia te d w ith v eg e ta tio n and o th e r s i t e c h a r a c te r i s t i c s . S ite ch a rac te r Elk Deer S i te c h a rac te r Elk Deep Grass cover . 66** .21 Shrub h e ig h t - .1 5 - .1 5 Forb cover Shrub cover .15 - .2 9 ° - .1 3 .08 Shrub a re a P lan t sp ec ie s - .2 7 ° ° - .1 6 T otal cover .24 .12 number. .14 -.11 Grass p roduction .36** .21 Slope - .4 0 ° ° - .2 4 ° Forb p roduction -.1 6 -.21 E leva tion - .3 4 0tt - .5 2 ° ° Shrub p roduction - .4 4 ° ° - .1 6 Bare ground . 26° .31* T otal p roduction - .1 2 .06 L i t t e r .09 — .08 Shrub d en sity - .0 3 .12 Gravel - .0 9 ,07 Shrub volume - .2 8 ° ° - .1 8 Rock - .3 6 ° ° - .2 2 ^ S ig n if ic a n t a t the .05 p ro b a b il i ty l e v e l . tt0S ig n if le a n t a t th e .01 p ro b a b i l i ty le v e l . c o r r e l a t e d w ith g r a s s p ro d u c t io n , a lth o u g h n o t a s s t r o n g ly a s w i th cover. Perhaps e lk key more on g ra s s cover because cover i s a v isu a l a s p e c t o f g r a s s c o m p o s i tio n w h e rea s p ro d u c t io n i s a l e s s v i s u a l component. Elk use i s n eg a tiv e ly c o rre la te d w ith a l l shrub param ete rs , but m ost s t r o n g ly w ith th o se r e l a t e d to sh ru b s i z e . S i t e s w ith l a r g e robu st sagebrush p la n ts such as b a sin b ig sagebrush re c e iv e l e s s e lk u se , and a l s o , s ag eb ru sh p l a n t s i n h ig h e r e lk u t i l i z a t i o n a r e a s a re r e l a t iv e ly sm a lle r due to t h e i r hedged s ta tu re . , Less e lk use in a re a s w ith in c re ased fo rb p roduction probably r e f l e c t s few er e lk a t h igher e l e v a t io n s w here fo r b p ro d u c t io n i s r e l a t i v e l y h ig h , r a t h e r th a n a d i r e c t r e la t io n s h ip w ith fo rb p roduction . 90 Elk were hampered by snow accum u la tion , as in d ic a te d by the negative corre la tion w ith e levation . Percentage slope in creases w ith e leva tion which p a r t ia lly accounts for i t s negative a sso c ia tion with e lk use (r= - .4 0 ). S lop es are a ls o s te ep a long the Y e llow ston e R iver and Bear Creek gorges which e lk g e n e r a lly use on ly w h ile t r a v e l l in g through. The h ig h e s t p ercen tages o f rock cover are a ls o found on s te ep s lo p e s (s e e d is c u s s io n o f Table 5 ). Greater e lk use w ith an in c r e a s in g p ercen tage o f bare ground probably r e f l e c t s use on dr iep south and west exposures. Deer use i s m ost s t r o n g ly c o r r e l a t e d w ith e l e v a t i o n ( r= - .5 2 ) . The negative a s s o c ia t io n dem onstra tes mule d e e r 's p h y s ic a l i n a b i l i t y to n e g o t i a t e d e ep e r snows a t h ig h e r e l e v a t io n s . T here i s a l s o a s ig n if ic a n t nega tive c o r r e la t io n w ith slope (r= -.24), bu t i t i s not as h ig h as t h a t d e te rm in e d f o r e lk . The r e l a t i v e l y lo w e r r v a lu e p a r t i a l ly r e f l e c t s the tendency of deer to feed on the s te ep s lopes of th e Y e llo w sto n e R iv e r go rge and n e a r th e mouth o f B ear Creek. The s tro n g a s s o c ia t io n w ith bare ground may lik e w is e in d ic a te u t i l i z a t i o n o f d r ie r south and w est exposures. Deer use i s n o t h ig h ly c o r r e l a t e d w ith any o f th e v e g e ta t io n param eters. This n o n -a sso c ia tio n could in d ic a te a t l e a s t two p o ss ib le exp lana tion s . One ex p lan a tio n may be th a t deer a c t i v i t i e s during tho w in te r a re n o t a s s o c ia te d w ith th e v e g e ta t io n p a ra m e te r s t h a t w ere q u a n tif ie d . A second ex p lan a tio n may be th a t v e g e ta tio n measurements a n d /o r th e use o f fo r a g e means w ere n o t s p e c i f i c enough to d e te c t v a r ia t io n s in th e s e le c t iv e n a tu re of deer a c t iv i ty . 91 The only o th e r s i t e pa ram eters eva lua ted w ith p e l le t- c o u n ts were i s i x c a t e g o r i e s o f v a r i a b l e s r e c o r d e d t o h e lp d e s c r i b e th e c h a r a c t e r i s t i c s o f t r a n s e c t s i t e s (T ab le 9 and A ppendix D). These c a te g o r ie s and v a r ia b le s were no t q u a n t if ia b le , but they were inc luded to p o s s ib ly h e lp e x p la in an im a l u se . For bo th d e e r and e lk , th e a n a ly s is o f v a rian ce was used to s t a t i s t i c a l l y t e s t f o r s i g n i f i c a n t d if f e re n c e s between p e lle t-c o u n t means o f the v a r ia b le s fo r each of the s ix c a te g o r ie s (Table 9 ). Table 9 . S ig n i f ic a n c e l e v e l s o f F -v a lu e s o b ta in e d by a n a ly s i s o f va riance of s ix c a te g o r ie s eva lua ted fo r e lk and deer use. Category S ig n ific an ce Elk o f F Deer Topographic p o s i t io n .01 .08 Slope c o n fig u ra tio n .00 .05 So il-g roup .01 .19 Prominent g ra ss .13 .34 Prominent shrub .00 .00 H ab ita t type .02 .00 These s i g n i f i c a n t d i f f e r e n c e s s u g g e s t t h a t e lk and d e e r s e l e c t fo r p a r t ic u la r s i t e c a teg o rie s . H ab ita t type v a r ia b le s a re shown in F igure 4 where d if fe re n c e s between h a b i ta t types a re i l l u s t r a t e d . Elk and deer p e l le t-c o u n t means w ith in the o th e r f iv e c a te g o r ie s a re shown in Appendix D. The a s s o c i a t i o n o f e lk u se w ith to p o g ra p h ic p o s i t i o n and s lo p e c o n fig u ra tio n r e f l e c t s the tendency of e lk to congregate and spend the m o s t c o n c e n t r a t e d f e e d i n g t im e on r e l a t i v e l y l e v e l a r e a s . 92 Concentrated deer a c t i v i ty in and around g la c ia l m orainal d ep o s its and v a r io u s la v a f lo w s i s r e v e a le d i n th e a s s o c i a t i o n w ith to p o g ra p h ic p o s i t i o n and s lo p e c o n f ig u r a t io n . These a r e a s p ro v id e some o f th e b e s t th e rm a l and s e c u r i t y c o v e r i n th e sag eb ru sh h a b i t a t ty p e s . Sagebrush in sw ales p rov ides therm al and r e s t in g cover w hile nearby s lop es o f f e r escape t e r r a in to deer. The n o n -s ig n if ic a n t r e la t io n s h ip o f e lk w ith th e prom inent g ra ss c a te g o ry c o in c id e s w ith th e o b s e r v a t io n th a t g r a s s was g e n e r a l ly consumed i n p ro p o r t io n to i t s abundance . Deer use was m ost h ig h ly a s s o c ia te d w ith Wyoming b ig sag eb ru sh o f th e p ro m in en t sh rub v a r ia b le s , probably fo r reasons p rev io u s ly d iscussed . The s ig n if ic a n t r e la t io n s h ip of e lk w ith the prom inent shrub category i s due to l i t t l e use o f th e b a s in b ig sag e b ru sh h a b i t a t type and d e c re a s e d sag eb ru sh p rom inence from heavy p a s t u t i l i z a t i o n i n l o c a l i z e d a r e a s . Two tr a n s e c ts were conducted where e lk p e l le t- c o u n ts were h igh and rubber ra b b itb ru sh was the most prom inent shrub. These were a re a s where p a s t u t i l i z a t i o n was b e l ie v e d to have cau sed a r e d u c t io n i n sag eb ru sh p rom inence , i n s t e a d o f a p o s i t i v e a s s o c i a t i o n b e tw een e lk use and rubber ra b b itb ru sh . D a ta p r e s e n t a t i o n to t h i s p o i n t i n d i c a t e s a n im a l use i s a s so c ia te d wih s i t e pa ram eters on th e G ardiner w in te r range. Animal u se i s a p p a r e n t ly d ep en d en t to a s i g n i f i c a n t d eg re e on th e r e l a t i v e abundance o f some o f th e s e s i t e c h a r a c t e r i s t i c s . C o n seq u en tly , a l l d a ta w ere s u b je c te d to r e g r e s s io n a n a ly s i s to f u r t h e r d e f in e th e r e l a t iv e a s s o c ia t io n of s i t e v a r ia b le s w ith animal u se . 93 Elk and mule deer p e l le t- c o u n ts were used as dependent v a r ia b le s . U sing th e SPSS p rogram (N ie e t a l . 1975), a t r u e s t e p - w is e a n a ly s i s w ith forw ard s e le c t io n , and backwards e lim in a tio n , o f both l in e a r and q u a d r a t i c f u n c t io n s was conduc ted . A ll c a t e g o r i c a l d a ta (T ab le 9 ) .w ere coded a s dummy v a r i a b l e s (a v a r i a b l e e n te r e d e i t h e r a s I o r 0 , depending on i t s presence or absence). When using c a te g o r ic a l v a r ia b le s , one l e s s dummy v a r ia b le from each type of category i s u su a lly en te red in to the re g re s s io n an a ly s is . However, c a t e g o r i c a l v a r i a b l e s p o t e n t i a l l y im po rtan t in exp la in ing d ev ia tio n s of d a ta p o in ts from the mean may be excluded from an a ly s is u s ing t h i s s tandard procedure. Therefore, a l l c a te g o r ic a l v a r ia b le s were en te red in to the re g re s s io n a n a ly s is to p reven t t h i s type o f d a ta m is in te rp re ta t io n , as suggested by D o rse tt and W ebster (1983). In many re g re s s io n a p p l ic a t io n s , th e in d e p en d e n t v a r i a b l e s a r e c o r re la te d among them selves and w ith o th e r v a r ia b le s not inc luded i ti­ th e m odel, b u t a r e r e l a t e d to th e m odel (N e te r and W asserm an 1974). M u l t i c o l l i n e a r i t y i s th e s t a t i s t i c a l te rm in o lo g y a p p l ie d to two in d e p en d e n t v a r i a b l e s w i t h i n th e r e g r e s s i o n t h a t a r e h i g h l y c o rre la te d . The e f f e c t of m u l t ic o l l in e a r i ty i s th a t th e s ig n if ic a n ce of a v a r ia b le (or v a r ia b le s ) e n te r in g the equation i s only p a r t i a l ly explained, by th a t v a r ia b le . With s tepw ise en try , i f two v a r ia b le s a re h ig h ly c o r r e l a t e d w ith each o th e r , th e f i r s t to e n t e r ta k e s w ith i t bo th i t s un ique v a r ia n c e and th e v a r ia n c e th ey s h a r e so t h a t th e second v a r i a b l e r a r e l y h a s enough in f lu e n c e r e m a in in g to e n t e r th e equa tion (Tabachnick and F id e l l 1,983). 94 Many o f th e v a r i a b l e s q u a n t i f i e d i n t h i s s tu d y a r e h ig h ly c o r re la te d w ith one ano ther, as d iscu ssed w ith Table 5. Some of th ese same v a r ia b le s a re a sso c ia te d w ith s i t e v a r ia b le s no t q u a n tif ie d , but w h ic h h av e an e f f e c t on a n im a l u s e . I m p l i c a t i o n s o f t h e s e a s s o c ia tio n s w i l l be d iscu ssed w ith ap p ro p ria te re g re s s io n an a ly se s . R e s u l ts from th e r e g r e s s io n a n a ly s i s o f e lk p e l l e t - c o u n t s a r e p resen ted in Table 10. A ll v a r ia b le s l i s t e d en te red th e model w ith in th e .10 p r o b a b i l i t y l e v e l , a s in d i c a t e d by th e F - t o - e n t e r . The r e l a t iv e c o n tr ib u tio n of each v a r ia b le to th e equa tion a t the end o f the a n a ly s is i s a lso inc luded as th e f i n a l s ig n if ic a n c e of F. Table 10. R egression a n a ly s is o f e lk p e l le t- c o u n ts w ith a l l v a r ia b le s s tu d ied , and the r e s u l t in g equation^ . Step V ariab le R2 S ign ific an ce of F - to -e n te r F inal S ig n ific an ce of F I X1 Grass cover . # .00 OO 2 X2 Total p roduction COin .00 OO 3 X3 E lev a tion .65 ■ .01 .01 4 X^ Forb cover .68 VOO .04 5 Xg T h in -h illy so il-g ro u p .71 .07 .07 1 Y = 5987.5 + 150.SX1 - I . IX2 - 0 , 6X3 “ 8 6 . 5X4 + 489;6X5 G rass co v e r and e l e v a t i o n a r e th e on ly two v a r i a b l e s w hich a re h ig h ly c o r r e l a t e d w ith e lk p e l l e t - c o u n t s (T ab le 8 ) s u g g e s t in g th e o th e r v a r i a b l e s e n te r e d th e e q u a t io n f o r a d d i t i o n a l r e a so n s . G rass 95 co v e r a p p e a rs to be th e s in g l e m ost im p o r ta n t f a c t o r m easure# f o r in f l u e n c in g e lk u se on th e s tu d y a r e a . In a l l d a ta a n a ly s i s , .an in c re a se in g ra ss cover was a p o s s ib le exp lana tion fo r in c reased e lk u se i n v a r io u s a r e a s . I t s im p o r ta n c e i s a r e f l e c t i o n o f h a b i t a t s s tu d ied which encompass e s s e n t ia l feed ing s i t e s fo r e lk . The s ig n i f i c a n c e o f d e c re a se d e lk u se w ith e l e v a t io n l i k e l y r e f l e c t s e l e v a t i o n 's p o s i t i v e r e l a t i o n s h i p w ith snow a c c u m u la tio n . A lthough e lk w ere c ap ab le o f n e g o t i a t i n g deep snow , th ey o n ly r e t r e a t e d a s h ig h i n e l e v a t i o n a s n e c e s s a ry f o r s e c u r i t y d u r in g d a y l ig h t h o u rs . As w ith a l l w in te r in g w ild u n g u la te s , th e need to conserve energy p lay s an im po rtan t r o le in e lk a c t i v i t i e s , even durijng th e l a t e hun ts adm in is te red on the a re a . Total p roduc tion i s h igh ly c o r re la te d w ith shrub s iz e param eters (T ab le 5). Shrub s i z e p a ra m e te r s w ere a l l s i g n i f i c a n t a t o r below th e .0 5 p r o b a b i l i t y l e v e l b e f o r e t o t a l p ro d u c t io n e n te r e d th e e q u a tio n . A ll sh rub s i z e p a ra m e te r s became h ig h ly n o n - s i g n i f i c a n t a f t e r t o t a l p ro d u c t io n e n te r e d th e r e g r e s s io n e q u a t io n , i n d i c a t i n g m u l t i c o l l i n e a r i t y . As p r e v io u s ly d is c u s s e d , e lk u se i s n e g a t iv e ly a s so c ia ted w ith shrub s iz e which in d ic a te s e lk have h a b i tu a l ly avoided a r e a s w i th l a r g e s h r u b s . A ls o , a r e a s o f m o re i n t e n s i v e e lk u t i l i z a t i o n have s m a l le r and l e s s dense sagebrush due to h i s to r i c a l browsing reduc ing sagebrush prominence. R easons f o r e n t ry o f fo rb c o v e r and th e t h i n - h i l l y s o i l - g r o u p i n t o th e model a r e more d i f f i c u l t to d is c e rn . N e i th e r v a r i a b l e by i t s e l f i s h ig h ly a s s o c ia te d w ith e lk u se , and n e i t h e r s t r o n g ly im proves the model. Forb cover i s s l ig h t ly p b s i t iy e ly c o rre la te d w ith 96 e lk p e l le t- c o u n ts and i s no t h igh ly c o r re la te d w ith any o th e r v a r ia b le a sso c ia te d w ith e lk use. The nega tive a s s o c ia t io n of fo rb cover w ith th e model i s b e l ie v e d to be n o th in g m ore th a n an a d ju s tm e n t o f th e model fo r the high p o s i t iv e value of g ra ss cover. The a d d itio n of the t h i n - h i l l y s o i l - g r o u p s u p p o r ts th e a d ju s tm e n t o f fo r b co v e r , as in d ic a ted by fo rb cover’s in c reased f in a l ' s ig n if ic a n ce . In c lu s io n of fo r b co v e r and t h i n - h i l l y s o i l - g r o u p a r e b e l ie v e d to be on ly refinements of the equation that b etter exp la in var ia tion in the data. The model p resen ted in Table 10 e x p la in s 71 p ercen t (R2 ) o f the v a r ia t io n in the data and i s in c lu d ed to i l l u s t r a t e the r e la t iv e r e la t io n s h ip o f each v a r ia b le w ith changes in p e l le t - c o u n t s . The pred ic tive value of the equation i s questionable, s ince the la s t two v a r ia b le s are not a s so c ia te d w ith e lk use in any way d e te c ted from ob se rv a t io n or data a n a ly s is . T herefore , a b e t te r p r e d ic t iv e model might in c lu d e ju s t th e f i r s t th re e v a r ia b le s and i s : I = 5738.3 + I 2 9 .OX1 - . 9X2 - . 6X3 , (R2 = .65). N e ith er equa tion was t e s t e d fo r pred ic tiv e a b i l i ty . Deer p e lle t-c o u n t re g re s s io n a n a ly s is i s p re sen ted in Table 11. The in c lu s i o n o f su ch a v a r i e t y o f v a r i a b l e s i n t o th e model i s b e l ie v e d to i n d i c a t e m ule d e e r ’s w in te r dependence on th e a r e a s tu d ie d . A lso , v a r i a b l e s e n te r in g th e e q u a tio n a r e r e l a t i v e l y more s i t e s p e c if ic than those inc luded fo r e lk . Most of th e v a r ia b le s in th e e q u a t io n a re on ly found i n l im i t e d r e g io n s o f th e s tu d y a r e a , w hich r e v e a l s th e s e l e c t i o n o f s p e c i f i c s i t e s by d e e r on th e w in te r range. 97 Table 11. R egression a n a ly s is of deer p e l le t- c o u n ts w ith a l l v a r ia b le s s tu d ied , and the r e s u l t in g equation^ . S tep V ariab le R2 S ign ifican ce of F - to -e n te r F ina l S ig n ific an ce of F I X1 Wyoming b ig sagebrush .36 .00 .00 2 ^2 Sandy so il-g ro u p .49 .00 .00 3 Xg Bare ground .58 .00 .00 4 X ^ Midslope topography .64 CVJO .00 5 E ast-w est a sp ec t .70 .01 6 Xg N orth-sou th aspect .73 .08 .00 7 X6 T h in -h illy so il-g ro u p .76 .04 .00 8 X j (Forb p roduc tion )^ O00 .01 .01 9 Xg R o lling c o n fig u ra tio n Co u> .04 ■ -01 10 Remove e a s t-w e s t a spec t .82 ' .18 1 Y = -756.6 + 1778.SX1 + 1661.7X2 + 89 . 9 X3 + 693. 7X4 -544 .OXg + 1239.IX6 - .OO2X7 + 538.6Xg The la rg e re g re s s io n c o e f f ic ie n ts in th e model a lso r e f l e c t th e g re a t v a r ia t io n in deer p e l le t- c o u n ts from s i t e to s i t e . These la rg e p o s i t i v e c o e f f i c i e n t s a r e p a r t i a l l y due to th e s c a l i n g o f p e l l e t - g ro u p s /h a , b u t th ey g e n e r a l ly i n d i c a t e t h a t th e r e w i l l be many more p e l l e t - g r o u p s a t a s i t e , i f th e s i t e v a r i a b l e i s p r e s e n t . The e a s t - w e s t a s p e c t d ropped o u t o f th e m odel b ecau se i t s v a r i a t i o n was exp lained away by v a r ia b le s e n te r in g a f t e r i t . 98 Entry p o in t and s ig n if ic a n c e o f Wyoming b ig sagebrush in d ic a te s the im portance of t h i s shrub taxon to deer on the w in te r range. Area? w here t h i s ta x o n grow a re r e l a t i v e l y sm a ll in s i z e b u t d e e r seem to , congregate on them. Deer a re app a ren tly a t t r a c te d to th e se a reas no t only fo r the shrub, but a lso fo r th e s e c u r i ty (p rev io u s ly d iscussed ) and r e la t iv e ly s l ig h t snow accum ulation on these d r ie r s i t e s . Sandy s o i l - g r o u p and m id s lo p e topog raphy bo th a p p ea r h ig h ly c o rre la te d w ith e lev a tio n . Sandy so il-g ro u p i s g e n e ra lly only found on th e low er e le v a tio n g la c ia te d f l a t s and m oderate s lopes . Areas of m idslope topography examined were g e n e ra lly below 2200 m e lev a tip p . The s ig n if ic a n c e le v e l of e le v a tio n in th e re g re s s io n dropped from .01 to .73 w ith th e a d d i t i o n to th e model o f th e s e tw o v a r i a b l e s . T h e re fo re , th e s e two v a r i a b l e s p ro b a b ly r e p r e s e p t m ule d e e r ’s avoidapce of deep snow accum ulation on the a re a . Bare ground i s a lso somewhat n eg a tiv e ly c o r re la te d w ith e le v a tio n (s e e T ab le 5 ), b u t i t s e n t r y i n t o th e model i s b e l ie v e d to be more re p re s e n ta t iv e of deer use on d r ie r s i t e s . Both a sp ec t d e lin e a tio n s i n d i c a t e d e e r ’s p r e f e r e n t i a l u se o f so u th and w e s t e x p o su re s . Although a m a jo rity of th e study a re a s lopes face w est o r south, deer d id spend a d isp ro p o rtio n a te amount of tim e on them, e sp e c ia l ly du ring sunny days. The en try of t h in - h i l ly so il-g ro u p probably shows th e im portance to deer use of the s te ep s lopes along the Yellowstone R iver gorge. As w ith e lk re g re s s io n a n a ly s is , no p la u s ib le exp lan a tio n e x i s t s fo r the en try of fo rb p roduc tion in to the model, except as a re fin em en t of the re g re s s io n l in e . R o lling co n f ig u ra tio n i s p o s i t iv e ly a sso c ia ted w ith 99 d e e r u se , p o s s ib ly i n d i c a t i n g d e e r 's n eed f o r e sc ap e co v e r i n th e exposed sagebrush s i t e s . The model e x p la in s 82 percen t (R2) o f the v a r ia t io n in th e data. Again, t h i s equa tion i s not p resen ted as a p re d ic to r o f deer use, but r a t h e r as an exam ple o f th e r e l a t i v e im p o r ta n c e o f th e v a r i a b l e s to d e e r u se . A s im p l i f i e d v e r s io n o f th e m odel, th e p o s s i b i l i t i e s o f w hich cou ld be i n v e s t i g a t e d a s a p r e d i c t o r o f d e e r use on th e s tu d y a re a i s : Y = -196 .0 + 2922 .SX1 + 1337 .IX2 + 7 3 .2X3 + 668. 9X4. These f o u r v a r i a b l e s e x p la in 64 p e r c e n t (R2 ) o f th e v a r i a t i o n i n th e d a ta , approx im ate ly the same as the model suggested fo r p re d ic tio n of e lk uae. However, p re d ic t io n o f anim al use w ith any of th e models should p ro b ab ly be u sed w ith c a u t io n , s in c e none o f th e m ode ls have been te s te d fo r p re d ic t iv e a b i l i t y or w ith any a d d itio n a l f i e ld d a ta from the G ardiner area . Management a p p lic a t io n of th e models in th e G ardiner a rea would, r e q u i r e d u p l i c a t i o n o f f i e l d m easu rem en ts co n d u c ted i n t h i s s tu d y . L im i ta t io n s im posed by t im e , money, r e s e a r c h e x p e r t i s e , e tc . cou ld po ssib ly make d u p lic a tio n of f i e l d d a ta im p ra c tic a l . Perhaps a check l i s t o f th e r e l a t i v e p re sen c e o f th e im p o r ta n t v a r i a b l e s would be a more p r a c t ic a l management techn ique fo r de term in ing the p o te n tia l of fu tu re animal use in a g iven a re a . D ata a n a ly s i s i n d i c a t e s e lk and d e e r use i s d ep en d en t on s i t e c h a r a c te r i s t i c s , a lthough each an im a l s p e c ie keys on d i f f e r e n t s i t e v a r i a b l e s . E lk a r e p h y s ic a l ly c a p a b le o f u t i l i z i n g m ost r e g io n s o f th e s tu d y a r e a . Y et, t h e i r m ost i n t e n s iv e f e e d in g a c t i v i t y i s i n a re a s w ith 1/3 m of snow or l e s s and u su a lly in th e sagebrush h a b i ta ts 100 where g ra s s i s r e l a t iv e ly abundant. Therefore, e lk app a ren tly s e le c t p re fe rre d feed ing h a b i ta ts where th e r e l a t i o n s h i p o f food in ta k e to energy expend itu re i s optim ized . Mule deer a re g e n e ra lly r e s t r i c t e d in t h e i r use of the G ardiner w in te r range to the sagebrush h a b i ta ts because of snow accum ulation on f o r e s t e d e l e v a t io n s . Deer use i s c o n se q u e n tly d i c t a t e d by co v e r r e q u ir e m e n ts i n th e r e l a t i v e l y exposed f e e d in g and r e s t i n g a r e a s . Therefore , deer ev id en tly s e le c t a c t i v i t y a re a s to maximize s e c u r ity and therm al cover on s i t e s where a minimum of energy i s req u ired to do so. The most in te n s iv e ly used a re a s m eeting cover requ irem en ts a re p re fe r re d feed ing s i t e s . 101 SUMMARY AND CONCLUSIONS This study was i n i t i a t e d in th e sp rin g o f 1980 and was continued through the sp rin g o f 1982 to ev a lu a te w ild ungu la te use and to a ss e ss th e f u n c t io n o f th e G a rd in e r w in te r ra n g e i n d e f in in g e lk and m ule d e e r u t i l i z a t i o n . The s tu d y a re a encom passed a b o u t 5800 ha o f th e n o rth e rn Yellowstone w in te r range from the Yellowstone N ational Park boundary l in e no rth to L i t t l e T ra il Creek. The G a rd in e r w in te r ra n g e i s e s p e c i a l l y im p o r ta n t to w ild u n g u la te s d u r in g s e v e re w in te r s when i t s e rv e s a s an e s s e n t i a l w in te r in g a re a fo r an im als m ig ra tin g from Yellowstone N ational Park. E lk a re th e m ost abundan t a n im a l s p e c ie s , b u t th e r e a r e a l s o su b s ta n tia l- numbers o f mule deer w in te r in g in th e a re a . V egeta tion and landform c h a r a c t e r i s t i c s o f th e s tu d y a r e a w ere c h a r a c te r i z e d and q u a n t i f i e d d u r in g th e summers p f 1980 and 1981. V e g e ta t io n was d e l in e a te d by h a b i t a t ty p e s to a id i n a s s e s s in g p la n t communities and animal use. Animal w in te r use was e v a lu a te d from p e l l e t - g r o u p c o u n ts and browse form c la s se s . P e riod ic w in te r f i e l d t r i p s du ring the 1980-81 and 1981-82 w in te rs helped to s u b s ta n t ia te and in t e r p r e t e lk and mule deer use of the study a rea . Animals appeared to favo r c e r ta in h a b i ta t types . A m a jo r p o r t i o n o f th e G a rd in e r w in te r ra n g e i s s a g e b ru sh - g r a s s la n d . V e g e ta t io n o f th e s tu d y a r e a was c a te g o r iz e d in to s ix h a b i ta t types, f iv e of which were dominated by sagebrush and g ra ss . 102 Three s u b sp e c ie s o f b ig s ag eb ru sh (A rtem isia t r i d e n ta ta auhapp. yaseyana, Wyomingensisr and t r id e n ta ta ) in a d d itio n to b lack sagebrush (A r te m is ia nova) grow on th e s tu d y a re a . The two m ost p ro m in en t g ra s se s a re Idaho fescue (F estuca id ahoen sis ) and bluebunch w heatg rass (Agropyron sp ioatum ). V egetation on th e a re a appears to be in s ta b le , c lim ax cond ition . Animal use h a s cau sed l i t t l e r e t r o g r e s s i v e p ^ an t succession . Most a re a s o f d isc iim ax v eg e ta tio n can be a t t r ib u te d to human im pacts. Animal use of the a re a i s dependent on w in te r s e v e r ity . Few e lk m ig ra te d to th e a re a d u r in g th e m o d e ra te w in te r o f 1980-81 and m ule d e e r use was s c a t t e r e d o v e r m ost o f th e w in te r ra n g e . In th e r e l a t iv e ly severe w in te r o f 1981-82 over 3000 elk; u t i l i z e d the study a r e a to some e x te n t w h ile m ule d e e r u se was g e n e r a l ly r e ^ t r i c t e d l to e le v a tio n s below 2100 m. Both e lk and mul(e d e e r brow sed on sag eb ru sh i n th e a re a , even du ring the m ild w in te r o f 1980-81. S e le c tiv e browsing of sagebrush p l a n t s , b o th w i th in and among th e ta x o n , i s e v id e n t from form c l a s s d e s ig n a tio n s . Wyoming b ig sageb rush and m oun ta in b ig sag eb ru sh a re th e m ost h e a v i ly b row sed sh ru b ta x a i n th e lo w e r e l e v a t i o n f e e d in g a r e a s , a s in d i c a t e d by 1294 p la n t s c l a s s i f i e d to b row se form c la s s . Sagebrush in th e a re a obviously re c e iv e s heavy u t i l i z a t i o n in w in te rs when la rg e numbers of e lk a re p re sen t. Elk and deer both showed s ig n i f ic a n t d if f e re n c e s in use among th e h a b i t a t ty p e s . Mean e lk u se was h ig h e s t i n th e m oun ta in b ig sagebrush /Idaho fescue h a b i ta t type. Deer appeared to p r e f e r e n t ia l ly s e l e c t f o r th e Wyoming b ig s a g e b ru sh /b lu e b u n c h w b e a tg ra s s h a b i t a t 103 type. However, most o f th e d if fe re n c e s in anim al use were a t t r ib u te d to e lk and d e e r p r e f e r e n t i a l s e l e c t i o n o f c e r t a i n c h a r a c t e r i s t i c s w ith in h a b i ta t types. The im portance of the a re a fo r e lk feed ing a c t i v i t y i s emphasized by s t a t i s t i c a l a n a l y s i s . E lk p e l l e t - c o u n t s h a v e a p o s i t i v e c o r r e l a t i o n w ith g r a s s co v e r ( r = .66 ), E lk u se o f th e f l a t s and b enches i s s i g n i f i c a n t l y g r e a t e r th a n t h a t o f o th e r to p o g ra p h ic and landform co n f ig u ra tio n fe a tu re s . A m a jo rity of e lk feed tqg a c t iv i ty occurred below 2100 m e le v a tio n . E lk use o f th e s tu d y a re a i s h ig h ly d ependen t on a number o f v a r ia b le s . Five of the env ironm ental v a r ia b le s c h a ra c te r iz ed had an p R of .71 when sub jec ted to a tru e s tep -w ise re g re s s io n a n a ly s is w ith e lk p e l le t-c o u n ts . Grass cover was the f i r s t to e n te r the equation , by i t s e l f a c c o u n tin g f o r 44 p e r c e n t ( r 2 ) o f e lk p e l l e t - c p u n t v a r i a t i o n s . The d a ta i n d i c a t e t h a t e lk s e l e c t f e e d in g s i t e s on th e study a rea where tfce r e la t io n s h ip o f food in tak e to energy expend itu re I s optim ized . Deer, on th e o th e r hand, a re r e s t r i c t e d in use o f th e a rea by the p h y s ic a l l i m i t a t i o n s im posed by snow. The s ig n i f i c a n c e o f snow imposed h inderance i s in d ic a ted by e le v a tio n having th e h ig h e s t sim ple c o r r e l a t i o n w ith d e e r use o f r = - .5 2 . In c re a s e d d e e r use a l s o o c c u r re d w ith p e rc e n ta g e b a re g round in c r e a s e s , i n d i c a t i n g u se o f d r ie r south and w est exposures. Deer use o f landform c b a r a c te r ip t ip s fo r s e c u r ity reasons i s r e f le c te d by high a s s o c ia t io n w ith a r o l l in g c o n fig u ra tio n . 104 The very s e le c t iv e n a tu re of deer choice fo r a re a s w ith in h a b i ta t ty p e s i s i n d ic a te d by r e g r e s s io n a n a ly s i s . Deer u se i s h ig h ly a s s o c ia te d (R^ = .82) w ith e ig h t e n v irp n m e n ta l v a r i a b l e s . Th? m ost im po rtan t a s s o c ia tio n ( r 2 = .36) i s w ith Wyoming b ig sagebrush. pa£a ^ n s ly s i s r e f l e c t s th e t o t a l dependence o f d e e r on th p sag e b ru sh — g ra ss lan d a reas du ring the w in te r and a lso the sp e c if ic , s e le c t io n g f s i t e s to minimize energy expend itu re . 5pme management o b je c t iv e s fo r the a re a have a lso beep examine^. S ageb ru sh b u rn s e v id e n t ly do n o t a t t r a c t w in te r e lk u s e , w h ile d e e r appear to avoid burned a reas . There appears to be a marked decrease in t o t a l fo rage p roduction a f te r sagebrush burns w ith p o te n t ia l ly JrOng l a s t i n g e f f e c t s on p la n t s p e c ie s c o m p o s itio n . S ageb ru sh i s an im p o r ta n t food so u rp e f o r bo th e fk and mnle d e e r on th e e tudy a r e a , e s p e c i a l l y d u r in g s e v e re w in te r s . T h e re fo re , c o n t r o l l e d sag eb ru sh hum s can not be recommended in the concen tra ted feed in g areap below 2100 m e lev a tio n , based on th e r e s u l t s o f p rev ious burns. Small burns above 2100 m m ight p o ss ib ly enhance anim al sp rin g use f o r a few years. The s c a r c i t y o f e a s i l y a c c e s s ib l e f p r e s t co v e r d u r in g sp v e rp w in te rs i s a p o ss ib le f a c to r l im i t in g a t t r a c t iv e n e s s of the study e re a to e lk . F o res t cover w ith in th e Eagle Creek a rea p rov ides some of the on ly r e l a t i v e l y a c c e s s ib l e e sc ap e and r e s t i n g co v e r f o r e lk on th e north s id e of Bear Creek. Therefore, f u r th e r logg ing a c t i v i t y -fn th e E ag le C reek a re a cou ld o n ly be a d e t r im e n t to e lk u se and shou ld be avoided. This a re a a lso p rov ides what appears to be th e b e st ca lv ipg g rounds on th e s tu d y a r e a f o r bo th r e s i d e n t and m ig r a t in g e lk , and 105 th e s e c a lv in g g rounds cou ld a l s o be p o t e n t i a l l y harm ed by t im b e r removal. H i s t o r i c a l an im a l use o f th e G a rd in e r w in te r range e s ta b l is h e s i t s uniqueness and p o te n t ia l f o r w i ld l i f e . V egeta tion on the w in te r range i s adapted to th e dry m o is tu re regim e and topoedaphic cond ition s o f th e G a rd in e r a r e a , i n a d d i t i o n to t h i s h i s t o r i c a l an im a l u se . Man’s e f f o r t s to m an ipu la te th e n a tu ra l v eg e ta tio n have not r e s p ite d i n in c r e a s e d a t t r a c t i v e n e s s to w in te r in g a n im a ls . F u r th e r h a b i t a t a l t e r a t io n s from m u ltip le use o r ie n te d management o f th e a rea could e a s i ly make the a re a l e s s v a lu ab le to e lk and mule deer and po ssib ly t i p th e d e l ic a te balance of animal range use toward range degradation . I 106 REFERENCES CITED .107 REFERENCES CJTED A ldous, C. M. 1945. .A w in te r s tu d y o f m ule d e e r i n Nevada. J, W ildl. Manage. 9 (2 ) :145-1 51. AJtmao, M. I 958. The f l i g h t d i s t a n c e . i n f r e e - r a n g in g b ig game. J. W ildl. Manage. 22 (2 ):207 -209 . A nderson , C. C. I 954. M ig ra t io n s t u d i e s o f J a ck so n H olo’s e lk h e rd . Wyo. W ild l. l8 (4 ) :2 6 -3 4 . A nderspn, E." W. and R. J. S ch e rz in g e r . 1975. Im prov ing , q u a l i t y o f w in te r fo r a g e f o r e lk by c a t t l e g ra z in g . J . Range Manage. 28 (2 ):120-125 . B a r to n , H., W. B. M cCully, H. M. T ay lo r , and J . E. Box, J r . 1966., In flu ence of s o i l compaction on emergence and f i r s t - y e a r grow th of seeded g ra sse s . J, Range Manage. 19:118-121. B e a l l , R. C. 1974. W in te r h a b i t a t s e l e c t i o n and use by a w e s te rn M ontana e lk h e rd . Ph.D. d i s s e r t a t i o n , Univ. o f M ontana, M issoula. 197 pp. B e e t le , A. A. I960 . A s tu d y .o f sp g eb ru sh - th e s e c t i o n T rid enbabne o f A r te m is ia . Wyoming Agr. Exp. S ta . B u ll . 368. 83 pp. B e ll , R. H. V. 1971. A g ra z in g sy s tem in th e S e re n g e t i . S c i. Am. 225(1 ):86-93 . B lack , H., R. S c h e rz in g e r , and J . W. Thomas. 1976. R e la t io n s h ip s o f Rocky fo u n ta in e lk and Rocky Mountain myle deer h a b i ta t to tim ber management in th e Blue M ountains o f Oregon and Washington, pp. 11-31. IN: E lk -logg ing -roads symposium proceedings. S. R. Hieb (ed ). Univ. o f Id aho , Moscow. 142 pp. B lackw e ld e r , E. 1915, P o s t C re ta c e o u s h i s t o r y o f th e m o u n ta in s o f c e n tra l w este rn Wyoming. J. Geology. 23:97-117, 193-217, 307- 340. B l a i s d e l l , J. P. 1953. E c o lo g ic a l e f f e c t s o f p lan n ed b u rn in g o f s a g e b ru s h -g r a s s ra n g e on th e Upper Snake R iv e r P la in s . USDA Tech. B u ll. 1075. 39 pp. B l a i s d e l l , J. P. and J . F. P e c h an ic. 1949. E f f e c t s o f he rbage rem ova l a t v a r io u s d a te s on v ig o r o f b luebunch w h e a tg ra s s and arrow le a f balsam ro o t. Ecology. 30(3):298-305. 108 Bohne, J. R. 1974. Food h a b i t s , s e a s o n a l d i s t r i b u t i o n , and h a b i t a t u t i l i z a t i o n of e lk in the South Fork of F ish Cre$k, Lolo N ational F 'orejst, M ontana. Mont. F ish and Game Dept. Job F in a l Rept. W- 120 -R -2 ,3 . 187 PP. Canfield, R. H. 1941. Application o f the l in e in tercep tion method in sampling range vegetation . J. Forestry. 39:388-394. Cole, G. F. 1969. Elk and th e Yellowstone ecosystem . Research Notq No. I . Y ellow sto riq Park F i l e s . 14 pp. Cole, G. F. 19 7 8 . A n a t u r a l l y r e g u la te d e lk p o p u la t io n . Paper p r e s e n te d a t symposium on n a tu r a l r e g u la t i o n . V ancouver, B.C. 32 pp. C o l l i n s , W. B. and P. J . U rn e s s . 1979 . E lk p e l l e t g ro u p d i s t r ib u t io n s and r a te s of d e p o s it io n in aspen and lpdgepole pinq h a b i t a t s . pp. 140-144. IN; N o rth A m erican q lk : e cp lp g y , behav ior and management. M. S. Boyce and L. D. Hayden-Wing (ed), Upiv. of Wyoming, Laramie. 294 pp. Compton, T. 1975. Mule d e e r - . e lk r e l a t i o n s h i p s i n th e w e s te rn S i e r r a Madre a r e a o f s o u th c e n t r a l Wyoming. W ild l. Teph. Rept. No. I , Wyo. Game and F ish D ept, 125 pp. (Jonrad,' C. E, and C, JE, Poul tp n . 1966. E f f e p t o f a w ilr i f i r® on fdafip fe sp u q and blupbunpri wheat,g ra a s . J . Range Manage. 19( ^ ) : 1$8t7 141. ' C onstan , K. J. I 972. W in te r fo o d s and ran g e use o f t h r e e s p e p iq s p f ungu la tes. J. W ildl. Manage. 36(4):1068-1076. Cook, C. W. I 972. C om para tive n u t r i t i v e v a lu e s o f f o r b s , g r a s s e s , and sh ru b s , pp. 303-310 . In : W ild lan d g h ru b s - T h e ir B io logy and U t i l i z a t i o n . USDA F o req t S e rv ic e Tech. Rept. INT-1. 494 Pp. Copk, C. W. and L. A. S toddart . I960. P hy sio log ica l responses o f b ig sag eb ru sh to d i f f e r e n t ty p e s o f h e rb ag e rem oved. J. Range Manage. 13(1):14-16, Cook, C. W. and L. A. S toddart . 1963. The e f f e c t o f in t e n s i t y and season o f use on the v ig o r pf d e s e r t range p la n ts . J, ^angp Manage. 16(6):315-317. Cook, C. W., L A. S to d d a r t , and L. E. H a r r is . 1954. The n u t r i t i v e v a lu e o f w in te r ran g e p l a n t s i n th e G re a t B aqin . U tah Agr. jEpp. S tq . B u ll. 372. 56 pp. 109 Coop, K. J . 1971 . H a b i t a t u s e , d i s t r i b u t i o n , m ovem en t, and a s s o c ia te d b e h a v io r o f e lk , L i t t l e B e l t M oun ta in s. M ontana W ild l. Res. P ro j . No. W-120-R-1 and R-2. 61 pp. Cooper, H. W. 1953. Amounts o f b ig sag eb ru sh in p la n t c o m m u n itie s n e a r T en s le ep , Wyoming, a s a f f e c t e d by g r a z in g t r e a tm e n t . Ecology 34(1): 186-189. C o o p e r r id e r , A. Y. I 982. Forage a l l o c a t i o n o f e lk and c a t t l e , pp. 142-149. IN: P roceedings of th e w este rn s t a t e s e lk workshop. T. - L. B r i t t and D. P. Theobald (ed ). F l a g s t a f f , A rizona . 166 pp. > Cowan, I . M. 1947. Range c o m p e t i t io n betw een, m ule d e e r , b ig h o rn sh eep , and e lk i n . 'J a s p e r - P a rk , A lb e r ta . T ran s . N. Am. W ild l. Conf. pp. 223-227 . Coyne, P. I . and C. W. Cook. 1970. S ea so n a l c a rb o h y d ra te r e s e r v e c y c l e s i n e i g h t d e s e r t r a n g e s p e c i e s . J . R ange M anage. 23(6) .-438-444. C ra ig h ead , J. J . , G. A tw e ll , and B. W. O1G ara. 1972. E lk m ig r a t io n s in and near Yellowstone N ational Park. W ildl. Monograph No. 29. 48 pp. Daneke, D. E. 1980. Forage s e le c t io n and popu la tio n s t ru c tu re o f the Middle Fork e lk herd . Montana Big Game Res. P ro j. No. W-120-B-11 (5893). 74 pp. Dauben m ire , R. 1968. Ecology o f f i r e i n g r a s s la n d s . Advances i n E co log ica l Research. 5 :209 -266 . D aubenm ire, R. 1970. S teppe v e g e t a t i o n o f W ash ing ton . W ash ing ton Agr. Exp. S ta . T e c h n ic a l B u ll . 62. 131 pp. ■, I ; D eC a le s to , D. S., J. S. Nagy, and J . A. B a ile y . 1977« E x p e rim en ts on s t a r v a t i o n and re c o v e ry o f m ule d e e r does. J . W ild l. Manage. 4 1 (1 ):18 -86 . D e lg u id ic e , G. D. and J . C. Rodiek. 1982. A h a b i t a t a n a ly s i s o f spring-sum m er e lk range on the A pache-S itgreaves N ational F o res t, A rizona , pp. 6 9 -99 . IN: P ro c e e d in g s o f th e w e s te rn s t a t e s e lk w orkshop. T. L. B r i t t and D. P. Theobald (ed ). F l a g s t a f f , A rizona . 166 pp. DeNi'o, R. M. I 938. E lk and d e e r fo o d s and f e e d in g h a b i t s . T rans. N. Am. W ild l. Conf. pp. 421-427 . D ep u it, E. J. and M. M. C a ld w e ll. 1973» S ea so n a l p a t t e r n o f n e t p ho to syn th esis o f A rtem isia t r id e n ta ta . Am. J. Bot. 60:426-i435. 110 D ie tz , D. R. 1965. Deer n u t r i t i o n r e s e a r c h i n ran g e m anagem ent. T rans . N. Am. W ild l. Conf, pp. 274-285. D o rp e t t , D. and J . T. W ebste r. 1983. G u id e lin e s f o r v a r i a b l e s e le c t io n problem s when dummy v a r ia b le s a re used. The American S t a t i s t i c i a n . 37(4):337-339. Edw ards, R. Y. 1 956. Snow d e p th s and u n g u la te abundance i n th e m ountains o f w este rn Canada. J. W ildl., Manage). 2Q (?)!l59rl6§r E in a r sen , A. S. 1956. L ife o f th e m ule d e e r , pp. 363*t39Q. IN: The d e e r o f N o rth A m erica, W. P. T a y lo r (ed ). The S ta c k p o le Co., H arrisbu rg , PA. 668 pp. E lliso n ,, L. I960 . In f lu e n c e o f g r a z in g on p la n t s u c c e s s io n o f rangelands. Bot. Rev. 26:1-78. F a m e s , P. E. 1975. Meap an n u a l p r e c i p i t a t i o n f o r Y e llo y s to n e N ational Park. SCS unpubl. map; Foose , R. M., D. W. W ise, and G, S. G a rb a r in i . .1961, S t r u c t u r a l geology of the B eartoo th M ountains, Montana and Wyoming. QeoJ1. $oc. Am. B u ll. 72 (8 ): 11.43-1172. F r a s e r , Q. Pu, H, A,. W aldrop , and H. J . Hyden, 1969. QePiSrOgy o f G a rd ip e r a r e a , P ark C ounty, M ontana, Geol. Survey B u ll , I #77, U.S. Qovt. P r in t i n g O f f ic e , W ash ing ton , D, C. 11Q pp, Gaffney, W. S. 1941. The e f f e c t s o f w in te r e lk brow sing, South Fork of the F la thead R iver, Montana. J. W ildl. Manage. 5(4):427-if53. G a r r is o n , G. A. I 953. E f f e c t s o f c l i p p in g on some ra n g e sh ru b s . J. Ran^e Manage. 6:309-317. G e ls t , V, 1981. p e h a v ip r : a d a p t iv e s t r a t e g i e s i n m ule d e e r . pp. I !57-334. IN: Mule and b la c k - ta i le d deer o f North America, p. Q. Wallmo (e d j. 605 pp. G i lb e r t , P. F., 0. C. W allmo, and R. B. G i l l . 1970. E f f e c t o f snow d ep th on m ule d e e r i n M iddle P a rk , C o lo rado . J . W iidJ1. Manage, 34 (1 ):15 -23 . Gordpn, M. S, 19£8, Animal f u n c t io n : P r i n c i p a l s and a d a p ta t io n s . The M acq illan Co., London. 560 pp. G re e r , K. p ., J. B. K irs c h , and H. W. Y eager. 1970, S ea so n a l food h a b i ts o f the n o rth e rn Yellowstone e lk (w ap iti) Herds during 1957 and 1962-1967 as determ ined from 793 rumen sam ples. Mont. W ildl, In v es t. Lab. P rogress Report No. Wr83-R-12. 76 pp. I l l Grimm, R. t,. I 939. N o rth e rn Y e llo w sto n e w in te r rangp s tu d ie s . J. Wild-1. Manage. 3:295-306. Groh, H. and W. G. Dore. 1945. A m ilkw eed su rv ey in O n ta r io ajtid ad ja c en t Quebec. Sci. A gric. 25:463-481, G ru e l l , G. E, and G. Roby. 1976. E lk h a b i t a t r e l a t i o n s h i p s tyefpre logg ing on B ridger-T eton N ational F o res t, Wyoming. . pp. 110-121. ^CNiElk-Ioggin g -ro a d s sym posium p ro c e e d in g s . S. R, Hieb (e d j. Univ. qf Idaho, Moscow. 142 PP* H ^iqeq , A. L. 1963. H is to ry o f Y e llo w sto n e N a tio n a l Park . IN? A manual of genera l in fo rm a tio n o f Yellowstone N ationa l Park. Nat. P ark S erv . Pub l. mimeo. 166 pp. Hayden-W ing, I,. D. 1979. D i s t r i b u t i o n o f d e e r , e lk , and moose op a w in te r ra,nge i n s o u th - e a s t e r n Id aho , pp. 122-131 . IN: Worth American e lk : ecology, behavior and management. M. S. Boyce and L. D. Hayden-Wing (ed). Univ, o f Wyoming, Laramie. 294 pp. R[eady, H. F. 1975. R angeland m anagem ent. M cGraw-HilL Wpok Cp. 460 pp. H ershey , T. J. and T. A. Leege, 1976. I n f lu e n c e s o f lo g g in g or* e lk on summer ra n g e i n n o r t h - c e n t r a l Id aho , pp. 73 -80 , IN: Ej,kr lag g in g -ro ad s symposium proceedings. S. R. Hieb (ed). Univ, pf Idaho, Moscow. 142 pp. Hpbbs, N. T., P. L. B aker, J. E. E l l i s , and D. M. S w if t . 1979. Compostion and q u a l i ty of e lk d ie t s du ring w in te r anji summer: A p r e l im in a r y a n a ly s i s . pp. 47 -53 . IN: N o rth A m qrican e lk : e co lo g y , b e h a v io r and m anagem ent. M. S. Boyce and L. D. Hayden- Wing (ed). Univ. of Wyoming, Laramie. 294 pp. Holeojhek, j . w. I960. C oncep ts c o n c e rn in g fo r a g e a l l o c a t i q n tp l iv e s to c k and b ig game. Rangelands 2:158-159. H ouston , D. B. 1971. R esearch on u n g u la te s in n o r th e rn Y e llo w sto n e N a t i o n a l P a rk . P a p e r p r e s e n t e d a t Amer. A ssop . f o r th e Advancement of Science symposium on re sea rch in n a tio n a l parks. 27 PP. H ouston , D. B. I 974. The n o r th e rn Y e llo w sto n e e lk . P a r t s I anji I I , H isto ry and demography. Nat. Park Serv. Publ. 185 pp. H ouston , D. B. I 976. The n o r th e rn Y e llo w sto n e e lk . P a r t s I I I end IV. V e g e ta t io n and h a b i t a t r e l a t i o n s . Nat. P a rk Serv . Pub l. 444 pp. 112 H ouston , D. B. 1978. The n o r th e rn Y e llo w sto n e e lk - w ^n tg r d is t r ib u t io n and management. Paper p resen ted a t symposium on Elk Ecology and Management, Laramie, WY, A pril, 1978. 21 pp. Irby , L. R. 1981. V a r ia t io n i n d e f e c a t io n r a t e s o f pronghorns r e l a t i v e to h a b i t a t and a c t i v i t y l e v e l . J . Range Manage. 34(4):278-279. J e n se n , C. H., A. D. S m ith , and G. W. S c o t t e r . 1975. Q u id s^ ih e s f o r g raz ing sheep on rangelands used by b ig game in w iq tq r. J. Range Manage. 25(5):34'6-351. Johnson , D. E. 1951. The b io lo g y o f th e e lk c a l f . C ervus c a n a d e n s is n e lson i. J. W ild l.' Manage. 15(4):396-410. Johnson , S. J . 1981. W i ld l i f e h a b i t a t a n a ly s i s and o b je c t iv e s jfpr th e E ag le C re ek -P a rk e r P o in t t im b e r com partm en t. U. S. F o r e s t Serv ice unpubl. re p t. Bozeman 36 pp. K e l s a l l , J. P. 1969. S t r u c t u r a l a d a p ta t io n s o f moose and d e e r fojp snow. J. Mammal. 50:302-310. K e lsey , R. G., M. S. M o rr is , and F. S h a f iz adeh. 1976. The pse o f s e s q u i te r p e n e l a c t o n e s a s taxonom ic m a rk e rs i n th e sh rubby sp ec ie s o f A rtem isia (s e c tio n T r id eh ta ta e ) in Moqtanh, J. R^hge Manage. 29(6):5Q 2-505. K i t t a q s , W. H. 1953. R ep ro d u c tio n o f Y e llo w sto n e e lk . J. W ild l. Manage. 17(2): 177-184. K n igh t, R. R. 1970. The Sun R iv e r e lk h e rd . W ild l. M onographs. No. 23. 65 pp. Koch, R. M. 1972. The B ea r’s Tooth . M ontana O u tdoors. 3 (2 ) : l8 -£ 4 . Kufe ld , R, C. 1973. Foods ea ten by the Rocky Mountain e lk , J. Rapge Manage. 26(2):106-113. Kufe ld , R. C., 0. C. W allmo, and C. Feddema. 1973. Foods o f th e Rocky M ountain m ule d e e r . USDA F o r e s t S e rv ic e R esea rch Rapep, RM-111. 31 PP. Leach, H. R. 1956. Food h a b i t s o f th e G re a t B a s in deep herds o f C a lifo rn ia . C a lif . F ish and Game. 42(4):243-294. Leege, T. A. 1976. R e la t io n s h ip o f lo g g in g to d e c l in e o f Pp te King e lk herd . pp. 6- 10. IN :E lk -logg ing-roads symposium proceedings. S. R. H ieb (ed ). Univ. o f Id aho , Moscow. 142 pp. 113 Lemke, T. 0. 1975. Elk h a b i ta t and fo rag e r e la t io n s h ip s in a tim b e r- brow se ran g e i n w e s te rn M ontana. M ontana W ild l. Res. P ro j. No W-120-R-6. 127 pp. Lemmon, P. E. I 956. A s p h e r ic a l d e n s io m e te r f o r e s t im a t i n g f o r e s t o v e rs to ry d en s ity . F o re s t Science. 2(4):3l4-320. L onner, T. N. 1975. Long Tom C reek s tu d y , pp. 2 5 -72 . IN: Annual Prog. Report, Mont. coop, e lk /lo g g in g study. Bozeman, Montana. L o n n e r , T. N. and J . D. Cada. 1982 . Some e f f e c t s o f f o r e s t m anagem ent on e lk h u n t in g o p p o r tu n i ty . pp. 119-128. IN: Proceedings o f the w este rn s t a t e s e lk workshop. T. L. B r i t t and D. P. Theobald (ed ). F l a g s t a f f , A rizona . 166 pp. L onner, T. N. and R. J. M ackie. 1983. On th e n a tu r e o f c o m p e t i t io n be tw een b ig game and l i v e s t o c k . . 7 pp; P aper p re s e n te d a t F o res tland G razing Symposium. D. Baumgartner (ed). in p ress. Lovaas, A. L. 1958. Mule deer food h a b i ts and range use, L i t t l e B e lt M ountains, Montana. J. W ildl. Manage. 22(3):275-283. Loveless, C. M. 1964. Some re la t io n s h ip s between w in te r in g mule d eer and th e p h y s ic a l en v iro n m en t. T rans . N. Am. W ild l. Conf. d d . 415-431. Lyon, L J. 1976. Elk use as r e la te d to c h a r a c te r i s t i c s o f c le a rc u ts in w este rn Montana, pp. 69-72. IN: E lk -logg ing -ro ad s symposium p ro c e e d in g s . S. R. H ieb (ed ). Univ. o f Id aho , Moscow. 142 pp. Lyon, L. J . and C. E. J e n se n . 1980. M anagement im p l i c a t i o n s o f e lk and d e e r use o f c l e a r c u t s i n M ontana. J. W ild l. Manage. 4 4 (2 ) :352-362. M ackie, R. J . 1970. Range e co logy and r e l a t i o n s h i p s o f mule d e e r , e lk and c a t t l e i n th e M is so u r i R iv e r B reak s , M ontana. W ild l. Monograph No. 20. 79 pp. Marcum, C. L. 1976. H ab ita t s e le c t io n and use during summer and f a l l m onths by a w e s te rn M ontana e lk h e rd . pp. 91 -96 . IN: E lk ­ logg ing -ro ad s symposium proceedings. S. R. Hieb (ed). Univ. of Idaho, Moscow. M art in k a , C. J. 1965. P o p u la t io n s t a t u s , s o c i a l h a b i t s , movements and h a b i ta t r e la t io n s h ip s of the summer r e s id e n t e lk o f Jackson Hole V a lle y , Wyoming. M. S. T h e s is Mont. S ta te U niv ., Bozeman. 62 pp. M autz , W. W., H. S i l v e r , J. B. H olt e r , H. H. Hayes, and W. E. Urban, J r . 1976. D ig e s t ib i l i ty and r e la te d n u t r i t io n a l d a ta fo r seven n o rth e rn deer browse spec ies . J. W ildl. Manage. 40(4):630-638. 114 M cllvanie, S. K. 1942. Carbohydrate and n itro g en tre n d s in bluebunch w heatg rass, Agropyron SPioatumr w ith sp e c ia l re fe re n ce to g raz ing in f lu e n c e s . P la n t Physio l. 17(4):540-557. McNeal, A. and T. Weaver. 1982. S o il compaction as a de term inan t o f s u b a lp in e s n o w d r i f t v e g e ta t io n . P roc. Mont. Academy S c ie n c e s . 41:46-50. McNeill, G. B, 1972. Elk management in th e C learw ater reg ion . Idhho W ild l. Rev. J a n .-F e b . pp. 3 -6 . Moen, A. N. 1968. Energy balance of w h i te - ta i le d deer in th e w in te r. T ran s . N. Am. W ild l. Conf. 33 :224 -236 . Moen, A. N. 1973. W i ld l i f e e co lo g y : An a n a l y t i c a l ,approach . San F r a n c is c o : W. H. Freem an. 458 pp. M o rg a n t in i , L. E. and R. J. Hudson. 1979. Human d is tu rb a n c e and h a b i ta t s e le c t io n in e lk . pp. 132-139. IN: North American e lk : e co lo g y , b e h av io r and m anagem ent. M. S. Boyce and L. D. Hayden- Wing (ed). Univ. o f Wyoming, Laramie. 294 pp. M o rr is , M. S. and J . E. S ch w artz . 1957. Mule d e e r and e lk food h a b i t s on th e N a t i o n a l B is o n R ange. J , W i ld l . M anage. 21(2):189-193 . M o rr is , M. S., R. G. K e lsey and D. G rigg s . 1976. The g eo g ra p h ic and e c o lo g ic a l d i s t r i b u t i o n o f b ig s ag eb ru sh and o th e r woody A rtem is ia s in Montana. Proc. Mont. Ac. Sci. 36:56-79. M uegg ler, W. F. 1967. Reponse o f m oun ta in g r a s s la n d v e g e ta t io n to c lip p in g in sou thw este rn Montana. Ecology 48(6):942-949. M uegg ler, W. F. 1970. In f lu e n c e o f c o m p e t i t io n on th e re sp o n se o f Id aho f e scue to c l ip p in g . U.S.D.A. F o r e s t S erv . ,Res. Paper INT- 73 , 10 pp. M uegg ler, W. F. and J . P. B l a i s d e l l . 1958. E f f e c t s on a s s o c ia te d sp ec ie s o f burning, r o to bea ting , sp ray ing , and r a i l i n g sagebrush. J . Range Manage. 11(2):6l-66. M uegg ler, W. F. and W. L. S te w a r t . 1980. G ra ss la n d and sh ru b la n d h a b i t a t ty p e s o f w e s te rn M ontana. USDA F o r e s t S e rv ic e G enera l Teqhnical Report INT-66. 154 pp. Nagy, J . G., H. W. S te in h o f f , and G. M. Ward. 1964. E f f e c t s o f e s s e n t ia l o i l s o f sagebrush on deer rumen m ic rob ia l func tion . J. W ildl. Manage. 28:785-790. 115 N eff, D. J. 1968. The p e l l e t - g r o u p coun t te c h n iq u e f o r b ig game t r e n d , c e n su s , and d i s t r i b u t i o n : a re v ie w . J . W ild l. Manage. 32:597-614. N e l l i s , C. H. and R. L. Ross. I 969. Changes i n m ule d e e r food h a b i t s a s s o c ia te d w ith h e rd r e d u c t io n . J . W ild l. Manage. 3 3 (1 ):191 - N eter, J. and W. Wassermaa 1974. Applied l in e a r s t a t i s t i c a l models. Richard D. Irw in , Inc. Homewood, I l l i n o i s . 842 pp. Nie, N. H., C. H. H u ll, J. G. J e n k in s , K. S te in b r e n n e r , and D. H. B en t. I 975. S t a t i s t i c a l package f o r th e s o c i a l s c ie n c e s . 2nd ed. McGraw-Hill Book Company. 675 pp. Fechanec , J . F. and G. D. B ic k fo rd . 1937» A co m p ariso n o f some m ethods u sed i n d e te rm in in g p e rc e n ta g e u t i l i z a t i o n o f range g r a s s e s . J. A g r ic. Res. 54 :753 -765 . Pengelly , W. L. 1963. Timber lands and deer in th e no rth e rn Rockies, J . F o r e s t r y . 61:10. Pengelly , W. L. 1972. Cle a rc u ttin g : d e tr im e n ta l a sp e c ts f o r w i ld l i f e re so u rce s . J. S o il and Water Cons. 27(6):255-258. P e r r y , C. and R. O v e r ly . 1 976 . Im p a c t o f r o a d s on b ig game d i s t r i b u t i o n in p o r t i o n s o f th e B lue M oun ta in s o f W ash ing ton , pp. 62 -68 . IN: E lk - lo g g in g - r o a d s sym posium p ro c e e d in g s . S. R. H ieb (ed ). U niv. o f Id ah o , Moscow. 142 pp. P f i s t e r , R. D., B. L. Koval c h ik , S. F. Arno, and R. C. P re s by. 1977. F o r e s t h a b i t a t ty p e s o f M ontana. USDA F o r e s t S e rv ic e G enera l Technical Report INT-34. 174 pp. P ie r c e , K. L. 1979. H is to ry and dynam ics o f g l a c i a t i o n in th e n o r th e rn Y e llo w sto n e N a tio n a l P ark a re a . Geol. Survey P ro f. P ape r 729-F . U.S. Govt. P r in t i n g O f f ic e , W ash ing ton , D.C. 4 p l a t e s . 90 pp. Powell, J. 1970. S i te f a c to r r e la t io n s h ip s w ith v o l a t i l e o i l s in big sagebrush. J. Range Manage. 23(1):42-46. Reed, D. F. 1981. C o n f l i c t s w ith c i v i l i z a t i o n , pp. 509 -535 . IN: Mule and b la c k - ta i le d deer of North America. 0. C. Wallmo (ed). Univ. of Nebraska P ress, Lincoln. 605 pp. R e s le r , R. A. 1972. C le a r c u t t in g : b e n e f i c i a l a s p e c t s f o r w i l d l i f e re sou rces . J. S o il and Water Cons. 27(6):250-254. 116 R eyno lds, H. G. 1966. Use o f op en ing s i n s p r u c e - f i r f o r e s t s o f Arizona by e lk , deer, and c a t t l e . USDA F o res t S e rv ice Rocky Mt. F o r e s t Range Exp. S ta . Res. Note RM-66. 4 pp. R eyno ld s, H. G. 1969. Im provem ent o f d e e r h a b i t a t on s o u th w e s te rn f o r e s t lands. J. F o re s try 67:803,-805. R ittenhouse , L. R. and F. A. Sneva. 1977. A techn ique fo r e s tim a tin g b ig sagebrush production . J. Range Manage. 30(1):68-70. R i t t e r , D. F. 1967. T e rra c e d eve lopm en t a lo n g th e f r o n t o f th e B e a r to o th M oun ta in s, s o u th e rn M ontana. Geol. Soc. Am. B u ll. 78:467-484. R o b in e t te , W. L., 0. J u la n d e r , J . S. G a sh w ile r , and J . G. Sm ith . 1952. W inter m o r ta l i ty o f mule deer in Utah in r e l a t i o n to range cond itio n . J. W ildl. Manage. l6(3):289-299. Rush, W. M. 1932. N orthern Yellowstone e lk study. Montana F ish and Game Commission. 131 pp. S eag e r , G. F. 1944. Gold, a r s e n i c , and tu n g s te n d e p o s i t s o f th e Ja rd in e-C revasse Mountain d i s t r i c t , Park County, Montana: Montana Bureau o f Mines and Geology Mem. no. 23. I l l pp. S e v e r in g h a u s , C. W. 1947. R e la t io n s h ip s o f w e a th e r to w in te r m o r t a l i t y and p o p u la t io n l e v e l s among d e e r i n th e A dirondack r e g io n o f New York. T ran s . N. Am. W ild l. Conf. 12 :212-223 . Short, H. L. 1981. N u tr i t io n and m etabolism , pp. 99-127. IN: Mule and b l a c k - t a i l e d d e e r o f N o rth A m erica. 0. C. Wallmo (ed ). Univ. of Nebraska P ress, L incoln. 605 pp. S m ith , A. D. 1949« E f f e c t s o f mule d e e r and l i v e s t o c k upon a f o o t h i l l range i n n o r th e rn U tah. J. W ild l. Manage. 13 (4 ):421 - 423. Sm ith , G. A. 1930, The Sun R iv e r e lk h e rd . J. F o r e s t r y . 28 :644 - 647. S m ith , J. C. and 0. J u la n d e r . 1953. D eer and sheep c o m p e t i t io n in Utah. J. W ildl. Manage. 17(2):101-112. S nedeco r, G. W. and W. G. Cochran. 1980. S t a t i s t i c a l m ethods. 7 th ed. The Iowa S ta te U n iv e rs ity P ress. Ames,, Iowa. 507 pp. S tevens, D. R. 1966. Range r e la t io n s h ip s o f e lk and l iv e s to c k , Crow Creek d ra inage , Montana. J. W ildl. Manage. 30(2):349-363. S to d d a r t , L. A., A. D. S m ith , and T. W. Box. 1975. Range Management (3 rd ed .) . M cG raw -H ill Book Co. 532 pp. 117 S t r i c k la n d , M. D. and K. Diem. 1975. The im p ac t o f snow on m ule deer. pp. 135-174. IN: The Medicine Bow ecology p ro je c t. D. H. Knight (ed). Univ. o f Wyoming, Laramie. 397 pp. S u tto n , A. and M. S u tto n . 1972. Y e llo w sto n e - a c e n tu ry o f th e w ild e rn e ss idea . The M acmillan Co., New York. 219 pp. S w if t , L. W. 1941. Some c r i t e r i a f o r d e te rm in in g p ro p e r fo r a g e u t i l i z a t i o n by b ig game on w in te r ra n g e . J. Mammal. 22 (10 :47- 53. T abaehn ick , B. G. and L. S. F i d e l l . 1983« U sing m u l t i v a r i a t e - s t a t i s t i c s . Harper and Row, P u b lish e rs , New York. 509 pp. T h o r n th w a i t e , C. W. 1 948 . An a p p ro a c h to w a rd a r a t i o n a l c l a s s i f i c a t io n of c lim a te . Geogr. Rev. 38:55-94. T ye rs , D. B. 1981. The c o n d i t io n o f th e n o r th e rn w in te r range in Y e llo w sto n e N a tio n a l Park - a d i s c u s s io n o f th e c o n tro v e rs y . " P ro f . P aper. Mont. S ta te Univ. 170 pp. V a llen tin e , J. F. 1977. Range development and improvements. Brigham Young Univ. P re s s . Provo, Utah. 516 pp. W allmo, 0. C., L. H. C a rp e n te r , W. L. R eg e lin , R. B. G i l l , and D. L. Baker. 1977. E va lu a tion of deer h a b i ta t on a n u t r i t io n a l b asis . J. Range Manage. 3 0 (2 ) :122-127. W allmo, 0. C. and J . W. Schoen. 1981. F o r e s t m anagem ent f o r d e e r , pp. 434-448 . IN: Mule and b l a c k - t a i l e d d e e r o f N o rth A m erica. 0. C. Wallmo (ed ). Univ. o f N ebraska P re s s , L in co ln . 605 pp^ Ward, A. L. 1976. E lk b e h a v io r i n r e l a t i o n to t im b e r h a r v e s t o p e ra tio n s and t r a f f i c on th e M edicine Bow range in south—central, W yoming. pp. 3 2 -4 3 . IN : E l k - l o g g i n g - r o a d s sym posium p ro c e e d in g s . S. R. H ieb (ed ). Univ. o f Id aho , Moscow. 142 pp. Ward, A. L., J. J . C upal, A. L. Lea, C, A. O akley, and R. W. Weeks. 1973. E lk b e h av io r i n r e l a t i o n to c a t t l e g r a z in g , f o r e s t r e c re a t io n and t r a f f i c . Trans. N. Am. W ildl. Conf. 38:327-337. Ward, A. L., K. Diem, and R. Weeks. 1975. The im p ac t o f snow on e lk . pp. 103-133. IN: The M edicine Bow ecology p ro je c t. D. H. Knight (ed ). Univ. o f Wyoming, L aram ie . 397 pp. Weaker, S. C. 1964. H ab ita t s e le c t io n . S c i. Am. 211:109-116. W elch, B. L. and J . C. P ede rson . 1981. In v i t r o d i g e s t i b i l i t y among a c c e s s i o n s o f b ig s a g e b ru s h by w i ld m u le d e e r and i t s r e l a t i o n s h i p to m o n o te rp e n o id c o n te n t . J . Range Manage. 34(6) :497-500. 118 W hitho rn , B. D. 1968. Photo h i s t o r y o f G a rd in e r , J a r d in e , C revasse en trance to Yellowstone N ational Park wonderland. Publ. by The Park County News, L iv ingston , Montana. 48 pp. W ilk in s , B. T. 1957. Range u se , food h a b i t s , and a g r i c u l t u r a l r e la t io n s h ip s o f the mule deer, B ridger Mountains, Montana. J. W ildl. Manage. 2 1( 2 ) :159-169. W illa rd , E. E. and C. M. McKelI . 1973. S im ulated g raz ing management system s in r e l a t i o n to shrub growth responses. J. Range Manage. 26:171-174. W illia m s , R. E., B. W. A llre d , R. M. DeNio, and H. E. P au lsen , J r . 1968. C o n se rv a tio n , d ev e lo p m en t, and use o f th e w o rld ’s rangelands. J. Range Manage. 21:335-360. W ilson , A. M., G. A. H a r r i s , and D. H. G a te s . 1966. C um u la tiv e e f f e c t s o f c l ip p in g on y i e l d o f b lu e bunch w h e a tg ra s s . J. Range Manage. 19(2):9Q -91. W ilson , C. W., J r . 1934. Geology o f th e t h r u s t f a u l t n e a r G a rd in e r , Montana. J. o f Geology. 42:649-663. W inward, A. H. I 980. Taxonomy and e co lo g y o f sag eb ru sh i n Oregon. Ag. Exp. S ta . B u ll . 642. Oregon S ta t e U., C o r v a l l i s . 15 pp. Winward, A. H. and E. W. T isda le . 1969. A s im p lif ie d chem ical method f o r s ag e b ru sh i d e n t i f i c a t i o n . Univ. o f Id aho S ta . N ote 11. 2 PP. W onderland , 1902. M ic ro f ilm copy o f o r i g i n a l G a rd in e r , Montana n ew spaper. B e l l and H ow ell M icro Photo D iv ., W ooste r, Ohio, v o l . 4 , No. 12. W righ t, H. A. 1970. Response o f b ig s ag eb ru sh and t h r e e - t i p sagebrush to season of c lip p in g . J. Range Manage. 23(1):20-22. Wr i g h t , J . C. and E. A. W r ig h t . 1 948 . G r a s s la n d ty p e s o f so u th c en tra l Montana. Ecology 29(4):449-460. Zacek , J . C., H. E. H un te r, T. A. Brown, and R. I . Ross. 1976. Montana g raz ing guides. USDA S o il Cons. Serv. 74 pp. Zahn, H. M. 1974. . Seasonal movements o f the B urde tte Creek e lk herd. M.S. T h e s is . Univ. o f M ontana, M isso u la . 71 pp. APPENDICES 120 APPENDIX A plant SPECIES ON THE STUDY AREA 121 Table 12. P lan t sp ec ie s id e n t i f i e d on th e G ardiner study a re a I Grami noiris Agropyron c ris ta tu m A. sm ith ii A. spicatum A, subse cynduni A. t r a chycaulurn A g ro stis e x a ra ta A. s to lo n if e r a Bouteloua g r a c i l i s Bromus anomalus B. iperm is B. japon icu s B. m arginatus B. tectorum C alam agrostis canadensis C. rubescens Carex f e s t i y e l l a C. f i l i f o l i a C. g e ry i Danthonia in te rm ed ia D is t i c h l i s s t r i c t a Elymus c in e reu s Festuca id ahoen s is Hordeum jubatum Juncus b a l t ic u s K oeleria py ram idata Lolium perenne M elica s p e c ta b i l i s O ryzopsis hymenoides Phleum p ra ten se Poa ampla P. c u s ic k i i P. fe n d le r ia n a P. ju n c i f o l ia P. p ra te n s is P. sandbe rg ii S itan io n h y s t r ix S tip a columbiana S. comata Trisetum spicatum Forbs. F erns. Mosses. V ines and Cactus A ch ille a m ille fo lium Actaea ru b ra A goseris g lauca Allium brev isty lum A. t e x t i l e A ntennaria dimorpha A. ro sea A. um brinella A rabis h o lb o e l l i i A renaria congesta Arnica c o rd ifo l ia A rtem isia d racunculus A ster canescens A. conspicuus A. s copu lo rum A stragalus c ib a r iu s A. g i lv i f lo r u s A. m iser A. pu rs h i i Balsam orhiza s a g i t t a t a Campanula u n if lo ra C a s t i l l e ja a n g u s t i fo l ia Cerastium arvense Cirsium arvense C. foliosum Clem atis columbiana C. h ir s u t is s im a C o llin s ia p a rv if lo r a Comandra p a l l id a C repis acum inata Delphinium b ic o lo r D. o c c id en ta le Dodecatheon conjugans Draba payson ii Epilobium angustifo lium Equisetum arvense E rigeron compos i tu s E. corymbosus E. g la b e llu s E. g r a c i l i s E. ochroleucus E. pumilus Table 12. (Continued) Eriogonum h e rac leo id e s E. o v a lifo lium E. umbellatum Erysimum asperum F rag a ria vesca F. v irg in ia n a F ra se ra spec io sa F r i t i l l a r i a a tropu rpu rea F. pudica Geranium r ic h a rd s o n ii G. viscosissim um Geum tr if lo ru m G rin d e lia squarrosa Haplopappus a c a u l is H e lan th e lla u n if lo ra Heracleum lanatum H etero theca v i l lo s a Hieracium eynoglosso ides L athyrus b iju g a tu s L e sq u e re lla a lp in a Lew isia re d iv iv a L in a ria da ljna tica Linum le w is i i Lithospermum incisum L. ru d e ra le Lomatium macrocarpum L. t r i t e r naturn Lupinus s e r ic e u s Medicago s a t iv a M elilo tu s o f f i c in a l i s Mentha a rv en s is M entzelia la e v ie a u l i s M ertensia c i l i a t a Monotropa hypopithys Myosotis a lp e s t r i s Oenothera c ae sp ito sa Opuntia po lycantha Orobanche f a s c ic u la te O xytropis s e r ic e a Paronychia s e s s i l ! f l o r a Penstemon cyaneus Phace lia s e r ic e a Phlox c a e sp ito sa P. hood ii P lantago pa tagon ica Polygonum b is to r to id e s P o te n t i l l a g landu losa P. g r a c i l i s Peterid ium aquilinum Sedum stenopetalum S e la g in e lla dense Senecio canus S. s e r ra Sisymbrium altissim um Sm ilncina racemosa S. s t e l l a t e Solidago canadensis Sphaera lcea co cc ihea Taraxacum o f f ic in a le Thalictrum o c c id e n ta le Townsendia p a rry ! Tragopogon dubiup T rifo lium hayden ii V io la adunca V. purpurea Zigadenus p an icu la tu s 123 Table 12. (C on tinued). Shruhdll H alf-Shrubs and Trees Abies la s io c a rp a P. c o n to r ts Acer glabrum P. f l e x i l i s Alnus t e n u i f o l ia Populus a n g u s t i fo l ia Amelanchier a ln i f o l i a P. trem u lo ides A rc to staphy lo s u v a -u rs i Prunus V irg in ian s A rtem isia f r ig id a Pseudotsuga m enz ies ii A. nova Rhus t r i l o b a t a A. t r id e n ta ta subsp. t r id e n ta ta Ribes cereum A. t r i d e n ta ta subsp. vaseyana R. setosum A. t r i d e n ta ta subsp . wyomingensis R. v iscossissim um B erb e ris repens Rosa w oodsii B etu la o c c id e n ta l is Rubus Idaeus. Ceanothus v e lu tin u s R. p a rv if lo ru s C erato ideq la n a ta S a lix spp. Chrysothamnus nauseosus Sambucus melanocarpa C. v i s c id i f lo r u s Sarcobatus verm icu la tu s Cornus s to lo n i f e r a Shepherdia canadensis Grayia sp inosa , Symphoricarpos a lbus Jun iperu s h o r iz o n ta l is S. o c c id e n ta l is J . s copulorurn Tetradymia canqscens Leptodacty lon pungens Vaccinium membranaceum Physocarpus malvaceus V. scoparium Picea engelm annii Pinus a lb ic a u l i s Xanthocephalum sa ro th ra e 1 Main re fe re n c e s : H itchcock, A. S. 1951. Manual of the g ra s se s of th e U n ited S t a t e s . USDA M isc. Pub l. No. 200. 1039 p p .; and B ooth , W. E. and J. C. W rig h t. 1959. F lo r a o f M ontana P a r t I I . M ontana S t a t e U niv ., Bozeman. 305 pp. APPENDIX B HISTORY OF THE STUpY AREA 125 H isto ry pf the G ardiner Study Area N a tu ra l w onders o f th e Y e llo w sto n e N a tio n a l P ark a r e a have a t t r a c t e d p eo p le to th e G a rd in e r v i c i n i t y f o r a v a r i e t y o f r e a s o n s , from the e a r ly Ind ian h u n te rs to th e p resen t-day to u r i s t . Much e a r ly s e tt lem e n t in the Rocky Mountains was due to q u e s tin g e a r ly day m iners who were among th e f i r s t to e s ta b l is h re s id ence a f t e r a r r iv in g along r o u te s d e s c r ib e d by e a r ly e x p lo r e r s . The i n i t i a l s e t t l e m e n t o f th e G ardiner a re a was ty p ic a l of th a t e ra . P ro s p e c to r Joe Brown f o l lo w in g th e Y e llo w sto n e R iv e r found e n co u rag in g p la c e r g o ld d e p o s i t s a t th e mouth o f B ear C reek i n 1866 (Wonderland 1902). News of the d iscovery spread to surrounding m ining camps and the in e v i ta b le ru sh to the a re a was on. V estig es from the ensuing f lo u r is h of a c t i v i ty a re s t i l l q u ite ev id en t tpday. Moss covered t r e e s tum ps a t t e s t to th e lu m b er needed f o r e v e r y th in g from s a lo o n s to s l u i c e boxes. P ro sp e c t p i t s abound th ro u g h o u t th e a r e a w ith p la c e r d ig g in g s and h y d r a u l ic s c a r s a lo n g stream s. D ilap id a ted m i l l s and mine works in h igh mountain meadows a re evidence of the energy and p e rs is ta n c e of those seek ing to s t r ik e i t r i c h . Jam es Graham and Jo e Brown d is c o v e re d i n t r u s i v e q u a r tz v e in s f a i r l y r i c h w ith g o ld i n 1870 (S eag e r 1944) a b o u t 6 km n o r th e a s t o f G a rd in e r i n B ear Gulch. The v e in s lo o k ed p ro m is in g and th e m in in g camp, which became Ja rd in e , sprang in to ex is ten ce . Ja rd in e hap s in ce experienced th e boom and bust pe riod s a s so c ia te d w ith th e fo r tu n e s o f i t s mines. 126 The expense of hard rock underground m ining has taken i t s t o l l on m in in g c o m p a n ie s , in c lu d in g th o se o p e r a t in g n e a r J a r d in e , In 1900, Ja rd in e was d esc ribed as "the most wide awake m ining camp in Montana" w ith 130 b u ild in g s (L iv ingston E n te rp r ise Souvenir 1900). F if ty y ears l a t e r i t was e s s e n t ia l ly a town of hangers-on. J a r d in e q u a r tz v e in s have p roduced n o t o n ly g o ld , b u t a l s o m a rk e ta b le q u a n t i t i e s o f a r s e n ic and tu n g s te n . D eluded a r s e n ic t a i l i n g s ponds j u s t dow nstream from J a r d in e t e s t i f y to m i l l s w hich have n o t o p e ra te d s in c e th e l a t e m o ' s . However, o ld m ines and c la im s i n th e a r e a a re c u r r e n t l y b e in g r e ju v e n a te d by new ow ners. M igra ting an im als may once again be sub jec ted to sounds o f th e m iner's b i t and d is lo c a tio n caused by new mines. Back i n 1870, G a rd in e r was a c q u i r in g e lo o k o f perm anence %'s a c en te r fo r the su rround ing m ining a c t iv i ty . Form ation o f Yellowstone Park on March I , 1872, ,w ith i t s n o rth e rn boundary a t th e very edge of town ensured the fu tu re o f G ardiner. Along w ith t h i s s t a b i l i t y came th e ranch ing and farm ing necessary to support a growing community. Although th e re were no t many t o u r i s t s to g re e t du ring the Bark's f i r s t few decades, G ardiner became th e most a c c e s s ib le s te p p in g -o ff p o ic t f o r Park f r e ig h t in g and manpower. Good read s and a la rg e number o f s to ck an im als were req u ired fo r t ra n sp o r ta tio n . These a d d itio n a l encroachm ents on t r a d i t io n a l w i ld l i f e w in te r ra n g e w ere e s s e n t i a l l y unnoticed fo r many y ea rs . P ark m anagem ent p o l i c i e s have h i s t o r i c a l l y been e m b ro ile d i n c o n tro v e r s y , e s p e c i a l l y th o se c o n c e rn in g th e g r e a t e lk h e rd s . The n a tu re and ex ten t of th ese c o n tro v e rs ie s have been w e ll documented in 127 o th e r p a p e rs (T yers 1981, H ouston 1974). The P ark S e rv ic e h a s been e n tru s te d to conserve the Park 's sp lendo r in such a manner as to leave i t "u n im p a ired f o r th e en joym en t o f f u t u r e g e n e r a t io n s " (S u tto n and Su tton 1972). Therein l i e s the enigma of p re se rv in g the w ildness of th e P ark a r e a , y e t a l lo w in g so much human in f lu e n c e i n t o i t § ecosystem . The problem of p re se rv in g an a re a l ik e Yellowstope N ational Park f o r w i ld l i f e use i s exacerbated when Park an im als le av e i t s sapctupry and move to study a re a land s o u ts id e th e Park boundary. These landp a re c u rre n tly under m u ltip le use management where the anim al and range re so u rce s a re not th e so le concern. Therefore , m a in ta in ing th e study a re a 's range re sou rce a t a s u f f i c i e n t le v e l to meet anim al needs eaph w in te r and s t i l l f u l f i l l man's re sou rce o b je c t iv e s has understandab ly c rea ted c o n f l ic t s thrpugh the y e a rs . 128 APPENDIX C PLANT COMPOSITION ON THE STUDY AREA Table 13. P la n t and m is c e l la n e o u s c o m p o s i tio n o f s ix h a b i t a t ty p e s 1 e v a lu a te d f o r p ro d u c t io n , p e rc e n ta g e co v e r (b a s a l f o r g r a s s and fo rb , canopy fo r s h ru b ) , and e i t h e r f re q u e n cy o r d e n s i ty on th e G ardiner study area. Spec ies o r Item H ab ita t t y p e ^ ' Graminoiri Species Agropyron spicatum A. subsecundum A. trachycaulum Bromus anomalus B. Japon icus B. m arg inatus B. tec torum C alam agrostis c anadensis A . t . v a / f e x d A rn o /A g s p A . t .v a /A g s p A .t.w yV A gsp A . t .' t r /A g s p P sm eA V iri 116/ l .S /O .y o ^ - / 2/ - / T / - / I / - / / - / 0 .0 1 / - / 0.02 / - / 0.01 / - 66/ 1 .0 /0 .82 166/ 1 .6 /0 .95 / / / / / / / / - / - / - / - / - / / / / / / / - / - / - / 0 .08 / - / - Carex g ey eri 6/ 0 . 1/ 0 .1 0 I / T /0 .0 1 9 / 0 .2 /0 .1 0C. f e s t i v e l l a - / - / - - / - / - Qymus c in e reu s - / T / - - / - / _ F estuca Idahoe n s is 335/ 6 .8 /0 .9 8 21/ 0 .3 /0 .0 5 66/ 1 .1 /0 .7 8Hordeum Jubatum - / - / - - / - / - Juncus b a l t ic u s - / T / - - / - / - - / - / -K oe le ria pyram idata 5 0 / 1 .1 /0 .7 9 6 7 / 1 .7 /0 .6 9 7 7 / 0 .9 /0 .7 5O ryzopsis hymenoides — / - / - 6 / 0 . 1/ 0 .2 1 - / - / - Poa ampla - / - / - - / - / - - / - / - P . c u s ic k i i 10/ 0 . 2/ 0 .1 1 I / - / 0 .0 1 2/ - / 0 .1 0P . J u n c i fo l ia 6/ 0 . 1/ 0 .0 2 - / - / - - / - / - P . s a n d b e rg ii 3 2 / 1 .0 /0 .7 1 10/ 0 .5 /0 .2 6 5 / 0 . 1/ 0 .3 5S tipa Columbiana I / 0 .1 /0 .0 3 - / - / - - / - / .S. comata 32 / 0 .2 /0 .1 9 2 6 / 0 .2 /0 .3 6 7 6 / 1 .0 /0 .6 2Trisetum spicatum - / - / - — / - / — - / - / - Forb , F ern , Moss and C actus Species A ch ille a m ille fo liu m A llium t e x t i l e A n tennaria dimorpha A. ro sea A. u m b rin e lla A rabia hol b o e l l i i A renaria co n g es ts A rnica c o r d i f o l i a A s te r canescens A. conspicuus A s trag a lu s g i l v i f lo ru s A. m ise r A. p u r s h l i 2 / T /0 .0 5 T / T /0 .0 2 - / - / - 1 8 / 0 .5 /0 .3 5 — / — / — - / T I / T - / - 3 / T / - /0 .0 3 / - /0 .0 6 — / — / — ■ / — / — 7 / T /0 .1 5 3 / 0 . 1/ 0 .1 8 — / - / — - / — / - - / - / - — / — / — I / T /0 .0 6 - / - / - T / T /0 .0 8 - / - / - 6 / 0 .2 /0 .2 5 / - / / - / / - / - / - / - 3 / T /0 .0 8 - / - / - - / - / - - / - Z - - / - / - - / T / - — / — / — 1 3 / 0 .3 /0 .0 8 - Z - / — - / - / . 1 6 / 0 .2 /0 .1 8 5 / o . i / o . i o 8 / 0 .1 /0 .1 0 21 1 / 2 .6 /0 .9 0 • / - / - / - / - / - / - / - / - / 0.10 / - / - a/o.io / - / - • / - - / • - / - — / - — / - — / - 2/ - - / — — / — 11/ 0 . - / - - / - 9 5 / 2 .1 /0 .9 5 T / T /0 .0 5 - / - / - — / — / - - / - / - 10 / 0 . l i /0 .75 - / - / - 3 2 / 0.7/0.1x5 - / - / - - / - / — 3 / T /0 .1 0 • / - / — 6/ 0 .2 /0 .0 5 - / - / - - / - / — • / - / — - / - / - 2 / T /0 .1 5 - / - / — - / - / - - / - / - - / — / - 156 / 1 .8 /0 .7 0 — / — / — - / - / — - / - / - - / - / - - / - / - - / - / — - / - / - - / - / - • / - / - - / - / - - / - / - • / - / - • / - / — 3 / T /0 .2 0 1x1 / 0 . 1/ 0 .1 0 — / - / — - / — / — - / - / - - / - / — - / - / - - / - / - — / — / - - / - / - I / - /0 .1 0 - / — / — - / - / - - / — / — - / - / — - / - / — - / - / — I / - /0 .1 0 — / — / — - / — / - - / - / — - / - / - 7 1 / 0 .7 /0 .1 5 8/ 0 .2 /0 .0 5 / _ / - / - / - / - / - / T — / - - / T - / - - / 0 . 1/ _ lx/ 0 .6 /0 .1 5 10/ - /0 .2 5 - / - / - 11x3/ 3.1x/0.70 I / - /0 .0 5 - / - / - 8/ 0 .1 /0 .1 5 - / - / - 1 6 / 0 .6 /0 .3 0 - / - / - - / - / - — / — / — 2 / 0 .1 /0 .1 5 • / - / — 6 / - /0 .1 5 17/ 0.a/o.35 - / - / - - / — / — - / 0 .2/ - T / - /0.05 — / — / — - / - / - 2/ - /0.05 - / - / - 26/ 1 .2/0 .a0 - / - / - 38/ 0.8/0.50 - / — / — rv> VO Tab le 13. (C o n t in u ed ) S p e c ie s o r I te ir B a ls a m o rh iz a s a g i t t a t a C a s t i l l e j a a n g u s t i f o l i a C e r a s t iu m a r v e n s e C o l l i n s i a p a r v i f l o r a C om andra p a l l i d a C r e p is a c u m in a ta E r ig e r o n c o m p o s!t u s E . co ry m b o su s E . g r a c i l i s E . o c h r o l e u c u s E riogonum h e r a c l e o i d e s E . o v a l i f o l i u m E . u m b e lla tu m Erysim um a sp e ru m F r a g a r i a V i r g i n i a n s Geum t r i f l o r u m H a p lo p ap p u s a c a u l i s H e l i a n t h e l l a u n i f l o r a H e te r o t h e c a v i l l o s a L e s q u e r e l l a a l p i n a L i th o sp e rm u m in c is u m L . r u d e r a l e Lom atium m acrocarpu rn L u p in u s s e r i c e u s M y o so t is a l p e s t r i s O p u n tia p o l y c a n th a O x y tro p is s e r i c e a P a ro n y c h ia s e s s i l i f l o r a P en s tem o n c y a n e u s F h a c e l i a s e r i c e a P h lo x c a e s p i t o s a P . h o o d i i P t e r i d iu m a q u i l in u m Sedum s t e n o p e ta lu m S e l a g i n e l l a d e n s a T araxacum o f f i c i n a l e T b w n sen d ia p a r r y ! T rag o p o g o n d u b iu s V io la a d u n c a Z ie a d e n u s n a n l c i i la t . i i s A . t . v a / F e i d H a b i t a t t y p e i / ~ " A m o /A g sp A . t . v a /A g sp A -.t.w y /A g sp A . t . t r / A g s p P sm e /F e ld 7 1 / 0 .2 /0 .0 6 I / T /0 .0 1 - / T / - - / - / - I V 0 .1 /0 .1 8 V T /0 .1 0 T / T /0 .0 2 7 / 0 .1 /0 .1 8 T / T /0 .0 1 - / - / - 7 / 0 .V 0 .0 6 - / - / - - / - / - — / — / - — / — / - T / T /0 .0 8 2 / T /0 .0 3 — / — / — — / - / — - / - / — T / - /0 .0 1 - / T / - T / - /0 .0 1 71 / 0 .2 /0 .2 5 — / - / — — / — / - - / T / - - / 2 .8 / - I / - /0 .0 2 - / T / - - / - / - V 0 .2 /0 .0 5 T / - /0 .0 1 T / T /0 .0 2 — / — / — T / T /0 .0 2 - / - / - 2 / T /0 .0 2 - / — / - I / T /0 .0 8 — / — / — 9 / 0 .1 /0 .2 0 — / — / — — / — / - T / - /0 .0 1 T / T /0 .0 8 — / - / - - / — / — * / — / - 2 / T /0 .0 5 - / - / - I / 0 .1 /0 .0 6 I / T /0 .0 1 - / — / — — / - / — - / T / - 1 8 / T /0 .1 0 - / — / — — / — / — 3 / 0 .1 /0 .1 5 — / — / - 5 / - / o .o i — / — / — - / - / - — / — / - — / - / - - / T / - - / 0 . 3 / - - / - / - — / — / - - / 0 . 3 / - 1 9 / 0 .9 /0 .8 2 “ / — / — - / — / — — / — / — T / - /0 .0 1 T / 0 .1 /0 .0 1 — / - / - 2 / - /o .n 8 - / - / - 6v T /0.10 I / - /0 .0 2 - / - / - - / - / - I / T /0.05 - / - / — - Z - / - - Z - Z - - Z - Z - 2Z - Zo.io - Z - Z — - Z - Z — - Z - Z — - Z - Z — - Z - Z — - Z - Z — - Z - Z — — Z — Z - 9$Z 0.6/0.28 2Z T / 0 ,22 - Z - Z — IZ - Zo .02 - Z - Z - 37Z T Zo.15 - Z - Z — — Z o.iZ - - Z - Z — - Z - Z — - Z - Z — - Z - Z - - Z - Z - — Z — Z - - Z T Z - - Z - Z- — Z 0 .ZjZ — T Z - Zo .02 I / T Z0.02 IZ - Zo .02 - Z - Z - - Z - Z - - Z - Z - 8Z 0.1Z0.10 - Z - Z - - Z - Z - 2Z T Zo.io IZ 0.1Z0.15 - Z - Z - - Z - Z - - Z - Z - iiZ 0.1Z0.20 - Z - Z - 2Z - Zo .05 - Z - Z - - Z - Z — - Z - Z — IZ - Zo.05 - Z o.2Z - — Z - Z — - Z - Z - IZ 0.1Z0.10 - Z - Z — - Z - Z — - Z - Z — - Z - Z — - Z - Z — — Z 0.6Z — - Z - Z — - Z - Z - - Z - Z — - Z - Z - - Z - Z — - Z - Z — - Z - Z — 5Z o.6/0.10 - Z — Z - 2/ - /0.05 - Z - Z - - Z - Z - - Z - Z — - Z - Z - - Z - Z — - Z - Z — - Z - Z- - Z - Z- - Z - Z- - Z - Z- - Z — Z — - Z - Z- - Z - Z — - Z - Z — - Z - Z - - Z - Z - 10/ - / 0 .1 0 - Z - Z — - Z - / — - Z - Z — - Z - Z- - Z - Z- — Z — Z — - Z — Z - - Z - Z- - Z - / — - Z - Z - - Z - Z- - Z - Z - - Z - Z- - Z - Z — - Z - Z- - Z - Z- - Z - Z- - Z - Z- - Z - Z- - Z - Z- - Z - Z- - Z — Z — - Z - Z- — Z — Z — - Z - / _ - Z - Z- - Z - / - - Z T Z - - Z - Z - 18/ 0 .1 /0 .1 5 10/ 1.3/0.35 - Z - Z- 6/ 0.2/0.15 - / - / - - Z - Z- - Z - Z - - Z - / - 8/ 0.6/0.10 - Z - Z - - Z - Z- 5/ o .i/o .io 12/ 0 . 2/ 0 .2 0 I / 0 .1 /0 .0 5 V - /0.15 10/ 0.2/0.10 — Z — / — - Z — / — - Z — Z — - Z - Z- - Z - Z - 3 8 / 0 .V 0 .3 0 2/ - /0.05 — Z — Z - — Z — Z — - Z 3.8/ - - Z - / — - Z - Z - - Z - Z - - Z - Z - - Z - / - I / 0.2/0.10 - Z - / - - Z - Z - - Z - Z - - / T / - - Z - Z - - Z - Z - UO O Tab le 13. (C o n t in u ed ) Species o r Item H ab ita t ty p e ! / A .t .v a /F e id Arno/Agsp A .t.va /A gsp A .t.wy/Agsp A .t .t r /A g sp Psme/Feid H alf Shrub Species A rtem isia f r i g id a C e ra to id es la n a ta L ep todacty lon pungens 8/ T /0 .0 6 - / - / - 2 / T /0 .0 6 2 / T /O.OL 6/ 0 . 1 / 0 .OL T / - /0 .0 1 9 / 0 .2 /0 .1 8 - / - / - V 0 . 1/ 0 .0 5 V 0 .1 /0 .0 5 - / - / - V 0 .3 /0 .1 5 - / - / - - / - / - - / - / - “ / - / - — / — / - - / - / - Shrub Species Amelanchier a ln i f o l i a A rtem isia nova A .t . sub sp . t r id e n t a t a A .t . sub sp . vaseyana A . t . sub sp . wyomingensis Chrysothamnus nauseosus C. v i s c id i f l o r u s R ibes cereum Siymphoricarpos a lbu s Tetradym ia canescens Xanthocephalum s a ro th ra e - / - / - ^ - / - / — 22 / 0 .1 / T 220 / 6 .7 /0 .7 2 I / 0 . 2 / T I V 0 .2 /0 .0 1 3 / 0 . 1 / T — / — / — » / ■ / — 2 / T /0 .0 2 2 / T / T — / — / - 2 5 8 /1 7 .0 /1 .9 1 T / - /0 .0 1 9 / 0 . 8/ 0 .0 6 2 / 0 . 7 / T I / - /0 .0 3 11/ 0 . 2/ 0 .0 6 - / T / - — / — / — - / - / T T / - / T — / — / - - / 0 . 2 / - I / - /0 .0 1 3 0 0 A 3 .1 /0 .7 8 - / - / - 1 9 / 0 .1 /0 .OL 16/ 0 .1 /0 .0 3 — / — / — — / - / — 3 / - /0 .0 1 — / - / — — / - / — - / — / - i o / - /O.OL L V L. 6 /0 .0 9 338A L .6 /0 .L 9 I / 0 .2 /0 .0 1 I / - /0 .0 1 - / - / - — / — / — — / — / - - / - / - — / - / — ■ / - / — 6 3 7 /2 0 .1 /0 .2 2 2 6 / 2 .8 /0 .OL — / — / - - / - /0 .0 1 - / - /0 .0 1 - / - / T — / — / — - / - / T - / - / - - / 0 . 2 / T - / - / - — / — / — 13 5 / 1 .6 /0 .2 6 — / — / — - / — / — ■ / — / — — / — / — - / 0 .1 / T 3 / - / T — / — / — M isce llaneous L i t t e r Dead pedon Bare ground O ravel Rock L ichen - / L i . 7 / - - / 1 . 7 / - - / 1 1 .V - - A l . V - - / 8 .3 / - - / 0 . 5 / - - / 2 8 .8 / - — / 1 . 1 / — - / 1 0 .8 / - - / 3 0 .9 / - - / 3 .1 / - - / 0 . 2 / - - / 2 6 .7 / - - / 0 . 7 / - - / 7 .6 / - - / 2 1 .L / - - / 2 2 .7 / - - / 0 . 1 / - - / 2 6 .8 / - ■ / 0 . 6 / — - / 2 2 .6 / - - / 2 3 .1 / - - / - / - - / - / - - / 1 0 . l i / - - / 0 . 1/ - — / — / - - A 3 . V - - /I16. I / - - / - / - - / 7 2 .5 / - * / — / — - / 7 .7 / - - / — / — - / 1 . 0 / - - / 0 . 5 / - i / Data from 1980, excep t f o r Psme /F e ld which i s from 1981. - Not reco rded . - A '* '™ - m ountain b ig sageb ru sh ; Feid - Idaho fe sc u e ; Arno - b lack sageb ru sh ; Agsp - bluebunch w hea tg ra ss ; A .t . wy - Wyoming b ig sageb ru sh ; A . t . t r - b a s in b ig sageb ru sh ; Psme - Douglas f i r . y Mean com position f o r Oraminoid s p e c ie s ; Fo rb , F em , Moss and C actus s p e c ie s ; H alf Shrub sp e c ie s ; and M isce llaneous - p ro d u c tio n (kg /ha Vpercent cover (? o f t o t a l Vfrequency (p ro d u c tio n p lo t s i n which sp e c ie s found f t o t a l p l o t s ) . h / Mean composition fo r Shrub sp ec ie s - production (kg /ha Vpercent cover (% o f t o ta l ! /d en s ity (p lan ts /m 2 ) . T - T race. For Oraminoid s p e c ie s ; Forb , F e rn , Moss and Cactus s p e c ie s ; H a lf Shrub sp e c ie s ; and M isce llaneous - (p ro d u c tio n <0.9 kg /h a , p e rc e n t cover .05*). For Shrub sp e c ie s - (p ro d u c tio n <0.5 kg /ha , p e rcen t cover •^ 0.05%, d e n s i t y -cO .005 p la n t s /V ) . 132 APPENDIX D ELK AND DEEIf PELLET;-COUNTS 133 Table 14. E lk and d e e r mean p e l l e t - c o u n t s o b ta in e d i n 1900 and 1981 w ith in f iv e main c a te g o r ie s o f environm ental v a r ia b le s , w ith sample number for. each v a r ia b le . C a tego rica l v a r ia b le s P e l le t - Elk coun ts1 Deer Sample number Topographic p o s i t io n bench 2888a2 1828a 20m idslope 1874 b 1217 b 31upper slope 1757 b 982 b 8rid g e 21735b 1321ab 13swale 233lab 1732ab 6 Slope co n fig u ra tio n f l a t 3237a 1518ab , 14 concave 1866 b 1128 b 35convex 1844 b 1388ab 9ro l l in g 2246 b 1823a ? o So il-g roup sandy 2687a 1725a 36th in h i l l y 1786 b 1271 a t 18stony 1966ab 9T9ab 3s i l t y 1557 b 1283ab 5th in breaks 1147 b 574 b 3shallow to c lay 1473 b I 028ab 4 shallow to bedrock 2835ab 1086ab 2th in h i l l y to stony 2083ab 1079ab 7 Prominent g ra ss Idaho fescue 2472a 1336a 42 bluebunch w heatgrass 1930 b 1599a 30 p r a i r i e Junegrass I829ab 790a 4 e lk sedge 1828ab 861 a 2 Prominent shrub mountain b ig sagebrush 2241 b 1352 b 52 Wyoming b ig sagebrush 2368 be 3122a 3 basin b ig sagebrush 1032 C 517 c 5 black sagebrush 2077 b 1601 b 14green rab b itb ru sh 2029 be 856 be 2 rubber ra b b itb ru sh 5113a I668abc ? 10 v e ra ll mean of a l l c a te g o r ie s fo r e lk = 2207; fo r deer = 1406. 2Numbers among each c a te g o ry f o r each an im a l s p e c ie s fo l lo w e d by a, d if f e r e n t l e t t e r a re s ig n i f ic a n t ly d i f f e r e n t a t th e .05 p ro b a b ili ty le v e l . MONTANA STATE UNIVERSITY LIBRARIES 3 1762 10298492 7