Microelectrode measurement of local mass transfer coeffecient in biofilms by Shunong Yang A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering Montana State University © Copyright by Shunong Yang (1995) Abstract: Recent studies revealed that biofilm structures are heterogeneous. The immediate consequence of this structural heterogeneity is the non-uniformity of local mass transfer processes in biofilms. So far, no theoretical or experimental approach has been provided to describe it. This thesis presents an experimental technique to measure local mass transfer coefficients in biofilms. Local mass transfer rates in an aerobic biofilm was measured using a limiting current technique in an electrochemical microsink formed by a mobile microelectrode. Viable cell count and time-lapse photography results show that the technique is applicable to biofilm system. Local mass transfer coefficients calculated from the measured limiting current varied both horizontally and vertically in the biofilm. Mapping of the biofilm with the electrode verified the existence of an irregular biofilm structure comprised of microbial clusters surrounded by torturous water channels. Unexpected increases of local mass transfer coefficient within 300 ¨m above biofilm surface suggested the existence of local turbulence in this region. As expected, the influence of bulk flow velocity on the local mass transfer rate decreased with increasing depth into the biofilm. Mass transfer coefficients fluctuated significantly inside biofilm cell cluster, suggesting the existence of internal channels. A new conceptual model of biofilm cell cluster structure is proposed to account for such biofilm microstructure irregularities. The limiting current technique was also used to measure local shear rate on microelectrode surface. A flow field model on the surface of circular-disk microelectrode was developed to describe the relationship between local mass transfer coefficient and local shear rate. Initial results show that local shear rate on the microelectrode surface increases exponentially with the increase of bulk flow velocity.  MICROELECTRODE MEASUREMENT OF LOCAL MASS TRANSFER COEFFICIENT IN BIOFILMS by Shunong Yang A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering MONTANA STATE UNIVERSITY Bozeman, Montana March, 1995 ii APPROVAL of a thesis submitted by Shunong Yang This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. 4„/£ r, IM i_____________ Date Chairperson, Graduate Committee Approved for the Major Department Date /f (phod O ' \ Tie ad, Major Department Approved for the College of Graduate Studies YMlIlL Date Graduate Dean iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Signature Date iv ACKNOWLEDGMENTS First I would like to express my gratitude to my academic and. research advisor Dr. Zbigniew Lewandowski for his guidance and support. I would also like to thank Dr. Warren Jones, Dr. Phil Stewart and Dr. Al Cunningham for serving as my thesis committee members. Dr. Frank Roe was appreciated for proof-reading this thesis. Along every step, my wife, Yibin, is always there with me. I would like to thank her for her love and support. Thanks a|so to my parents and other family members for their love and care. In the past two and one-half years, my life cannot be so joyful without the support and sharing from all my friends, Mark, Duy, Dong, Grace, Xiaoming, Ricardo, and many others. My research has been sponsored by the National Science Foundation and the Associates of the Center, my thanks to them. VTABLE OF CONTENTS Page LIST OF TABLES.......... ............................................................................ ix LIST OF FIGURES ................................................................................... x ABSTRACT ............................................................................................... xii INTRODUCTION ...................................................................................... 1 THEORY .................................................................................................... 7 Mass transfer coefficient calculation ............................................ 7 Calculation of shear rate on electrode surface ........................... 9 Mathematical model ................................................................. 10 Solutions ........... ........................................................................ 11 MATERIALS AND METHODS ............................................................15 Biofilm growth ............................................................... ................ 15 LOT experimental setup ............................................................... 16 Electrodes and electrolyte solution ....................................... 16 Gravitational flow setup ......................................................... 18 LOT applicability tests .................................................................. 18 Measuring Fe(CN)63" concentration in biofilms ..................... 19 Measuring limiting current at various Fe(CN)63' concentration............................................................................. 19 Monitoring biofilm structure ............ 19 Local mass transfer coefficient measurements..................... ...... 20 Measuring vertical profiles of local mass transfer coefficient..................................................... 20 Measuring horizontal distributions of local mass transfer coefficient ................................. ;............................ ................ 22 Combination of CSLM velocimetry and LCT measurements........................................................................... 24 RESULTS ................................................................................................ 26 Fe(CN)63' concentration distribution of in biofilms ..................... 26 Independence of mass transfer coefficient on Fe(CN)63" concentration ................................ 26 Biofilm structure and viability ............................ 26 Vertical profiles of local mass transfer coefficient ................... 27 3%calcium alignate layer ............................................... 27 Biofilms .................................................................................... 28 Horizontal distribution of local mass transfer coefficient ........ 29 Mass transfer coefficient at various flow velocities ................. 29 vi Vertical profiles of local velocity and mass transfer coefficient in biofilm void ............................ 30 DISCUSSION ......................... :.............................................,........... 43 Experimental conditions influencing mass transfer coefficient..................................................................................... 43 Microelectrode cleaning .................................................... 43 Reacting electrolyte selection ........................................... 44 Applicability of LCT to biofilm system ..................................... 45 Estimation of measurement errors on mass transfer coefficient .............................. 46 Possible error in measuring sensing area of microelectrode ............................... 46 Possible error in measuring bulk Fe(CN)63" concentration ......................................................................... 47 Possible error in measuring limiting current ........ 47 Other possible error ....................................................... 47 Influence of convective flow velocity on mass transfer coefficient .......................... 48 Analysis of horizontal distribution of local mass transfer coefficient .................................................................... 49 Secondary structural heterogeneity of biofilms ...................... 51 vii Local shear rate on microelectrode surface ............................. 53 Correlation of local flow velocity and local mass transfer coefficient ....................................................................................... 54 SUMMARY ............................................. 60 RECOMMENDATION FOR FUTURE RESEARCH .......................... 62 REFERENCES ......................... 63 NOMENCLATURE ........... 69 yiii APPENDIX 71 Table 1. 2 . ix LIST OF TABLES Page Viable cell counts of the biofilm under LCT measurement condition .......................................................... ...................... 27 Analysis of horizontal distribution in Fig. 10 ..................... . 50 XLIST OF FIGURES Figure Page 1. The existing steady-state biofilm model ........................... 2 2. Flow field model on the surface of circular-disk microelectrode ..................................................................... 10 3. Relationship between Peclet number and Sherwood number for circular-disk microelectrode ..... 14 4. The schematic diagram of LCT experimental setup ....... 25 5. Mass transfer coefficient vs. Fe(CN)63" concentration ..... 32 6. Vertical profile of mass transfer coefficient through a alginate layer ............................................................ 33 7. Vertical profile of mass transfer coefficient through a alginate layer ........ 34 8. Vertical profiles of local mass transfer coefficient taken in a biofilm void (a) and through a biofilm cluster (b) ..... 35 9. Vertical profiles of local mass transfer coefficient measured at two different locations in the same biofilm cluster .... 36 10. Horizontal distributions of local mass transfer coeffocient at V= 1.59cm/sec 37&38 xi 11. Horizontal distributions of local mass transfer coefficient at z=50 gm under various flow velocity................................... ..... 39 12. Influence of bulk flow velocity on horizontally averaged mass transfer coefficient at z=50 |im ................................................ 40 13. Influence of bulk flow velocity on horizontally averaged mass transfer coefficient at three vertical depths .... i..................... 41 14. Vertcal profiles of local flow velocity and local mass transfer coefficient in a biofilm void ..... .................................... ........... 42 15. Vertical profile of horizontally averaged mass transfer coefficient through a biofilm cluster ....................................... 55 16. Vertical profile of horizontally averaged mass transfer coefficient for a 200 jim high biofilm cluster ......................... 56 17. Proposed structural model of biofilm clusters ..................... 57 18. Relationship between local shear rate on circular-disk microelectrode and bulk flow velocity .................................. 58 19. Correlation between local mass transfer coefficient and local flow velocity in a biofilm void ........................................ 59 xii ABSTRACT Recent studies revealed that biofilm structures are heterogeneous. The immediate consequence of this structural heterogeneity is the non-uniformity of local mass transfer processes in biofilms. So far, no theoretical or experimental approach has been provided to describe it. This thesis presents an experimental technique to measure local mass transfer coefficients in biofilms. Local mass transfer rates in an aerobic biofilm was measured using a limiting current technique in an electrochemical microsink formed by a mobile microelectrode. Viable cell count and time-lapse photography results show that the technique is applicable to biofilm system. Local mass transfer coefficients calculated from the measured limiting current varied both horizontally and vertically in the biofilm. Mapping of the biofilm with the electrode verified the existence of an irregular biofilm structure comprised of microbial clusters surrounded by torturous water channels. Unexpected increases of local mass transfer coefficient within 300 |im above biofilm surface suggested the existence of local turbulence in this region. As expected, the influence of bulk flow velocity on the local mass transfer rate decreased with increasing depth into the biofilm. Mass transfer coefficients fluctuated significantly inside biofilm cell cluster, suggesting the existence of internal channels. A new conceptual model of biofilm cell cluster structure is proposed to account for such biofilm microstructure irregularities. The limiting current technique was also used to measure local shear rate on microelectrode surface. A flow field model on the surface of circular-disk microelectrode was developed to describe the relationship between local mass transfer coefficient and local shear rate. Initial results show that local shear rate on the microelectrode surface increases exponentially with the increase of bulk flow velocity. 1INTRODUCTION Steady-state biofilm models 9' 32, 33 commonly assume that internal mass transfer (inside biofilms) is diffusion controlled and that external mass transfer (outside biofilms) is dominated by convection. Consequently, it is believed that the diffusivity is the only parameter needed to describe mass transfer rate inside biofilms. Mass transfer and reaction are thus incorporated into a mass balance equation as follows: r j ’d2^ _ C1Cx m dZ2 Kc + C The mass transfer rate from the bulk fluid to the biofilm surface is commonly approximated by assuming that the mass boundary layer above the biofilm I surface is uniform and stagnant. Thus, the flux across the external mass transfer layer is treated as a boundary condition and can be expressed as J = D x = k x AC ' (2) o A descriptive diagram of the existing biofilm steady state model is shown in Fig. I. 2______C0 External mass transfer: mass transfer coefficient k=D/8 Internal mass transfer: diffusivity-D Substratum<— j< *3'0^ r^n-------------->|<->|------------>.bulk external mass transfer resistant layer Fig. 1 The existing steady-state biofilm model This simple mass transport model in biofilms has been challenged by the observations of Light Microscopy (LM )31119, Atomic Force Microscopy (AFM)2, Scanning Electron Microscopy (SEM)7'26, and Confocal Scanning Laser Microscopy (CSLM)5'6'39. Recent studies by CSLM reveal that the structures of aerobic biofilms are not uniform but consist of microbial cell clusters separated by interstitial voids. According to this concept, mass transport in interstitial voids is mainly facilitated by convective flow while mass transfer inside microbial clusters is entirely due to molecular diffusion. Therefore, the mechanism of local mass transport is determined by the structural heterogeneity of biofilms. 3Consequently, mass transfer rates can no longer be considered the same at different locations in a biofilm due to variable porous structure and subsequent reactivities that vary in space. Rather, mass transfer rates depend on complex interactions among local biofilm activity, structure, and hydrodynamics. The situation is even more complicated because that biofilms are viscoelastic and microscale hydrodynamics near such surfaces has not been characterized analytically. Since there is no adequate mathematical model describing mass transfer in a growing three dimensional irregular structure, it is necessary to study the mass transfer rate inside heterogeneous biofilms experimentally. A few attempts have been made to describe the relationship between biofilm structure and hydrodynamics..Lewandowski et a /21 described liquid flow in a biofilm reactor using Nuclear Magnetic Resonance Imaging (NMRI) with limited spatial resolution. De Beer et a l6 and StoodIey et a l39 measured liquid flow velocity in biofilm voids by using Particle Image Velocimetry (PIV) which traces the horizontal movement of fluorescent beads in the voids of biofilms using CSLM. While these papers quantify factors influencing mass transport rate, none of them provides the means to actually measure it. This thesis describes measurements of local mass transfer coefficients in biofilms using a modified Limiting Current Technique (LCT).. LCT uses a particular electrochemical reaction that proceeds at the highest possible rate on an electrode surface. Under mass transfer limiting conditions, the magnitude of electrical current measured in the external circuit depends only on the mass transfer rate and is directly proportional to the mass transfer coefficient to the electrode. Historically, Lin e ta l22 made a systematic study of mass transfer rates of ions and other reacting species in electrochemical processes and measured the mass transfer coefficients in laminar and turbulent flows using LCT. Ranz29 discussed problems associated with applying LCT to liquid flow velocity measurement. Mitchell and Hanratty13,24 developed LCT into a wall shear-stress meter and used it in the study of turbulence at a wall. D.A.Dawson and O.Trass4 used LCT in the study of mass transfer rates at rough surfaces. The basic principle and applications of the conventional LCT were reviewed in several publications25'35'41. This well-known technique was also used to study local mass transfer rates 8,16,17,18,3410 f|at surfaces. The electrodes used were flush mounted to the reactor's wall. Sizes of electrodes range from several hundred micrometers to a few centimeters. Our application of LCT is different from the conventional method in two aspects: (1) the microelectrode used here was mobile and could be positioned at any location in biofilms; (2) the size of the electrode was reduced to a few micrometers to prevent damaging the biofilm structure and disturbing the hydrodynamics. 5The tip of the microelectrdde formed a microsirik for the electroactive species purposely added to the reactor. Measured limiting current was directly proportional to the local mass transfer rate at the tip of the microelectrode. The magnitude of the limiting current was dependent on a combination of all factors influencing the local mass transfer rate, e.g., the local hydrodynamics and the local structure of the biofilms. Consequently, the local mass transfer coefficient calculated from the measured limiting current to the microelectrode is related to the local effective diffusivity that is a function of local hydrodynamics and local biofilm structure. Hydrodynamic flow in biofilm reactors does not just influence mass transfer rate. Another important aspect of its influence is on biofilm shearing, i.e., the loss of biomass from biofilm reactor as a result of shear forces. The mechanism of shearing loss is still unknown due to its complexity. Because of differences in time scale and types of biofilms and reactors investigated, some completely contradictory results have been drawn from various studies. Gantzer et a/10 concluded that higher biomass levels in streambed biofilms were found at the faster acclimation velocities. Lau and Liu20 discovered that biofilm biomass accumulation was substantially reduced as flow shear stress increased and that the maximum accumulation occurred under very low flow conditions. To understand the mechanism of biofilm shearing loss, it is very important to measure local shear stress on biofilm surface under the defined hydrodynamic 6condition and correlate local shear stress data with biofilm acumulation or biofilm detachment. LCT is a potential tool for acquiring such information. Besides measuring local mass transfer coefficient, application of LCT has been extended by Hanratty et a l12 to measure wall shear stress on the surface of sensing electrodes. With a hydrodynamic model for the flow field on the surface of an electrode, the relationship between wall shear stress and mass transfer coefficient can be established. A flow field model and its solutions for the circular-disk microelectrode will be discussed in the next chapter. 7THEORY Mass transfer coefficient calculation During LCT measurement, the ions reacting on the sensing electrode are transferred from the bulk of the solution to the surface of the electrode principally by (a) migration due to the potential field, (b) diffusion due to the concentration gradient, and (c) convective flow. Fe(CN)63" is one of the commonly used reacting species in LCT. The electrochemical reduction of Fe(CN)63' occurs on the surface of the microelectrode as +g--4»Fg(CAD6^ (3) . By adding an excess amount of non-reactive supporting electrolyte, e.g., KCI, to the electrolyte solution, there should be little potential gradient formed near electrode surface. Thus, the electromigration process becomes negligible and almost all of the electrolyte current arises from the reaction of ions that reach the electrode surface by diffusion and/or convection. The flux of the reacting species onto the electrode surface is related to mass transfer coefficient, k, J = Mc0-Cs) (4) 8 I By increasing the polarization potential, the current will increase until the concentration of Fe(CN)63" at the electrode surface reaches zero (Cs=O). The current corresponding to a zero surface concentration of the reacting species is called “the limiting current." The flux of ferricyanide ion, J, to the surface of the microelectrode with sensing area A is related to the limiting current, I The relation between mass transfer coefficient and limiting current can be found by combining Eqn. (4) and (5) for Cs=O k = — - — (6) nAFCo With the elimination of migration effect, the information obtained from LCT can be applied to non-electrochemical process. Furthermore, the analogy between heat and mass transfer becomes valid as discussed by A ga r1. Thus mass transfer results obtained by LCT may be correlated with the knowledge of heat transfer. 9Calculation of shear stress /t) at the electrode surface As pointed out in the previous chapter, LCT has a potential application in investigating local shear stress in biofilm reactors. To obtain local shear stress, a flow field model on the microelectrode surface has to be established. Due to the fabrication capability and experimental convenience, the tip surface of the microelectrode used in this study was a circular disk with its diameter on the order of a few micrometers. The flow field on the surface of circular-disk microelectrode is illustrated in Fig. 2. The basic assumptions implied in this figure are: (a) the scalar boundary layer is within the region where V=Sz; (b) the flow is homogeneous over the electrode surface; (c) the velocity components other than in the Z-direction are negligible. Generally, for large Sc and small A, the concentration boundary layer over the microelectrode will be so thin that it lies within a region in which the velocity field is a simple shear flow with a constant shear rate. Theoretical issues of above assumptions have been discussed in detail by Phillips27, Hanratty and Campbell13 and Stone 38. 10 Mathematical model The steady-state mass balance equation on the electrochemical reacting species for the described flow field can be written as DV2C = (7) oX sensing area insulation glass V=Sxz X Fig. 2 Flow field model on the surface of circular-disk microelectrode The boundary conditions are C=O for z=0, (j) = r 11 — = O for z=0, (b > r - dZ C = C0 as(x2 + y2 + Z2 ) 1/2 °° The equation can be written in terms of dimensionless form V^e = (8) By solving the mass balance Eqn. (8), The relationship between dimensionless mass transfer coefficient, Sb, and dimensionless shear rate, Fe, can be established. Solutions . Analytical solution by Reiss and Hanratty30: By neglecting diffusions in X- and Y-directiohs, Eqn. (8) is simplified 329 dn2 = Pex\ 30 (9) Eqn. (9) was solved analytically and a relation between Sherwood number and Peclet number was obtained 5% = O.d&dJ&fg", + (10) 12 or the shear rate can be calculated explicitly from S=1.45649xkxr1/3xD"2/3. The numerical solution obtained by Stone 38 for Eqn. (8) shows that the error in using I Eqn. (10), because of neglecting diffusions in X- and Y-directions, is less than 5% for Pe>400. The high Pe situation can be encountered when sensor diameter is big, and/or velocity gradient is large, and/or diffusivity of reacting species is small. Analytical solution by Phillips27: The limitation of using Eqn. (10) lies in its one dimension diffusion assumption. Generally, the diffusion problem is fully three dimensional or the edge effect cannot be neglected. By using the method of matched asymptotic expansions, Phillips solves Eqn. (8) analytically. The final solution is written as = 4-0.11268 Pem } n i l -0.20281 Pela) Results calculated from Eqn. (11) were compared with Stone's numerical solutions. Both results agree within 2% from Pe=O-OOI up to Pe=2. The smallness of Pe means that on the scale of microelectrode surface, convection, represented by the right-hand side of Eqn. (8), is weak. It results in a small perturbation of a purely diffusive solution. This solution is applicable when the microelectrode is used in low velocity flow. 13 Numerical solution by Stone 38: Numerically, Stone evaluated the mass transfer rate over a wide range of Peclet numbers (0.001 10). The new equation is written as Sh = 0.68658 Pe1/3 +1.13000 Pe1/6 (12) The results calculated from this equation have good agreement with the numerical solution in the high Peclet number range (10 Cf is the concentration of substrate on biofilm surface, ( ML'3) ; Cs is the concentration of reacting electrolyte on electrode surface^ ML'3) Cx is the concentration of biomass, ( ML'3). D is the diffusivity of substrate, ( L2T 1) F is the Faraday’s constant, =96485 C/mole( I is the electrical current, ( Ampere ) J is the flux of reactant, ( MT'1 L 2) k is the mass transfer coefficient, ( LT1) Kc is the saturation constant, ( ML'3). n is the number of mole of electron transferred, (M ) Fe is Peclet number (=Sxr2ZD) Rh is the hydraulic radius of the reactor, ( ! ) Re is Reynolds number, (=VxrZ v) r is the radius of microelectrode, ( L ) S is the shear rate, ( T 1) Sh is Sherwood number, (=kxrZD) 70 V is the flow velocity, ( LT1) x is the direction of liquid flow, ( L ) z is the vertical position perpendicular to bottom of biofilm reactor, ( L ) AC is the concentration difference, ( ML3). 8 is the thickness of external mass transfer boundary layer, ( L ) r| = z/r 0 = CZC0 ^= x/r (|> = (x= + y=r T is the shear stress, (=jjxS) | i is the viscosity of electrolyte solution, ( c p ) . p is the density of electrolyte solution, ( ML3) v is the kinematic viscosity, (=pZ p) 71 APPENDIX Experimental Raw Data Raw data of Fig. 5 72 Fe(CN)63" cone. (mM) Limiting current (x107A) Mass transfer coefficient (m/s) 3.15 0.13 2.42x10" 6.3 0.25 2.33x10" 12.5 0.47 2.21x10" 25 0.86 2.02x10" 50 1.67 1.96x10" Diameter of microelectrode: 15 gm Flow velocity: 1.83 cm/sec Raw data of Fig. 6 Verical limiting k (m/s) Verical limiting k (m/s) Verical limiting k (m/s) Position current (x l O7 Position current (x l O7 Position current (xIO7 (pm) A) (pm) A) (pm) A) 0 0.49624 0.00012 620 0.49116 0.00012 1240 0.43096 0.00011 20 0.50093 0.00013 640 0.48814 0.00012 1260 0.42505 0.00011 40 0.49815 0.00013 660 0.48667 0.00012 1280 0.41948 0.00011 60 0.50025 0.00013 680 0.48584 0.00012 1300 0.41441 0.0001 80 0.50293 0.00013 700 0.48853 0.00012 1320 0.41006 0.0001 100 0.51255 0.00013 720 0.48496 0.00012 1340 0.40606 0.0001 120 0.50943 0.00013 740 0.48184 0.00012 1360 0.40225 0.0001 140 0.50049 0.00013 760 0.4811 0.00012 1380 0.39849 0.0001 160 0.49668 0.00012 780 0.48262 0.00012 1400 0.39741 1E-04 180 0.50181 0.00013 800 0.48306 0.00012 1420 0.39775 0.0001 200 0.50337 0.00013 820 0.48115 0.00012 1440 0.39717 1E-04 220 0.50474 0.00013 840 0.47935 0.00012 1460 0.39409 9.9E-05 240 0.51123 0.00013 860 0.48071 0.00012 1480 0.39121 9.8E-05 260 0.5086 0.00013 880 0.47774 0.00012 1500 0.39009 9.8E-05 280 0.50918 0.00013 900 0.47598 0.00012 1520 0.39033 9.8E-05 300 0.50513 0.00013 920 0.4729 0.00012 1540 0.38623 9.7E-05 320 0.51314 0.00013 940 0.47329 0.00012 1560 0.38399 9.7E-05 340 0.50943 0.00013 960 0.47124 0.00012 1580 0.38071 9.6E-05 360 0.50103 0.00013 980 0.47129 0.00012 1600 0.37861 9.5E-05 380 0.49561 0.00012 1000 0.46978 0.00012 1610 0.375 9.4E-05 400 0.49585 0.00012 1020 0.46812 0.00012 1640 0.3709 9.3E-05 420 0.49614 0.00012 1040 0.46504 0.00012 1650 0.3687 9.3E-05 440 0.4981 0.00013 1060 0.46245 0.00012 1660 0.3646 9.2E-05 460 0.49619 0.00012 1080 0.46016 0.00012 1670 0.35234 8.9E-05 480 0.50567 0.00013 1100 0.45864 0.00012 1680 0.10537 2.6E-05 500 0.49717 0.00013 1120 0.4564 0.00011 1685 0.08335 2.1E-05 520 0.49185 0.00012 1140 0.45396 0.00011 1690 0.07803 2E-05 540 0.49087 0.00012 1160 0.45015 0.00011 560 0.49326 0.00012 1180 0.44668 0.00011 580 0.49863 0.00013 1200 0.44512 0.00011 600 0.49673 0.00012 1220 0.44243 0.00011 Diameter of the microelectrode: 5 gm Flow velocity: 1.15 cm/sec Fe(CN)63' cone.: 21 mM 73 Raw data of Fig. 7 Verical limiting k (m/s) Verical limiting k (m/s) Verical limiting k (m/s) Position current Position current Position current (nm) (x107A) (um) (x107A) (um) (x107A) 0 0.50278 0.00013 580 0.49019 0.00012 1180 0.41543 0.0001 20 0.50703 0.00013 600 0.49248 0.00012 1200 0.41104 0.0001 40 0.50567 0.00013 620 0.49292 0.00012 1220 0.4085 0.0001 60 0.50425 0.00013 640 0.49077 0.00012 1240 0.40532 0.0001 80 0.50205 0.00013 660 0.49282 0.00012 1260 0.40225 0.0001 100 0.50254 0.00013 680 0.49317 0.00012 1280 0.40225 0.0001 120 0.50532 0.00013 700 0.48745 0.00012 1300 0.4021 0.0001 140 0.50552 0.00013 720 0.4855 0.00012 1320 0.40571 0.0001 160 0.50957 0.00013 740 0.4855 0.00012 1340 0.40108 0.0001 180 0.51563 0.00013 760 0.48203 0.00012 1360 0.39775 0.0001 200 0.51235 0.00013 780 0.48223 0.00012 1380 0.39561 9.9E-05 220 0.5061 0.00013 800 0.47984 0.00012 1400 0.3915 9.8E-05 240 0.50845 0.00013 820 0.47891 0.00012 1420 0.39053 9.8E-05 260 0.50249 0.00013 840 0.47691 0.00012 1440 0.39556 9.9E-05 280 0.50684 0.00013 860 0.47324 0.00012 1460 0.39331 9.9E-05 300 0.50606 0.00013 880 0.47427 0.00012 1480 0.39165 9.8E-05 320 0.50567 0.00013 900 0.47207 0.00012 1500 0.38906 9.8E-05 340 0.50718 0.00013 920 0.47012 0.00012 1520 0.39024 9.8E-05 360 0.50625 0.00013 940 0.46812 0.00012 1540 0.38696 9.7E-05 380 0.50064 0.00013 960 0.46548 0.00012 1560 0.38535 9.7E-05 400 0.502 0.00013 980 0.46094 0.00012 1580 0.3833 9.6E-05 420 0.50205 0.00013 1000 0.45986 0.00012 1600 0.38047 9.6E-05 440 0.49902 0.00013 1020 0.45596 0.00011 1620 0.3773 9.5E-05 460 0.50093 0.00013 1040 0.45225 0.00011 1640 0.37632 9.5E-05 480 0.49927 0.00013 1060 0.45361 0.00011 1660 0.37691 9.5E-05 500 0.49468 0.00012 1080 0.4436 0.00011 1670 0.36856 9.3E-05 520 0.49644 0.00012 1100 0.43672 0.00011 1680 0.35293 8.9E-05 540 0.49365 0.00012 1120 0.43247 0.00011 1690 0.10669 2.7E-05 560 0.49053 0.00012 1140 0.42691 0.00011 1695 0.08525 2.1E-05 1160 0.42124 0.00011 1700 0.07959 2E-05 Diameter of the microelectrode: 5 Flow velocity: 1.15 cm/sec Fe(CN)63' cone.: 21 mM 74 Raw data of Fig. 8 Curve (a) Curve (b) Verical limiting k (m/s) Verical limiting k (m/s) Position current Position (|im) current (Iim ) (x107A) (XlO7A) 0 0.0008 9.62E-07 2 0.0016 1.92E-06 2 0.002 2.41 E-06 6 0.0098 1.18E-05 4 0.009 1.08E-05 8 0.013 1.56E-05 6 0.0164 1.97E-05 10 0.0176 2.12E-05 8 0.0192 2.31 E-05 12 0.0184 2.21 E-05 10 0.0218 2.62E-05 14 0.0178 2.14E-05 12 0.0228 2.74E-05 16 0.0172 2.07E-05 14 0.0232 2.79E-05 18 0.017 2.04E-05 16 0.0232 2.79E-05 20 0.0166 2E-05 18 0.0246 2.96E-05 22 0.0164 1.97E-05 20 0.0248 2.98E-05 24 0.0162 1.95E-05 30 0.026 3.13E-05 26 0.0158 1.9E-05 70 0.0306 3.68E-05 28 0.0156 1.88E-05 100 0.0306 3.68E-05 30 0.0154 1.85E-05 200 0.0306 3.68E-05 40 0.019 2.29E-05 900 0.031 3.73E-05 50 0.0154 1.85E-05 1000 0.0312 3.75E-05 60 0.012 1.44E-05 1500 0.0314 3.78E-05 70 0.0108 1.3E-05 2000 0.0316 3.8E-05 80 0.012 1.44E-05 90 0.01 1.2E-05 100 0.009 1.08E-05 110 0.0076 9.14E-06 120 0.0186 2.24E-05 130 0.0206 2.48E-05 140 0.0264 3.18E-05 150 0.0162 1.95E-05 160 0.0288 3.46E-05 170 0.029 3.49E-05 180 0.029 3.49E-05 190 0.0292 3.51 E-05 200 0.0292 3.51 E-05 300 0.0298 3.58E-05 400 0.0286 3.44E-05 500 0.0292 3.51 E-05 600 0.0298 3.58E-05 700 0.0308 3.7E-05 800 0.0312 3.75E-05 900 0.0314 3.78E-05 1000 0.0316 3.8E-05 Diameter of the microelectrode: 7 gm Flow velocity: 0.41 cm/sec Fe(CN)63 cone.: 22.4 mM 75 Raw data of Fig. 9 Curve (a) _____ Curve (b) Verical Position (nm) limiting current (XlO7A) k (m/s) limiting current (XlO7A) k (m/s) 1000 0.346 0.000184 0.345 0.000184 900 0.344 0.000183 0.34 0.000181 800 0.328 0.000175 0.33 0.000176 700 0.312 0.000166 0.319 0.00017 600 0.286 0.000152 0.302 0.000161 500 0.235 0.000125 0.282 0.00015 450 0.221 0.000118 0.183 9.74E-05 400 0.183 9.74E-05 0.146 7.77E-05 350 0.168 8.94E-05 0.129 6.87E-05 300 0.152 8.09E-05 0.114 6.07E-05 280 0.143 7.61 E-05 0.105 5.59E-05 260 0.135 7.19E-05 0.095 5.06E-05 240 0.127 6.76E-05 0.095 5.06E-05 220 0.12 6.39E-05 0.09 4.79E-05 200 0.113 6.01 E-05 0.086 4.58E-05 180 0.106 5.64E-05 0.082 4.36E-05 160 0.098 5.22E-05 0.077 4.1 E-05 140 0.088 4.68E-05 0.073 3.89E-05 120 0.078 4.15E-05 0.071 3.78E-05 100 0.066 3.51 E-05 0.083 4.42E-05 80 0.052 2.77E-05 0.166 8.84E-05 60 0.047 2.5E-05 0.008 4.26E-06 40 0.034 1.81 E-05 0.061 3.25E-05 20 0.025 1.33E-05 0.01 5.32E-06 0 0.008 4.26E-06 0.007 3.73E-06 Diameter of the microelectrode: 10 |im Flow velocity: 1.58 cm/sec Fe(CN)63 cone.: 24.8 mM Raw data of Fig. 10 76 Diameter of the microelectrode: 10 jam Flow velocity: 1.58 cm/sec Fe(CN)63 cone.: 24.8 mM (a) z=1000 |im k(m/s) y (um) x (nm) 0 25 50 75 100 125 150 175 200 225 250 0 I 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1 4E-04 25 1.4E-04 1.4E-04 1.4E-04 1.4E-04 I 4E-04 1.4E-04 I 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 50 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 75 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 100 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1 4E-04 1.4E-04 125 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 150 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 175 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 200 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 225 1.4E-04 1.4E-04 1.4E-04 1 4E-04 1.4E-04 I 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 250 1.4E-04 1.4E-04 1.4E-04 1.4E-04 I 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 (b) z=500 (im k(m/s) y (um) x (um) 0 25 50 75 100 125 150 175 200 225 250 0 1.3E-04 1.4E-04 1.5E-04 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 25 1.3E-04 1.4E-04 1.4E-04 1.4E-04 1.5E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 50 1.4E-04 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04 75 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1 4E-04 1.4E-04 1.4E-04 1.4E-04 1.4E-04 100 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.4E-04 1.5E-04 1.4E-04 I 4E-04 1.5E-04 1.5E-04 1.4E-04 125 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 150 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04 175 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.4E-04 200 1.4E-04 1.4E-04 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04 225 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04 1.4E-04 250 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.4E-04 1.4E-04 1.5E-04 1.4E-04 1.4E-04 77 Raw data of Fig. 10 (continued) (c) z=300 (im k(m/s) y (Hm) x (nm) 0 25 50 75 100 125 150 175 200 225 250 0 8.2E-05 1.4E-04 1.7E-04 1.6E-04 1.7E-04 1.9E-04 1.9E-04 1.9E-04 2.0E-04 1.9E-04 2.0E-04 25 8.2E-05 1.6E-04 1.8E-04 1.9E-04 1.9E-04 1.9E-04 2.1E-04 2.1E-04 2.1E-04 2.0E-04 2.0E-04 50 1.7E-04 1.8E-04 1.9E-04 1.7E-04 1.9E-04 1.9E-04 1.9E-04 1.8E-04 2.0E-04 1.9E-04 1.7E-04 75 1.7E-04 1.9E-04 1.9E-04 1.7E-04 1.8E-04 1.9E-04 1.8E-04 1.7E-04 1.7E-04 1.9E-04 1.7E-04 100 1.8E-04 1.8E-04 1.8E-04 1.4E-04 1.7E-04 1.7E-04 1.7E-04 1.9E-04 1.7E-04 1.9E-04 1.8E-04 125 1.6E-04 1.8E-04 1.9E-04 1.7E-04 1.6E-04 1.8E-04 1.8E-04 1.8E-04 1.8E-04 2.0E-04 1.9E-04 150 1.6E-04 1.8E-04 1.8E-04 1.8E-04 1.5E-04 1.7E-04 1.9E-04 1.8E-04 1.8E-04 1.9E-04 1.9E-04 175 1.6E-04 1.8E-04 1.9E-04 1.9E-04 1.8E-04 1.7E-04 1.9E-04 1.8E-04 1.9E-04 1.8E-04 1.9E-04 200 1.7E-04 1.8E-04 1.9E-04 1.8E-04 1.8E-04 1.7E-04 1.7E-04 1.7E-04 1.9E-04 2.0E-04 1.9E-04 225 1.7E-04 1.8E-04 1.9E-04 1.7E-04 2.0E-04 2.0E-04 1.9E-04 1.9E-04 1.9E-04 8.3E-05 1.9E-04 250 1.6E-04 1.8E-04 1.8E-04 1.9E-04 1.9E-04 1.8E-04 1.9E-04 2.0E-04 1.2E-04 2.1E-04 1.9E-04 (d) z=200 |im k(m/s) Y (Hm) X (H m ) 0 25 50 75 100 125 150 175 200 225 250 0 3.2E-05 1.2E-04 1.2E-04 1.1E-04 1 4E-04 1.3E-04 1.5E-04 1.6E-04 1.4E-04 1.5E-04 1.7E-04 25 3.2E-05 1.3E-04 1.6E-04 I 7E-04 1.3E-04 1.5E-04 1.4E-04 1.6E-04 1.5E-04 1.7E-04 1.4E-04 50 1.5E-04 1.7E-04 1.7E-04 1.4E-04 1.7E-04 1.4E-04 1.6E-04 1.4E-04 1.4E-04 1.2E-04 1.4E-04 75 1.5E-04 1.6E-04 1.7E-04 1.2E-04 1.3E-04 1.3E-04 1.4E-04 1.2E-04 1.4E-04 1.3E-04 1.5E-04 100 1.5E-04 1.8E-04 1 3E-04 1.4E-04 1.0E-04 1.5E-04 1.5E-04 1.3E-04 1.5E-04 1.3E-04 1.7E-04 125 1.4E-04 1.4E-04 1.3E-04 1.5E-04 1.1E-04 1.5E-04 1.4E-04 1.6E-04 1.7E-04 1.6E-04 1.7E-04 150 1.4E-04 1.2E-04 1.6E-04 1.5E-04 I . IE-04 1.4E-04 1.3E-04 1.7E-04 1.6E-04 1.7E-04 1.4E-04 175 1.5E-04 1.4E-04 1.6E-04 1.4E-04 1.4E-04 1.4E-04 1.5E-04 1.5E-04 1.5E-04 1.5E-04 1.3E-04 200 1.3E-04 1.5E-04 1.6E-04 1.3E-04 1.4E-04 1.3E-04 2.6E-05 1.5E-04 1.5E-04 1.6E-04 1.3E-04 225 1.3E-04 1.6E-04 1.4E-04 1.5E-04 1.3E-04 2.8E-05 1.5E-04 1.5E-04 1.6E-04 1 4E-04 1.5E-04 250 1.2E-04 1.5E-04 1.3E-04 1.3E-04 6.3E-05 1.3E-04 1.5E-04 1.2E-04 1.7E-04 1.4E-04 1.5E-04 78 Raw data of Fig. 10 (continued) (e) z= 100 gm k(m/s) y (|im) x (nm) 0 25 50 75 100 125 150 175 200 225 250 0 1.5E-05 7.9E-05 1.1E-04 1.0E-04 1.2E-04 1.1E-04 1.4E-04 1.1E-04 1.4E-04 I 4E-04 1 4E-04 25 1.6E-05 9.9E-05 1.3E-04 1.2E-04 1.3E-04 1.1E-04 1.5E-04 1.3E-04 1.7E-04 1.4E-04 1.6E-04 50 1.5E-04 1.5E-04 1.6E-04 1.6E-04 1.3E-04 1.1E-04 1.3E-04 1.3E-04 8.6E-05 1.3E-04 1.4E-04 75 1.4E-04 1.5E-04 1.4E-04 1.5E-04 1.1E-04 1.3E-04 1.2E-04 1.3E-04 1.4E-04 1.1E-04 9.1E-05 100 1.3E-04 1.3E-04 1.2E-04 1.2E-04 1.0E-04 1.3E-04 1.5E-04 1.3E-04 1 3E-04 1.8E-04 1.IE-04 125 9.4E-05 1.2E-04 I. IE-04 1.2E-04 1.2E-04 1.3E-04 1.3E-04 1.5E-04 1.3E-04 1.8E-04 1.5E-04 150 9.3E-05 1.1E-04 1.1E-04 1.1E-04 1.1E-04 1.2E-04 1.2E-04 1.5E-04 1.5E-04 1.6E-04 1.7E-04 175 1.0E-04 1.1E-04 1.4E-04 1.1E-04 1.4E-04 1.1E-04 1.3E-04 1.6E-04 1.5E-04 1.3E-04 1.6E-04 200 1.1E-04 1.5E-04 1.5E-04 1.2E-04 1.3E-04 I. IE-04 1.4E-04 1 4E-04 1.6E-04 1.4E-04 1.5E-04 225 6.4E-05 1.3E-04 1.3E-04 1.5E-04 1.5E-04 1.2E-04 1.7E-04 1.2E-04 1.3E-04 1.6E-04 1.2E-04 250 9.1E-05 1.3E-04 I. IE-04 1 4E-04 1.1E-04 1.5E-04 1.3E-04 1.5E-04 1.2E-04 1.5E-04 1.3E-04 (f) z=50 fim k(m/s) y (|im) x (|im) 0 25 50 75 100 125 150 175 200 225 250 0 2.5E-05 4.1 E-05 1.2E-04 1.1E-04 5.9E-05 6.5E-05 9.3E-05 5.1 E-05 1.3E-04 1.0E-04 1.5E-04 25 2.5E-05 1.1E-04 8.7E-05 1.1E-04 1.0E-04 1.1E-04 1.3E-04 8.1 E-05 8.5E-05 8.6E-05 8.0E-05 50 8.8E-05 1.2E-04 6.1 E-05 1.3E-04 1.4E-04 1.3E-04 9.9E-05 9.5E-05 8.5E-05 9.0E-05 7.6E-05 75 7.6E-05 1.3E-04 6.3E-05 1.2E-04 1.2E-04 8.9E-05 1.2E-04 7.0E-05 8.2 E-05 8.1 E-05 7.4E-05 100 7.3E-05 8.6E-05 1.3E-04 1.2E-04 1.1E-04 1.3E-04 I. IE-04 8.5E-05 9.5E-05 9.3E-05 7.2 E-05 125 6.7E-05 8.5E-05 1.5E-04 I. IE-04 1. IE-04 8.8E-05 1.2E-04 9.0E-05 8.8E-05 9.3E-05 1.2E-04 150 1.1E-04 7.1 E-05 1.0E-04 I 3E-04 1.2E-04 6.8E-05 8.2E-05 7.9E-05 1.5E-04 1.7E-04 I 6E-04 175 6.9E-05 9.3E-05 1.3E-04 1.3E-04 7.3E-05 7.1 E-05 7.8E-05 1.3E-04 1 4E-04 1.4E-04 I 2E-04 200 8.5E-05 5.1 E-05 1.1E-04 1.2E-04 8.9E-05 6.9E-05 7.7E-05 1.3E-04 1.4E-04 1.4E-04 1.4E-04 225 8.9E-05 9.9 E-05 1.1E-04 6.3E-05 8.7E-05 8.0E-05 8.5 E-05 1.2E-04 1.3E-04 I. IE-04 I 2E-04 250 7.1E-05 1.1E-04 8.5E-05 8.5E-05 6.4E-05 7.1 E-05 7.2E-05 1.2E-04 1 3E-04 1.1E-04 1 9E-04 Raw data of Fig. 11 79 Diameter of the microelectrode: 9 jim Fe(CN)63 cone.: 22.0 mM (a) V=1.40 cm/sec K (m/s) y (Mm) x (|im) 0 25 50 75 100 125 150 175 200 225 250 0 9.7E-05 9.8E-05 1.0E-04 9.8E-05 1.0E-04 1.0E-04 1.0E-04 9.8E-05 9.7E-05 1.0E-04 1.0E-04 25 9.7E-05 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 50 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 75 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 100 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 125 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 9.9E-05 I 0E-04 1.0E-04 1.0E-04 150 1 0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 9.5E-05 1.0E-04 1.0E-04 1.0E-04 175 1.0E-04 9.8E-05 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 9.5E-05 1.0E-04 1.0E-04 1.0E-04 200 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 9.8E-05 1.0E-04 1.0E-04 1.0E-04 1.0E-04 225 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 1.0E-04 250 1.0E-04 1.0E-04 1.0E-04 1.0E-04 9.8E-05 1.0E-04 9.7E-05 9.8E-05 9.8E-05 1.0E-04 1.0E-04 (b) V=0.88 cm/sec k(m/s) Y (Lim) x (urn) 0 25 50 75 100 125 150 175 200 225 250 0 9.5E-05 9.0E-05 8.7E-05 8.5E-05 7.2E-05 8.9E-05 8.8E-05 9.0E-05 9.4E-05 8.1 E-05 9.0E-05 25 9.5E-05 9.8E-05 1.0E-04 9.8 E-05 9.8E-05 1.0E-04 9.8E-05 1.0E-04 1 0E-04 1.0E-04 1.0E-04 50 1.0E-04 1.0E-04 9.8E-05 9.8E-05 9.6E-05 9.8E-05 9.8E-05 9.8E-05 9.7E-05 1.0E-04 1.0E-04 75 9.8E-05 9.5E-05 9.0E-05 9.7E-05 9.7E-05 9.8E-05 9.5E-05 9.7E-05 9.8E-05 9.4E-05 9.8E-05 100 9.4E-05 9.4E-05 8.8E-05 9.5E-05 9.5E-05 9.8E-05 9.8E-05 9.8 E-05 9.8E-05 9.7E-05 9.7E-05 125 9.3E-05 9.1E-05 8.7E-05 8.8E-05 9.4E-05 1.0E-04 1 0E-04 9.8 E-05 9.8 E-05 9.3E-05 9.4E-05 150 9.3E-05 8.0E-05 8.7E-05 8.8E-05 8.8 E-05 9.3E-05 9.5E-05 9.3E-05 9.2E-05 9.5E-05 9.8E-05 175 9.0E-05 9.4E-05 9.0E-05 9.0E-05 8.5 E-05 9.3E-05 9.2E-05 9.4E-05 9.5E-05 9.7E-05 9.7 E-05 200 8.5E-05 9.1E-05 9.1 E-05 9.1 E-05 8.8E-05 8.7E-05 8.8E-05 8.8 E-05 8.7E-05 8.8E-05 9.3E-05 225 8.6E-05 9.1 E-05 8.8E-05 8.5E-05 8.6E-05 9.1 E-05 8.9E-05 8.9E-05 9.4E-05 9.3E-05 9.0E-05 250 7.8E-05 8.5E-05 8.5E-05 5.4E-05 9.0E-05 9.1 E-05 8.6E-05 9.0E-05 9.3E-05 9.1 E-05 8.8E-05 (c) V=0.76 cm/sec 80 Raw data of Fig. 11 (continued) k(m/s) y (Hm) x (nm) 0 25 50 75 100 125 150 175 200 225 250 0 9.4E-05 8.2E-05 9.0E-05 8.5E-05 6.6E-05 8.2E-05 7.5E-05 9.0E-05 9.0E-05 8.4E-05 7.1 E-05 25 9.4E-05 9.7E-05 9.7E-05 9.7E-05 9.8E-05 9.7E-05 9.7E-05 9.7E-05 9.8E-05 9.8E-05 9.7E-05 50 9.8E-05 9.8E-05 9.7E-05 9.7E-05 9.5E-05 9.5E-05 9.5E-05 9.7E-05 9.5E-05 9.8E-05 9.8E-05 75 9.8E-05 9.4E-05 9.3E-05 9.6E-05 9.5E-05 8.8E-05 9.3E-05 9.4E-05 9.5E-05 8.8E-05 9.5E-05 100 9.5E-05 9.5E-05 9.1E-05 9.4E-05 9.0E-05 8.8E-05 9.5E-05 9.8E-05 9.4E-05 9.5E-05 9.5E-05 125 9.3E-05 9.1E-05 9.1E-05 9.4E-05 9.3E-05 8.8E-05 9.5E-05 9.7E-05 9.5E-05 8.5E-05 8.8E-05 150 9.4E-05 9.2E-05 9.0E-05 9.4E-05 8.2E-05 7.9E-05 9.1 E-05 9.0E-05 9.0E-05 9.4E-05 9.4E-05 175 7.8E-05 9.3E-05 9.0E-05 8.8E-05 8.1E-05 8.8E-05 8.7E-05 8.8E-05 9.4E-05 9.3E-05 9.4E-05 200 8.8E-05 8.8E-05 8.8E-05 8.4E-05 7.8E-05 8.3E-05 8.7E-05 7.8E-05 8.3E-05 8.0E-05 8.0E-05 225 8.5E-05 8.8E-05 8.7E-05 9.1E-05 8.5E-05 8.5E-05 8.0E-05 8.2E-05 8.0E-05 8.7E-05 9.3E-05 250 7.2E-05 8.3E-05 8.7E-05 8.4E-05 8.2E-05 8.5E-05 8.0 E-05 8.1 E-05 7.7E-05 7.4E-05 8.1 E-05 (d) V=0.41 cm/sec k(m/s) y (pm) x (pm) 0 25 50 75 100 125 150 175 200 225 250 0 9.4E-05 7.4E-05 7.7E-05 7.4E-05 7.5E-05 8.2E-05 8.4E-05 8.2 E-05 8.7E-05 6.7E-05 7.2E-05 25 9.4E-05 9.8E-05 9.7E-05 9.8E-05 9.7E-05 9.7E-05 9.8E-05 9.8E-05 9.8E-05 9.8E-05 9.7E-05 50 9.8E-05 9.8E-05 9.7E-05 9.7E-05 9.1 E-05 9.3E-05 9.7E-05 9.1 E-05 9.1 E-05 9.7E-05 9.7 E-05 75 1.0E-04 9.4E-05 9.3E-05 9.4E-05 8.8E-05 9.4 E-05 9.5E-05 8.9E-05 9.4E-05 9.4E-05 9.7E-05 100 9.0E-05 9.4E-05 8.5E-05 9.3E-05 9.4E-05 9.0E-05 9.3E-05 9.5E-05 9.4E-05 9.4E-05 9.1 E-05 125 8.8E-05 8.8E-05 9.1 E-05 8.5E-05 8.1 E-05 8.1 E-05 8.7E-05 9.3E-05 9.5E-05 9.0E-05 9.4E-05 150 8.6E-05 9.1 E-05 8.8E-05 8.2 E-05 8.8E-05 8.2E-05 9.1 E-05 9.0E-05 8.6E-05 9.4E-05 9.5E-05 175 8.1 E-05 8.8E-05 8.8E-05 8.5 E-05 7.8E-05 8.4E-05 8.8E-05 8.8E-05 9.3E-05 9.0E-05 8.2E-05 200 8.5E-05 8.5E-05 8.4 E-05 8.2E-05 8.7E-05 8.2E-05 8.5E-05 8.7E-05 8.4E-05 8.4E-05 8.1 E-05 225 7.8E-05 8.5E-05 8.1 E-05 8.7E-05 8.4E-05 8.6E-05 8.6 E-05 9.0 E-05 8.2E-05 7.5E-05 8.4 E-05 250 8.2E-05 7.8E-05 8.2E-05 8.2E-05 8.2E-05 8.3E-05 8.7E-05 8.6E-05 7.3E-05 9.0E-05 7.8E-05 81 Raw data of Fig. 14 Vertical position (pm) k (m/s) Velocity (cm/s) Vertical position (pm) k (m/s) Velocity (cm/s) Vertical position (pm) k (m/s) Velocity (cm/s) 0 4.00E-05 0.012 670 1.91E-04 1.092 1340 2.00E-04 1.932 10 1.34E-04 0.032 680 1.91E-04 1.102 1350 2.00E-04 1.942 20 1.49E-04 0.052 690 1.91E04 1.122 1360 1.99E-04 1.952 30 1.53E-04 0.062 700 1.91 E-04 1.132 1370 2.00E-04 1.962 40 1.54E-04 0.082 710 1.91 E-04 1.152 1380 1.99E-04 1.972 50 1.55E-04 0.092 720 I 92E-04 1.162 1390 2.00E-04 1.982 60 1.58E-04 0.112 730 1.91 E-04 1.182 1400 1.99E-04 1.992 70 1.58E-04 0.132 740 1.91 E-04 1.192 1410 2.01 E-04 2.002 80 1.60E-04 0.142 750 1.93E-04 1.202 1420 2.01 E-04 2.012 90 1.60E-04 0.162 760 1.93E-04 1.222 1430 2.00E-04 2.022 100 1 63E-04 0.182 770 1.92E-04 1.232 1440 2.01 E-04 2.032 110 1.64E-04 0.192 780 1.93E-04 1.252 1450 2.01 E-04 2.042 120 1.64E-04 0.212 790 1.92E-04 1.262 1460 2.01 E-04 2.052 130 1.66E-04 0.232 800 1.93E-04 1.282 1470 2.01 E-04 2.062 140 1.67E-04 0.242 810 1 94E-04 1.292 1480 2.02E-04 2.072 150 1.69E-04 0.262 820 1.94E-04 1.302 1490 2.00E-04 2.082 160 1.69E-04 0.282 830 1.95E-04 1.322 1500 2.01 E-04 2.092 170 1.70E-04 0.292 840 I 95E-04 1.332 1510 2.00E-04 2.102 180 1.70E-04 0.312 850 1.94E-04 1.342 1520 2.00E-04 2.112 190 1.71E-04 0.332 860 1 94E-04 1.362 1530 1.99E-04 2.122 200 1.72E-04 0.342 870 1.95E-04 1.372 1540 2.01 E-04 2.132 210 1 73E-04 0.362 880 1.95E-04 1.382 1550 2.00E-04 2.142 220 1.73E-04 0.382 890 1 93E-04 1.402 1560 2.01 E-04 2.152 230 1.74E-04 0.392 900 1.94E-04 1.412 1570 2.01 E-04 2.152 240 1.74E-04 0.412 910 1 94E-04 1.422 1580 2.01 E-04 2.162 250 1.75E-04 0.432 920 1 93E-04 1.442 1590 2.02E-04 2.172 260 1.76E-04 0.442 930 1.93E-04 1.452 1600 2.01 E-04 2.182 270 1.77E-04 0.462 940 1.93E-04 1.462 1610 2.02E-04 2.192 280 I 77E-04 0.482 950 I 94E-04 1.482 1620 2.02E-04 2.202 290 1.76E-04 0.492 960 1.95E-04 1.492 1630 2.02E-04 2.212 300 1.78E-04 0.512 970 1.94E-04 1.502 1640 2.02E-04 2.222 310 1.78E-04 0.532 980 1.95E-04 1.512 1650 2.02E-04 2.232 320 1.79E-04 0.542 990 1.95E-04 1.532 1660 2.02 E-04 2.232 330 1.80E-04 0.562 1000 1.95E-04 1.542 1670 2.02E-04 2.242 340 1.80E-04 0.572 1010 1.95 E-04 1.552 1680 2.01 E-04 2.252 350 1.79E-04 0.592 1020 1.96E-04 1.572 1690 2.01 E-04 2.262 360 1.81E-04 0.612 1030 1.97 E-04 1.582 1700 2.02E-04 2.272 370 1.81E-04 0.622 1040 1.95E-04 1.592 1710 2.02E-04 2.282 380 1.81E-04 0.642 1050 1.96E-04 1.602 1720 2.02E-04 2.282 390 1.80E-04 0.662 1060 1.97E-04 1.612 1730 2.01 E-04 2.292 Raw data of Fig. 14 (continued) 82 Vertical position (pm) k (m/s) Velocity (cm/s) Vertical position (pm) k (m/s) Velocity (cm/s) Vertical position (pm) k (m/s) Velocity (cm/s) 400 1.79E-04 0.672 1070 1.96E-04 1.632 1740 2.02E-04 2.302 410 1.83E-04 0.692 1080 1.96E-04 1.642 1750 2.02E-04 2.312 420 1.84E-04 0.702 1090 1.96E-04 1.652 1760 2.00E-04 2.322 430 1.84E-04 0.722 1100 1.97E-04 1.662 1770 2.00E-04 2.322 440 1.84E-04 0.742 1110 1.97E-04 1.682 1780 2.01 E-04 2.332 450 1.85E-04 0.752 1120 1.98E-04 1.692 1790 2.01 E-04 2.342 460 1.85E-04 0.772 1130 1.98E-04 1.702 1800 2.01E-04 2.352 470 1.84E-04 0.782 1140 1.97E-04 1.712 1810 2.02E-04 2.362 480 1.84E-04 0.802 1150 I 97E-04 1.722 1820 2.03E-04 2.362 490 1.86E-04 0.822 1160 I 98E-04 1.732 1830 2.03E-04 2.372 500 1.86E-04 0.832 1170 1.97E-04 1.752 1840 2.03E-04 2.382 510 1.86E-04 0.852 1180 1.99E-04 1.762 1850 2.03E-04 2.392 520 1.87E-04 0.862 1190 1.98E-04 1.772 1860 2.03E-04 2.392 530 1.87E-04 0.882 1200 1.98E-04 1.782 1870 2.03E-04 2.402 540 1.88E-04 0.892 1210 1.98E-04 1.792 1880 2.03E-04 2.412 550 1.88E-04 0.912 1220 I 99E-04 1.802 1890 2.00E-04 2.422 560 1.89E-04 0.922 1230 1.98E-04 1.812 1900 2.03E-04 2.422 570 1 89E-04 0.942 1240 1.98E-04 1.822 1910 2.04E-04 2.432 580 1.88E-04 0.952 1250 1.98E-04 1.842 1920 2.03E-04 2.442 590 1.89E-04 0.972 1260 1 98E-04 1.852 1930 2.03E-04 2.442 600 1.89E-04 0.982 1270 1.98E-04 1.862 1940 2.03E-04 2.452 610 1.91E-04 1.002 1280 1.99E-04 1.872 1950 2.04E-04 2.462 620 1.90E-04 1.012 1290 2.00E-04 1.882 1960 2.03E-04 2.472 630 1.89E-04 1.032 1300 1.99E-04 1.892 1970 2.03E-04 2.472 640 1.91E-04 1.042 1310 2.00E-04 1.902 1980 2.03E-04 2.482 650 1.9 IE-04 1.062 1320 1.99E-04 1.912 1990 2.04E-04 2.492 660 1.90E-04 1.072 1330 2.00E-04 1.922 2000 2.03E-04 2.492 1H O U C H E N B IN D E R Y L T D UTICA/OMAHA NE.