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We used artificial neural networks (ANN) to compute parameters characterising biofilm structure from

biofilm images and to interpolate a limited number of experimental data characterising the effects of

nutrient concentration and flow velocity on the areal porosity of biofilms. ANN were trained using a

set of experimental data characterising structural parameters of biofilms of Pseudomonas aeruginosa

(ATCC #700829), Pseudomonas fluorescens (ATCC #700830) and Klebsiella pneumoniae (ATCC

#700831) for various flow velocities and glucose concentrations. We used 80% of the data to train

ANN and 10% of the data to validate the results, which is routinely carried out as a countermeasure

against overtraining. Trained ANN were used to interpolate into the data set and evaluate the missing

10% of the data. To compare ANN accuracy in evaluating the missing data with the accuracies

achieved using other interpolation algorithms, we used spline, cubic, linear and nearest-neighbour

interpolation algorithms to evaluate the missing data. ANN estimates were consistently closer to the

experimental data than the estimates made using the other methods.
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INTRODUCTION

Several research groups have demonstrated that biofilm

structure controls the internal mass transfer and activity of

biofilms (Wanner et al. 1995; Wimpenny & Colasanti 1997;

Bryers & Drummond 1998; Hermanowicz 1998; Noguera

et al. 1999a,b; Rittmann et al. 1999). To model the dynamics

of biofilm processes it is important to quantify the relations

among the biofilm structure, hydrodynamics and biofilm

activity. Because biofilm activity is affected by a large

number of variables, such studies are usually tedious and

time-consuming. To speed up the progress of such studies,

simplified methods of estimating the relations among the

variables are needed. One such simplified method is inter-

polating into existing data sets and constructing large data sets

from a limited number of measurements. Several algorithms

can be used to interpolate into data sets. We tested the spline,

cubic, linear, and nearest-neighbour interpolation algorithms

and compared their estimates with the estimates of the

artificial neural networks used as an interpolation algorithm.

The goals of this study were: (1) to verify that artificial

neural networks (ANN) can be used to interpolate between

existing data and to compute parameters characterising biofilm

structure from biofilm images with a high degree of accuracy

and (2) to use ANN to interpolate a limited number of

experimental data characterising the effects of nutrient concen-

tration and flow velocity on the areal porosity of biofilms.

To accomplish the first goal, ANN were trained in the

supervised training mode, using the existing input–output

pairs of experimental data, and then used to interpolate from

the results of the experiments to estimate the results of the

experiments that were not conducted. ANN’s estimates were

verified experimentally, and the accuracy of these estimates

was compared with the accuracy of the estimates made using
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other available methods of interpolation, specifically the

spline, cubic, linear and nearest-neighbour techniques. To

accomplish the second goal, ANN were used to generate the

missing data in a set of existing data quantifying the effects of

glucose concentration and flow velocity on the areal porosity

of biofilms. The set of experimental data composed of several

parameters quantifying the temporal development of biofilm

structure was generated by operating flat plate flow reactors

with glass bottoms. From the biofilm images, collected

through the bottom, we calculated areal porosity, fractal

dimension, textural entropy, average diffusion distance, and

average vertical and horizontal run lengths using the

proprietary software package Image Structure Analyser-2

(ISA-2), developed at the Center for Biofilm Engineering

(Yang et al. 2000;Beyenal et al. 2004). From the collecteddata

sets, we evaluated the effects of flow velocity and glucose

concentration on the parameters characterising biofilm

structure. We also trained ANN to interpolate from the

trends in the data sets to estimate the parameters characteris-

ing biofilm structure for several hypothetical experimental

conditions. The accuracy of the estimates were tested against

experimental data.

MATERIALS AND METHODS

Experimental setup

We grew the biofilms in flat plate flow reactors, as described

in our previous publication (Beyenal & Lewandowski

2000). A flat plate flow reactor made of polycarbonate

was 3.5 cm deep, 2.5 cm wide and 85 cm long, with a

total working volume of 400mL. The bottom of the reactor

was made of glass, and the top of the reactor was sealed

with silicone rubber to prevent microbial contamination.

The nutrient solution was made of a pH buffer, KH2PO4

(0.35 g/L), Na2HPO4 (1.825 g/L), at pH 7.2, (NH4)2SO4

(0.1 g/L),MgSO4 £ 7H2O (0.01 g/L), yeast extract (0.01 g/L)

and glucose, at a different concentration in each experi-

ment. The biofilm reactors were inoculated with mixed

culture of Pseudomonas aeruginosa (ATCC #700829),

Pseudomonas fluorescens (ATCC #700830) and Klebsiella

pneumoniae (ATCC # 00831).

The biofilms were grown at various combinations of

average flow velocity (3.2, 10 and 25cm/s) and glucose

concentration (50, 100 and 150mg/L). Three flow velocities

and three glucose concentrations give nine pairs of flow

velocity and glucose concentration at which biofilms were

grown. A short hydraulic retention time, less than 20minutes,

was used to prevent the growth of microorganisms in

suspension. The recycle ratio varied from 40 for the lowest

flow velocity to appropriately higher ratios for the higher flow

velocities. The glucose concentration in the reactor was

measured using procedure 510 by Sigmaw Diagnostics

(St. Louis, MO). The difference in glucose concentration

between the feed and the output was consistently less than

10%of the concentration in the feed. This assuredus that there

was no substantial difference between the rates of microbial

reactions in various parts of the reactor. The nutrient solution

was continuously aerated in a mixing chamber before it

entered the reactor to keep the dissolved oxygen concen-

tration near the saturation level, and the dissolved oxygen

concentration was measured using a dissolved oxygen sensor.

During the operation, the reactors were attached to the

stage of theNikonwDiaphot 300 invertedmicroscope and the

biofilm structure was monitored using incandescent light

directed from the bottom. Tominimise the effect of variations

in light density on image quality, a constant light intensity was

used (Beyenal et al. 2004). Imageswere captured by aCOHUw

camera (Closed Circuit, CA; model no: 2222-1040/0000) and

a Flashpointw frame grabber (Integral Technologies, Inc.,

Indianapolis, Indiana) connected to a computer. Each day

we acquired 20 to 35 images of the biofilm through the

bottom of the reactor at arbitrarily selected locations using a

40 £ magnification lens. We used the Image Structure

Analyser-2 (ISA-2) to calculate areal porosity, fractal dimen-

sion, textural entropy, average horizontal and vertical run

lengths and average diffusion distance from the digitized

biofilm images, as described in (Beyenal et al. 2004).

Using ANN to interpolate from the data sets to

estimate the missing data

To set up ANN, we used the commercial software called

EasyNNw (Neural Planner Software). The software offers a

user-selectable number of hidden layers and nodes, and

provides a validation of learning feature. The training

process continues until the maximum normalised individual

error in each cycle is less than the user-defined value.
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To train ANN, we used 80% of the data sets. Ten

percent of the data sets were used for validation purposes,

and the remaining 10% of the data were considered missing,

and were estimated by ANN. To train ANN we used the

available data except those collected on the 2nd, 6th and

10th days of operation (the data sets within the shaded

rectangles in Figure 1). The data not introduced into ANN,

those collected on the 2nd, 6th and 10th days of operation,

were considered the missing data. They represented

3 £ 3 ¼ 9 data sets, which is 10% of the total number of

data sets. These missing data sets were then estimated using

ANN, and the accuracy of these estimates was evaluated by

comparing with the actual data.

During the learning process, the neural network adjusts

the weight values to produce output values which closely

closely the actual output values of the experimental results.

This adjusting procedure is carried out by the back propa-

gation algorithm, which calculates the root mean square

(RMS) of the sum of errors (ERMS) and uses this information

to optimise the weight values for the next iteration. The goal

of the back propagation algorithm is to minimise the ERMS.

To prevent overtraining, ANN was periodically validated

using an additional set of data. If overtraining was detected,

the number of hidden nodes in the hidden layer was lowered

and a new training process was initiated.

Interpolation using spline, cubic, linear and nearest-

neighbour techniques

Todemonstrate thatANNcan accurately estimate parameters

characterising biofilm structure, we comparedANNestimates

with the experimental data. We also compared the results

obtained using ANN with the results obtained using other

interpolationmethods, specifically the spline, cubic, linearand

nearest-neighbour interpolation techniques by calculating the

sumof least squares (SLS) for each technique for a given set of

estimates, as shown below:

SLS ¼
XN

i¼1

ðypredicted 2 yactualÞ
2 ð1Þ

In the equation, N is the number of data; ypredicted is the

predicted areal porosity and yactual is the value measured

experimentally. We used MATLABw 7 to calculate the

estimates using the spline, cubic, linear and nearest-

neighbour interpolation techniques.

RESULTS AND DISCUSSION

Even though we calculated all the parameters specified

above, for the clarity of the presentation we show only the

areal porosity, which is defined as the ratio between the

Figure 1 | Temporal variation of areal porosity in biofilms grown at various glucose

concentrations (50, 100 and 150mg/L) and various flow velocities (3.2, 10 and

25cm/s). The data, excluding those in the shaded areas, were used to train

and to validate ANN. The data in the shaded areas were used to compare

ANN’s estimates with the experimental data together with the estimates

made using spline, cubic, linear and nearest-neighbour interpolations.

1869 R. R. A. Veluchamy et al. | Characterizing biofilm development using artificial neural networks Water Science & Technology—WST | 57.12 | 2008



combinedareasof the voids and the total areaof the image. Its

value varies between 0 and 1; a lower areal porosity indicates

higher biomass coverage at the bottom. The same procedure

was used to estimate other parameters characterising

biofilm structure; we have tabulated these results in Table 1.

Figure 1 shows that as time progressed, areal porosity

decreased in each reactor as expected. It is also seen that

areal porosities were highest in biofilms grown at low

glucose concentrations and high flow velocities. These

results are typical of biofilms grown for a short time before

significant detachment occurs (Lewandowski et al. 2004).

The data in Figure 1, excluding the data points in the shaded

rectangular, were used to train and to validate ANN. The

data in the shaded area were used to compare ANN

estimates with the experimental data.

The variations of areal porosity with the glucose concen-

trations and flow velocities are plotted in Figure 2. The data

were collected at the intersections of the grid lines only.

Consequently, thedatabetween thepointswhere the grid lines

intersect had to be evaluated by interpolation. For example,

Figure 2 does not give precise information about the areal

porosity of the biofilms grown at 125mg/L glucose concen-

trationand15cm/sflowvelocity. Toassess the areal porosities

at that and other such locations we used ANN and the spline,

cubic, linear and nearest-neighbour techniques.

Table 1 shows the sum of least squares (calculated

from Equation 1) for each interpolation technique, and

demonstrates that the complex algorithm used by ANN can

successfully estimate biofilm porosity.

Figure 3 compares the estimates of areal porosity made

using various interpolation techniques, and demonstrates

that ANN’s estimate was superior to the estimates made

using other algorithms.

The remaining structural parameters we measured

(Table 1) gave similar results, indicating that the estimates of

missing parameters made using ANN were better than the

same estimates made using the other methods (ANN had

lowest sum of least squares). Having demonstrated that ANN

can be used to estimate missing data by interpolating from

trends in the existing sets of data, we used ANN to estimate

areal porosities for various flow velocities and various

substrate concentrations. The results are shown in Figure 4.

To generate these results we used ANN to estimate the areal

porosities in biofilms using glucose at concentrations ranging

from50 to 100mg/Lwith a step size of 0.5mg/L (a total of 200

different glucose concentrations), and grown at flow velocities

ranging from3.2 to25cm/s,with a step sizeof 0.2 cm/s (a total

of 109 different flow velocities). The total number of combina-

tions of glucose concentrations was 8,844, something practi-

cally impossible to achieve experimentally.

The purpose of the study was to demonstrate that ANN

can be used as an efficient method of interpolating from

trends in existing data sets, and the interpretation of the

data acquired in the course of this study emphasised this

particular aspect. However, with caution, the results

acquired can also be interpreted from the point of view of

biofilm processes. For that purpose, it is important to note

that the biofilm images were acquired at the bottom level

and therefore reflect the properties of the layer of the

biofilm directly attached to the bottom. As expected, flow

velocity and glucose concentration affected areal porosity

(Figures 1 and 2). However, ascribing a specific weight to

each factor associated with the variations in areal porosity is

not easy: the effect does not show clear trends and it varies

daily. Within the range of flow velocities and glucose

concentrations applied in this study, it seems that the flow

Table 1 | The sum of least squares (calculated from Equation 1) for each interpolation technique

Method Sum of least squares

Parameter Spline Linear Cubic Nearest ANN

Areal porosity 90 £ 1022 97 £ 1022 90 £ 1022 2.4 £ 1022 0.07 £ 1022

Fractal dimension 3.9 £ 1022 0.9 £ 1022 3.9 £ 1022 1.6 £ 1022 0.1 £ 1022

Textural entropy 0.66 0.15 0.66 0.33 0.04

Average horizontal run length 14,662 5,867 14,662 116 32

Average vertical run length 3,177 1,017 3,177 136 32

Average diffusion distance 3,482 440 3,482 1,584 40
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velocity affected the areal porosity more than the glucose

concentration did. This conclusion can be compared with

a conclusion from another study in which we tested

the effects of flow velocity and glucose concentration on

effective diffusivity (Beyenal & Lewandowski 2000). In that

study we concluded that the glucose concentration had

a stronger effect on the relative effective diffusivities than

the flow velocity did. Although the two studies had different

goals and the ranges of glucose concentrations and flow

velocities were different, we can cautiously assert that

(1) glucose concentration has a stronger effect on the

effective diffusivity (and density) in biofilms than flow

velocity does and (2) flow velocity affects biofilm porosity to

a greater extent than glucose concentration does.

Figure 2 | Temporal variation in areal porosity versus glucose concentration and flow

velocity at which the biofilms were grown for selected times. The figures are

generated from the data shown in Figure 1 for the selected days of operation.

Figure 3 | The variation of areal porosity for the experimental data and estimates from

tested interpolation methods. A) Estimates for the minimum flow velocity

and glucose concentration at which biofilms were grown. B) Estimates for

randomly selected data unseen by ANNs. In both cases ANN estimates are

better than those made using the other methods tested.
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Although we quantified the structure from the digitised

images taken near the bottom of the biofilm using light

microscopy, we expect that ANN can equally be used with

similar images acquired using confocal scanning laser

microscopy to estimate three-dimensional distributions of

the parameters characterising biofilm structure.

CONCLUSIONS

ANN can be used to estimate parameters characterising

biofilm structure by interpolating into an existing set of data,

and these estimates are better than the estimates made using

the spline, cubic, linear or nearest-neighbour interpolation

techniques.

From the images of biofilms near the bottom of the

reactor, we concluded that for the ranges of the variable

parameters used in this study: glucose concentration

between 50 and 150mg/L and flow velocity between 3.2

and 25 cm/s, flow velocity had a stronger effect on areal

porosity than glucose concentration did. The magnitude of

the effects of glucose concentration and flow velocity on

areal porosity varied from one day to another, which

probably warrants further investigation.
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