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ABSTRACT

We study surface plasmons and phonons on n-type semiconductors, for non-
uniform free-carrier density profiles, through use of the dielectric theory of electron-
energy-loss spectroscopy and nonlocal description of the response of the electrons.

First, self-consistent calculations of the spatial variation of  the conduction-
election density near the surface of n-type GaAs are presented. Second, the
dielectric function and effective dielectric function are discussed, in which the
Thomas-Fermi model and the Debye-Huckel model are introduced. Thud the ener gy
loss spectra for bulk free-carrier densities of (1) n=1.2%10"cm?® (2) n=1.3*10"cm"
(3) n=1.5%10"cm™ have been calculated. For each value of n,, we consider three
values of the surface charge density, Q=-0.08, 0.0, and 0.08 in thermal units, and
-plot the variation with wavevector of the maximurn of the loss function. By varying
these parameters we investigate a wide range of charge-density profiles and surface
potentials; for example’ our deplation layers have widths of 50A, 75A and 100A.
The results obtained with the local response theory are compared with Mills’ results
which come from a nonlocal theory.




CHAPTER 1
INTRODUCTION

In the past century the studies of materials have been mainly focused on bulk
properties. The understanding of surfaces and fundamental surface related processes
has become feasible only in the last 20 years since modem technologies were
developed.

During the past 20 years, electron-energy-loss spectroscopy (EELS) in the
reflection geometry has emerged as a reliable technique for studying clean or'
contaminated, surfaces. In this technige, monochromatized electrons backscattered
from the surface of a target material are analyzed in energy to detect losses and
gains characteristic of surface plasmons or vibrational excitations. First restricted to

conducting targets, high resolution EELS experiments have recently been

successfully performed with insulators and semiconductors,’ so that this technique is

now generally applicable as a powerful spectroscopic tool for the study of any
material surface.

Near the surface of a doped semiconductor, the carrier density often differs
dramatically from. that in the bulk. Depletion layers may be encountered as thick as
a few hundred angstroms, within which the free-carrier density drops dramatically
below that in the bulk, or accumulation layers which contain an excess of carriers

near the surface. In the first part of this thesis, self-consistent calculations of the
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spatial variation of the conduction-electron density near the surface of n-type GaAs
is presented, for the case where the surface is charge neutral, or bears net positive
or negative charge. The model smears the charge density produced by ionized
donors in the bulk into a jellium background, and introduces the effect of surface
charge through a uniform electric field emanating from the surface. In this part, the
Schrodinger equation subject to Poisson’s equation and Fermi statistics is solved.
The Hartree approximation is used to describe the electron-electron interaction.”

Recently, an adequate theoretical approach to EELS was developed within the
so-called dielectric theory,> where the electrons are considered as classical particles,
while the absorption and emission of phonons or plasmons are treated quantum
mechanically. In the theoretiéal description, the dielectric constant £(k,m) depeﬁds on
frequency and wave vector. With retardation ignored, the frequency , of the surface
plasmon is determined through the relation &(w,)=-1. If ®, is the plasma frequency

of the free carriers, and €., the high-frequency dielectric constant, then™
e()=¢..-0,”/(W*+iyw)
and
0=0,/(e+1)"
Actually, € depends not only on the frequency ®, but position z, since
o,=4mn(z)e’/m" where m" is the free-carrier effective mass. Calculations of n(z), the
conduction electron density, are described in the first part of this thesis. If the 2D

wave vector k is not zero, but is very small, € also depends on k. If we use the

Thomas-Fermi model,’ then -




e(k,m,z)=¢..-0,”/[(0*-0.6V k) +icy]

where V; is the Fermi velocity and vy is a damping factor.®

If we use the Debye-Huckel model,” then
e(k,w,z)=¢..-0,”/[(@*-6Kk?)+icvy]

In fact, GaAs has an infrared active transverse optical phonon at long
wavelengths. The backgrouﬁd dielectric constant then is frequency ‘dependent, and of

the form®

E()=E_H(Eo-E..) D, B0 - 0*-i0Y),

where ® is the frequency of the long-wavelength transverse optical phonon, and €,
the static dielectric constant.

The dielectric theory can also be applied to anisotropic crystals, provided &(w)
in the loss function is replaced by an appropriate effective dielectric function &(k,0).
In Ref. 9, it is shown that the relevant effective dielectric function is equal to the
surface value of the ratio of the displacement vector perpendicular to the surface,
and the projection of the electric polarization field onto the direction of the surface

wave vector k. The quantity is
&(k,(D,Z)'—'iD(k,(O,Z)n/[E(k,(l),Z)k/k],

with D(k,w,z)=¢(w,z2)E(k,0,z), where €(®,z), the long-wavelength dielectric constant




4
of the material, which may be a function of the coordinate z,\is determined by n(z).

In the regime of small-angle deflections, where surface plasmon contributions
dominate the IJoss spectrum for back scattering from the surface of a simple
semiconductor, the incident electron interacts with the excitations in the material
through the fluctuating electric fields in the vacuum outside the material.! An
incoming electron has an accompanying electric field which polarizes the medium.
The induced field of polarization interacts back on the electron and damps its
motion; in other words, the energy lost by the probing electron is dissipated by the
medium. In this thesis the loss function will be dealt with classically. The amplitude
of the induced field involves the factor 1/(&;+1) where &=E(z=0) is the effective
surface dielectric function. The probability for energy loss will be proportiohal to
this factor. A zero in the denominator of the loss function gives a peak in the loss
spectrum.’

The position of the peak in the loss function is also calculated as a function of
k , for the different values of the surface charge, for T=300K, and a carrier con-
centration of (1) n=10"cm® (2) n=3*10"cm® Dispersion curves, showing our
results for the peak position vs. the wavevector, are plotted - and compared with
Mills’ results.”* In this thesis a local dielectric response description is applied, while
Mills’ results come from a full nonlocal description.

In summary, surface plasmons on n-type semiconductors are studied, for non-
uniform free-carrier ‘density profiles, through the use of a formalism describing
electron-energy-loss spectroscopy. In the calculation of the inelastic cross section,
the loss function Im[-1/(€(k,w)+1)] is required as input. To derive the effective
dielectric function, the dielectric function €(k,,z) needs to be calculated first. But
e(k,w,z) is directly related to n(z). Thus we must first determine the free-carrier

density profile.
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The thesis is organized as f(.)llows. Chapter 2 presents self-consistent calcula-
tions of depletion-and accumulation-layer profiles for a range of carrier concentra-
tions in n-type GaAé, at room temperature. Many figures are presented for several
cases. In Chapter 3 and Chapter 4, we discuss the theory of the dielectfié function
and the effective surface dielectric function. In Chapter 5 we present the théory of
the electron-energy-loss cross section and. results for the dispersion relation, and

Chapter 6 is devoted to a summary of our many -results and principal conclusions.




CHAPTER 2

SELF-CONSISTENT CALCULATION OF DEPLETION-AND
 ACCUMULATION-LAYER PROFILES

A uniformly doped n-type GaAs slab with thickness near 1400 A is
considered. The undoped crystal is to be regarded as a neutral medium whose
electrical effect is sixhply to provide a background dielectric constant £. We
consider an electric field E outside the material and normal to its surface, due to
surface charges. The electric field just inside the material will be E/e. When wc;
consider boundary conditions on the potential, we will use the fact that the field
outside the material is larger by a factor € than that used in the bdundary condition
for the field inside.

The dynamic system we consider is the sea of conduction electrons which are
free to move under the influence of various forces. There are two types of force®
that act on a conduction electron. The first type is the electrostatic force arising
from the charge density of other conduction electrons, tﬁe uniform background of
ionized donors, and the externally imposed uniform field. The second type is the
exchange and correlation force. Exchange and correlation forces arise among
cc;nduction electrons due to dynamic and statistical correlations of their moﬁon. We
do not consider these forces here, since they are weak in our case.'

The system of equations includes Schrodinger’s equation for the state of the

conduction electrons, a constitutive equation giving the charge density in terms of
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wavefunctions for the occupied states, and Pqisson’s equation giving the potential in
terms of the charge density.
The single-particle wave functions are solutions’ of an effective Schrodinger

equation

h2
[..

*

V2 + V(z) ] Y,(r) = E,¥(r) 2.1)
2m .

where m* is the effective mass; for GaAs, m'=0.069m, with m the free-electron
mass. V(z) is the self-consistent potential. The solution of this equation is of the
form

¥, (r) = [ exp(ik - J/A"Iy(z) _ _ (2.2)

where k is the wave vector parallel to the surface, A is the area of the sample and
the index o represents the combination (k ,i), where i labels a particular solution
for wave vector k . In Eq. (2.1),the éne“rgy zero is the conduction band edge.

E, = B ; = Wk *2m") + g

The value of €, is discrete and can be :positivé or negative; we have then

h? d:

[_ *

2m dz

.+ V@) K@) = e @23

The solutions of Eq.(2.3) are subject to the boundary conditions




%0) = 0 . o (2.42)
u@) =0 (2.4b)

where L is the thickness of the slab.

The calculation is carried out in the Hartree approximation. It is assumed that
the potential energy V(z) appearing in Schiodiﬁger"s equation is just the energy of
an electron in the electrostatic potential ®(z) set up by all the conduction electrons.

The electrostatic potential satisfies Poisson’s equation:. '

V(z) = - e®(z) " 2.5)
d*®d(z) 4r

- = dn(z) (2.6)
dz? €, ,

where €, is the static dielectric constant, and dn(z) is the deviation of the electron-
density from its bulk value. We chose the zero of energy such that ®(L/2)=0.

The boundary condition on the potential is ' ' : .

) =B, (2.7)

There are two contributions to dn(z),> so dn(z)=0n(z)+on,(z). The first is from

the free carriers in the conduction band:




2 I 2 » .
n(z)=——1>d T +g - 11Xz -n (2.8)
2r) i 2m"
hzk. 2 ‘ hzk 2 -1
where f [ +& -1 ]=1[exp (B + & - 1))+l ]
2m" 2m*

is the Fermi-Dirac function with B=(kpT)", n, is the bulk free-carrier concentration
and p is the chemical potential.

The second contribution is
Snp(2) =np [ £ (Bp - e®(@) - ) - £ (Ep - )]

where n, is the concentration of donor hnpuritieé. Except at the highest
concentrations, we can assume that dny(z)=0, a constant. The self-consisteﬁt solution
of Egs. (2.3) and (2.6) proceeds as follows.

First, an initial potential-is employed in the Schrodinger equation, which may
then be solved straightforwardly by a series approach. Then on(y) may be
constructed: from these solutions. Finally, the potential ®(z) is calculated. We repeat
the procedure agéjn and again until the new potential and old potential agree within
the desired precision. |

Before proceeding further, it is convenient to introduce the dimensionless units
which will be emplo‘yed for most of what follows. All energies will be expressed as
multiples of k;T and all le,ngthé will be expressed as multiples of the thermal wave

length
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A= (b*/2m’k,T)*

which assumes the value 46.2A for GaAs at room temperature. That is, we have

- () = B)k,T S e
z = yA o (2.8b)
ko kAt B 280
X —> XA . S C o (28d)

Schrodinger’s equation (2.3) now takes the form

d: , :
(- e + ) %Gy) = exy) ‘ 29
y » .

Poisson’s equation (2.6) becomes

, 2 '
= - 87—— On(y) : (2.10)
dy, a, '

d’o.

where a, = ¢h’/m'e? is the Bohr radius.

The boundary conditions and constraint on the charge density become
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" ®(y=L/2) = 0 (2.11)

dd A ' -
—)=-8—Q (2.12)
where Q = -1/2f &n(y) dy (2.13)

is the charge displaced by virtue of the presence of a depletion layer, or an
accumulation layef. If we assume Q, is the charge per unit area trapped on the
surface, then Q, must equal -Q to satisfy electrical neutrality. We can also obtain

the electrostatic potential by integrating Eq. (2.10), noting' the boundary -conditions

dd(y) dd(y) . .
[ 1-1 1 = Al dn(y’)dy’ - (2.14)
- dy = dy y=0+ o

where A=-87mA/a, aﬁd according to (2.12),
e - 87QM2, =AQ = -Al;dn(y)dy | 215)
D'(y) = Al dn@y)dy” + @ |,
= Al n(y’)dy’ - Aly dn(y’)dy’

= Al 8(y’) dy’

On the other hand, we also have
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ol ~= ) ay) = ) o'y ay’
= - Ajy dy” - 5n(y") dy”
since 0(«>) = 0, and thus

O(y) = Ajy dy’ J- én(y”) dy"

Ajy’ dy” sn(y™) I dy’

Ajy dy™ 5n(y"™) (y"-y)
Now let x = y’-y, dy" = dx; then
O(y) = AjG dx 8n(x+y) x
= - sz I dy’ v 8(y+y?) (2.16)
Finally we let x = y\ Eqg.(2.16) is equivalent to Eq.(2.6).

The charge density or, more correctly, the number density appropriate to this

unit of length is expressed by

dk |
5n(y) = 2L yd Zixy) - lio (2.17)
42 i exp(ej+k -|i)+
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Since the electrostatic potential is symmetric,

| dk
8n(y) = -—-—-- I L~ X2y) - H
2¢? | exp(£;+k2-p)+l
|
SR Z In [Cexp(P-Ei) + | IXXY) - n* (2.18)
|

The Fermi level is found by requiring charge neutrality:

LI sn(y) dy = - 20 (2.19)

or

------ Z log [Cxp(P-Ei) + 1] = li0L - 2Q (2.20)
|

In the numerical calculation, first a step charge density is used, with the
thickness D of the depletion or accumulation layer detennined by Q1 from the

definition li0D=Q1 Then this charge density is put into the equation
0 (y) = - Btevao LUIY dy’y's(y+y),

where i means initial. After integration, the initial potential can be obtained.
This potential is put into the Schrodinger equation (2.9); then, the wave function
and the eigenvalues which can be positive or negative and also discrete are

calculated. According to Eqg. (2.18), the deviation of the electron density from its

bulk value will be obtained.
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In the next step, using the equation
D,(y) = - 8nh/a, [ dy’y’d(y+y"),

where n means "new", again and integrating it, V;IC obtain a new potential.
Comparing the new potential with the initial pbtential, if the value [®(y)-®(y)] is
larger than the precision which we desire, we use some linear combination of these
two potentials as input into the Schrodinger equation and repeat the procedure again
and again until the value [®,(y)-D(y)] is equal or smaller than the precision which
we desire. This concludes thé self-consistent calculation. | | |
Several bulk charge densities, namely 1*10"cm’, 3*10"/cm®, 1.2%¥10%/cm’ and
1.5%10"%cm? have been used in our calculations. For each charge dénsity, different
thicknesses of depletion and accumulation layers, namely 5OA, 75A and 100A were.
used. Also, the potentials for different cases were calculated. These potentials

describe the band bending in the surface region.
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CHAPTER 3
BULK DIELECTRIC FUNCTION

Classical Plasma Frequency®

We now discuss collective electron motions based on a purely classical and
elementary treatment of plasma oscillations. Let the uniform background density of
positive charge be en,, and let n(r,t) be the ‘density of electrons at position T at
time t.

The excess positive charge is given by (n,n) and hence from Maxwell’s equations
V-E = 4ne (n, - n) . , (3.1.1)
where E is the electric field.

Now, suppose the electron gas is displaced by x to give a current density nv;

then according to the equation of continuity
V-(av) =- dn/ot S (3.1.2)

It is assumed that the displacement x is small. Then the plasma oscillations are

small in amplitude and Eq. (3.1.2) may be written as
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n, Vov = - dn/ot . - (3.13)

which can be integrated to give
nen = n, V-x ‘ (3.1.4)

since n=n,, at x=0. Thus, we have the result, from Eq.(3.1.1),

V-E = 4men,V-x ‘ - (3.15)
and hence
E = 47en,x ' . (3.16)

which satisfies the boundary condition that E=0 when x=0 . Combining thris with

the Newtonian equation of motion for an electron in an electric field E,namely

mx" = - eE | , . @1
we have
mx" + 4menx = 0 (3.1.8)

This immediately shows that oscillations in the electron gas can occur, with

angular frequency ®, given by
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©, = (4nn.e’/m)* o ‘ (3.1.9)
®, is called the plasma frequency : .

Frequency dependent dielectric constant ()

Consider the jellium model, and apply a time-varying external field E. Under

these circumstances, the equation of motion for an electron is, classically,

d*x dx
+ my
dt? dt

m

= - eE . ' (3.2.1)

where m is the electronic mass and e is the magnitude of the electronic charge. E
is the electric field acting on the electron as a driving force. The term my(dx/dt)
represents viscous damping and provides for an energy loss mechanism. The electric

field E can be taken to vary in time as ™, thus the solution to Eq. (3.2.1) is

eE/m _ : -
X=— o (32.2)
W*Hyo :

and the induced dipole moment is

’E -
P=-ex=-——1— (3.2.3)
m(@*+iy®)

Note that it is important to be consistent in the form of the time variation used to

describe time-dependent fields. The use of a time variation ¢ leads to a complex
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refractive index n=n-ik, as we now show.
If there are n atoms per unit volume, the polarization

ne>

P=-np=—  E=¢E
m(-0>-iy®)

The complex dielectric function € is defined by

Using Eq. (3.2.4), this yields

4xne’
gw)y=¢, - ——
m(@*+yw)

’,

=€, - C,opz/ ( 0)2+i’Y(0)

From Eq.(3.2.6)"°

®, (@)
gw)y=n-k*=¢g, - —
() +Y'w’
: 0, Y0
&,(w) = 2nk = ' .
() +y'w?

Lindhard screening

is

(3.24)

(3.'2.}5)

(3.2.6)

3.2.7)

-(3.2.8)
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Lindhard screening

Here, Lindhard screening'’ is discussed briefly. The plasma oscillations can
exist because for small k, the dielectric function does not always act as a screening
factor. The long-range Coulomb interactions then make possible collective oscilla-
tions of large numbers of electrons. The dielectric constant in the limit of long
wavelengths has the Drude form

2

0,

g(w) = ¢ -
: ®* + iym

&

But this is for the case k=0. If the phenomenon of screening is considered, the

_general dielectric constant is

47‘; pind(k)
gk) =1 - — (3.3.1)
kK k)
where p™ is the charge density induced in the eletron: gas by the extemal particle

and ®(k) is the total potential. If @ varies slowly, we can use the Thomas-Fermi

approximation; then the ‘dieléctric constant becomes
gk) = 1 + kYK | (3.3.2)

where k. = 4me*(dny/d) and n, is the charge density. of the uniform positive back-

ground which is given by
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dk 1

ny(p) = f © (33.3)
4’ exp[B(hk’/2m)-p]

where | is the chemical potential.
Another theory is due to Lindbard. In this case the induced denéity is required

only to be of linear order in the total potential ®. The dielectric constant is

dre’ dq  f(g,)-f(E,)
gek) =1 - f - (33.4)
k2 4“3 (8q+k_8k) . ‘

where f denotes the equilibrium Fermi function for a free electron with energy
h’k*/2m.

If the external field has time dependence e, then the induced potential and
chargé (lehsity will also have such a time dependence, and the dielectric constant.
will depend on frequehcy as well as on wave vector. It can be generalized by using
time—deﬁendent ratﬁer than stationary perturbation theory. The Lindhard dielectric

constant then becomes

2

dre®  dq (e, - f(&,) . |
ekw) =€, + — | ~ (3.3.5)
K AT (Euy - € + hOd

For the real part of this constant, following the procedure derived by Wooten,'® the

result is

Re g(k,0) = €_ - — : - © (3.3.6)
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®® 1-hK*(3/5k.)/m*w’

Using hic/m = v, where vy is the velocity of an electron on the Fermi surface and

assuming

K (3/5k2A)/me? << 1,

Eq.(3.3.6) becomes

o’ 3k v

Regk,®) ~ €, - — (1 + — )
w> 5m?
o) .
=g - (3.3.7)

(@ - 3K2v.2/5)

In the numerical work, this formula will be used. It is called the Thomas-Fermi

model.

Dielectric function including lattice vibrations

"To describe the long wavelength optical Qibrations, a coordinate specifying the '
relative displacement between the positive and negative ions is required. For an
elastic motion, the effective inertial mass for a unit volume is the density; for the
optical type of motion, on the other hand, the corresponding mass is the reduced
mass of the positive and negative ions M=(M,*M.)/(M,+M.) divided by the volume

of a lattice cell. It has been found that the most convenient parameter to choose for
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describing the optical type of motion is the displacement of the positive relative to
the negative ions multiplied by the square root of this effective mass per unit

volume, which we denote by W:
W =p" (u, - u),

where p=M/Q, and Q is the volume of a lattice cell.
For diatomic iomic crystals, the macroscopic theory is fully embodied in the

following pair of equations:
)

d.z‘ﬂ]/(lt2 = - I‘HW + rle (3.4.1)
P= rW+r,E (34.2)
where P and E are the dielectric polarization and electric field as defined in the
usual way in Maxwell’s theory.
The coefficients r,,,1,,,1,, are related to the dielectric function. The dielectric

function for any particular frequency ® can be deduced directly from (3.4.1) and

(3.4.2) by considering periodic solutions:
E = Ee™ (3.4.3a)
P = Pge' (3.4.3b)

W = W' ‘ (3.4.3¢c)
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Thus the results can be obtained from these equations

- (W =-r1,W + rlE (3.4.4)

P= W +rZE (3.4.5)

When V7is eliminated from these equations, it is seen that P and E are related by

P =[r2+ riZ(rittod]E (3.4.6)

Comparing it with the definition of the dielectric displacement,

D - E + 47P = eE,

the dielectric function is obtained:

HOO = | + ATH[r2 + TizoA r11-C02)] (3.4.7)

If G2 = ta2 = rn, there is a pole in this function, so ru can be detennined by this

pole. is in the infrared region. When 00«000, E(O)) reduces to the well-known

static dielectric constant BD

B - | + 4jt(r2+ T2Z1) (3.4.8)

When oo»000, E=Em where E_is the high-frequency dielectric constant

E, = 1+ 4Jm» (3.4.9)
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Now, these cofficients can be found as

r, = Q@ (3.4.10a)
r,2 = [(Eo-£,)/4Tt]Kco0 (3.4.10b)
rz = (e_-1)/47t (3.4.10c¢)

Finally, the result is

HO) = E_+ (B-EnCA0hn-aY) (3.4.11)

If a simile damping term is considered, then Eq. (3.4.1) can be modified as

dW/dt2= - rnW - WV + yP (3.4.12)

where y is a positive constant with the dimension of frequency; the additional term

repesents a force always opposed to the motion. So, Eq. (3.4.12) reduces to

QW = (-rn + icoy)W + ylE (3.4.13)

The addition of the damping term is equivalent to the replacement of -r,, by

rn+icoy. Hence the dispersion formula (3.4.11) becomes&l

(EO-EjoV
HQ) = E, + (3.4.14)
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(G2 -(O2-lcoy

Finally, the dielectric function including the Thomas-Fermi response is

Qz (E0-Ejto@
E(kto) = £, + (3.4.15)
((020.6VEK+itoy @z O2toy
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CHAPTER 4
EFFECTIVE DIELECTRIC FUNCTION

The Maxwell equations for free modes are

VD=0
VE =0
1 0B
Vxid = - — ——
c ot
1 9D
VH = — ——

c ot

In EELS, retardation effects are negligible. So, we set c=co in these eqqations.
The electric field E(r,t) is Fourier transformed with respect to the coordinates x and
y parallei to the surface and with respect to the time t:

EG,0 = | &% [_"do Ek,oz) explifkx+k,-ot)] .1)

where k=(k,k,) is a two-dimensional wave vector.
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It is known that surface phonons in isotropic materials have frequencies ® such
that g(m)=-1, where &(®) denotes the bulk dielectric constant of the material. In the
dielectric: theory of EELS, these frequencies generate o-like peaks in the so-called
surface Joss function Im[-1/(g(®)+1)]. It turns out that the dielectric theory can still
be applied to anisotropic crystals, provided the loss function is replaced by an
appropriate effective dielectric function &(k,,z), where k denotes the wave vector of

the surface phonons. The effective dielectric function &(k,w,z) is defined as®™

Dk,w,z)-n
Ek,w,z) =i 4.2)
Ek,0,z)-k/k

where D(k,oa,z)=8(0),z)E(k,03,z)’ and &(m,z), the dielectric constant of the ;nateria], _is
a function of the coordinate z. It is obvious that &(k,m,z) will reduce to the bulk
dielectric constant £(k,®) for an infinite isotropic medium,

Now the boundary condition at the surface is considered. The usual boundary
conditions at interfaces are that the normal component of D and parallel component

of E are continuous.
‘D,(k,w,+0) = D, (k,»,-0) 4.3)
E,(k,0,+0) = D,(k,0,-0) - E, (k,0,0) , 4.4)

where E (r,t)=-VV (r,t)

From Eq. (4.2) we then have

E,(k,m,+0) = -iEkE (k,0,-0)/k - E_(K,0,0)
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= -i‘gok[E k,o,+0) + E, (k,0,0)lk - E (k,0,0) 4.5)
where &, = g(k,(o,-().). On the other hand, since for z>0 we have V-E;——O, then
ik-E (k,0,2)k=E ﬁk,@,z)
Using this relation, finally the result is’
(l-i‘-go)EJ_(k,OJ,-i—O) = -iEkE, (k,@,())/k - B, (k,0,0) ' 4.6) .
Since V (k,0,z) = (81!:)",fdxdy [ =dt V. (rtexpl-i(kx+k y-ot)] and
| E, = ~VV5(1‘,t) §vé have
(1+E)E, (k,0,+0) = k&EV.(k,»,0) .+ [0/0z V(k;0,2)], | (47)

If V=0, i.e. there is no external excitation, the electric field E(k,m,z) equals zero in

z>0 region, unless

& = E(k,®,0) = -1 (4.8)

This equation is a generalization of the well-known condition &(w)=-1 giving

the nonvetarded eigen modes of a semi-infinite isotropic medium ‘with dielectric

constant £(®).”

Now a simpie case is considered, in which & does not depend on the polar
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angle of the two-dimensional wave vector k; this means the material is isotropic. In

this case’
e 0 '
E(k,m,z) = [—k- V(k,®,2))/V(K,0,z) (4.9)
Z
where V(k,0,2z) = (8m)" Jdxdy [_~dt V(r,t) exp[-i(kx+k,y-ot)]. | (4.10)

For free modes V-D=0, so the Poisson equation is written as

V-(E) = 0 ie. V-[e(-VV)] = 0,

so that
d/dz[e(dV/dz)] - ek’V = 0 4.11)

Let us address the question how to solve the equation (4.9). Taking the derivative

of both sides of Eq. (4.9) with respect to z,

d d  e@ 2
— &(2) = {[ V(@)/V(z)},

dz dz k dz

the result is’

1 d&@ &)
_ + = &(z) (4.12)
k dz &) ‘
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This is called the Riccati equation for &. In the above procedure, we used the ‘
Poisson equation (4.11). For obvious typographical s.implificat‘ions, we omit the (k,w)
dependence of € and V and regard these quantities as functions of z.

In the numerical work, we imagine that the slab is cut into many layers. The
thickness of each layer is the same. As a simplifying assumption, it is assumed that
£(z) takes constant values in each layer. By this means an analytical expression for
the effective dielectric constant & (k,®) will be obtained.

We now attempt to solve the Riccati equation. The thicknesses of the layers
i=1,2,3..,, will be denoted by d; which, together with the dieléctric constants §,.
specify the model.

By integrating the differential equation (4.12), the result is

dé k
=—4dz + c and

Gy K
&(z) = € tanh (kz+ c)
where ¢ is a constant. Then,

Ae=-Ale™ e“;-A'ze'kz
&z) = ¢ [ ]=¢l ]
Ae+Ale™

ekz + A—2e-lz

where A=e®. Now let A? = (1-¢”)/(1+c’), then

C+etanh(kz)
&@z) = ¢ 4.13)
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é+Ctanh(kz)
where (=c’c is an arbitrary integration constant, and the solution of the Riccati

equation in layer i can obviously be written as

& +gtanh[k(z-z)] .
E@z) = ¢ ’ , 75757, (4.14)
g+€ tanhlk(z-z,)]

In this equation, & denotes the value of E(z) at the lower end z of the layer. By
setting z=z,, in Eq, (4.14), the following expression for &, at the upper end z, is

obtained:

[e/sinh(kd,)]*
g,coth(kd)+E (4.15)

: Ex-l = ‘:(Z.i-l)-z g, coth(kd) -

This treatment is repeated in each layer, and since &(z) is a continuous function of
z, by construction, the continued-fraction expansion of &, is obtained, ie., the

effective dielectric function’

b?
& =a -
b
a,+a,-
b,’
ata;- ——
a;ta,-... ‘ (4.16)
where we have defined
a, = gcoth(kd,) ’ . 4.17)
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b; =: g/sinh(kd,) (4.18)

When the € assume positive imaginary parts, 1/(§+1) is a so-called positive-definite
continued fraction. Obviously, if kd; is infinite, then a will be €& and b, will be

zero. Eq. (4.16) is easy to deal with on a computer.
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CHAPTER 5

ELECTRON-ENERGY-LOSS SPECTROSCOPY

Electron-energy-loss spectroscopy

In this section the theory of electron-energy loss in a reflection geometry for
small-angle inelastic scattering from a medium is presented. In this theory, EELS
can be treated within the framework of the so-called dielectric theory.* The electrons
are considered as classical particles, while the,absorption or emission of phonons or

‘
plasmons are quantum-mechanically described.” So, this theory is a semiquantum
theory. The theory of the inelastic cross section was discussed some years ago™”
for scattering off the surface of a semi-infinite material. Unless the losses of interest
lie in the range of several electron §olts, very-high-resolution spectroscopic techni-
ques -are required.

The trajectory analysis proceeds by noting that an incoming electron polarizés
the material, here viewed as a dielectric medium. The induced polarization produces
an electric field which does work on the electron as it approaches. One calculates
the total work performed by the induced field to obtain the total energy loss
suffered by the electron, and an appropriate decomposition of this expression yields
the energy distribution of those electrons which suffer an inelastic scattering.

The dielectric theory proceeds in two steps. The first step consists in evaluating
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the worl: done by the polarization field of the sample on the electron. The work

done is®*
W = - e ["VOE®R®. dt | .1)

where r.(t) is the trajectory of the electron (charge e). V.(t) is the electron velocity,
and E(r,t) denotes the polarization field of the material.

Let the electron trajectory be described by
r(® = tv, +[tvin (5.22)

with v, the projection of v onto a plane parallel to the surface; v, is the normal
component of the velocity, and n denotes the unit outward normal at the surface. If

the electron strikes the surface at t=0, then
z(ty = -v,t for t<0 .
z(t) = vt for t>0 (5.2b)

We have chosen the convention that the coorcilinate z is parallel to the outward
normal n, the surface coinciding with the plane z=0; negative z corresponds to the
material region. '

Eq. (5.2a) neglects the perturbation -of the classical trajectory. That means the force |
of the polarization field ‘ does not affect the dynamics of the electron. Also, the
penetration of .the electron below the assumed ai)rupt surface is ignored.

Usiag Eq. (4.1), we have for the polarization field
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E(r,t) = J@k[_~doE(k,o,z)expli(kx+k,y-ot)]

Before calculating the work, two useful equations are introduced. Here the retarda-

tion effects in the electric field are ignored. The first equation is
VxE@,t) =0
Taking into account Eq. (4.1) and the identity
Vx(wa) = (Vy)xa + yVxa
'We have the result
Vxl?(k,m,z) = -ik XE(Kk,0,z) _ (5.3)

Eq.(5.3) is multiplied by n which is the unit vector in the z direction; taking into

acount VxE=0/0z(-E,i + E,j), we have the results
@/2)E =ik E, | (5.42)
E, = -iB, : (5.4b)
In the same way, from the condition V-E=0 (z>0), we obtain

(0/92)E, = -ik -E . (5.4¢)
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Taking 'into account 'Eq. (4.1), now, the expression for the classical work W is

derived:

W = -e [~ V.(O)-E(r,t)dt

o] _=dtV (O (] _*doE Kk, o,z)expli(k-r -wt)]
+doEK,0,z)explikr -0t)])

e[ _~dtV (t)]d%k2Re [;"do Ek,m,z)expli(k-r -ot) | (5.5)

Here, the relation E(-k,-w,z)=E'(k,0,z) was used.

The expression for the energy lost by the electron may be cast into the form’

W = [ do ho P(w) (5.6)
where ho denotes the energy loss and P(w) is interpreted as the probability per unit
frequency that the electron has lost the energy ho. Comparing Eq. (5.5) with Eq.
(5.6) and taking into account Eq. (5.2a),

P(w) = (2eﬂ1m)f,w”dtVe(t)-Jd2k Re{E(k,0,z)explik -r -wt)]}

= (-2e/hw)Rew_."dt/d%k [V, E,(k,0,z)+

VB, (k,o2)(t/0lexplitk T -o0)]




37

Taking into account Eq. (5.2a), Eq. (5.4a), theﬁ integrating by parts
ReL,""vp-Ep(k,oa,z)exp[i(k-vp-(o)t
=Re{-2i/(k v -u))fowv ‘k ELk,0,2)sin{(k -v -0)z/v,]dz} and
Rel_~ v.L(|t] /HELK,0,z(0)explitk -v -@)t]dt
= 2Re JoBL(K,0,z(t))isin[(k -v -0)z/v,]dz,

wé obtain the following.result:

-de: kv '
Re| &% ;[ ———— + 11EL(k,0,z(t)i sin[(k -v -0)z/v,]dz
ho kv -ot

P(w) =

4 :
= | ° dzkfo""sin[(k v -)z/v JImE  (k,m,z(t))dz 6.7
h(k v -@)

Integration by parts, complemented by the condition V-E(rt)=0 (z>0) ie. (5.4c) and

ik-E=E k , gives the result

-dev,
P(o) = | ——— &% {-ImE, (k, m+0)+—] ~sin[(k-v,-0)z/v ]
h(k-v,-0)’ (kv -03)

Tm(-ik-ikE,)dz) (5.8)
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Comparing Eq. (5.8) with Eq. (5.7), we have’

dev, E,(k,0,+0)
P(®) = Im[ / d’k]
h (k-VP-(D)2+(kv i 5.9

According to Eq. (4.7), it is obvious that before Eq. (5.9) can be evaluated,
V. (k,®,0) and dV./dz must be calculated. The Coulomb potential is

Vr = - /| rr ] | (5.10)
It is obvious that we have
VAV (r,t) = 4rned(r, 1., (t))0(z-z,(t)) (5.11)

where r, and r,, are the space vectors parallel to the surface. The coulomb potential

"is Fourier transformed with respect to r:

V() = 121 [ =V.(k,zt) explitkr,)]dk ' (5.12)

Putting Eq. (5.12) into Eq. (5.11) and recalling the Fourier transform of the &

function, the result is

(d/dZ* - KV (k,z,t) = e/n exp[-ik-r(1)]18(z-z()) . , (5.13)
The solution of Eq. (5.13) is
Vk,zt) = Ae(z-ze(t))exp[—k(z-zé(t))] - BO(z.(t)-z)exp[-k(z.(t)-2)] (5.14)
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where A and B are the cofficients which can be determined by
dv /dz = AS(zr'zc(;)) + AB(z-z.(1))(-K)expl-k(z-z.(1)]
+ B8(z.(t)2) + BO(t)-2)(K)exp[k(z()-2)] (5.15)
and
EV i = A (22,00)-ASEZ-2.0)k+AIO -2 )expl-kE-2O)]
- B&'(z-2.(8))-B(z(t)-2)k+BK0(z,(t)-z)exp[-k(z.(t)2)] | (5.16)

Putting Eq. (5.16) into Eq. (5.13) and comparing both sides, we have

and

A = [exp(dk-r,(t)]/2nk ‘ (5.17)
Finally, we obtain the following result

V.(k,zt) = -¢/2mk{0(z-z,(O)[exp(-kz+kv, | t] -ik-v,t]

"+ 0@z.(t)-D)lexpkzkv, | t]-ikv,0]) (5.18)
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where z(t) = v, |t|. It is considerd that if

z-v,|t]>0 for t>0 t<z/v,
for t<0 t>-z/v,
and if
Z-v, | t'| <0 for t>0 t>z/v,
for t<0 t<-z/v,

The final results for V and dV/dz at z=0 are

-ev,

Vik,0,0) =

2 (kv Y+(o-Kk-v,)]

-ekv,

dV(k,0,0)/dz =
2K, + (kv )

The final result for E,(k,®,0) is then

-1 kv,e
E, (k,m,+0) =

(1+&)  wl(kv)+(0-k-v,)]

The Eq. (5.9) now becomes

(5.19a)

(5.19b)

(5.20)

(5.21)

(5.22)
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4e?v,? k -1
P(w) = I Im d’k (5.23)
*h [(kv, ) H(w-k-v, )] Eq(k,w)+1

Upon noting that &(k,m) depends only on the magnitude and not the direction

of k, Eq. (5.23) is’

4e’v > | -1
P(@) = — | dk K ITm———
h? o Eo(k,0)+1
Jo 8 1/[(v,k)*H(w-kv,cos0) T (5.24)

This integral on 6 may be evaluated in closed form. Since this integral is
encountered frequently in the theory of small—angle electron-energy loss, we shall
quote the result explicitly. Let 0; be the angle of incidence of the electron beam

measured relative to the normal to the surface. Then

Vv, = v, sin6; : | (5.25a)
and

v, = v, cos6; ‘(5.25b),

where v, is the speed of the incoming electron. Here, it is supposed that

sinB=cosO:=A
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In the numerical work, the result is conveniently expressed in term of the

dimensionless variable x given by x=kv,/®. The energy loss spectrum then becomes,

4vie* dk k* Im[-1/(E,(k,w)+1)]
P(w) = I (5.26)
Thw'A?  x°[(x>1) + 4x*A%"

Re{ (x> 1+2ix AV (1+2x°A+ix A Y 1+x*A)+x*A*(3x*A*-2-ix A )+x*A*] )

We choose the incident-electron kinetic energy to be 9eV with 45° angle of
incidence. The spectrometer slit widths are assumed equal to 1°. The electron energy
width 7y is equal 10 meV and the phonon energy width I' 0.3meV. We have calcu-
lated the energy loss spectrum Eq. (5.26) for charge densities of (1) 3*10"cm?® (2)
1*10%cm® (3) 1.2%10"cm”® (4) 1.3*10"cm” (5) 1.5*10"cm® For those cases,

namely S50A, 75A and 100A.

Dispersion of surface plasmons

In the above discussion, the material was assumed to be described by a
dielectric constant which depends not only on the frequency ®, but position z, vﬁth
the z axis’ normal to the surface. The dependencé on z arises from the free carrier
contribution -4'J'cn(z).ez/m*(1)z with n(z) the local electron density at point z. Thus if
D(r,») and E(r,m) are the displacement and electric fields and e(z,w) the dielectric
function, we have D(r,m):e(z,oa)E(r;(D). One may question the quantitative validity of
such a model, since the thickness of the depletion or accumulation layer is typically

comparable to the Thomas-Fermi screening length. Under these conditions D(r,w) is

depletion and accumulation layers were investigated using different thickness, .
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not proportional to E(r,w) evaluated at the same point, but instead is an average
over values of E(r,w) throughout a volume whose linear dimension is the order of
the screening length. A nonlocal description of the response of the electron gas
should be employed.”

"Ehlers and Mills studied surface plasmons on n-type semiconductors, for
realistic and nonuniform free- carrier density profiles, and through use of a nonlocal
description of the response of the conduction electrons. For three values of Q,, i.e.,-
0.08, 0.0 and 0.08, they plotted the variation with k of the maximum of the loss
function for different charge densities, namely 1*10"7cm®, 3*10"cm™® and 1¥10"cm™.

For these different charge densities and different Q,, in this thesis, the Thomas-
Fermi model and the Debye-Huckel model belonging to local response theory "
are used to calculate the plasmon dispersion relation from the position of the peak
in the loss function as a function of k.

The Thomas-Fermi model was introduced in Chapter 3. Now the Debye-Huckel
model is introduced. This model is appropriate to study the collective oscillations of

a system in thermodynamic equilibrium. The real part of the dielectric constant in

the Debye-Huckel model is given by”
Ree(k,0) = 1 - 0,/0*(1+3kk,T/mo?)
=1 - ®*/(0*-3k%,T/m) (5.27)
The inelastic cross-sections have been calculated, so there is no difficulty to
calculate the dispersion relations.

Many results, including depletion-and accumulation-layer profiles inelastic

cross-sections and dispersion relations will be shown in Chapter 6.
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CHAPTER 6
RESULTS AND CONCLUSION

In Fig. 1, the relation between the carrier concentration n, and the chemical
potential is shown. Using Fig. 1, for a wide\range of n,, we can get the chemical
pétential directly. .

-Figures 2 and 3 show the charge density profiles and potential for
n,=3*10""cm?; the results for n=1*¥10""cm? are given in Figs. 4 and 5. In Fig. 2 and
Fig. 4, it is obvious that if Q is positivé, there is a depletion layer, and the
poten_tial decreases monotonically to' zero. When Q is decreased, the potential will
become an attractive well at some point; this happens for positive Q, when V(0) is
positive. The schéme breaks down just as the potential first crosses zero, to form
the attractive well.

In Fig. 3 and Fig. "5, one notes that the flat band condition does not occur at
Q=0, but there is a kind of dipole layer present near the surface, with a sign such
that the surface potential is depressed below the bulk value. Since the wave
functions of all electrons must drop to zero at the surface, there is a deficit of
charge in a layer with thickness of roughly A, and this must be compensated by a
pileup of excess charges a bit farther into the crystal. It is evident that greatest
sensitivity to the free carrier profile occurs when k-d~1, v&;ith d the thickness of the

transition region between the surface and the bulk.
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Fig I Relation between the carrier concentration
n and the chemical potential.
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Fig. 2 Charge density profile for n =

I x 1018Cm-3. The solid line is for
Qs = 0.08, dotted line for Qs = 0.0 and
dotted-dashed line for

Q08 = -0.08.
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n =3 x 1017Cm-3. The
Qs = 0.08, dotted line
dotted-dashed line for
Qs = -0.08.
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Fig. 5 Potential for n = I x 1018cm-3. The solid

line is for Qs = 0.08, dotted line for
Qs = 0.0 and dotted-dashed line for
Qs -0.08.
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Notice that rather strong accumulation layers have I.Jecn‘ explored in Fig. 3— and
Fig. 5. For n=3*10"cm® and Q=-0.08 the maximum charge density in the
accumulation layer rises to roughly two times the bulk value.

Comparing Fig. 3 with Fig. 5, it can be seen that as the carrier concentration
n, increases, d decreases.

Spectra of n=1.2*10"cm™ for different thicknesses of the depletion layer are
shown in Fig. 6-Fig. 9. In each figure, there are three peaks. The middle one is the
phonon peak, the others are the coupled plasmon and phonon peaks. Note that
when no=1.2*10'“(.:m'3, the plasmon energy is very close to the phonon energy thus
lcading to strong coupling. If the carrier concentration is very different from the
value n=1.2*¥10"%cm™ , just two peaks, i.e.'the plasmon iaeak and the phonon peak,

will be observed.*® The surface mode frequency is given by
®,;? = 4mne*/[m'(1+¢.)]

with a free carrier concentration of 1.2*10"®cm®, one evaluates tﬁe surface plasmbn
energy from above Eq. to be 44.9meV. The phonon energy .is 36 meV. In Fig. 6,
the thickness of the depletion layer is 50A, and three peaks are present at 294,
38.7and 47.1m§V. The peak in the middle only appears as a shoulder. As the
thicknqss of the depletion layer increases, the middle peak grows stronger, and the

third peak becomes only a small shoulder, as shown in Fig. 7-Fig. 9. On the other

hand, we find that when the thickness of the depletion layer increases from 50A to

100A, the lower energy peak shifts down about 2 meV . and the third peak shifts
down about 3 meV. ‘ | '
The qualitative features of the spectra in these figures can be understood in

terms of depletion layer formation. The increase of the amplitude of the phonon loss
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Fig. 6 Energy loss spectrum for
no = 1.2 x 1018Cm-3 and D (the thickness
of the depletion layer) = 50 A.
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Fig. 7 Energy loss spectrum for
n = 1.2 x I0:sCn s and D (the thickness
of the depletion layer) = 60 A.
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Fig. 8 Energy loss spectrum for
no = 1.2 x 1018cm~3 and D (the thickness
of the depletion layer) = 75 A.
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Fig. 9 Energy loss spectrum for
no = 1.2 x 1018Cm-3 and D (the thickness
of the depletion layer) = 100 A.
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peak is due to the increase of the depletion layer thickness. As the depletion layer
thickness increases, a portion of the lattice vibrations is unscreened, making a
stronger contribution to the loss spectrum. On the other hand background dielectric
constant in the depletion layer is quite large (10.9 for GaAs), thus the plasmon
eigen mode is strongly affected by €. and the thickness of the depletion region.
Two extreme cases are consideréd. First, if the depletion layef i; absent,
®=0,/(c.+1)* where €. is the high frequency limit of the dielectric constant.
Second, for a infinitely thick depletion layer o,=w,/(2¢.)*. So, for a finite depletion
layer thickness, the frequency (i.e. energy) of plasmon is between the two values.
When th\e thickness of the depletion layer increases, the peak energy will shift
down.

The results for ‘other carrier concentrations are given in the Appendix‘.

Fig. lb-Fig. 12 show the position of the peak in the loss function as a function
of k. The-charge density profiles were shown in Fig. 2-Fig. 5. It is evident that as
 k—0, all frequencies lie near ®, When n,=1*10"cm>, the results of the TF(Thomas-
Fermi) model and the D._H(Debye-Huckel) model are very similar. But the slopes of
the lines'.a.re smaller than.Mills’. At n=3*10"cm>, the res.ults from the DH model is
near Mills’. When- n,=1*10"cm>, there is a large difference between lhé TF model
and the DH model. For Q,=0, thé TF result is close to Mills’ result, and for Q=-
0.08, the DH result is close to Mills’ result. For the three concentrations, the TF |
lines are all under the the DH and Mills lines. The DH lines sometimes- lie below
Mills’ results, as for n0=1*10'8¢m'3, sometimes near; as for n,=3*10"cm” and
sometimes above, as for n,=1*10"cm?®. For both the TF and the DH-mc')del, the
dispersion curves depend weakly on Q, for fixed n, By contrast Mills’ results are
strongly affected by the Q, value, especially for lower carrier concentrations.

Many other Figures have been obtained. They are presented in the Appendix.
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Fig. 10 Dispersion relations for a carrier
concentration of mo = I x 1018cm-3. Using the TF
model and the DH model, we plot the position of
the peak in the loss function as a function of K
for different Qs, namely Qs = 0.08, @ = 0.0, and
Q& = -0.08. The results are compared with Mills*
results. The solid line is for the TF results,
dotted-dashed line for the DH results and dotted
line for Mills® results.
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0.0 0.2 0=«

Dispersion relations for a carrier concentration
of no = 3 x 1017Cm-3. Using the TF model and the
DH model, we plot the position of the peak in the
loss function as a function of K for different Q3,
namely Qs = 0.08, Qs = 0.0, and Qs = -0.08. The
results are compared with Mills® results. The
solid line is for the TF results, dotted-dashed
line for the DH results and dotted line for Mills*
results.
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CD o

0.0 0.2 C™m

Dispersion relations for a carrier concentration
of no = I x 1017Cm-3. Using the TF model and the
DH model, we plot the position of the peak iIn the
loss function as a function of K for different Qs,
namely Qs = 0.08, Qs = 0.0, and Qs = -0.08. The
results are compared with Mills®™ results. The
solid line is for the TF results, dotted-dashed
line for the DH results and dotted line for Mills*
results.



| N B il bl

59

Summary

We studied surface plasmons and phonons on n-type semiconductors, based on
a simple picture of local dielectric response. By varying the model parameters we
considered a wide range of free-carrier profiles associated with deplétion and
accumulation layers. The results for the frequency vs. wavévector curves of surface
plasmons in our model were compared with those of Ehlers and Mills. The agrée-
ment was found to be reasonable although differences in detail occur because of the

strong inhomogeneity of the charge density near the surface.
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APPENDIX




Fig. 13 Energy loss spectrum for no = 1.35 x 1018cm-3 and D
(the thickness of the depletion layer) = 118 A.
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Fig. 14 Energy loss spectrum for no = 1.5 x 1018Cm-3 and D
(the thickness of the depletion layer) = 50 A.



Fig. 15 Energy loss spectrum for no - 1-5 x 1018cm 3 and D
(the thickness of the depletion layer) = 75 A.
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