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Abstract:
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density profiles, through use of the dielectric theory of electron-energy-loss spectroscopy and nonlocal
description of the response of the electrons.

First, self-consistent calculations of the spatial variation of the conduction-election density near the
surface of n-type GaAs are presented. Second, the dielectric function and effective dielectric function
are discussed, in which the Thomas-Fenni model and the Debye-Huckel model are introduced. Third,
the energy loss spectra for bulk free-carrier densities of (I) n0=1.2*10^17 cm^-3 (2) n0=
1.3*10^18cm^-3 (3) n0=1.5*10^18 cm^-3 have been calculated. For each value of n0, we consider
three values of the surface charge density, Qs=-0.08, 0.0, and 0.08 in thermal units, and plot the
variation with wavevector of the maximum of the loss function. By varying these parameters we
investigate a wide range of charge-density profiles and surface potentials; for example’ our deplation
layers have widths of 50A, 75A and 100A. The results obtained with the local response theory are
compared with Mills’ results which come from a nonlocal theory. 
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ABSTRACT

We study surface plasmons and phonons on n-type semiconductors, for non- 
uniform free-carrier density profiles, through use of the dielectric theory of electron- 
energy-loss spectroscopy and nonlocal description of the response of the electrons.

First, self-consistent calculations of the spatial variation of the conduction- 
election density near the surface of n-type GaAs are presented. Second, the 
dielectric function and effective dielectric function are discussed, in which the 
Thomas-Fenni model and the Debye-Huckel model are introduced. Third, the energy 
loss spectra for bulk free-carrier densities of (I) U0= 1.2*IO17Cin"3 (2) Ii0=LS*JO18Cm3 
(3) Ii0=I.5*IO18Cm'3 have been calculated. For each value of Ii0, we consider three 
values of the surface charge density, Qs=-0.08, 0.0, and 0.08 in thermal units, and 
plot the variation with wavevector of the maximum of the loss function. By varying 
these parameters we investigate a wide range of charge-density profiles and surface 
potentials; for example’ our deplation layers have widths of 50A, 75A and 100A. 
The results obtained with the local response theory are compared with Mills’ results 
which come from a nonlocal theory.
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CHAPTER I 

INTRODUCTION

In the past century the studies of materials have been mainly focused on bulk 

properties. The understanding of surfaces and fundamental surface related processes 

has become feasible only in the last 20 years since modem technologies were 

developed.

During the past 20 years, electron-energy-loss spectroscopy (EELS) in the 

reflection geometry has emerged as a reliable technique for studying clean or 

contaminated surfaces. In this techniqe, mohochromatized electrons backscattered 

from the surface of a target material are analyzed in energy to detect losses and 

gains characteristic of surface plasmons or vibrational excitations. First restricted to 

conducting targets, high resolution EELS experiments have recently been 

successfully performed with insulators and semiconductors,1 so that this technique is 

now generally applicable as a powerful spectroscopic tool for the study of any 

material surface.

Near the surface of a doped semiconductor, the carrier density often differs 

dramatically from that in the bulk. Depletion layers may be encountered as thick as 

a few hundred angstroms, within which the free-carrier density drops dramatically 

below that in the bulk, or accumulation layers which contain an excess of carriers 

near the surface. In the first part of this thesis, self-consistent calculations of the
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spatial variation of the conduction-electron density near the surface of n-type GaAs 

is presented, for the case where the surface is charge neutral, or bears net positive 

or negative charge. The model smears the charge density produced by ionized 

donors in the bulk into a jelllum background, and introduces the effect of surface 

charge through a uniform electric field emanating from the surface. In this part, the 

Schrodinger equation subject to Poisson’s equation and Fenni statistics is solved. 

The Hartree approximation is used to describe the electron-electron interaction.2

Recently, an adequate theoretical approach to EELS was developed within the 

so-called dielectric theory,3,4 where the electrons are considered as classical particles, 

while the absorption and emission of phonons or plasmons are treated quantum 

mechanically. In the theoretical description, the dielectric constant e(k,co) depends on 

frequency and wave vector. With retardation ignored, the frequency (Os of the surface 

plasmon is determined through the relation e(cos)=-l. If COp is the plasma frequency 

of the free carriers, and the high-frequency dielectric constant, then5,10

e((o)=eM-cop7((o2+iyco)

and

(O=COpAX+1 ),/2.

Actually, e depends not only on the frequency (0, but position z, since 

(Op=47m(z)e2/m* where m* is the free-carrier effective mass. Calculations of n(z), the 

conduction electron density, are described in the first part of this thesis. If the 2D 

wave vector k is not zero, but is very small, £ also depends on k. If we use the 

Thomas-Fenni model,6 then
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e(k,co,z)=eoo-(op2/[(co2-0.6VF2k2)+icoy]

where Vp is the Fermi velocity and y is a damping factor.6 

If we use the Debye-Huckel model,7 then

£(k,to,z)=e„-G0p2/[((o2-6k2)+io)Y]

In fact, GaAs has an infrared active transverse optical phonon at long 

wavelengths. The background dielectric constant then is frequency dependent, and of 

the form8

£(to)=£„+(e0-£M)(0To2/((Dro2-(o2-i(OY),

where COro is the frequency of the long-wavelength transverse optical phonon, and E0 

the static dielectric constant.

The dielectric theory cm  also be applied to anisotropic crystals, provided e(to) 

in the loss function is replaced by an appropriate effective dielectric function £(k,a>). 

In Ref. 9, it is shown that the relevant effective dielectric function is equal to the 

surface value of the ratio of the displacement vector perpendicular to the surface, 

and the projection of the electric polarization field onto the direction of the surface 

wave vector k. The quantity is

|(k,(o,z)=iD(k,a),z)-n/[E(k,to,z)-k/k],

with D(k,co,z)=E(co,z)E(k,oo,z), where e(ti),z), the long-wavelength dielectric constant
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of the material, which may be a function of the coordinate z, is determined by n(z).

In the regime of small-angle deflections, where surface plasmon contributions 

dominate the loss spectrum for back scattering from the surface of a simple 

semiconductor, the incident electron interacts with the excitations in the material 

through the fluctuating electric fields in the vacuum outside the material." An 

incoming electron has an accompanying electric field which polarizes the medium. 

The induced field of polarization interacts back on the electron and damps its 

motion; in other words, the energy lost by the probing electron is dissipated by the 

medium. In this thesis the loss function will be dealt with classically. The amplitude 

of the induced field involves the factor !/(^0+ !) where ^0=^(z=0) is the effective 

surface dielectric function. The probability for energy loss will be proportional to 

this factor. A zero in the denominator of the loss function gives a peak in the loss 

spectrum.9

The position of the peak in the loss function is also calculated as a function of 

k , for the different values of the surface charge, for T=300K, and a carrier con­

centration of (I) H0=IO18Cm"3 (2) Ii0=S*1017cm"3. Dispersion curves, showing our 

results for the peak position vs. the wavevector, are plotted and compared with 

M ills’ results.12 In this thesis a local dielectric response description is applied, while 

Mills’ results come from a full nonlocal description.

In summary, surface plasmons on n-type semiconductors are studied, for non- 

uniform free-carrier density profiles, through the use of a formalism describing 

electron-energy-loss spectroscopy. In the calculation of the inelastic cross section, 

the loss function Im[-l/(^(k,co)+l)] is required as input. To derive the effective 

dielectric function, the dielectric function e(k,to,z) needs to be calculated first. But 

e(k,co,z) is directly related to n(z). Thus we must first determine the free-carrier 

density profile.
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The thesis is organized as follows. Chapter 2 presents self-consistent calcula­

tions of depletion-and accumulation-layer profiles for a range of carrier concentra­

tions in n-type GaAs, at room temperature. Many figures are presented for several 

cases. In Chapter 3 and Chapter 4, we discuss the theory of the dielectric function 

and the effective surface dielectric function. In Chapter 5 we present the theory of 

the electron-energy-loss cross section and; results for the dispersion relation, and 

Chapter 6 is devoted to a summary of our many results and principal conclusions.

'i
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CHAPTER 2

SELF-CONSISTENT CALCULATION OF DEPLETION-AND 

ACCUMULATION-LAYER PROFILES

A uniformly doped n-typ.e GaAs slab with thickness near 1400 A is 

considered. The undoped crystal is to be regarded as a neutral medium whose 

electrical effect is simply to provide a background dielectric constant e_. We 

consider an electric field E outside the material and normal to its surface, due to 

surface charges. The electric field just inside the material will be E/e. When we 

consider boundary conditions on the potential, we will use the fact that the field 

outside the material is larger by a factor e than that used in the boundary condition 

for the field inside.

The dynamic system we consider is the sea of conduction electrons which are 

free to move under the influence of various forces. There are two types of force13 

that act on a conduction electron. The first type is the electrostatic force arising 

from the charge density of other conduction electrons, the uniform background of 

ionized donors, and the externally imposed uniform field. The second type is the 

exchange and correlation force. Exchange and correlation forces arise among 

conduction electrons due to dynamic and statistical correlations of their motion. We 

do not consider these forces here, since they are weak in our case.14

The system of equations includes Schrodinger's equation for the state of the 

conduction electrons, a constitutive equation giving the charge density in terms of
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wavefimctions for the occupied states, and Poisson’s equation giving the potential in 

terms of the charge density.

The single-particle wave functions are solutions2 of an effective Schrodingef 

equation

h2
[ ------------ V2 + V(z) ] tPotCr) = EatPaCr) (2.1)

2m1

where m* is the effective mass; for GaAs, m*=0.069m, with m the free-electron 

mass. V(z) is the self-consistent potential. The solution of this equation is of the 

fonn

tPk ,,(r) = [ exp(ik r )/A*]%,(z) (2.2)

where k is the wave vector parallel to the surface, A is the area of the sample and 

the index a  represents the combination (k ,i), where i labels a particular solution 

for wave vector k . In Eq. (2.1),the energy zero is the conduction band edge.

Ea = Ek ,, = (h2k 2/2m‘) + Ei

The value of Ei is discrete and can be positive or negative; we have then

h2 d2
[ ---------------- + V (Z )^ (Z ) = EiXi(Z) (2.3)

2m* dz2

The solutions of Eq.(2.3) are subject to the boundary conditions
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%(0) = O (2.4a)

Xi(L) = 0 (2.4b)

where L is the thickness of the slab.

The calculation is carried out in the Hartree approximation. It is assumed that 

the potential energy V(z) appearing in Schrodinger's equation is just the energy of 

an electron in the electrostatic potential <t>(z) set up by all the conduction electrons. 

The electrostatic potential satisfies Poisson’s equation:

V(z) = - e<D(z) (2.5)

d2<$>(z) 47U
------------= --------5n(z) (2.6)

dz2 Es

where es is the static dielectric constant, and 5n(z) is the deviation of the electron 

density from its bulk value. We chose the zero of energy such that <E>(L/2)=0.

The boundary condition on the potential is f

d<$>
- ( ------ ) = E 0 (2.7)

dz

There are two contributions to 5n(z),2 so 8n(z)=5nc(z)+5nd(z). The first is from 

the free carriers in the conduction band:
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2 h2k 2
5nc(z) = ------ J d2k S  f  [ -----------+ £, - |i ] %i2(z) - Ii0 (2.8)

(2tc)2 i 2m*

h2k 2 h2k 2
where f  [ ----------+ £k -|A ] = [ exp ( P( --- ------- + ek - [X )) +1 ]

2m* 2m*

is the Fermi-Dirac function with |3=(kBT)"', Ii0 is the bulk free-carrier concentration 

and (I is the chemical potential.

The second contribution is

8nD(z) = nD [ f  ( Ed - eO(z) - p. ) - f  ( Ed - p. ) ]

where nD is the concentration of donor impurities. Except at the highest 

concentrations, we can assume that SnD(z)=0, a constant. The self-consistent solution 

of Eqs. (2.3) and (2.6) proceeds as follows.

First, an initial potential is employed in the Schrodinger equation, which may 

then be solved straightforwardly by a series approach. Then 5n(y) may be 

constructed from these solutions. Finally, the potential 0 (z ) is calculated. We repeat 

the procedure again and again until the new potential and old potential agree within 

the desired precision.

Before proceeding further, it is convenient to introduce the dimensionless units 

which will be employed for most of what follows. All energies will be expressed as 

multiples of kBT and all lengths will be expressed as multiples of the thermal wave 

length
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Xf  (h72nvkBT f

which assumes the value 46.2A for GaAs at room temperature. That is, we have 

- e<E>(y) = 0(y)k„T (2.8a)

z = yX (2.8b)

k —> k X"1 (2.8c)

(2 8d)

Sclirodinger’s equation (2.3) now takes the form 

d2
( --------+ @(y)) Xi(y) = eiX:(y) (2.9)

dy2

Poisson’s equation (2.6) becomes 

d20  X
---------= - 8tc— — 5n(y) (2.10)

dy2 S0

y/here B0 = 8sh2/m‘e2 is the Bohr radius.

The boundary conditions and constraint on the charge density become
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<I>(y=L/2) = O (2 . 11)

d<D X * ■
(------ ) = - Stt--------Q (2.12)
dy J=CM- B0

where Q = -l/2j0L 5n(y) dy (2.13)

is the charge displaced by virtue of the presence of a depletion layer, or an 

accumulation layer. If we assume Qs is the charge per unit area trapped on the 

surface, then Qs must equal -Q to satisfy electrical neutrality. We can also obtain 

the electrostatic potential by integrating Eq. (2.10), noting the boundary conditions

d0(y) d<E>(y)
[ ----------] - [-----------] = Aj0y 8n(y’)dy’ (2.14)

dy y=y dy y=c»

where A=-STtXZa0 and according to (2.12),

d>’(y) I J=CM = -STtQXZa0 =AQ = -Aj0~5n(y)dy (2.15)

O ’(y) = Aj0y §n(y’)dy’ + Uo+

= A!0y 5n(y’)dy’ - A |0” 8n(y’)dy’

=- A j“ 8(y’) dy'

On the other hand, we also have



Ol ~ =  Jy“ d<D(y’) = Jy” O ’(y’) dy'

= - Ajy” dy’ Jy-  5n(y") dy" 

since 0(«>) = 0, and thus

O(y) = Ajy-  dy’ Jy.-  6n(y") dy"

= Ajy” dy" 5n(y") J/" dy’

= Ajy-  dy" 5n(y") (y"-y)

Now let x = y ’-y, dy" = dx; then 

O(y) = Aj0-  dx 8n(x+y) x

=  - STtXZa0 J0“ dy’ y ’ 8(y+y’) (2.16)

Finally we let x = y \  Eq.(2.16) is equivalent to Eq.(2.6).

The charge density or, more correctly, the number density appropriate to this 

unit of length is expressed by

d2k I
5n(y) = 2L ” ------ Z ------------------------ Zi2Cy) - Ii0 (2.17)

4tt2 i exp(ej+k -|i)+l

12
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Since the electrostatic potential is symmetric,

I d2k
8n(y) = ------ I  L ~ - - - - - - - - - - - - - - - X,2(y) - H0

2tu2 i exp(£;+k2 -p)+l

I
= ------ Z In [Cexp(P--Ei) + I JXt2Cy) - n* (2.18)

2n i

The Fermi level is found by requiring charge neutrality:

Ll 5n(y) dy = - 2Q (2.19)

or

I
------ Z log [Cxp(P-Ei) + I ] = Ii0L - 2Q (2.20)
2% i

In the numerical calculation, first a step charge density is used, with the 

thickness D of the depletion or accumulation layer detennined by Q1 from the 

definition Ii0D=Q1. Then this charge density is put into the equation

0 ((y) = - BtcVa0 Lury dy’y ’5(y+y’),

where i means initial. After integration, the initial potential can be obtained.

This potential is put into the Schrodinger equation (2.9); then, the wave function 

and the eigenvalues which can be positive or negative and also discrete are 

calculated. According to Eq. (2.18), the deviation of the electron density from its 

bulk value will be obtained.
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In the next step, using the equation 

On(y) = - STtXZa0 J0L/2"y dy’y ’5(y+y’),

where n means "new", again and integrating it, we obtain a new potential. 

Comparing the new potential with the initial potential, if  the value [<I>n(y)-d>1(y)] is 

larger than the precision which we desire, we use some linear combination of these 

two potentials as input into the Schrodinger equation and repeat the procedure again 

and again until the value [<I>n(y)-<I>i(y)] is equal or smaller than the precision which 

we desire. This concludes the self-consistent calculation.

Several bulk charge densities, namely l*1017/cm3, 3*IO17Zcm3, 1.2*IO18Zcm3 and 

1.5*IO18Zcm3 have been used in our calculations. For each charge density, different 

thicknesses of depletion and accumulation layers, namely 50A, 75A and IOOA were 

used. Also, the potentials for different cases were calculated. These potentials 

describe the band bending in the surface region.
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CHAPTER 3

BULK DIELECTRIC FUNCTION 

Classical Plasma Frequency33

We now discuss collective electron motions based on a purely classical and 

elementary treatment of plasma oscillations. Let the uniform background density of 

positive charge be Cn0, and let n(r,t) be the density of electrons at position r at 

time t.

The excess positive charge is given by (ivn) and hence from Maxwell’s equations 

V-E = 47te (n* - n) (3.1.1)

where E is the electric field.

Now, suppose the electron gas is displaced by x to give a current density nv; 

then according to the equation of continuity

V-(nv) = - dn/dt (3.1.2)

It is assumed that the displacement x is small. Then the plasma oscillations are 

small in amplitude and Eq. (3.1.2) may be written as
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H0 V-v = - dn/dt (3.1.3)

which can be integrated to give

no-n = Ii0 V-x (3.1.4)

since n=n0, at x=0. Thus, we have the result, from Eq.(3.1.1),

V-E = 47uenoV-x (3.1.5)

and hence

E = djcenyX (3.1.6)

which satisfies the boundary condition that E=O when x=0 . Combining this with 

the Newtonian equation of motion for an electron in an electric field E,namely

mx = - eE (3.1.7)

we have

mx" + 4Tce%x = 0 (3.1.8)

This immediately shows that oscillations in the electron gas can occur, with 

angular frequency CDp given by
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top = (47m0e2/m)'A (3.1.9)

COp is called the plasma frequency

Frequency dependent dielectric constant e(to)

Consider the jellium model, and apply a time-varying external field E. Under 

these circumstances, the equation of motion for an electron is, classically,

d2x dx
m -------- h m y ------ = - eE (3.2.1)

dt2 dt

where m is the electronic mass and e is the magnitude of the electronic charge. E
J

is the electric field acting on the electron as a driving force. The term my(dx/dt) 

represents viscous damping and provides for an energy loss mechanism. The electric 

field E can be taken to vary in time as Cirat, thus the solution to Eq. (3.2.1) is

eE/m
x = -------------  (3.2.2)

to2+iyco

and the induced dipole moment is

e2E
P =  cx = ------------------- (3.2.3)

m(to2+iyto)

Note that it is important to be consistent in the form of the time variation used to 

describe time-dependent fields. Hie use of a time variation eirat leads to a complex
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refractive index n=n-ik, as we now show.

If there are n atoms per unit volume, the polarization is 

ne2
P = - np = ---------------- E = %E

m(-co2-iya>)

The complex dielectric function £ is defined by 

n2 = E = e„ + 4tc%

Using Eq. (3.2.4), this yields 

4%ne2
e((o) = £ _ -------------------

m((o2+iy(o)

=E00 - (op2/(co2+iyro)

From Eq.(3.2.6)16

(Op (co)
E1(Co) = n2 - k2 = £„ — ------------

(CO2) ^ y 2CO2

cop2y co
E2(Co) = 2nk = ----- :---------

(CO2) ^ y 2CO2

(3.2.4)

(3.2.5)

(3.).6)

(3.2.7)

(3.2.8)

Lindhard screening
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Lmdhard screening

Here, Lindhard screening17 is discussed briefly. The plasma oscillations can 

exist because for small k, the dielectric function does not always act as a screening 

factor. The long-range Coulomb interactions then make possible collective oscilla­

tions of large numbers of electrons. The dielectric constant in the limit of long 

wavelengths has the Dmde form

<
e(ffi) = ----------------

to2 + iyco
%

But this is for the case k=0. If the phenomenon of screening is considered, the 

general dielectric constant is

4n pind(k)
e(k) = I -------------- :—  (3.3.1)

k2 <D(k)

where pind is the charge density induced in the eletron gas by the external particle 

and 0(k ) is the total potential. If O varies slowly, we can use the Thomas-Fenni 

approximation; then the dielectric constant becomes

e(k) = I + V /k 2 (3.3.2)

where Jc02 = 4rce2(8n0/3|i) and H0 is the charge density, of the unifonn positive back­

ground which is given by
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dk I
H0 (I-L) =  I- (3.3.3)

4 k 3 exp[(B(lik2/2m)-|i]

where |i is tlie chemical potential.

Another theory is due to Lindhard. In tills case the induced density is requhed 

only to be of linear order in the total potential O. The dielectric constant is

where f  denotes the equilibrium Fermi function for a free electron with energy 

h2k2/2m.

If the external field has time dependence e'imt, then the induced potential and 

charge density will also have such a time dependence, and the dielectric constant 

will depend on frequency as well as on wave vector. It can be generalized by using 

time-dependent rather than stationary perturbation theory. The Lindhard dielectric 

constant then becomes

---  —I -v—q+K/
e(k) = I ---------J--------------------

k2 4 k 3 (£q+k-£k)

4tte2 dq f(Eq+k)-f(£q)
(3.3.4)

£(k,C0) = £M + (3.3.5)
k2 47t3 (Eqtk - Eq) + hco

For the real part of this constant, following the procedure derived by Wooten,18 the 

result is

COp2 I
Re £(k,0)) - E m- -------- (3.3.6)
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to2 I -h2k2(3/5kF2)/m2toz

Using hkF/m = vF where vF is tlie velocity of an electron on the Fermi surface and 

assuming

h2k:(3/5kF2)/m20)2 «  I,

Eq.(3.3.6) becomes

<  Sk2Vp2
Reek,®) = e _ ----- (I + -------------- )

to2 Sm2

- E co------:---------------  (3.3.7)
(to2 - 3k2vp2/5)

In the numerical work, this formula will be used. It is called the Thomas-Fenni 

model.

Dielectric function including lattice vibrations

To describe the long wavelength optical vibrations, a coordinate specifying the 

relative displacement between the positive and negative ions is required. For an 

elastic motion, the effective inertial mass for a unit volume is the density; for the 

optical type of motion, on the other hand, the corresponding mass is the reduced 

mass of the positive and negative ions M= (M+*M_)/(M++M„) divided by the volume 

of a lattice cell. It has been found that the most convenient parameter to choose for
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describing the optical type of motion is the displacement of the positive relative to 

the negative ions multiplied by the square root of this effective mass per unit 

volume, which we denote by W:

W -  pK (u+ - u.),

where p-M/Q,, and Q is the volume of a lattice cell.

For diatomic ionic crystals, the macroscopic theory is fully embodied in the 

following pair of equations:

d2W/dt2 = - rnW + r12E (3.4.1)

P = r12W + r22E (3.4.2)

where F and E are the dielectric polarization and electric field as defined in the 

usual way in Maxwell’s theory.

The coefficients rn,r12,r22 are related to the dielectric function. The dielectric 

function for any particular frequency CO can be deduced directly from (3.4.1) and 

(3.4.2) by considering periodic solutions:

E == E0e-irot (3.4.3a)

P == P0Cirot (3.4.3b)

W = • W0e"icot (3.4.3c)
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Thus the results can be obtained from these equations

- (o2W = - r,,W + r12E (3.4.4)

P = r12W + r22E (3.4.5)

When V7 is eliminated from these equations, it is seen that P and E are related by 

P == [r22 + r127(r11-to2)]E (3.4.6)

Comparing it with the definition of the dielectric displacement,

D -  E + 47tP = eE,

the dielectric function is obtained:

E(OO) = I + 47t[r22 + T122A r 11-CO2) ]  (3.4.7)

If OO2 = tot,2 = rn, there is a pole in this function, so ru can be detennined by this 

pole. OO0 is in the infrared region. When 00«00o, E(O)) reduces to the well-known 

static dielectric constant E0

E0 -  I + 4jt(r22 + T12Zr11) (3.4.8)

When oo»oo0, E=Em, where E_ is the high-frequency dielectric constant

E„ = 1+ 4 Jrr22 (3.4.9)
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Now, these cofficients can be found as

r,, = CO02 (3.4.10a)

r,2 = [(Eo-£„)/47t]Kco0 (3.4.10b)

r22 = (e_-l)/47t (3.4.10c)

Finally, the result is

E(CC) = E_ + (E0-Em)COo2ACOo2-CO2) (3.4.11)

If a sim ile damping term is considered, then Eq. (3.4.1) can be modified as 

d2W/dt2 = - rnW - yVV + y12 (3.4.12)

where y is a positive constant with the dimension of frequency; the additional term 

repesents a force always opposed to the motion. So, Eq. (3.4.12) reduces to

-CO2W  = (-rn + icoy)W + y]2E (3.4.13)

The addition of the damping term is equivalent to the replacement of -r,, by 

rn+icoy. Hence the dispersion formula (3.4.11) becomes8,31

(E0-EjoV
E(CC) = E„ + (3.4.14)
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(Ob2 -(O2-Icoy

Finally, the dielectric function including the Thomas-Fermi response is

(Op2 (E0-Ejto02
E (k to )  =  £ „ ----------------------------------- +  -----------------------

((o2-0.6VF2k2)+itoy (O02 O)2Jtoy
(3.4.15)
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CHAPTER 4

EFFECTIVE DIELECTRIC FUNCTION 

The Maxwell equations for free modes are 

V-D = 0 

V-B = 0

I dB
VxE = -------------

c dt

I dD
VxH = -----------

c dt

In EELS, retardation effects are negligible. So, we set c=°o in these equations. 

The electric field E(r,t) is Fourier transformed with respect to the coordinates x and 

y parallel to the surface and with respect to the time t:

E(r,t) = J dI 2k Lrdco E(k,(0,z) exp[i(kpr+ky-cot)] (4.1)

where k"(kx,ky) is a two-dimensional wave vector.
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It i s  known that surface phonons in isotropic materials have frequencies CO such 

that e(co)=-l, where e(co) denotes the bulk dielectric constant of the material. In the 

dielectric theory of EELS, these frequencies generate 8-like peaks in the so-called 

surface loss function Im[-l/(e(to)+l)]. It turns out that the dielectric theory can still 

be applied to anisotropic crystals, provided the loss function is replaced by an 

appropriate effective dielectric function %(k,co,z), where k denotes the wave vector of 

the surface phonons. The effective dielectric function %(k,co,z) is defined as9,20

where D(k,(o,z)=£(co,z)E(k,(0,z) and £(co,z), the dielectric constant of the material, . is 

a function of the coordinate z. It is obvious that E,(k,m,z) will reduce to the bulk 

dielectric constant £(k,to) for an infinite isotropic medium.

Now the boundary condition at the surface is considered. The usual boundary 

conditions at interfaces are that the normal component of D and parallel component 

of E are continuous.

D(k,co,z)-n
%(k,CG,z) = i (4.2)

E(k,co,z)-k/k

Dj_(k,G),+0) = D1Ck,00,-0) (4.3)

Ex(k,oo,+0) = D1Ck1OOrO) - Eel(k,oo,0) (4.4)

where Ee(r,t)=-VVc(r,t)

Fyom Eq. (4.2) we then have

E1(Ic1Co^O) = -i%ok E (k,CD,-0)/k - Eel(k,co,0)
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= -i5ok[E (k,<D,+0) + Ee (k,co,0)]/k - Eel(k,to,0) (4.5)

where = ^(k,to,-0). On the other hand, since for z>0 we have V E=O, then 

ik E (k,co,z)/k=E±(k,co,z)

Using this relation, finally the result is9

(H-I0)E1(It5CÔ O) = -Il0It-Ee (k,to,0)/k - Eel(k,co,0) (4.6)

Since Vc(k,co,z) = (STt)-1Jdxdy L ”dt Vc(r,t) exp [-i(kxx+kyy - cot)] and 

Ee = -VVe(r,t) we have

(l+lcOE.jXkM+O) = -k|oVe(k,O),0) + [d/dz Ve(k,(0,z)]^o (4.7)

If Ve=O, i.e. there is no external excitation, the electric field E(k,co,z) equals zero in 

z>0 region, unless

I0 = |(k,co,0) = -I (4.8)

This equation is a generalization of the well-known condition £(co)=-l giving 

the nonretarded eigen modes of a semi-infinite isotropic medium with dielectric 

constant e(co).21

Now a simple case is considered, in which |  does not depend on the polar
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angle of the two-dimensional wave vector k; this means the material is isotropic. In 

this case9

£ d
^(k,co,z) = [ ----------- V(k,(D,z)]/V(k,oc>,z) (4-9)

k dz

where V(k,co,z) = (Stt)"1 Jdxdy L ”dt V(r,t) exp[-i(kxx+kyy-tot)]. (4.10)

For free modes V-D=O, so the Poisson equation is written as

V (SE) = 0 i.e. V-[£(-VV)] = 0, 

so that

d/dz[£(dV/dz)] - Ek2V = 0 (4.11)

Let us address the question how to solve the equation (4.9). Taking the derivative 

of both sides of Eq. (4.9) with respect to z,

d d £(z) d
—  %(z) = ------  {[----------------V(z)]/V(z)},
dz dz k dz

the result is9

I d%(z) %2(z)
-------------- + ----------- = £(z) (4.12)
k dz %(z)
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This is called the Riccati equation for In the above procedure, we used the 

Poisson equation (4.11). For obvious typographical simplifications, we omit the (k,co) 

dependence of £ and V  and regard these quantities as functions of z.

In the numerical work, we imagine that the slab is cut into many layers. The 

thickness of each layer is the same. As a simplifying assumption, it is assumed that 

£(z) takes constant values in each layer. By this means an analytical expression for 

the effective dielectric constant 0̂(UjCO) will be obtained.

We now attempt to solve the Riccati equation. The thicknesses of the layers 

i=l,2,3..,, will be denoted by dj which, together with the dielectric constants £„ 

specify the model.

By integrating the differential equation (4.12), the result is 

d% k
--------------- = —  dz + c and

M = )  E

%(z) = £ tanh (kz+ c) 

where c is a constant. Tlien,

Ckz-A-V kz
] = e [ ------------------- ]

where A.=ec. Now let A"2 = ( l-c ’)/(l+ c’), then 

C+£tanh(kz)

Aekz-A-V kz
%(Z) = E [-

AekV A V- l a -kz

ekz+A-V z

%(z) = e (4.13)
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e+Ctanh(kz)

where C'=c’£ is an arbitrary integration constant, and the solution of the Riccati 

equation in layer i can obviously be written as

^+Ejtanh [k(z-Zi)]
%(z) = e ,-------------- ----------- , Zi<z<z,_i (4.14)

£i+^itanh[k(z-zi)]

In this equation, denotes the value of %(z,) at the lower end Z1 of the layer. By

setting Z-Z1., in Eq, (4.14), the following expression for l̂rl at the upper end zM is 

obtained:

[E/sinhtkdJ]2
L ,  =  ^(Zm ) =  Si C o th fk d 1) -------------------------------

£1coth(kd1)+% (4.15)

This treatment is repeated in each layer, and since %(z) is a continuous function of 

z, by construction, the continued-fraction expansion of is obtained, i.e., the 

effective dielectric function9

% 0  —  a I

TV

b22

a2+a3-
a3+a4-... (4.16)

where we have defined

Oi =■ £1coth(kd1) (4.17)
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b; -- EiZsinhCkdi) (4.18)

When the e, assume positive imaginary parts, 1/(1;+1) is a so-called positive-definite 

continued fraction. Obviously, if Icdi is infinite, then a, will be Ei and b, will be 

zero, Eq. (4.1.6) is easy to deal with on a computer.



CHAPTER 5

ELECTRON-ENERGY-LOSS SPECTROSCOPY 

Electron-energv-loss spectroscopy

In this section the theory of electron-energy loss in a reflection geometry for 

small-angle inelastic scattering from a medium is presented. In this theory, EELS 

can be treated within the framework of the so-called dielectric theory/ The electrons 

are considered as classical particles, while the / absorption or emission of phonons or
r

plasmons are quantum-mechanicaUy described.22,23 So, this theory is a semiquantum 

theory. The theory of the inelastic cross section was discussed some years ago24,25 

for scattering off the surface of a semi-infinite material. Unless the losses of interest 

lie in the range of several electron volts, very-high-resolution spectroscopic techni­

ques are required.

The trajectory analysis proceeds by noting that an incoming electron polarizes 

the material, here viewed as a dielectric medium. The induced polarization produces 

an electric field which does work on the electron as it approaches. One calculates 

the total work performed by tire induced field to obtain the total energy loss 

suffered by the electron, and an appropriate decomposition of this expression yields 

the energy distribution of those electrons which suffer an inelastic scattering.

The dielectric theory proceeds in two steps. The first step consists in evaluating
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the work done by the polarization field of the sample on the electron. The work 

done is9’’2

W ■= - e L~Ve(t>E(re(t),t) dt (5.1)

where rt(t) is the trajectory of the electron (charge e). Ve(t) is the electron velocity, 

and E(r,t) denotes the polarization field of the material.

Let the electron trajectory be described by

re(t) = tvp + ItvjJn (5.2a)

with vp the projection of v onto a plane parallel to the surface; V1 is the normal 

component of the velocity, and n denotes the unit outward normal at the surface. If 

the electron strikes the surface at t=0, then

z(t) = -vj: for t<0 .

z(t) = Vjt for t>0 (5.2b)

We have chosen the convention that the coordinate z is parallel to the outward 

normal n, the surface coinciding with the plane z=0; negative z corresponds to the 

material region.

Eq. (5.2a) neglects the perturbation of the classical trajectory. That means the force 

of the polarization field does not affect the dynamics of the electron. Also, the 

penetration of the electron below the assumed abrupt surface is ignored.

Using Eq. (4.1), we have for the polarization field
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E(r,t) = Jd2kL'”droE(k,co,z)exp[i(kxx+kyy-cot)]

Before calculating the work, two useful equations are introduced. Here the retarda­

tion effects in the electric field are ignored. The first equation is

VxE(r,t) = 0

Taking into account Eq, (4;I) and the identity 

Vx(\|/a) -  (Vij/)xa + x|/Vxa 

We have the result

VxE(k,co,z) = -ik xE(k,co,z) . (5.3)

Eq.(5.3) is multiplied by n which is the unit vector in the z direction; taking into 

acount VxE=d/dz(-Eyi + EJ), we have the results

(d/dz)E = ik E1 (5.4a)

Ep = -IE1 (5.4b)

In the same way, from the condition V-E=O (z>0), we obtam

(SZdz)E1 = -ik E (5.4c)
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Taking into account Eq, (4.1), now, the expression for the classical work W is 

derived:

W = -e L ” V„(t)-E(re,t)dt 

= -eL ”dtVc(t)Jd2k{L°dtoE(k,<X),z)exp[i(k-r -cot)]

+J0™dcoE(k,co,z)exp[i(k-r-cot)]}

= -ej„„”dtVc(t)Jd2k2Re JcTdco E(k,co,z)exp[i(k-r -cot) (5.5)

Here, the relation E(-k,-co,z)=E*(k,co,z) was used.

Tlie expression for the energy lost by the electron may be cast into the form9

W = J dco hco P(co) (5.6)

where hco denotes the energy loss and P(co) is interpreted as the probability per unit 

frequency that the electron has lost the energy hco. Comparing Eq. (5.5) with Eq. 

(5.6) and taking into account Eq. (5.2a),

P(co) = (2e/hco)L°°dtVc(t) Jd2k Re{E(k,co,z)exp[i(k r -cot)]}

= (-2e/hco)Reco„J”dtJd2k [Vp-Ep(k,co,z)+

VJLE1(k,co,z)(|t|/t)]exp[i(k r -cot)]
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Taking into account Eq. (5.2a), Eq. (5.4a), then integrating by parts 

ReL“vp • Ep(k ,t°,z)exp [i(k • VP-to)t

=Re{-2i/(k v -to)J0“v k EJ.(k,(0,z)sin[(k -v -ccOz/vJdz} and 

ReL” v l (  111/t)El(k,<X),z(t))exp[i(k -v -co)t]dt 

= 2Re J0”El(k,co,z(t))isin[(k -v -co)z/vJdz, 

we obtain the following result:

-4e
P(C0) = ------ Re/ d2kj 0“[

hco

-k -v
------------ + l]E_L(k,0),z(t))i sin[(k v -(o)z/vJdz
k -v -cot

, 4e=  J --------------------d2kj0”sin[(k -v -(o)z/vJImE1(k,co,z(t))dz (5.7)
h(k -v -co)

Integration by parts, complemented by the condition V-E(r,t)=0 (z>0) i.e. (5.4c) and 

Ik-E=E^k , gives the result

. "4ev± V1 '
P(to) = J ---------------- d2k(-ImE1(k,co,+0)4------------- J,fsm[(k'Vp-co)z/vJ-

h(k -Vp-C o ) 2 (k-vp-co)

^(-ik-ikEJdz) (5.8)
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Comparing Eq. (5.8) with Eq. (5.7), we have9 

4ev1 Ej_(k,co,+0)
P(CO) = Im [----------I --------------------------- d2k]

h (k-vp-co)2+(kv1)2 (5.9)

According to Eq. (4.7), it is obvious that before Eq. (5.9) can be evaluated, 

Vc(k,co,0) and dVJdz must be calculated. The Coulomb potential is

V0(r,t) = - e?/| r-r.(t) I (5.10)

It is obvious that we have

V2Vc(r,t) = 47ce5(rp-rep(t))5(z-ze(t)) (5.11)

where rp and rep are the space vectors parallel to the surface. The coulomb potential 

is Fourier transformed with respect to rp:

V(r,t) = 1/271 L “Vc(k,z,t) exp[i(k-rp)]d2k (5.12)

Putting Eq. (5.12) into Eq. (5.11) and recalling the Fourier transform of the 5 

function, the result is

(d2/dz2 - k2)Ve(k,z,t) = e/7t exp:[-ik-rep(t)]8(z-zc(t)) (5.13)

The solution of Eq. (5.13) is

Vc(k,z,t) = A6(z-zc(t))exp[-k(z-ze(t))] - B 0(ze(t)-z)exp[-k(ze(t)-z)] (5.14)
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where A and B are the cofficients which can be determined by 

dVe/dz = A5(zrze(t)) + A6(z-ze(t))(-k)exp[-k(z-ze(t)]

+ B5(zc(t)-z) + B9(zc(t)-z)(k)exp[-k(zc(t)-z)]

and

d^ yd z2 = A 5’(z-zc(t))-A5(z-zc(t))k+Ak26(z-zc(t))exp[-k(z-zc(t))]

- B 5’(z-ze(t))-B8(zc(t)-z)k+Bk26(zc(t)-z)exp[-k(ze(t)-z)] 

Putting Eq. (5.16) into Eq. (5.13) and comparing both sides, we have 

A = B 

and

A = [-exp(-ik • rcp(t))]/27tk 

Finally, we obtain the following result

Ve(k,z,t) = -e/27rk{ 6(z-zc(t))[exp(-kz+kvJ. 111 -ik-vpt]

+ 6(ze(t)-z)[exp(kz-kvJ_ 111 -ik-vpt)]}

(5.15)

(5.16)

(5.17)

(5.18)
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where zE(t) = Vi  111. It is considerd that if

Z-Vi  It I >0 for t>0 KzZvi

for t<0 t>-z/vi (5.19a)

and if

Z-ViJtjcO for t>0 t>z/vi

for t<0 K-ZZvi (5.19b)

The final results for V and dVZdz at z=0 are

V(k,co,0)
27t2[(kvi )2+(co-k-vp)2]

(5.20)

-ekv.
dV(k,co,0)Zdz =

I t t 2Ck2Vi 2 +  (CO-R-Vp) 2
(5.21)

The final result for Ei (RjCOiO) is then

Edk.co.+O) =
-I Rv1C

( 1 + W  Tt2C(Rvi ) 2H-(G)-R-Vp) 2]
(5.22)

The Eq. (5.9) now becomes
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4eY L2 k -I
P(co) = ----------I -------------------------------I m ----------------- d2k (5.23)

Tc2Ii [(kv±)2+(co-k-vp)2]2 ^o(k,co)+l

Upon noting that ^0(k,co) depends only on the magnitude and not the direction 

of k, Eq. (5.23) is9

4eV 12 -I
P(co) = ------------- J d k k 2 Im-----------------

h i t 2 , % o (k ,c o )+ l

•Jo2” d0 l/[(vjk)2+(co-kvpcos0)2]2 (5.24)
< r

This integral on 0 may be evaluated in closed form. Since this integral is 

encountered frequently in the theory of small-angle electron-energy loss, we shall 

quote the result explicitly. Let O1 be the angle of incidence of the electron beam 

measured relative to the normal to the surface. Then

vp = v0 sinOj (5.25a)

and

Vx =  V0 COS0! (5.25b)

where v0 is the speed of the incoming electron. Here, it is supposed that

SinOjt=CosOjE=A
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In the numerical work, the result is conveniently expressed in term of the 

dimensionless variable x given by X=Icv0Zto. The energy loss spectrum then becomes,

4v0V  dk k2 Im[-l/(^(k,co)+l)]
P(to) = ----------J ----------------------------------  (5.26)

Tthco4A2 x3 [(x2- l)  + 4x2A2Y*

Re {(x2-1 +2ixA)'/2[( I +2x2A+ixA)( I +x2A2)+x2A2(3x2A2-2-ixA)+x4A4] }

We choose the incident-electron kinetic energy to be 9eV with 45° angle of 

incidence. The spectrometer slit widths are assumed equal to I0. The electron energy 

width Y is equal 10 meV and the phonon energy width F 0.3meV. We have calcu­

lated the energy loss spectrum Eq. (5.26) for charge densities of (I) 3*IO17Cin3 (2) 

I*10'8cm"3 (3) 1.2*IO18Cm"3 (4) 1.3*J.018cm"3 (5) 1.5*1018cm"3. For those cases, 

depletion and accumulation layers were investigated using different thickness, 

namely 50A, 75A and 100A.

Dispersion of surface plasmons

In the above discussion, the material was assumed to be described by a 

dielectric constant which depends not only on the frequency go, but position z, with 

the z axis normal to the surface. The dependence on z arises from the free carrier 

contribution -4Tm(z)e2/m*co2 with n(z) the local electron density at point z. Tlius if 

D(r,to) and E(r,to) are the displacement and electric fields and e(z,co) the dielectric 

function, we have D(r,co)=e(z,©)E(r,co). One may question the quantitative validity of 

such a model, since the thickness of the depletion or accumulation layer is typically 

comparable to the Thomas-Fermi screening length. Under these conditions D(r,co) is
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not proportional to E(r,co) evaluated at the same point, but instead is an average 

over values of E(r,to) throughout a volume whose linear dimension is the order of 

the screening length. A nonlocal description of the response of tire electron gas 

should be employed.12

Ehlers and Mills studied surface plasmons on n-type semiconductors, for 

realistic and nonuniform free- carrier density profiles, and tlirough use of a nonlocal 

description of the response of the conduction electrons. For three values of Q5, i.e.,-

0.08, 0.0 and 0.08, they plotted the variation with k of the maximum of the loss 

function for different charge densities, namely l*10,7cm"3, 3*1017cm"3 and I* 1013cm"3.

For these different charge densities and different Qs, in this thesis, the Thomas- 

Fermi model and the Debye-Huckel model belonging to local response theory26,27,28 

are used to calculate the plasmon dispersion relation from the position of the peak 

in the loss function as a function of k.

The Thomas-Fenni model was introduced in Chapter 3. Now the Debye-Huckel 

model is introduced. This model is appropriate to study the collective oscillations of 

a system in thermodynamic equilibrium. The real part of the dielectric constant in 

the Debye-Huckel model is given by29

Ree(k,0D) = I - rop7to2(l+3k2kBT/mro2)

=1 - top2/(to2-3k2kBT/m) (5.27)

The inelastic cross-sections have been calculated, so there is no difficulty to 

calculate the dispersion relations.

Many results, including depletion-and accumulation-layer profiles inelastic 

cross-sections and dispersion relations will be shown in Chapter 6.
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CHAPTER 6

RESULTS AND CONCLUSION

In Fig. I, the relation between the carrier concentration D0 and the chemical 

potential is shown. Using Fig. I, for a wide range of O0, we can get the chemical 

potential directly.

Figures 2 and 3 show the charge density profiles and potential for 

U0=S* 10,7cm"3; the results for U0= ^ lO 18Cm"3 are given in Figs. 4 and 5. In Fig. 2 and 

Fig. 4, it is obvious that if Q is positive, there is a depletion layer, and the 

potential decreases monotonically to zero. Wlien Q is decreased, the potential will 

become an attractive well at some point; this happens for positive Q, when V(O) is 

positive. The scheme breaks down just as the potential first crosses zero, to form 

the attractive well.

In Fig. 3 and Fig. 5, one notes that the flat band condition does not occur at 

Q=O, but there is a kind of dipole layer present near the surface, with a sign such 

that the surface potential is depressed below the bulk value. Since the wave 

functions of all electrons must drop to zero at the surface, there is a deficit of 

charge in a layer with thickness of roughly X, and this must be compensated by a 

pileup of excess charges a bit farther into the crystal. It is evident that greatest 

sensitivity to the free carrier profile occurs when k d~l, with d the thickness of the 

transition region between the surface and the bulk.
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Fig I Relation between the carrier concentration 
n and the chemical potential.
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Fig. 2 Charge density profile for n =
I x IO18Cm-3. The solid line is for
Qs = 0.08, dotted line for Qs = 0.0 and
dotted-dashed line for
Q8 = -0.08.
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Fig. 3 Potential for n = 3 x IO1 7 Cm- 3 . The solid
line is for Qs = 0.08, dotted line for
Qs = 0.0 and dotted-dashed line for
Qs = -0.08.
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Fig. 4 Charge density profile for
n = 3 x IO17Cm-3. The solid line is for
Qs = 0.08, dotted line for Qs = 0.0 and
dotted-dashed line for
Qs = -0.08.
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Z

Fig. 5 Potential for n = I x IO18 cm-3. The solid
line is for Qs = 0.08, dotted line for
Qs = 0.0 and dotted-dashed line for
Qs = -0.08.
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Notice that rather strong accumulation layers have been explored in Fig. 3 and 

Fig. 5. For no=3*1017cm"3, and Q=-OOS the maximum charge density in the 

accumulation layer rises to roughly two times the bulk value.

Comparing Fig. 3 with Fig. 5, it can be seen that as the carrier concentration 

H0 increases, d decreases.

Spectra of no=1.2*10,8cm"3 for different thicknesses of the depletion layer are 

shown in Fig. 6-Fig. 9. In each figure, there are three peaks. The middle one is the 

phonon peak, the others are the coupled plasmon and phonon peaks. Note that 

when H0=I .2* 10l8cm'3, the plasmon energy is very close to the phonon energy thus 

leading to strong coupling. If the carrier concentration is very different from the 

value no=1.2* IO18Cm'3 , just two peaks, i.e. the plasmon peak and the phonon peak, 

will be observed.30 The surface mode frequency is given by

co,2 = 47me7[m*(l+eJ]

with a free carrier concentration of 1.2*1018cm"3, one evaluates the surface plasmon 

energy from above Eq. to be 44.9meV. The phonon energy is 36 meV. In Fig. 6, 

the thickness of the depletion layer is 50A, and three peaks are present at 29.4, 

38.7and 47.1meV. The peak in the middle only appears as a shoulder. As the 

thickness of the depletion layer increases, the middle peak grows stronger, and the 

third peak becomes only a small shoulder, as shown in Fig. 7-Fig. 9. On the other 

hand, we find that when the thickness of the depletion layer increases from 50A to 

100A, the lower energy peak shifts down about 2 meV and the third peak shifts 

down about 3 meV.

The qualitative features of the spectra in these figures can be understood in 

terms of depletion layer formation. The increase of the amplitude of the phonon loss
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Fig. 6 Energy loss spectrum for
no = 1.2 x IO18Cm-3 and D (the thickness
of the depletion layer) = 50 A.
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Fig. 7 Energy loss spectrum for
no = 1.2 x IO1 8 Cm- 3 and D (the thickness
of the depletion layer) = 60 A.
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Fig. 8 Energy loss spectrum for
no = 1.2 x 10l8cm~3 and D (the thickness
of the depletion layer) = 75 A.
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Fig. 9 Energy loss spectrum for
no = 1.2 x IO18Cm-3 and D (the thickness
of the depletion layer) = 100 A.
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peak is due to the increase of the depletion layer thickness. As the depletion layer 

thickness increases, a portion of the lattice vibrations is unscreened, making a 

stronger contribution to the loss spectrum. On the other hand background dielectric 

constant in the depletion layer is quite large (10.9 for GaAs), thus the plasmon 

eigen mode is strongly affected by S00 and the thickness of the depletion region. 

Two extreme cases are considered. First, if the depletion layer is absent, 

(Os=COpZCSro+ 1 where Ero is the high frequency limit of the dielectric constant.

Second, for a infinitely thick depletion layer co,=cop/(2Ero)'/\  So, for a finite depletion 

layer thickness, the frequency (i.e. energy) of plasmon is between the two values. 

Wlien the thickness of the depletion layer increases, the peak energy will shift 

down.

Tlie results for other carrier concentrations are given in the Appendix.

Fig. 10-Fig. 12 show the position of the peak in the loss function as a function 

of k. The charge density profiles were shown in Fig. 2-Fig. 5. It is evident that as 

k—>0, all frequencies lie near CQs. When Ii0= P l O 18Cm"3, the results of the TF(Thomas- 

Fermi) model and the DH(Debye-Huckel) model are very similar". But the slopes of 

the lines are smaller than Mills’. At Ii0=B^lO17Cm'3, the results from the DH model is 

near M ills’. Wlien-Ii0= P lO 17Cm'3, there is a large difference between the TF model 

and the DH model. For Qs=O, the TF result is close to M ills’ result, and for Qs=- 

0.08, the DH result is close to Mills’ result. For the three concentrations, the TF 

lines are all under the the DH and Mills lines. The DH lines sometimes lie below 

M ills’ results, as for D0= P l O 18Cm"3, sometimes near; as for Ii0=B^lO17Cm"3 and 

sometimes above, as for H0= P lO 17Cm"3. For both the TF and the DH model, the 

dispersion curves depend weakly on Qs for fixed Ii0. By contrast Mills’ results are 

strongly affected by the Qs value, especially for lower carrier concentrations.

Many other Figures have been obtained. They are presented in the Appendix.
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Fig. 10 Dispersion relations for a carrier
concentration of no = I x IO18 cm-3. Using the TF 
model and the DH model, we plot the position of 
the peak in the loss function as a function of K 
for different Q s, namely Qs = 0.08, Qs = 0.0, and 
Qs = -0.08. The results are compared with Mills' 
results. The solid line is for the TF results, 
dotted-dashed line for the DH results and dotted 
line for Mills' results.
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Fig. 11 Dispersion relations for a carrier concentration 
of no = 3 x IO17Cm-3. Using the TF model and the 
DH model, we plot the position of the peak in the 
loss function as a function of K for different Q3, 
namely Qs = 0.08, Qs = 0.0, and Qs = -0.08. The 
results are compared with Mills' results. The 
solid line is for the TF results, dotted-dashed 
line for the DH results and dotted line for Mills' 
results.
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Fig. 12 Dispersion relations for a carrier concentration 
of no = I x IO17Cm-3. Using the TF model and the 
DH model, we plot the position of the peak in the 
loss function as a function of K for different Qs, 
namely Qs = 0.08, Qs = 0.0, and Qs = -0.08. The 
results are compared with Mills' results. The 
solid line is for the TF results, dotted-dashed 
line for the DH results and dotted line for Mills' 
results.
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Summary

We studied surface plasmons and phonons on n-type semiconductors, based on 

a simple picture of local dielectric response. By varying the model parameters we 

considered a wide range of free-canier profiles associated with depletion and 

accumulation layers. The results for the frequency vs. wavevector curves of surface 

plasmons in our model were compared with those of Ehlers and "Mills. The agree­

ment was found to be reasonable although differences in detail occur because of the 

strong inhomogeneity of the charge density near the surface.
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APPENDIX
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Fig. 13 Energy loss spectrum for no = 1.35 x IO18cm-3 and D
(the thickness of the depletion layer) = 118 A.
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Fig. 14 Energy loss spectrum for no = 1.5 x IO18Cm-3 and D
(the thickness of the depletion layer) = 50 A.
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Fig. 15 Energy loss spectrum for no - 1-5 x 1018cm 3 and D
(the thickness of the depletion layer) = 75 A.
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