molecules Article Inhibition of Acetylcholinesterase by Novel Lupinine Derivatives Igor A. Schepetkin 1, Zhangeldy S. Nurmaganbetov 2,3, Serik D. Fazylov 2, Oralgazy A. Nurkenov 2, Andrei I. Khlebnikov 4 , Tulegen M. Seilkhanov 5 , Anarkul S. Kishkentaeva 2, Elvira E. Shults 6 and Mark T. Quinn 1,* 1 Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; igor@montana.edu 2 Institute of Organic Synthesis and Coal Chemistry, Karaganda 100008, Kazakhstan; nzhangeldy@yandex.ru (Z.S.N.); iosu8990@mail.ru (S.D.F.); nurkenov_oral@mail.ru (O.A.N.); anar_kish@mail.ru (A.S.K.) 3 School of Pharmacy, Medical University of Karaganda, Karaganda 100012, Kazakhstan 4 Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia; aikhl@chem.org.ru 5 Laboratory of Engineering Profile NMR Spectroscopy, Sh. Ualikhanov Kokshetau University, Kokshetau 020000, Kazakhstan; tseilkhanov@mail.ru 6 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia * Correspondence: mquinn@montana.edu Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment due in part to a severe loss of cholinergic neurons in specific brain areas. AD is the most common type of dementia in the aging population. Although several acetylcholinesterase (AChE) inhibitors are currently available, their performance sometimes yields unexpected results. Thus, research is ongoing to find potentially therapeutic AChE inhibitory agents, both from natural and synthetic sources. Here, we synthesized 13 new lupinine triazole derivatives and evaluated them, along with 50 commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. The triazole derivative 15 [1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)- 1H-1,2,3-triazol-1-yl)methyl)octahydro-2H-quinolizine)] exhibited the most potent AChE inhibitory Citation: Schepetkin, I.A.; activity among all 63 lupinine derivatives, and kinetic analysis demonstrated that compound 15 was Nurmaganbetov, Z.S.; Fazylov, S.D.; a mixed-type AChE inhibitor. Molecular docking studies were performed to visualize interaction Nurkenov, O.A.; Khlebnikov, A.I.; between this triazole derivative and AChE. In addition, a structure-activity relationship (SAR) Seilkhanov, T.M.; Kishkentaeva, A.S.; model developed using linear discriminant analysis (LDA) of 11 SwissADME descriptors from the Shults, E.E.; Quinn, M.T. Inhibition of 50 lupinine esters revealed 5 key physicochemical features that allowed us to distinguish active Acetylcholinesterase by Novel Lupinine Derivatives. Molecules 2023, versus non-active compounds. Thus, this SAR model could be applied for design of more potent 28, 3357. https://doi.org/10.3390/ lupinine ester-based AChE inhibitors. molecules28083357 Keywords: acetylcholinesterase; acetylcholinesterase inhibitor; Alzheimer’s disease; ester; lupinine; Academic Editor: Carlotta Granchi molecular docking; triazole derivative Received: 15 March 2023 Revised: 8 April 2023 Accepted: 9 April 2023 Published: 11 April 2023 1. Introduction Alzheimer’s disease (AD) and other neurodegenerative disorders are predicted to become the second leading cause of death worldwide because of the increasing elderly population in most countries. AD produces gradual cognitive dysfunction, including Copyright: © 2023 by the authors. difficulty in making decisions, language problems, mood swings, learning, orientation, and Licensee MDPI, Basel, Switzerland. This article is an open access article other behavioral issues [1]. The loss of cognitive function due to AD is associated with distributed under the terms and the rapid hydrolysis of acetylcholine by cholinesterases, including acetylcholinesterase conditions of the Creative Commons (AChE). Consequently, inhibition of AChE has been proposed to be neuroprotective [2]. Attribution (CC BY) license (https:// Indeed, AChE inhibitors represent the first line of symptomatic drug treatment for mild-to- creativecommons.org/licenses/by/ moderate AD. AChE inhibitors were initially utilized in the treatment of myasthenia gravis, 4.0/). a neuromuscular condition associated with loss of ACh receptors at the neuromuscular Molecules 2023, 28, 3357. https://doi.org/10.3390/molecules28083357 https://www.mdpi.com/journal/molecules Molecules 2023, 28, 3357 2 of 15 junction, followed by skeletal muscle weakening [3,4]. AChE also represents a therapeutic target for controlling glaucoma, Parkinson’s disease, senile dementia, myasthenia gravis, and ataxia [3]. Natural products are often used as starting points for drug discovery and have been considered as the most important resource for the identification of lead compounds due to their diverse molecular architectures and a wide range of bioactivities [5,6]. Thus, natural products represent a valuable source from which novel AChE inhibitors may be discov- ered [4,7], and plant alkaloids, flavonoids, chalcones, xanthones and their derivatives have been screened for AChE inhibitory activity (e.g., see [8–13]). Considering the paucity of new AChE inhibitors, we explored the possibility of developing inhibitors based on transformation of the plant alkaloid lupinine. Lupinine ([(1R,9aR)-octahydro-2H-quinolizin- 1-yl]methane) is found mainly in Lupinus and Anabasis plants [14–16] and is of interest as a pharmacophore. For example, lupinine has been reported to inhibit the fungal metallo- protease Mpr1 [17]. Likewise, compounds with octahydro quinolizine nuclei have been reported as ligands of serotonin receptors 5-HT3 and 5-HT4 [18]. Similar compounds have also been shown to exhibit antimalarial [19,20], antitubercular [21], and anticholinesterase activities [22–25]. The quinolizidine nucleus of lupinine is simultaneously bulky and highly lipophilic and can be used for replacement with heterocyclic groups, or the ring could be connected with bi- and tricyclic groups to develop AChE inhibitors [25,26]. On the other hand, it should be noted that simple esters of lupinine have also been reported to exhibit some anti-AChE activity [23]. We synthesized 13 lupinine-based triazole derivatives and evaluated them, together with 50 additional commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. This screening resulted in the identification of some novel AChE inhibitors, with the most potent being compound 15. Molecular docking allowed us to characterize 15 for its potential interaction with the AChE binding site. We also developed a structure-activity relationship (SAR) model to predict AChE inhibitory activity of lupinine esters. 2. Results and Discussion 2.1. Chemistry We synthesized three novel compounds by reacting lupinine azide 1 with termi- nal alkynes 3-(prop-2-yn-1-yl-thio)-1H-1,2,4-triazole-5-amine (2), (2R,2S)-3-methylpent- 4-yne-2,3-diol (3), and 3-ethoxy-4-(prop-2-ynyloxy)benzaldehyde (4) under the condi- tions of Cu-catalyzed 1,3-dipolar cycloaddition. As a result, (1S,9aR)-1-[(1,2,3-triazole-1- yl)methyl]octahydro-1H-quinolizines 5–7, which contained various substituents at position C-4 of the 1,2,3-triazole ring were obtained (Scheme 1). Structures of the synthesized compounds 5–7 were confirmed by 1H and 13C NMR spectroscopy, mass spectrometry, and two-dimensional COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C) NMR spectroscopy (see Supplementary Figures S1–S6), which established the homo- and heteronuclear spin- spin couplings. In describing the spectra, we used the numbering of core atoms shown in Scheme 1 structure 5. Reaction of lupinine azide 1 with a diastereomeric mixture of alkyne 3 resulted in a mixture of unseparated diastereomers 6a,b (ratio 4:1, as in initial alkyne 3). Relative stereochemistry and the ratio of diastereomers 6a,b was determined by analysis of 1H NMR data. The proton on the substituent at C-15 of the triazole ring (H-19) appeared at 3.88 and 4.05 ppm (multiplet signals). The other triazole derivatives 8–17 were synthesized as single compounds, as previously described [27–29]; however, this is the first report of their effects on AChE activity. MMoolleeccuulleess 22002233,, 2288,, x3 3F5O7R PEER REVIEW 3 3oof f1155 N NH 24 1 H N 9 10 2 2 N 3 S 8 6 4 N 22 N 2 NH 7 5 2 23 HN 18 21 S H N 19 16 11 20 17 15 12N 14 13 N N 5 H OH CuSO . 4 5H2O, H3C C C N NaAsc, N N OH CH3 19a DMF, 75oC 19a 3 H 18 20 H C 19 OH H C H + 20 OH 3 19 H H N 17 H3C 22 C N C 17 N HO N 22 C 1 N H3C N N HO 21 6a H3C N N 21 O 6b 27 O H H3C 26 O O25 N 29 4 CH3 O 21 20 28 22 19 O H 18 H 23 24 17 28a N 7 N N SScchheemmee 11.. SSyynntthheessiiss ooff qquuiinnoolliizziinnee--ttrriiaazzoolleess 55––77.. 22..22.. BBiioollooggiiccaall Reessuullttss Wee ssccrreeeeneed oourr lliibbrraarryy ooff llupiiniinee deerriivvaattiivveess ffoorr ttheeiirr eeffffeeccttss oon AChE aaccttiivviittyy iin ccomparriisson wwitihth ggalaalnantatmaminine,e a, kankonwonw AnCAhCEh iEnhiinbhitiobri tuosreuds iend thine ttrheeattmreeantmt oefn mt ioldf mAlizld- hAelizmherim’s edri’sedasisee. aTshe.e Tlihberalriyb rwarays wasaseamsbselemdb flreodmfr towmo tsweots soeft scofmcpoomupnodus:n tdhse: tfhirestfi srestt csoent tcaoinetadi n1e3d lu1p3inluinpein-binasee-bda tsreidaztorliea zdoelreivdaetriviveast i5v–e1s7 5(–T1a7bl(eT a1b),l ean1d), tahned sethcoensde csoent dcosne-t tcaointeadin 5e0d l5u0pliunpinine-ibnaes-beads edstersste 1rs8–1687– 6o7f odfidffiefrfernetn ctacrabrobxoyxlyicli cacaicdids scoconntatainininingg aalilipphhaattiicc,, aromattiicc,, or heterocyclliic moiiettiies.. SSttrruuccttuurreess ooff tthee llupiiniinee--bbaasseedd eesstteerrss aarree shown iin Supplementary TaabblleeS S11. .A ACChhEEi ninhihbiibtoitroyrya caticvtivtyitoyf oafl latlrli atrzioalzeodle rdiveartivivaetsiv, aens,d asntdru sctruurce-s toufrtehse oaf ctthive ealcutipvien ilnuepidneinriev adteivrievsaatirveesh aorwe nshionwTnab ilne sT1abalneds 12 ,arnedsp 2e, crteivspeleyc.tively. Due to the small number of compounds, it is difficult to draw definite conclusions on Tstarbulcet u1.r Ae-CachtEiv inithyibreitloartyio ancstihviiptys .oHf louwpienvineer,-bitasceadn tbrieanzoltee detrhivaattrievpesl.a cing the methyl group in compound 12 with a methoxy substituent resulted in AChE inhibitory activity (compound 13), whereas increasing the numNber of methoxy groups in the benzene ring to three resulted in a loss of activity (compound 14). On the other hand, the presence of a benzyloxy group in the para position of theHbenzene ring resulted in the maximum activity among all derivatives (compound 15; IC50 = 7.2 µM). Compound 15 has a 4-benzyloxyphenyl moiety, which was also preseRnt on seveNral other previously reported AChE inhibitors, including compounds A–C with IC5N0 vaNlues in th e micromolar/submicromolar range [30–32] (see Compd. R chemical structuIrCes a(µnMd A) ChE iCnhoimbiptodr. y activity in TableR3 ). AChE inhibitorIyCactivity of 50 50 (µM) compound 15 was comparable to that of galantamine (IC50 = 8.2 ± 1.3 µM). S N A visual inspection of the ester lupinine derivatives showOed that a compound should 5 contaNiHn a suffici1e0n1t.l1y ±b u2l3k.9y R group1(3e .g., compounds 25, 44, and C6H43), or the link51er.8b ±e t9w.2e en N the ester oxygen and the terminal hydrophobic moiety should con sist of four chemical bondNsH(2e .g., compounds 22, 43, and 49) for it to exhibit AChE inhibitory activity. Compound 25 (IC50 = 24.4 µM) bearing a 6,6-dimethyl-6,7-dihydrobenzofuran-4(5H)-one group was the most active of the lupinine-based esters. Noticeably, the 3,3-dimethylcyclohexanone substructure in this fragment was also present in previously reported AChE inhibitors [33]. Molecules 2023, 28, x FOR PEER REVIEW 3 of 15 N NH 24 1 H2N 2 9 10 N 3 S MoM 22 lecoulelecsu l2e0s2 230, 2238,, 2x8 F, xO FRO PRE EPREE RRE RVEIEVWIE W N N 8 6 4 7 5 3 o3 2 NH2 23 f o1f5 15 HN 18 21 S 19 H N 16 11 20 17 15 12N N N NH 24 H24 N 10 114 1 NH H N2 9 N13 2 2 3 S 2 9 10 NN N3 S N 22 N 8 6 4 8 6 4 5 2N NHNH 22 N 7 5 2 2 2 23 23 18 7 5 H HNHN21 18 OH 21 S S H N N 19 11 19 16H 17 16 11 CuSO . 4 5H2O, 20 15 H C C C 20 17 15 12N 3 12 N N 114 13 NaAsc, 14 N3 N N N OH CH3 19a N N DMF, 75oC 19a 5 3 H 18 5 H 20 H H OHOH H 19 OH 20 3C C H + OH H C 19 H H N 17 3 17 CuCSOuS O. . 54H 5OH,2O, N H CH3CC C C 22 C N C C C N 4 2 22 NN NaNAsaAsc, 3 HO N c, N N N 1 N OH CH3 H139aC N N HO N N DMDFM, 7F5, o7C5 oC OH CH3 19a 21 19aH H3C 18 19a O 3 3 20 H 18 6a H 21 20 6b H CH3C 19 OHOH H + 20 H 19 C C H + H20 C 19 3 OHOH H H N 3 17 H C 19 7 H H 22 17 C 3 C 1 17 N NN 22 C N N C 22 HOHO 22 C C N N 1 N N 1 O HH3CH3C 21 N N N 27 N H C HOHO 6a3 26 H CH3 3C NN N 21 N 6a 21 O 1 O 2 25 N O O 6b6b 4 CH 29 3 O 21 20 H 28 27 O O H H CH 27 232C3 26 19 O H 26 18 H O2245 17 N N O O 23 2298a O25 N 4 4 CHCH3 29 O 21 20 3 O 21 20 28 28 N N 22 19 O 7 H H 22 19 O18 H 18 Scheme 1. Synthesis of quinolizine-triazoles H5–7. 23 24 17 28a 23 24 17 N 28a N 7 N NN N 2.2. Biological Results 7 SchSecmheem 1e. S1y. nSythnetshiess oisf oqfu qinuoinliozlizine-triazoles 5–7. We screened our librarinye o-tfr ialuzopleins i5n–7e. derivatives for their effects on AChE activity in co2m.22.p .B2a.i orBlioisogolioncga iwlc Railte hRsu eglstuas ltasn tamine, a known AChE inhibitor used in the treatment of mild Alz- heimeWr’seW sdec irseceeraneseeend.e odTu hore ul irlb ilrbiabrrrayar ryoyf woluf aplsui npaiinsnseien dmee drbielveraidvti avftreiovs emfso rft otwhr eothi res eierft fsee fcoftesfc tocsno o mAnp CAohCuEhn aEdc tasi:cv titithvyie ti ynf i irns t set coconmctoapminapreiadsro i1nso3 wn l iuwthpi tgihna iglnaanelat-abnmatasimnedein, ater ,k ian kzonowolenw AdneC ArhiCvEha iEnti hviniebhsiit bo5ir–t ou1r7s ue (dsTe iadnb itnlhe et h 1ter)e, t aratenmadtem nteth noetf osmef icmlodin lAdl A zs-lezt- con- tahienhiemediem r5’es0r ’dlsui sdpeiaisnseeian.s eT.-h bTeah sleieb dlria berrysat rewyr asws 1aas8s –sa6esm7se bmolfeb ddle ifdfrf oefmroe mntwt tocw asore btssoe xtosyf olcifoc mcaopcmiodpuson udcnosd:n stth:a etinh feiinr fsgitr ssatel tis peht atic, arcomncotanittniacei,nd eo 1dr3 1hl3ue tpleuirnpoiinnceyin-cbelai-cbs eamdse otdri ietartziioaezlseo. ldSeet rdruievcraitvtuiavrteivs e 5os– f15 7–th 1(e7T a(lTubalpebi ln1e)i ,n1 a)e,n- abdna tdshe etdh s ee cssoetencordsn sdae rts eec tos ncho-onw- n in Molecules 2023, 28, 3357 Sutapitnpaeilndee m5d0e 5nl0ut apluriynpi inTneian-bela-ebs eaSds1e .ed sA teeCsrtshe rE1s8 –1in68h7– 6iob7f i otdofi rfdyfei frafeecnrteti vncitat rycba robxfo yaxlilycl litacrc iiaadczsiod clsoe nc dotaneitrnaiivinnagitn iagvl eiapslh,i pa4htnioacdft, i1 c5s,t ruc- tuareoasmr ooamft iatcht, ieco ,r a ochrte ihtveeert oelcuryopccilyniccil nimce o mdieoetirieeitvsi.ea sSt.it vrSuetcrsut uacrteus rs eohsf o otwhf enth lieun pl uTinpaiibnnleien-bse a-1bs eaadsne deds 2tee,s rrtsee rsaspr eae rcseth isovhweolnyw .in n in SuSpupplepmleemnetanrtya rTya Tbaleb lSe1 S. 1A. CAhCEh iEn hinibhiitboirtyo rayc taicvtiitvyi toyf oafl la tlrl itarziaozleo ldee drievraivtiavteivs,e sa,n adn sdt rsutcru- c- Ttaubtures of the Trlaeebs 1 loe. fA1 t.hCAehC aEhc Eitanicvhteivinihb leuit ibipolutorinypi ryi annceine derivat act tidiveirtyiv oaft liluvpeipvisni enasir neae rs-ehb soahsweondwine-based tr itnnr i iaTnza oTblaleb sdl ee1sr a i1vn aand 2, respectively. iazole derivativdets i.2v,e rse. spectively. TaTblaeb 1le. A1.C AhCEh iEnh inibhiitboirtyo rayc taivctiitvyi toyf Noluf pluinpiinnei-nbea-sbeads etdri atrzioalzeo dlee rdievraitvivateisv.e s. N N H R HNH R R N N N N N Compd. R N NN IC50 (µM) CoCmoCpmodmp.pdd. . R R IC 50 (µM) Compd. R IICC5I0C(µM) 50 (5µ0 (Mµ)M ) S N S N N O S NH O O 5 NH CHCH CH3 3 MoMlecoulele5csu l25e0s 52 230, 2238,, 2x8 F, xO FRO PR PEERN REV NH 101.1 ± 23.9 13 51.8 ± 9.2 EER REVNIEWNIE W 1100111.01.11 ±.±1 2 ±23 3.29.39 .9 13 1133 3 5511.8.58±1 ±.894 9 .±2o.42 f9 o.12f5 15 MoMlecoulelecsu l2e0s2 230, 2238,, 2x8 F, xO FRO PRE EPRE ERRE VREIEVWIE W 4 o4f o1f5 15 Molecules 2023, 28, x FOR PEER REVIEWNH N H2N H2 2 4 of 15 MoMMleocoulleelcecusu ll2ees0s 22300,2 22338,, , 2 2x88 ,F, xxO FFROO PRRE PEPEREEE RRE RRVEEIEVVWIIEE WW 4 o44f oo1ff5 1155 O O O COH3CH3 CHCH3 6 6 6 NN.NA.A.. A. . 3 14 1144 O O O NN.A.NA. .. A. 6 6 N.NA.. A. 14 CH 14 O 3 O N.A. O O COOHCOH3CH N.A. 6 N.A. 14 H CH3C 3 3 O O CH CHC3H 3 O CH 3 N.A. 3 3 6 N.A. 14 H3CH3C 6 6 N.A. 14 OO O COH N.NA..A . O O N.A. 14 H C O O COH3COH33 N.A. 3 O CH 7 7 O O CH O O 3 73.743 ±.4 1 ±6 .176 .7 O 15 15 H3C O O CHC33H H C 3 3H C O O CH 7.27 ±.2 0 ±.2 0 .2 7 7 O O O O O 73..7 3 43 ±±.4 1 ±6 ..176 .7 15 155 3 OO O OO 7.27.±27 0±.2. 20 ±.2 0 .2 7 O O O O OCHCH O CH 3 3 73.4 ± 16.7 15 CH 3 O C3H3 7.2 ± 0.2 87 877 ---C---HCOHO CH 2HOCHH3 3 O O O 737.7N433 .±.NA44 1 ±..±A6 1.1.766 ..77 151 155 O O 7.277 .±.22 O O 2 0 ±±. 2 00 ..22 98 98 8 ---C-----(-—CC-O-(H-HC O OCH2)HOO2)HCOHO HH3 N 3 2 H NNN.NA..AA..A...A. . O O 3 2 O O 918 09 ---C--(-CC---10 ---C( H-H)-( -C)(HH2OHCH3 O(COC3H)C(H2COH3C)3H)2HOC3)H9 NN.NA.A..A. . O O O 98 —3C2(3C2H3)22O2H2 N2CN NN.NA.A..A. . CHCH 8 3 108 1 0 ---C---(C-----(H-C--(H)-COH)O(OC32H)O2(HOCHH) C)NCN NNN.NA.NA.A..A..A. .. 16 16 O O 3 1411.421.2 ± ---C32H2 OH 2 2 N.A. HO ± 15.135 .3 3 2 2 2 2 HO O 9 ---C(C— O CH H ) OH N.A. 16 16 O HO 3CH3 10 141.421 ±.2 1 ±5 .135 .3 191 1911 0 ---C--(--C--H(C3)2O(C3 H2 2)2CN N C(CH (HC3H)23O)2OH NN 3)2O(CH2)2CN N..NA.A.A... A. .. 161 O HOO 6 CH3CH3 CH3 H C 1411.241 10 ±.21 ±5 .315.3 11011 101 ----C--(C(HC3H)23O)2(OC(HC2H)22C)2NCN NN.NNA.NA...AA.. A... HH3CO 3 CHCH3 CH 161 16 CH3 6 H C CH3 3 CHCH 3 141.2 ± 15.3 11 CHCH N.A. H C 3 HOHO H3O CHC3CHH 3 3 1414.21 3 .±2 1±5 1.35 .3 3 3 1121 1 121 1 1 3 CHCH3 N.NN.A. 3 N.A.... AA .. H3C CH . CH 17 17 O O CHC3H 3 H C 3 3 68.618 ±.1 2 ±.2 2 .2 12 12 CH3 N.N 3 A.. A. 17 17 OH3CHO3C CHCH CH 3 3 3 O O 68.618 ±.1 2 ±.2 2 .2 12 CHCH CH 3 N.A. 17 O O O 68.1 ± 2.2 3 3 121 122 C C N.NN...AA .. 171 177 O O O O 12 C C N.A. 17 686.816.61±88 .±.121 .2 ±2±. 22 ..22 O O C O CCCCompound 6 was present as a mixture of diastereomers 6a,b (ratio 4:1). N.A.: no activity was observed at the highest concentration tested (150 µMN).N The mechanism of AChNENinhibition was determined for the most active compound 15. The Lineweaver–Burk recNHiprocal plot (Figure 1) revealed a series of lines converging on the same point near theHxNH-aN NxHis, indicating that 15 caused a mixed type of inhibition, as expected for dual binding sOiteHOinhibitors of AChE [34,35]. Lupinine and all synthHeOsiHzOed derivatives (5–17) were evaluated for their cytotoxicity in vitro using human THP H O O-1 mORonRocytic cells. These compounds had no cytotoxicity when Compd. R tested at conc entrations uOpOtOo O5 O0RµRM. Thus, the lupininRe derivatives reportedICher (eµcMou) ld be Compd. R 50 CoCmopmdp. d. R R used for fu r the r biologicaOl evaluation in cell cultureRa nd in vivo models. IC50 (µM) 22 22 39.359 ±.5 7 ±.2 7 .2 R R R ICI50C (5µ0 M(µ)M ) Co2m2 2p2d . R CHCH 39.359 ±.5 7 ±.2 7 .2 OOO R RR O O O O 3 3 O OR IC50 (µM) CoCCmoo2mpm2d pp.dd.. R RR CHCH 3 O O OR IC50 (µM) O O CHC3 3 H 3 9.5 ± 7.2 3 OR R ICI5C0 22 39 44 68 (5.90µ (M±µ 5M). 8) 2252 22 52 O CCHHC33H3 2349.23.4549 ±..±.455 3 7 ±±±..4 2 37 ..42 44 O O 68.9 ± 5.8 7 .2 44 44 68.698 ±.9 5 ±.8 5 .8 25 25 O CHCCCHHH3 24.244 ±.4 3 ±.4 3 .4 O O O 3 33 44 O O O OO 68.9 ± 5.8 25 O O CH3 24.4 ± 3.4 O O CHC3H 444 444 686.6988 .±.99 5 ±±. 8 5.8 252 255 3 Cl 242.244 .±.44 Cl 3 ±.4 3 .4 H C O O 5.8 O ± 3.4 H3C3 O O CHC3H3 Cl Cl H3CH3CO O O OCHC3H3 41 41 O OO Cl 99.949 ±.4 1 ±2 .132 .3 49 49 H C O O CH 1111.131 ±.3 1 ±2 .152 .5 41 41 NHNH Cl Cl 99.949 ±.4 1 ±2 .132 .3 49 49 3 3 H C O O CH 111.131 ±.3 1 ±2 .152 .5 41 NHNH CCl lC Cl 3 3 Cl l 99.4 ± 12.3 49 H3HC3C O O O O CHC3H3 111.3 ± 12.5 414 4 H 11 3CNHHH 3CO O Cl 99.4 ± 12.3 49 CHCH 111.3 ± 12.5 H3C 3CO O 999.49 .±4 1±2 1.32 .3 494 9 3 3 CH 11 CH 11.31 .±3 1±2 1.52 .5 43 43 N NNHH Cl H3C O Cl Cl 89.869 ±.6 7 ±.7 7 .7 64 64 3 3 CH 74.714 ±.1 6 ±.8 6 .8 43 43 H C O 89.869 ±.6 7 ±.7 7 .7 64 64 3 74.1 ± H CH C CHCH 74.1 ± 6.8 6 .8 3 43 H3HC3C O O 89.6 ± 7.7 64 3 3 3 33 H3CH3C CH CCH3 H CH3 3 74.1 ± 6.8 434 433 898.8699 .±.66 7 ±±. 77 ..77 64 3 74.1 ± 6.8 DuDeu toe ttoh eth sem samlla nllu nmubmebr eorf6 oc4of6 4 H mco pmopuonudnsd, ist, H 3iCt is difficul CH is Cdifficult tot tdor ad3wr CH a wde dfienfiitnei ct7eo4 nc7.1oc4 nl.±u1c s6l±iu. o86sn .i8os nosn o n strsutcrutuDcrteuDe-rau etcoe-ta ittcvohti iettvyh si etmry es almraleltal inaolltun inomsuhnbmsehbri peorsf .oc Hof mcoowpmoepvuoenrud,n siHtd, 3icHsCta, i3ips. However, it can 3bniCste db insei ofd fntiiecofdfutie clttduh t laCottht H t 3 dCaro3eHrt adp3rw erl aap cwdliaen cdfgiien tfgihitn eetih cmteeo enmctochelnyutchlsl yiguolrs noigosur nopsun op n ins ticrnsuo tmccruotDupmcrouteupue-ro anteuocd-tan ti1cvhdt2ie it 1v yws2im tr iywetah lrlai eltta hlni ao mutanim oesmhtnbheisepohtrhsx io.poy fHxs sc.y ouH wbsmousewptbviosteutuvrie,tne unidrtet, s cnir,at te in ctsr a uiebsnlse t dub enildeftof e ntiidcenou d tiAlen ttd h CtA oathh tCdE arhr etaiE pnrw elhiap nidcblhiaeinitfcbgoiiinr ttiyoght er etay h ccm oetai necvmttcihitlevuyyti hslt( iyygco olrn( omgcsour -ompnu - p pionsput irocnnuouDd cmcn tuo1DuDdp3emru uo) 1et,ep3ueo -w a) ot ntt,ocuo hdwt nteiet vh1hr dsie2eem ta 1yr sswse2ma mr a ilienwlsata lh nclailil nrlut anehincmo aur umnasembmi saenmhsbtbrgihie enp otrtrghsfh x o . oceot yfHohf xn cmcseyououo n wpmmbsuouespbpmutvbeoioenstbruuutr deio,nent rsfiund dt, om etsics ftn,a,r e m iiteinst tsh r eidbiuseostie lsh xdftd ufoeyniiilfdxc fotfgfuey itirciedcl nogutdu u rtil Alntotp h t u CtsdoAao phri t dnCasd Er r whriet anhaipE wn wdetl ah ie b dncidefebiihe enbnififtgiiebziontnne ieritinz hytotcee ero an y crncmcoei octna iernlcvguitcctnhi lsitltuvguoiyos i ls tttn i(iohgycos rr not n(oeohmscseunr o o oe-p mnen - rseptisrsnosuetptu rlscrcotnuutoeuucdlcmdtnrt eu 1udpid3r-nro ae) 1e ,iuc-3a- nawtan) i c,lcvda hotwtii iestvlv1yshroi2i t estro yaysrewf s e rl ro aaaieietnftsclhl ia ctaaoi itrntacvniieoct oisaimrtnvhnysesiisea tnhph(tyschgisii popn. o( tsmHcgshx.o. ye otHpHmh wnosoeopuue wwnobmnvuuesdeebvtmnvr iee,1tde bruri4r t ,eo,)1 ci.rnif4 tat Oot)m cnc .fa rna eObemnn tset hn buehb no telethtxo h nenoyotedoexot gdh toytieree nt todgdhr u rAe tahtophrhtCau saarhn hpteita dn Esrprn e, e ilt dpinahtpnhc, lelt haiaeh tnbcih cebigpien nibn r ttggepoehz s nretrtehyenhz mnse eaec n mercmenetit cnhei oervetgytfi hinh lotta yygogf l l rb tta( gogohce ruo rbnrtoomhpe-uuenr p- ep-e zinrypezi linosconryuoxe lcmolscyntouox edmpgmlydt ro1 e popgu3idonuor)n u,o pui dawnun n i pdl1hdnao2 e si1t l1rnsowh2e2 s eao tiwswh tsf ph eioiaatn tfhracph ca t aa r miaracvpe a taimeom itsvptsyhieieion ttot(siyhghcoxi o otoynt(ixhmcox oysoeynpum f ns sbotuupuhsfbm tobnetisuhst dbtubtnei ieteet 1durubn4 oezet)1 fn.ne4r tmnzOte) .eresr eeun Oetr sselhtiuntun heor llgedttixtneh ey ordiged entg hsi orrinuAenot hslr uCAt AueehplrCdCtas Ee hh nii dnnEaidEn n ,it t ihnhidhntni he,ehbth eh tbiiimht bebeopei niatrrmt oyzxoepre siarmyanyxec n esiautmae cicrmcvenitutn iici tvomvegayfi ict toyt(aoyicf cv o(tb(taichmciet voroybnemi-m et-eyn- - - apzmroyapepuozmlosoonyuuuxodglloynnt e1dxa dggd3ly 1lr)1 a ,3oigd3 lnw)lu)re , ,o dpr ahwwui evlihprhonaie esv tiratirsnaevhse t ao eeatinvshf s p eiceia(nanrs ccrpec octa(raairmc versepoaaiiponmt ssyposiginp ionu t(tgosicgnhoi ou tdettnhminh on e1deonpu 5 n fn om;1 ou tu5IhfmbCm; ne tIdhb brCb e eo=1er rf bn4 o 7om=)ezf..f n2e m7eOm50 n zt.µ2eheneMn to tµrhthexih)Mon oy.re xgx iC) gny y.or ro g tgCeogmh sruroeuoeopmrulsuo stuh50 pep uildasostn ne ui ditindnhn ,t1e dti hthn5 t hbeh 1e eh te5 bhb na meepzhsnn e ramazenzsx ese eia4naemn x-rn ebeii4u ncm er-remignbinu n ezot gmgnoayf ct zlt taotoayhi xc vltrbtoyhtehieitx-revrnyey ei- et-ey praehzmprseryeuaehnlosmsloeyutnuxnelolgl dytytn eme lagd idlno mr l a oiindealnoult e iypladearo, it eslviylonwrsoa,is svtohtswsiha fvi o cteoheaihf fvsic p c aeta(hwicscrcv t aotaii(wi tvmcsvpyo iaiot ptamsy(ysolc is poua(t(oicomcln sooudnopmmn roo1deppu5fs or on;e1etu uhn5dIsnCn;ete dn1 dI5bo0C4 t 1 en)1=5.4no0 4 )7Onzs)=...e e 2nOv7Ons .eeµent2nvrh M raetµtihlrhn ) Mao.eego l tC ) toho.rho teetCehtmhrshre oue heprmrlp rat oh erhnpuedpaadonvnr nu,idei dndontv ,h u,1 di ttoe5htsh h ul 1eypehe5s rm al pepyrhsersa raepaexrssn esoi e4mepcarn-net obue4c creoed-metnb fe o e zodAaafnyf c CzlbaAatoyi eh vxbCblnEoyieeh-t xn-ynEy- - - zpyazhzlmpoyeyxlhnolooenyxx nlgyg y rm algog lroulrm ooipdeuuo etpiipyrne i, ti v iyntnwah, ttethihwhv ipeceha h sprip ca(ahw crrpao aa owm psps oaipotasssoil ioisuttanioinolo sndonopf ro 1otepf5hfs r ;te tehIh nsCbeet e 5 nb0bno tee=z nnn eo 7znzns.eee2 nnv srµeei vMn rrraeiginl)nr .agr goeCl trsrhoeuemestslhrutuep elldptortee rudidepnn v ri dienitnoh v 1uteith5oh s meluehy smaa mlxsyra eia amxpxr ieio4mumpr-mbtuoueerm dmante c z daAtayic cvlCtoAtiiihtvxvCyiEyit th-y yE ampaahmomenonognyn glag l mlaa ldllol e iddereitevyrrai,iv vtiwaavttehiivvsiec e(hssc o((wcmcooampmso ppuaoolnsuudonn d1dp5 r1;1e 55Is;C;e InI5C0Ct =50o 50 7=n=. 277s ..µ2e2v M µµeMr)M.a l)C) .. ooCCmtohompemrop pupoonruudennv d1dio5 1u 1h55s a lhyhsa aasrs e 4aap- ob44r-e-btbneeezdnny zzlAoyyxlClooyhxx-yEy- - phppehhneeynnl yymll momieootiiyeet,t yyw,, hwwihchhiicc hhw awwsa asas l saaolls soop rpeprsreesnseetn nott noo nns e svseeevvreaerlr aaoll tohotethhre erpr rpeprvreeiovvuiioosuulyss llyyr e rpreeopprotoerrdttee ddA CAAhCCEhh EE Molecules 2023, 28, x FOR PEER REVIEW 4 of 15 MMMoloeocule Molellececuculul sle es2s 0 22200322,3 32,, 8 22,8 8x,, xFx O FFOROR RP PEPEERER RR REREVEVIVEIIEWEWW 4 44o foo f1es 2023, 28, x FOR PEER REVIEW 4 of f 1 511 55 Moolleeccuulleess 22002233,, 2288,, xx FFOR PEER REVIIEW 44 5 ooff 1155 O CH3 OOO 6 N.A. 14 O CH O O CH CCH3H3 3 3 N.A. 666 6 NNNN..A. CH3 A..AA. .. 1114144 4 3 O CHO3O NN. 6 N..A.. 14 H N 3C OO NN.AA..AA.. .. OO COCH . . OO CH3 .A. H 3 H H3C3C CHH3 O H3C3C CH 3 O 3 CH33 H33C OOO 7 OO O OO 73.4 ± 16.7 15 O CCHO CH O CH3H3 3 3 7.2 ± 0.2 7 OO OO 77 7 OO 7773 CH3 733.3.4.4 ± 3 O CH .4.4 ± ± ± 11 16166.6.77..7 7 1155 OO 77.2.2 ± ± 0 7 O O 73.4 ± 16..7 1155 OO 77..2.215 7.2 ± ± ± 0 0.0.2.2 .2.2 O 3 O O 0.2 8 ---CHO2OHCCHCH3H3 N.A. CH O 3 9 888 8 ---C-(-- 3 C------C CH O --- -H -C- CCH3H)H2O2OOHHH33 NN.ANN.A...AA.2 .. OO 10 989 9 ---C(C-H-----C-3---- H2OH N.A. -)CC2(OC( CCH(CH322H)O32)O2H)O2HCHN NN.AN(CH ) OH NN.A.. ..A.AA. . .. OO OO 9 3 2 . 16 OO O CH3 141.2 ± 15.3 110910 ---C(CH3)2OH N.A. -----C-C(C--(--CH--CH3(()C2)OHO(C33())C2H2OH N..A O 100 -----C-C(C(CHH3) )2 O(CHH2)22)CN 3 2 2)22CCNN NNN.A..A. . .. HO A. 16 CCHH3 3 141.2 ± 15.3 11 --- 16 141.2 ± 15.3 10 ---C((CH3 33))2O22O(((CCHH2) 22))2C22CNN N.NAN....A A... 1166 HHOO CH CCHH3 3 3 1141.2 ± 16 HO CH 14411...22 ±± 1 155.3.3 HHCO 33 15..3 11111 1 NNN.A..AA. 3 .. HO CH3C CHCH CH3H3 H C 3 3 11 CH N.A. H C 3 N..A.. H3H3 3C3C CCHCH3H333 12 N.A. 17 O H33C CCHH CH3 3 CCHH 3 CCH3H3 3 68.1 ± 2.2 3 3 1112122 2 CH33 NNNN..AA..AA.. .. 1117177 7 OO O 6688.1.1 ± ± 2 2.2.2 Molecules 202 3, 28, 3357 O . . O 6688..1.1 ± 12 N.A. 17 O O 5± o 2 f2..12.52 O C OO 68.1 ± 2.2 O C CCC TabCle 2. AChE inhibitory activity of lupinine-based esters of different carboxylic acids. Molecules 2023, 28, x FOR PEER REVIEW N 5 of 15 NNNN N H inhibitors, including compOo HuHHHHnds A–C with IC50 values in the micromolar/submicromolar range [30–32] (see chemicaOlO OOstructures and AChE inhibitory activity in Table 3). AChE inhibitory activity of coOmpouORnd 15 was comparable to that of galantamine (IC50 = 8.2 ± 1.3 Compd. R µM). OOO O RRRR R IC50 (µM) CC2Co2omompd. R IC50 (µM) O ComRpd. R IC50 (µM) CCoom mmpppdpdd.d... RRRR A visual3 i9 n . 5 s ±p 7e.c2t ion of t h e ester lupinine derRRiRR v atives showed tIhICICICaC50t5 0 (a( µ50 (µ( µµcMMMoM)m) ) ) 22 50 pound should Co2mp 2222 2 d.. —(CH O R2)3C coCnHl 39.35 39± 7.2 O I 50 ( ) 3 tain a suffic3i39.95..5 5± ± ±7 7.72..2 2 O R IC50 (µM) 22 9e.n5 t±l y7 .b2 ulky R group (e.g., compounds 25, 44, and 64), or the linker between OO CHC3CHH 39..5 ± 7..2 OO OO 25 OO the eCC CCHsH 3Ht3 3e3H3 r oxy2g4e.4n an 44 OO 68.9 ± 5.8 CH ± 3.4d the terminal hydroOphobOiOcO moiety should consist of four chemical O 333 444 686.89.9± ±5 .58.8 2252255 bondCCHH3 255 3 CsH 33(e.g., 2c4o.242m242±44.4.4p4..4 34 ±o.± ± 4± 3u3 3.3.n44..4 4d s 22, 4434, 4 a 44 nd 49) for it to exhibit AChE in6h66688i 88.b9... 99 .9i ± 5.8 O ±t ±o 5 r5. .8 ± 5..8y8 activity. Com- 25 Opound 25 (IC50 =24 2..44 ±.4 3 µ..4M ) bearing a 6,6-dimethyl-6,7-dihydrobenzofuran-4(5H)-one group OOO H C O O CH OwasC lthe most active of the lupinine-base3 3 Hd CestOers. NOoticCeHably, the 3,3-dimethylcyclohexa- 41 Cl none CsCClull bstru9c9.t4u ±r e1 2i.n3 H3 C O O CH3 Cll this fra4g9m ent was aHlsH3 3oC3C pOrOesent OiOn CpCHrH3 H3C O O CH3e3 3viou1s1ly1. 3r e±p 1o2.r5t ed AChE inhibi- 4441411 1 NH torsC l[33]. 99.949±9.94..4 14± 3 2 ± ±1.3 12 3 12.23..3 3 4449499 9 11111.131.13±..3 3± 1 ± ±21 .12512.25..5 5 411 99..4 ± 12 NNHH Cl H C NHO TCChlle mech9a9n.4i s±m 12...33 4499 111..3 ± 12..5 3 NH Cl NH Cll of AChE inhibition was deterCmHi3ned for the1 m11o.3s ±t 1a2c.5ti ve compound H 43 HH3H C3CCC O O1O3 3 O5. The Linew89e.6a ±v e7.r7– Burk re6c4i procal plot (Figure 1) rCCeCHCHvH3He33aled a s7e4r.1ie ±s 6o.8f lines converging H33C O 3 4443433 3 on the same po8889i89n9.9.66.t.6 6 ± ± n ± ± 77 e 7.7.7a7..7 7r the x-a666x4644 i4 s , indicHa3tCing that 15 caCH CH 33 3 used a mixe7774d744.4.1 1.t.1 1 y±± ± p6 6.e . . . ± 6 6443 .88..8 8 o f inhibition, as expected for8 d9.u68a9±.l6 7b .±7i n7.d7 ing site 6i4n hibitors HoHH3HfC3C CAC ChE [34C,3CHH5]. 747.14±.1 6. 3 ± 86..8 3 3 3 CCHH3 3 Due to the small number of compounds, it His33 Cdifficult to dCraHw3 3 definite conclusions on structuDrDeDu-ueau ecet to tito vot hi ttthehy Due to the ees r s m s e msm lmat aalal i ll o l lln ln n unsuumu h mmm ibps bbeberee . rror H o ofof ofc fc wo cocomo emmvper, mppopoouo uiunutnn dncdds ad,sns i,, t bi e noted that repl s, it iti ti s isisd sd didififfiffifficficiucuculultlt ltt tt o toto od d drdrararaw aawcw di nw d ded gfeei fthe efinfinininititeit et m eec c o c ethy ocononncnclclcul llu sugissroioionounsnp sos onon n ins ctssrotturmrucutcpcDuttouruuerre-enea -ttd-acoa tc c1itttvth2iivie vtwi y itssty miyrt e hrrale ealllalllat a intmotiuionoemnsnthsbshiohepixirrpsp y o.ss H.ff.s HcucHoobowomswwtepiveteouvevureee,rn ri,,dt i itscrst ,ea ,c c isianattun niibls st ed structure-activit be bd eeni i nffo nffiotinioecct tudeAedl ldttC h tttthoahatE ad tr t rrie rnrapeewhplpail bldacaicectniofifnginirng ygtii h ttttahehc ccmtoivneitccthyll uuysions on e meth str ct r - cti i e meth (yslsyc iilglo grgnmorrssou-o oupunp p poinsuiitn nnrc u doccco mo1tmmu3p)rpo,pe wherea in compoou-ouaununcndntddi dv 1 1 i1212t ty2 ysw irrre2 wwnietc llhlaartionsh iitth hetta iia oa asm n imnmssehg i ipthsse.. Hnuomwbevere C woithm ap moeteuethithtpnohosoxodx.xyxyHy y s1 os ususw5ububbse,bstsv tsitcitetitu r iotrr , utou,e ,f u i ein t eiment t t cnncct ea ct ra n t tr ern hrs ee o bube not ssxueluty l elnt tdegoedr tt eioendud pA td iinn tt h AhsAC aaiCChn ttt h E r hrrt e Eeh p Eip en l i lil a nhba c nheicchb iinii n inbibzt g igoiett t orntot hee methyl group esnulttread tin AnC (hμE Minh)ibitoryhryry e yar imacantccigetvtit titvihvotiyit ttyl lyh rreoe repsiiuonl tced in a activity ( g(c (c(rococomomumm-p-- - pppoou oucunonmu2unn0d d d1 1 p 1313o3)3),u)), ) w,,n los w wwdhhh e hs1re e2eorr ae few asaa sisicttiereas i tn inhincnc v rcaceirr t reaem yeaasa sise (snicttiningh ongg o mgt t hx tt pheyhohe e enss u n nun numbudmssmb tt1it4umbibebtereue ) r ro er . onfoO fmttfn rof m mrme eteseshetthuth eohll oxttooexyxtdy hyg e girignrorr o uhoAupuaCpnsp hsdis nE i,in n t iih tnthehhe ebiip bbebrineieettnzosnzerrzyenen ecnae eercc i rttorniiiivfngn igia gtt yo tbto ot(e( hcc tnthorh-ermre e--e zyrlrper o erseoe xussyulunt legsultltdetde re odd1 di3 u n i)pin ,,n a w ia nalh o lletosohrrse ssoa posfso a fiiafr n acaacct ccriprtvteioivaivtsissyiititit in a loss of activityy ny i ( o (g c( n c(oc ctt oomho of the mmemppnpopoououmunu nbdnbde de1n rr 14z 1o4)e4.ff)n ) nd 14). .mO. e OO nernt tiOnn ht nhoogexx ryyoe gtsghurrreooltruue phdpsas s i n iniinnd t t,tth hhteehe e bmb eanxziemenuee m rriin agc tttiov th tthhee ootthheerr hhaanndd,, tthhee ittyrr ee amzrryoelnssougxl lyttae lgdl r doiineur paiv ilalnot sistvssh e oes f fp ( caocrctatmii vpiiottoysui t(n(iccodon m1 o5pf; oItuCh1ned 0 b= 0e1 n74.)z)2..e OnµeMn rtt)tihh.n eeCg oortmtethhsepuerrorl t uhhenadandn id dn1,, , 5 tttth hheeea ep p nprprzererseesenssneenc nreciceneo g ofo tfafo a abt hbebrneeen-ne-- zzyyllooxxyy ggrroouupp iinn tthhee ppaarraa ppoossiittiioonn ooff tth5h0ee bbeennzzeennee rriinngg rreessuulltteed iinn tthee ms p mmarre axa4ssi e-embnneucccneme z oo yafffl c oaatx ben- xxiimmuumm aacci tvtybiivi-vetinyitty --y phazeynllyoolx ym gorrioeutyp, iwin h tthiceh pwaarraaas p aolssiiotti iopnnr azamamymmoloononxngngyg g a ag alalrlll oll dl du dedepreeri rirviivnivava atattthivtiviveve seesp s sa( (c r(c(oacoc omompmmopppopoiutouiunuonndndd d eo1o s f 15ff1e ;tnt thte o bne n55 szeevneer a rrli inog 15; ;hI; IC IeCIC C5b05 0 e= = n= = 7z 7 7.e7.22.n.2 2 µe µ µ MµMrMiM)n).).g tC h rrroeeemrsss uuplllttorteeuddvn iiidoinnu 1tstth5hly eeh mamresaa paxxo iiimr4mt-ebuudemm nA z activity 15 . C n ll eri ti s (c ; I 5050 . )). .C Co oommmpppooouuunnnddd 1 11555 h hhaa asss s a a a 44--bbeennazyCzccylythotliiloxvEoxyii xtty-yy pahmenoylg malol idetyri, vwathivicehs (wcoams paolsuon dp r1e5s;e InCt o =n 7s.e2v µerMal) . oCthoemr pporu 4--benzylloxy--- ppphhheeennnyyyll l mmmool oiieiei etttyt yy,, , , wwwhhhiicchh wwaass aallssoo pprreesseenn5t5t00 oonn sseevveerraall ootthheerr pp - phenyl moiety, whiiiccchh wwaasss aalllsssoo pprrreessseennttt oonn ssseevveerrraalll oottthheerrr pprerernveevdvivio ioio1uou5usus lslshylyly ay rs re rerapeep pop4oor-ortbrtreteetdeednd dz A yAAAClCoChxhEyE- rrevii ChE ousslly rreporrtted AChhEE 50 10 25 5 0 0 0.00 0.05 0.10 1/[S] Figure 1. Representative double-reciprocal Lineweaver–Burk plot illustrating the mixed-type mecha- Fignuisrme o1f. ARCephEreinsehnibtiatitoinveb ydcooumbploeu-rnedc1ip5.rocal Lineweaver–Burk plot illustrating the mixed-type mech- anism of AChE inhibition by compound 15. Table 3. Chemical structures and AChE inhibitory activities of lupinine derivative 15 and previ- ously reported AChE inhibitors with a 4-benzyloxyphenyl moiety [36–38]. Name Chemical Structure IC50 (μM) N N N H Compound 15 7.2 O N O H3C H3C NH N N Compound A 11.8 N O 1/V MMoolleeccuulleess 22002233,, 2288,, xx FFOORR PPEEEERR RREEVVIIEEWW 55 ooff 1155 iinnhhiibbiittoorrss,, iinncclluuddiinngg ccoommppoouunnddss AA––CC wwiitthh IICC50 vvaalluueess iinn tthhee mmiiccrroo50 mmoollaarr//ssuubbmmiiccrroommoollaarr rraannggee [[3300––3322]] ((sseeee cchheemmiiccaall ssttrruuccttuurreess aanndd AACChhEE iinnhhiibbiittoorryy aaccttiivviittyy iinn TTaabbllee 33)).. AACChhEE iinnhhiibbiittoorryy aaccttiivviittyy ooff ccoommppoouunndd 1155 wwaass ccoommppaarraabbllee ttoo tthhaatt ooff ggaallaannttaammiinnee ((IICC50 = 8.2 ± 1.3 50 = 8.2 ± 1.3 µµMM)).. AA vviissuuaall iinnssppeeccttiioonn ooff tthhee eesstteerr lluuppiinniinnee ddeerriivvaattiivveess sshhoowweedd tthhaatt aa ccoommppoouunndd sshhoouulldd ccoonnttaaiinn aa ssuuffffiicciieennttllyy bbuullkkyy RR ggrroouupp ((ee..gg..,, ccoommppoouunnddss 2255,, 4444,, aanndd 6644)),, oorr tthhee lliinnkkeerr bbeettwweeeenn tthhee eesstteerr ooxxyyggeenn aanndd tthhee tteerrmmiinnaall hhyyddrroopphhoobbiicc mmooiieettyy sshhoouulldd ccoonnssiisstt ooff ffoouurr cchheemmiiccaall bboonnddss ((ee..gg..,, ccoommppoouunnddss 2222,, 4433,, aanndd 4499)) ffoorr iitt ttoo eexxhhiibbiitt AACChhEE iinnhhiibbiittoorryy aaccttiivviittyy.. CCoomm-- ppoouunndd 2255 ((IICC50 == 2244..44 µµ50 MM)) bbeeaarriinngg aa 66,,66--ddiimmeetthhyyll--66,,77--ddiihhyyddrroobbeennzzooffuurraann--44((55HH))--oonnee ggrroouupp wwaass tthhee mmoosstt aaccttiivvee ooff tthhee lluuppiinniinnee--bbaasseedd eesstteerrss.. NNoottiicceeaabbllyy,, tthhee 33,,33--ddiimmeetthhyyllccyycclloohheexxaa-- nnoonnee ssuubbssttrruuccttuurree iinn tthhiiss ffrraaggmmeenntt wwaass aallssoo pprreesseenntt iinn pprreevviioouussllyy rreeppoorrtteedd AACChhEE iinnhhiibbii-- ttoorrss [[3333]].. TThhee mmeecchhaanniissmm ooff AACChhEE iinnhhiibbiittiioonn wwaass ddeetteerrmmiinneedd ffoorr tthhee mmoosstt aaccttiivvee ccoommppoouunndd 1155.. TThhee LLiinneewweeaavveerr––BBuurrkk rreecciipprrooccaall pplloott ((FFiigguurree 11)) rreevveeaalleedd aa sseerriieess ooff lliinneess ccoonnvveerrggiinngg oonn tthhee ssaammee ppooiinntt nneeaarr tthhee xx--aaxxiiss,, iinnddiiccaattiinngg tthhaatt 1155 ccaauusseedd aa mmiixxeedd ttyyppee ooff iinnhhiibbiittiioonn,, aass eexxppeecctteedd ffoorr dduuaall bbiinnddiinngg ssiittee iinnhhiibbiittoorrss ooff AACChhEE [[3344,,3355]].. Compound 15, concentration (μM) 2200 Compound 15, concentration (μM) 110000 1155 10 5500 10 5 2255 5 00 00 00..0000 00..0055 00..1100 11//[[SS]] Molecules 2023, 28, 3357 6 of 15 FFiigguurree 11.. RReepprreesseennttaattiivvee ddoouubbllee--rreecciipprrooccaall LLiinneewweeaavveerr––BBuurrkk pplloott iilllluussttrraattiinngg tthhee mmiixxeedd--ttyyppee mmeecchh-- aanniissmm ooff AACChhEE iinnhhiibbiittiioonn bbyy ccoommppoouunndd 1155.. Table T3.aCblhee m3.ical structur Table 3. CChheemmiiccaall ss etrsuacntudrAe ChE inhibitory activities of lupinine derivative 15 an tructuress aanndd AACChhEE iinnhhiibbiittoorryy aaccttiivviittiieess ooff lluuppiinniinnee ddeerriivvaa dtivper e1v5i oaunsdly previ- reportoeudsAlyC rhE inhibitors with a 4-benzyloxyphenyl tive 15 and previ- ously reeppoorrtteedd AACChhEE iinnhhiibbiittoorrss wwiitthh aa 44--bbeennzzyy mlooxiyeptyhe[3n6y–l 3m8]. loxyphenyl mooiieettyy [[3366––3388]].. NaNmaeme Chemical Structure IC5 (µM) Name I0ICC50 (μM) 50 (μM) N N N N N N H CCComoommpoppuoonuudnn1 H dd5 1155 7.2 77O ..22 O N N O H C O H 3 3C H3C H3C NH N NH N N Compound A N 11.8 Molecules 2023, 28, x FOR PEER REVCICEoWmom popuonudnAd A N O 11.811.8 6 of 15 Molecules 2023, 28, x FOR PEER REVIEW N O 6 of 15 S N S N CComompoun Compopu d on Bd S N 1.2 un Bd B 1.2 H S 3C H N O O O 1.2 H3C N H O N N N O O NH NH NH NH O Compound C O 0.6 ComCpoomunpdoCund C 0.6 0.6 N O N H O 3C H3C CH C3H3 Chemical names: Compound 15, (1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)-1H-1,2,3-triazol-1- yl)methyl)octahydro-2H-quinolizine; Compound A, (E)-2-((2-(4-(benzyloxy)phenyl)hydrazineylidene)methyl)- 1-methylbenzimidazole; Compound B, (E)-5-((E)-4-(benzyloxy)benzylidene)-2-((5-ethyl-1,3,4-thiadiazol-2- yl)imino)thiazolidLinu-4p-oinein; Ce omanpdou nadllC ,s(yEn)-t3h-(e4s-(ibzeendzy ldoxeyr)i-v3-amtievtheosx y(p5h–e1n7y)l )-Nw-e(2r-e(( 2-emveatlhuyalqtueidn olfino-r4 - their yl)amino)ethcyyl)taoctroylxaLimcuiipdtyei.n iinn ev itarnod u sainllg shynthe cytotoxicity in vitro usingu hmuamns iaTzeHdP -d1 emriovnatoicvyetsi c (c5e–l1ls7.) Twheesree coemvapluoautnedds hfoard their cytotoxicity when tested a n THP-1 monocytic cells. These compounds ha dno n o 2.3. MolecudleacrryivDtoaottcoivkxieincsgi trye pwhen tested t atc ocnocnecnetnratrtiaotniosn up to 50 μM. Thus, the lupinine derivatives reoproterdte dh ehree rec ocuoludl db eb eu suesde dfo rfo sf uurtph erto b i5o0lo gμiMca.l eTvhaulsu,a ttihoen ilnu pcienliln e We pceurfloturmree adnmd iolecular do culture andn ivni vvoiv mo omdceklisn. g of compound 15 inr tofutrhteheAr CbhiEolobginicdailn gevsaitleu(aPtiDonB in cell code 4EY7) using the Rosetta ligaonddedlso. cking protocol implemented in the ROSIE server, which acc2o.u3n. tMs for full flexibilit 2.3. Moleoclueclaurl aDr oDckoicnkgin y of the main chain and side-chain residues in the vicinity of the dockingWaere pae[3 g We prf6o]r.mAedcc morodliencgultaor oduorckminogd oelfi ncogmrepsouulntsd, the best docking pose of compound(P1D5Bh caoddae c4eaErlfYcou7rlm)a tueedsdi nmigno tlteehrcefua lcRaeor sedenotetcarkg ilyniggoa fnofd− c2do4mo.0cp5koiknucgna d 15 1 into the AChE binding site lp/rmo5t ooilnc.toolI ntihmtehp iAlseCmphoeEsne tb,eitdnh deinin gth sei te ligand form(sPHD-Bb ocnoddsew 4iEthYr7e)s iudsuinegs Ttyhre3 3R7o(swetitah tlhigeapnadr tdicoipckaitniogn porfobtotcholb eimnzpylleomxyenatned in the methoxy oRxORySgOIeESnI Esae tsrovemrevrs,e) ,rw,T yhwrich1h2ic 4ha(c waccoictuhonumtns etfstoh rfo xfuyllo xflyegxibni)l,itayn odfP thhee2 m95a(iwn icthhatiwn oannidtr osigdeen-chain atoms of trheesreitdrsiuadezusoe lisen ihtnhe teeh rveoi cvciyincciiltneyi) toy(Ff oitgfh uterh ede o2d)c.okTcin r khgfu alrl efal e[x3i6b]i.l iAtyc coofr dthineg m toa ionu crh maiond aend side-chain iensge agreenae [r3a6l ]f.e Aatures of the l the b ccording to ioguarn md-obdilniendlgiinn rgge sreuslutsl,t s, site interactitohnes ebsceta sdnt obdceokcrinkesginp gpo onpssoeibs oelef fcoormth- kcal/mol. In this pose, t hoef cloigm pe-opAuoCnudhn Ed1 i5n1 hh5 aihbdia tdao rcaya clacacultcliauvtiletaydte odinf ticneortmfearpcfaeoc ueenn edenr1ge5ryg. oyFfo r−24.05 reference, thkec2aDl/mdioalg. rIanm tohfisli gpaonsde-, rethcep ltaiognradinn dftoe rrfoamcrtsmi oHn-sboontdaisn ewditohn dreosidues Tyr337 of −24.05 cking of compo (uwnidth the 15 into ACphapEratiirsctiispchiapotiwaotnnio inno fS oufb popbthloet benzy s H-bonds with residues Tyr337 (with the mh enbteanrzyloyFxloiygx uyar neadSn 7d.m emthet-hox-oyx yo xoyxgyegne na toamtos me m),s ),T yTry1r2142 4( w(iwthit h For co (Fmtpheatohrxaoytx ioyvx eoyxpgyuegnrep)n,o a)s,ne asdn, dPw hPeeh2me925o9 d(5we l(iewtdhit tthhw rtowe enoio tntrhiotergoregnpe ranet voaimtoousm soslyf otrfh eteph toerr ittarezidaozlAeo lchehe hEteeritnoerc-oyccylec)l e) hibitors (A– res( iCgF)uigwruei rteh2 )m.ponsible2 )To. hlTeechsueels aegr etgno for the ACeepnroaelrlo agfhE inle yafeatuantrauelosre gsoofu st hibitory a cotif h ttoe c vithyeloi o gm fl aignpado comn u-dbn-idnbdi1ni5dng[in3 6gs– it3se8i t]ein( Ttinaerbtaelecrat3ico)t.nioTsn hsce acna nb eb e docking compu diraegsrp toantisoinbslef oforrt htheese AliCghanEd isnhleidbittoordyocking poses ppoosuitniod am of ligand-receptor interaction asc toibvtitay of compounn d1e5 d1. 5wF.o iFtrho riren fr-teehfr-eeenArecCnech, eEth, teh 2eD 2 D binding sitedsimilarly to 15 (Figure 3), and with interface AChiaEg risa msh oowf lnig iannd-receptor interactions obietnaneiendreg doie nos ndin oddciokccianktiginn ggo fs otcrfo ocmnogpmbopiunondudinn d1g5 :1 i5n tino to −23.34 (comApCouhnEd isA s)h,o−w2n4 . i7Sn0u S(pcupoplmpemlpeoemunentnadrtayBr F)y,i agFnuigdrue− rSe27 S3. 7.6. 5 kcal/mol (compound C). 11/V/V Molecules 2023, 28, 3357Molecules 2023, 28, x FOR PEER REVIEW 7 of 15 7 of 15 Molecules 2023, 28, x FOR PEER REVIEW 8 of 15 Figure 2. DocFkiginurge p2.o Dsoecskoinfg cpoomsesp ofu cnomdp1o5unind 1A5 Cinh AEC(hPED (PBDcBo cdoede4 4EEY77)).. HH-b-obnodns darse ashreowsnh oinw bnluein blue dashed lines. dRaeshseidd uliensesw. Rietshidinue2s. w5 iÅthion f2.e5a Åc hofp eoacshe paorsee avries ivbislieb.le. For comparative purposes, we modeled three other previously reported AchE inhib- itors (A–C) with molecular topology analogous to compound 15 [36–38] (Table 3). The docking computations for these ligands led to docking poses positioned within the AChE binding site similarly to 15 (Figure 3), and with interface energies indicating strong bind- ing: −23.34 (compound A), −24.70 (compound B), and −23.65 kcal/mol (compound C). FigFuirgeu 3re. S3u. pSuerpiemripmopsoesde dodcokcikningg ppoosseess ooff ccompoundss 1155( g(grerenen),)A, A(y (eylleolwlo)w, B), (Bli g(hlitgbhltu bel)u, aen),d and C (maCge(mntag) einnt aA) iCnhAEC (hPED(BP DcoBdceo d4eEY4E7)Y. 7T).heT hceo-ccor-ycsrytasltlailzliezde dlilgigaanndd ddoonneepezil is sshhoowwnni nint htihnin red sticrkesd. Tsthicek rse. siTdhueerse esimdubersaceimngb rtahcein hgytdhreohpyhdorboipch poobcickepto ocfk eAtCohf EA CarheE vaisreibvleis. iTblhee. pTohseitpionsist iofn sthe co- crysotfatlhliezecdo- cdroynsteaplleizeild adnodn eApCezhiEl arnedsiAduCehsE croersriedsupeosncdor troes tphoenird “tonatthievier”“ nloactiavteio”nlo icna tihoen 4inEYth7e struc- ture4.E Y7 structure. It is noteworthy that the 4-benzyloxyphenyl moieties of all docked inhibitors and the N-benzylpiperidine fragment of the co-crystallized ligand donepezil occupy the same area of space in the hydrophobic pocket surrounded by residues Trp86, Gly120, Gly121, Tyr124, Tyr133, Tyr337, Phe338, His447, and Gly448 (Figures 2 and 3), although the bond- ing patterns of A–C differed from those of compound 15. These molecules formed H- bonds with Tyr124 (compounds A and C), Tyr337 (compound A), His447, Ser293, and Arg296 (compound B). In addition, the terminal cyclic moieties of these inhibitors, includ- ing the quinolizidine heterocycle of compound 15 and the indanone fragment of donepezil, match well with each other in the AChE binding site. It should be noted that for the investigated compounds, most of the above-mentioned residues surrounding the pocket are among the top ten residues tightly interacting with the ligands, according to the partial MolDock scores as evaluated by the “Energy Inspector” tool of Molegro 6.0 software, which is due to significant van der Waals interactions of the molecules with these residues. In terms of the reported AChE functional domains [37], the subpocket res- idues identified belong to important functional domains, including the catalytic triad (His447), the anionic domain (Trp86, Tyr337, Phe338), and the oxyanion domain (Gly121). Additionally, we obtained high partial MolDock scores for Tyr124 and Trp286, which are located in the peripheral anionic site at the entrance of the binding gorge [37]. 2.4. Classification SAR Model Lupinine derivatives containing an ester moiety are, in general, more synthetically accessible. Thus, we used the lupinine ester derivatives to build an SAR model using lin- ear discriminant analysis (LDA) to determine if it would be helpful for further drug design within this subgroup of substituted lupinines. LDA is a statistical technique used to cate- gorize data points into two or more classes using a linear formalism [38]. The compounds containing an ester or carbamate moiety were separated into two classes (“Active” and “NA”) according to the data shown in Table 2, which includes only active AChE inhibitors found within the entire set of the lupinine esters (see Supplementary Table S1). Selected physicochemical and ADME parameters calculated using the SwissADME online tool Molecules 2023, 28, 3357 8 of 15 It is noteworthy that the 4-benzyloxyphenyl moieties of all docked inhibitors and the N-benzylpiperidine fragment of the co-crystallized ligand donepezil occupy the same area of space in the hydrophobic pocket surrounded by residues Trp86, Gly120, Gly121, Tyr124, Tyr133, Tyr337, Phe338, His447, and Gly448 (Figures 2 and 3), although the H-bonding patterns of A–C differed from those of compound 15. These molecules formed H-bonds with Tyr124 (compounds A and C), Tyr337 (compound A), His447, Ser293, and Arg296 (compound B). In addition, the terminal cyclic moieties of these inhibitors, including the quinolizidine heterocycle of compound 15 and the indanone fragment of donepezil, match well with each other in the AChE binding site. It should be noted that for the investigated compounds, most of the above-mentioned residues surrounding the pocket are among the top ten residues tightly interacting with the ligands, according to the partial MolDock scores as evaluated by the “Energy Inspector” tool of Molegro 6.0 software, which is due to significant van der Waals interactions of the molecules with these residues. In terms of the reported AChE functional domains [37], the subpocket residues identified belong to important functional domains, including the catalytic triad (His447), the anionic domain (Trp86, Tyr337, Phe338), and the oxyanion domain (Gly121). Additionally, we obtained high partial MolDock scores for Tyr124 and Trp286, which are located in the peripheral anionic site at the entrance of the binding gorge [37]. 2.4. Classification SAR Model Lupinine derivatives containing an ester moiety are, in general, more synthetically accessible. Thus, we used the lupinine ester derivatives to build an SAR model using linear discriminant analysis (LDA) to determine if it would be helpful for further drug design within this subgroup of substituted lupinines. LDA is a statistical technique used to catego- rize data points into two or more classes using a linear formalism [38]. The compounds containing an ester or carbamate moiety were separated into two classes (“Active” and “NA”) according to the data shown in Table 2, which includes only active AChE inhibitors found within the entire set of the lupinine esters (see Supplementary Table S1). Selected physicochemical and ADME parameters calculated using the SwissADME online tool were considered as independent variables (predictors) for LDA analysis along with two manually defined structural descriptors Nam and Q. Based on the 11 selected predictors, the LDA models in the form of classification functions (1) and (2) were built by STATISTICA 6.0 software with the “Best subset” option switched on. We found that the best subset included 5 of the 11 descriptors (D1–D5, Table 2), which were sufficient for good LDA classification of the compounds, with 41 of the 50 lupi- nine derivatives classified correctly as AChE inhibitors (the class “Active”) or inactive compounds (the class “NA”). The values of SwissADME descriptors appearing in the classification functions are shown in Table S2 (see Supplementary Materials). The best subset of predictors included molecular weight (MW), number of rotat- able bonds (Nrot), molar refractivity (MR), water solubility measure SILICOS-IT Log Sw (sLogS) [39], and the indicator Q of the quaternary carbon atom. This relatively simple LDA model can be expressed by the following two classification functions: F(Active) = a0 + a1·D1 + a2·D2 + . . . + a5·D5 (1) F(NA) = b0 + b1·D1 + b2·D2 + . . . + b5·D5 (2) where D1–D5 are the values of descriptors from the best subset; a0, b0 are the intercepts from Table 4; a1–a5, b1–b5 are coefficients of the linear classification functions from the corresponding columns of Table 4. Molecules 2023, 28, 3357 9 of 15 Table 4. Physicochemical descriptors from the best subset and the corresponding coefficients of classification functions. Coefficient of Classification Functions Descriptor Active NA Intercept −61.838 −51.489 D1 MW 0.064 0.046 D2 Nrot −0.848 −0.133 D3 MR 1.450 1.354 D4 sLogS 9.175 8.580 D5 Q −7.863 −5.265 Abbreviations: molecular weight (MW), number of rotatable bonds (Nrot), molar refraction (MR), water solubility characteristic (sLogS), and indicator variable for the quaternary sp3 carbon atom (Q). According to the LDA model, a compound is classified as active if F (Active) > F (NA), and vice versa. Hence, the influence of each predictor can be evaluated based on the corresponding pair coefficients in the two classification functions. For example, a higher molecular weight favors activity because the coefficient for MW is larger in F (Active). The same refers to molar refractivity and water solubility. Conversely, higher molecular flexibility and the presence of a quaternary carbon atom disfavor activity in view of lower (more negative) coefficients for Nrot and Q predictors in F (Active). The classification matrix for the investigated compounds is shown in Table 5. Ac- cording to this matrix, the LDA model correctly classifies 6 of 7 (85.7%) active AChE inhibitors and 35 of 43 (81.4%) inactive compounds. In spite of the noticeable number of false positives among the “NA” class, a total of 82.0% of the compounds were recognized properly by the model. The per-compound classifications are presented in Table S3 (see Supplementary Materials). Table 5. Classification matrices for the LDA model built based on 50 lupinine ester derivatives. Percent Non-Active Active (Calculated) (Calculated) Non-active (observed) 81.4 35 8 Active (observed) 85.7 1 6 Total 82.0 36 14 The number of compounds correctly classified by the model is indicated in bold. The single compound which was erroneously classified as inactive (19) contains a chorine atom at the terminal position of the ester tail. This is a significant structural difference from other active lupinine derivatives, which contain cyclic substructures at the terminal position of each molecule. Leave-one-out (LOO) validation of the model (i.e., predicting the activity of a discarded compound by a model built on the basis of the remaining 49 molecules) showed that 32 out of 43 inactive compounds (74.1%) and 5 out of 7 active compounds (71.4%) were correctly predicted (74 % in the total set). The SAR model based on physicochemical descriptors of the lupinine-based esters revealed key features distinguishing AChE inhibitors versus non-active compounds. One of the weak points of the model is the imbalanced character of the data set, which contained many more inactive compounds than active ones. However, the reasonable quality and predictive ability of the model, as well as the simplicity and rapidity of the calculations associated with the LDA algorithm, suggest promise in using this model for large database mining and virtual screening of lupinine-based AChE inhibitors. Molecules 2023, 28, 3357 10 of 15 3. Experimental Section 3.1. Chemistry 1H and 13C NMR spectra were recorded on a JNN-ECA Jeol 400 spectrometer (fre- quency 399.78 and 100.53 MHz, respectively) with deuterated dimethyl sulfoxide (DMSO- d6) as the solvent. The chemical shifts were measured with reference to signals of the residual protons or carbon atoms of DMSO-d6. The multiplicity of signals in the 13C NMR spectra was determined from spectra recorded in the J-modulation mode (JMOD). The assignment of signals in the 1H and 13C NMR spectra were confirmed by two-dimensional homonuclear (1H-1H COSY) and heteronuclear 1H-13C (HMBC, HSQC) spectroscopy and literature data for quinolizine. High-resolution mass spectra were recorded on a Thermo- Scientific DFS spectrometer (evaporator temperature of 200–250 ◦C, electron ionization 70 eV). Melting points were determined on a Mettler Toledo FP900 system. The process of chemical reactions was monitored by thin-layer chromatography (TLC) on Sorbfil UV-254 plates using CH3Cl and CH3Cl–EtOH (10:1) as eluents. The plates were visualized with iodine vapor and ultraviolet (UV) light (254 nm). The reaction products were isolated by recrystallization or column chromatography using Acros silicagel (0.035–0.240 mm) and CHCl3 and CHCl3–EtOH (100:1→10:1) as eluents. Alkynes of 3-(prop-2-yn-1-yl-thio)-1H-1,2,4-triazole-5-amine (2), (2R,2S)-3-methylpent-4- yne-2,3-diol (4:1, diastereomeric mixture) (3) and 3-ethoxy-4-(prop-2-ynyloxy)benzaldehyde (4) were purchased from Alfa Aesar. Compounds 1 and 8–17 were synthesized as described previously [27–29]. The synthe- sized structures were confirmed by analytical and spectral data. Sample purity was >99%. (–)-Lupinine (m.p. 69–71 ◦C (EtOH), [α] 25 D –30.5◦ (c 0.41, MeOH); (literature data: m.p. 68–69 ◦C (EtOH), [α] 25 D –23.5◦) [40] was isolated from the Anabasis aphyla L., as described previously [41]. Lupinine azide 1 was obtained from lupinine in two stages, as described previ- ously [28]. Briefly, the reaction of (–)-lupinine with methanesulfonyl chloride in the presence of Et3N in CH2Cl2 resulted in (1R,9aR)-(octahydro-2H-quinolizine-1-yl)methyl methane- sulfonate, which was treated with NaN3 in dimethylformamide (DMF), resulting in the organic quinolizine azide (1) [29]. 3.1.1. General Procedure for Compounds (5–7) A mixture of lupinine azide (1) (0.29 g, 1.5 mmol), substituted acetylene [3-(prop-2-yn- 1-yl-thio)-1H-1,2,4-triazole-5-amine (2), (2S)-3-methylpent-4-yne-2,3-diol (3), and 3-ethoxy- 4-(prop-2-ynyloxy)benzaldehyde (4) (1.35 mmol), CuSO4 × 5H2O (0.017 g, 0.0675 mmol) and sodium ascorbate (0.013 g, 0.0675 mmol) in DMF (6 mL) was stirred at 75 ◦C for 6–8 h using TLC monitoring. After cooling, the residue was filtered, washed with hexane, and dried. Triazoles 5–7 were isolated from the residue by chromatography on silicagel (eluent: CH3Cl, CH3Cl–EtOH, 100:1→ 10:1). 3.1.2. 3-((1-(((1S,9aR)-Octahydro-1H-quinolizine-1-yl)methyl)-1H-1,2,3-triazole-4- yl)methylthio)-1H-1,2,4-triazole-5-amine (5) Yield 0.22 g (75.86%). Dark-brown powder, m.p. 177–179 ◦C (decomp.). 1H NMR spec- trum (DMSO-d6), δ, ppm: 1.15–1.66 m (10H, H-3ax,3eq, 4ax,4eq,7ax,7eq,8ax,8eq,9ax,9eq), 1.89 s (2H, H-2ax,10ax), 2.05 s (2H, H-5,6), 2.75 s (2H, H-2eq,10eq), 4.19 s (2H, H-17,17), 4.41 s (2H, H-11,11), 5.97 s (2H, H-24,24), 7.90 s (1H, H-16), 11.95 br. s (1H, H-21). 13C NMR spectrum (DMSO-d6), δ, ppm: 20.67 (C-3), 24.70 (C-8,9), 26.73 (C-17), 28.85 (C-4,7), 39.27 (C-5), 48.76 (C-11), 57.38 (C-2,10), 64.17 (C-6), 124.09 (C-16), 144.44 (C-15) and 156.20 (C-19,22). Mass spectrum, m/z (Irel., %) (2): 348.2 (7.23), 232.2 (17.40), 151.1 (100.0), 96.0 (21.73), 55.0 (16.38). Found m/z: 348.1839 [M]+. C15H24N8S. Calculated m/z: 348.1838. Molecules 2023, 28, 3357 11 of 15 3.1.3. (2R,S)-2-(1-(((1S,9aR)-Octahydro-1H-quinolizine-1-yl)methyl)-1H-1,2,3-triazole-4- yl)butane-2,3-diol (6) Yield 0.25 g (86.20%). Cream-colored, m.p. 158–161 ◦C. 1H NMR (DMSO-d6), δ, ppm: 1.03 d (3H, H-22,22,22), 1.04–1.95 m (10H, H-3ax,3eq, 4ax,4eq,7ax,7eq,8ax,8eq,9ax,9eq), 1.52 s (3H, H-21,21,21), 1.93–1.98 m (2H, H-2ax,10ax), 1.97–2.06 m (1H, H-6), 2.15–2.21 m (1H, H-5), 2.81 s (2H, H-2eq,10eq), 3.41 br. s (2H, H-18,22), 4.46–4.57 m (2H, H-11,11), 7.47 s (1H, H-16). 13C NMR (DMSO-d6), δ, ppm: 17.86 (C-22), 22.98 (C-21), 24.32 (C-3), 24.88 (C-8), 25.38 (C-9), 26.20 (C-4), 29.73 (C-7), 39.26 (C-5), 57.23 (C-2,10), 64.27 (C-6), 73.07 (C-17), 74.54 (C-19), 121.89 (C-16), 151.81 (C-15). Mass spectrum, m/z (Irel., %): 308.3 (12.45), 219.2 (1.66), 151.1 (100.0), 98.0 (9.77), 43.2 (6.68). Found m/z: 308.2207 [M]+. C16H28N4O2. Calculated m/z: 308.2211. 3.1.4. 3-Ethoxy-4-((1-(((1S,9aR)-octahydro-1H-quinolizine-1-yl)methyl)-1H-1,2,3-triazole- 4-yl)methoxy)benzaldehyde (7) Yield 0.23 g (76.66%). White powder, m.p. 166–168 ◦C. 1H NMR (DMSO-d6), δ, ppm: 1.12–1.23 m (3H, H-4ax, H-7ax, H-3ax), 1.27 t (3H, H-27,27,27, 3J 7.6 Hz), 1.34–1.41 m (2H, H-4eq, H-7eq), 1.46–1.49 m (2H, H-8ax, H-8eq), 1.47–1.51 m (2H, H-11,11), 1.63–1.74 m (3H, H-2ax, H-10ax, H-3eq), 1.92–1.95 m (1H, H-6), 2.70–2.72 m (2H, H-2eq, H-10eq), 2.09 br. s (1H, H-5), 4.03 q (2H, H-26,26, 3J 7.6 Hz), 5.23 s (2H, H-17,17), 7.32 d (1H, H-24, 3J 9.2 Hz), 7.48 d (1H, H-23, 3J 9.2 Hz), 8.24 s (1H, H-16), 9.79 s (1H, H-28). 13C NMR (DMSO-d6), δ, ppm: 15.13 (C-27), 21.82 (C-3), 25.03 (C-8), 25.77 (C-9), 25.98 (C-4), 26.36 (C-7), 39.07 (C-5), 57.09 (C-2,10), 48.34 (C-11), 62.60 (C-17), 64.67 (C-6), 64.86 (C-26), 111.57 (C-21), 113.4 (C-24), 126.26 (C-23,16), 130.49 (C-22), 149.09 (C-19), 153.50 (C-20), 191.96 (C-28). Mass spectrum, m/z (Irel., %): 398.3 (28.87), 256.2 (4.49), 151.1 (100.0), 84.9 (24.34), 55.0 (23.62). Found m/z: 398.2312 [M]+. C22H30N4O3. Calculated m/z: 398.2314. 3.2. Commercial Compounds Fifty lupinine-based esters of different carboxylic acids (compounds 18–67) were pur- chased from the Vitas-M laboratory (Champaign, IL, USA). All compounds were dissolved in DMSO at a stock concentration of 10 mM and stored at −20 ◦C. 3.3. AChE Inhibition Assay The inhibitory effect of test compounds and galantamine (Tocris Bioscience, San Francisco, CA, USA) on AChE activity was determined using an AChE inhibitor screening kit from the Sigma-Aldrich Chemical Co., (St. Louis, MO, USA). The kit is based on an improved Ellman method, whereby thiocholine produced from AChE activity forms a yellow color with 5,5′-dithiobis(2-nitrobenzoic acid), and the intensity the color (412 nm) is proportional to the enzyme activity. The concentration of compound required to cause 50% inhibition (IC50) was determined by graphing the % inhibition of enzyme activity versus the logarithm of concentration of the test compound using 5–7 tested concentrations. 3.4. Cytotoxicity Assay The cytotoxicity of the synthesized compounds was analyzed using a CellTiter-Glo Luminescent Cell Viability Assay Kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol. Human THP-1 monocytic cells obtained from ATCC (Manassas, VA, USA) were cultured in RPMI 1640 medium (Mediatech Inc., Herndon, VA, USA) supplemented with 10% (v/v) FBS, 100 µg/mL streptomycin, and 100 U/mL penicillin. For the cytotoxicity assay, the cells were cultured at a density of 104 cells/well with different concentrations of the test compounds added (3, 6.125, 12.5, 25, 50 µM; final concentration of DMSO was 1%) for 24 h at 37 ◦C and 5% CO2. Following treatment, substrate was added to the cells, and the samples were analyzed with a Fluoroscan Ascent FL microplate reader. Molecules 2023, 28, 3357 12 of 15 3.5. Molecular Docking Docking of compounds into the acetyl cholinesterase binding site (structure 4EY7 from the Protein Data Bank) was performed using the ROSIE server [42]. The docking area was chosen around the geometric center of co-crystallized donepezil (1-benzyl-4-[(5,6- dimethoxy-1-indanon-2-yl)methyl]piperidine) occupying the binding site of the receptor in the 4EY7 structure. For each of the investigated compounds, up to 2000 ligand conformers were generated with the BCL algorithm [43] switched on. The number of intermediately generated docking poses was set to 2000. Other options were used as defaults within the ROSIE ligand docking protocol, which accounted for full flexibility of the main chain and side-chains for residues in the vicinity of the docking area [36]. After completion of the computations, PDB files containing the best poses of compounds docked into AChE were downloaded from the server and imported into Molegro Virtual Docker 6.0 (MVD) for visualization and analysis using the built-in “Pose Organizer” tool of MVD. 3.6. Linear Discriminant Analysis (LDA) Structures of the 50 lupinine-based esters were built using ChemOffice 2016, rep- resented as SMILES strings, and imported into the SwissADME online tool [39]. The calculated physicochemical and ADME parameters were subjected to correlation analysis to select descriptors with low mutual pairwise correlations. The following descriptors were selected: molecular weight (MW), fraction of sp3 carbon atoms (Csp3), number of rotatable bonds (Nrot), number of hydrogen bond donors and acceptors (NHBD and NHBA, respectively), molar refractivity (MR), topological polar surface area (tPSA), consensus LogP (cLogP), and water solubility SILICOS-IT Log Sw (sLogS). Two structural indica- tors were added, which indicated absence or presence (value of 0 or 1, respectively) of an amide unit -C(O)NH- or a quaternary sp3 carbon atom (descriptors Nam and Q, re- spectively). Although useful computational methods have been developed for finding molecular subunits (e.g., [44]), the Nam and Q indicators were assigned manually because of their simplicity. The data sheet containing columns with the values of the independent predictors enumerated above was supplemented with a column indicating compound activity (values “Active” or “NA”) as a categorical dependent variable. The resulting data sheet was imported in STATISTICA 6.0 program (StatSoft, Inc., Tulsa, OK, USA), and the LDA procedure was performed with the “Best subset” option switched on using equal prior probabilities for the compound classes. All 50 lupinine-based esters were used as a training set. To validate the model, the leave-one-out (LOO) procedure was performed by sequentially discarding one of the compounds and predicting its activity class (i.e., the dependent categorical variable) by an LDA model obtained on the basis of the remaining 49 compounds. 4. Conclusions We identified compound 15 as a novel AChE inhibitor and showed that it exhibited mixed-type inhibitory activity. Molecular docking modeling indicated that compound 15 meets structural requirements necessary to reproduce important intermolecular interactions described in the literature as fundamental for AChE inhibition. Thus, this compound could be a promising candidate for evaluation in AD models. Our results also indicate that the 4-benzyloxyphenyl moiety attached to different molecular scaffolds can play an important role in ligand binding to AChE due to the interaction with the receptor subpocket. This finding, as well as the derived classification SAR model, may be useful in the design of other novel AChE inhibitors. Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules28083357/s1, Supplementary Figures S1–S3. Schemes of correlations in the COSY and HMQC spectra of 5–7. Supplementary Figure S4.1. 1H NMR spectrum of 5. Supplementary Figure S4.2. 13C NMR spectrum of 5. Supplementary Figure S4.3. The mass spectrum of 5. Supplementary Figure S5.1. 1H NMR spectrum of 6a,b. Supplementary Figure S5.2. 13C NMR spectrum Molecules 2023, 28, 3357 13 of 15 of 6a,b. Supplementary Figure S5.3. The mass spectrum of 6a,b. Supplementary Figure S6.1. 1H NMR spectrum of 7. Supplementary Figure S6.2. 13C NMR spectrum of 7. Supplementary Figure S6.3. The mass spectrum of 7. Supplementary Table S1. Chemical structures of lupinine-based esters of dif- ferent carboxylic acids under investigation. Supplementary Figure S7. 2D diagram of ligand-receptor interactions obtained on docking of compound 15 in AChE. Blue dashed lines—hydrogen bonding interactions. Red dashed line—steric interaction. Supplementary Table S2. Chemical formulas, selected ADME parameters of the lupinine-based esters calculated with SwissADME web tool, and manually added indicator variable for the quaternary sp3 carbon atom (Q). Supplementary Table S3. Experimentally determined, calculated, and LOO-predicted classes for AChE inhibitory activity of the lupinine-based esters of different carboxylic acids. Author Contributions: I.A.S., Z.S.N. and M.T.Q. conceived and designed the project; Z.S.N., S.D.F., O.A.N., T.M.S., A.S.K. and E.E.S. synthesized and characterized compounds; I.A.S. performed the enzymatic assay; A.I.K. conducted the molecular modeling study; I.A.S., Z.S.N., S.D.F., O.A.N., A.I.K., T.M.S., A.S.K. and E.E.S. analyzed and interpreted the data; I.A.S., Z.S.N., A.I.K. and M.T.Q. drafted and revised the manuscript. All authors have read and agreed to the published version of the manuscript. Funding: This research was supported in part by National Institutes of Health IDeA Program grant GM103474; USDA National Institute of Food and Agriculture Hatch project 1009546; the Montana State University Agricultural Experiment Station; project No. AP08855567 under the grant funding from the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, and the Tomsk Polytechnic University Development Program (Project Priority-2030-NIP/IZ-009-0000-2023). Data Availability Statement: Data are contained within the article. Conflicts of Interest: The authors declare no conflict of interest. Sample Availability: Samples of synthesized compounds are available from the authors. References 1. Robichaud, A.J. Approaches to palliative therapies for Alzheimer’s disease. Curr. Top. Med. Chem. 2006, 6, 553–568. [CrossRef] [PubMed] 2. Umar, T.; Meena, R.; Mustehasan; Kumar, P.; Khan, A.A. Recent updates in the development of small molecules as potential clinical candidates for Alzheimer’s disease: A review. Chem. Biol. Drug Des. 2022, 100, 674–681. [CrossRef] [PubMed] 3. Sepehri, S.; Saeedi, M.; Larijani, B.; Mahdavi, M. Recent developments in the design and synthesis of benzylpyridinium salts: Mimicking donepezil hydrochloride in the treatment of Alzheimer’s disease. Front. Chem. 2022, 10, 936240. [CrossRef] [PubMed] 4. Mukherjee, P.K.; Satheeshkumar, N.; Venkatesh, P.; Venkatesh, M. Lead finding for acetyl cholinesterase inhibitors from natural origin: Structure activity relationship and scope. Mini Rev. Med. Chem. 2011, 11, 247–262. [CrossRef] 5. Ahn, K. The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Rep. 2017, 50, 111–116. [CrossRef] 6. Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep. 2008, 25, 475–516. [CrossRef] 7. Ayaz, M.; Nawaz, A.; Naz, F.; Ullah, F.; Sadiq, A.; Islam, Z.U. Phytochemicals-based Therapeutics against Alzheimer’s Disease: An Update. Curr. Top. Med. Chem. 2022, 22, 1811–1820. [CrossRef] 8. Suciati; Poerwantoro, D.; Widyawaruyanti, A.; Ingkaninan, K. Acetylcholinesterase inhibitory activity of extract and fractions from the root of Rauvolfia serpentine (L.) Bth.ex Kurz. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 313–317. [CrossRef] 9. Tomassini, L.; Ventrone, A.; Frezza, C.; Fabbri, A.M.; Fortuna, S.; Volpe, M.T.; Cometa, M.F. Phytochemical analysis of Viburnum davidii Franch. and cholinesterase inhibitory activity of its dihydrochalcones. Nat. Prod. Res. 2021, 35, 5794–5800. [CrossRef] 10. Saenkham, A.; Jaratrungtawee, A.; Siriwattanasathien, Y.; Boonsri, P.; Chainok, K.; Suksamrarn, A.; Namsa-Aid, M.; Pattanapra- teeb, P.; Suksamrarn, S. Highly potent cholinesterase inhibition of geranylated xanthones from Garcinia fusca and molecular docking studies. Fitoterapia 2020, 146, 104637. [CrossRef] 11. Hou, Y.; Wang, M.; Sun, C.; Peng, C.; Zhang, Y.; Li, X. Tunicyclin L, a cyclic peptide from Psammosilene tunicoides: Isolation, characterization, conformational studies and biological activity. Fitoterapia 2020, 145, 104628. [CrossRef] 12. Lou, H.; Yi, P.; Hu, Z.; Li, Y.; Zeng, Y.; Gu, W.; Huang, L.; Yuan, C.; Hao, X. Polycyclic polyprenylated acylphloroglucinols with acetylcholinesterase inhibitory activities from Hypericum perforatum. Fitoterapia 2020, 143, 104550. [CrossRef] 13. Tuzimski, T.; Petruczynik, A. Determination of Anti-Alzheimer’s Disease Activity of Selected Plant Ingredients. Molecules 2022, 27, 3222. [CrossRef] Molecules 2023, 28, 3357 14 of 15 14. Omodeo-Salè, F.; Cortelezzi, L.; Basilico, N.; Casagrande, M.; Sparatore, A.; Taramelli, D. Novel antimalarial aminoquinolines: Heme binding and effects on normal or Plasmodium falciparum-parasitized human erythrocytes. Antimicrob. Agents Chemother. 2009, 53, 4339–4344. [CrossRef] 15. Van Eijk, J.L.; Radema, M.H. Virgiboidine, A New Alkaloid from Virgilia oroboides and Virgilia divaricata. Planta Med. 1982, 44, 224–226. [CrossRef] 16. Suzuki, H.; Murakoshi, I.; Saito, K. A novel O-tigloyltransferase for alkaloid biosynthesis in plants. Purification, characterization, and distribution in Lupinus plants. J. Biol. Chem. 1994, 269, 15853–15860. [CrossRef] 17. Aaron, P.A.; Vu, K.; Gelli, A. An Antivirulence Approach for Preventing Cryptococcus neoformans from Crossing the Blood-Brain Barrier via Novel Natural Product Inhibitors of a Fungal Metalloprotease. mBio 2020, 11, e01249-20. [CrossRef] 18. Sparatore, A.; Cagnotto, A.; Sparatore, F. Quinolizidinyl derivatives of 2,3-dihydro-2-oxo-1H-benzimidazole-1-carboxylic acid and 1-homolupinanoyl benzimidazolones as ligands for 5-HT3 and 5-HT4 receptors. Farmaco 1999, 54, 248–254. [CrossRef] 19. Basilico, N.; Parapini, S.; Sparatore, A.; Romeo, S.; Misiano, P.; Vivas, L.; Yardley, V.; Croft, S.L.; Habluetzel, A.; Lucantoni, L.; et al. In vivo and in vitro activities and ADME-tox profile of a quinolizidine-modified 4-aminoquinoline: A potent anti-P. falciparum and anti-P. vivax blood-stage antimalarial. Molecules 2017, 22, 2102. [CrossRef] 20. Rusconi, C.; Vaiana, N.; Casagrande, M.; Basilico, N.; Parapini, S.; Taramelli, D.; Romeo, S.; Sparatore, A. Synthesis and comparison of antiplasmodial activity of (+), (-) and racemic 7-chloro-4-(N-lupinyl)aminoquinoline. Bioorg. Med. Chem. 2012, 20, 5980–5985. [CrossRef] 21. Vazzana, I.; Novelli, F.; Sparatore, F.; Sparatore, A.; Fadda, G.; Manca, C. Quinolizidine derivatives with antitubercular activity. Farmaco 1994, 49, 105–110. [PubMed] 22. Basova, N.E.; Kormilitsyn, B.N.; Perchenok, A.; Rozengart, E.V.; Saakov, V.S.; Suvorov, A.A. Reversible lupininin inhibitors of cholinesterases of mammalian blood and of optical ganglia of individuals of the commander squid Berryteuthis magister from different zones of species areal. Zh. Evol. Biokhim. Fiziol. 2012, 48, 213–218. [PubMed] 23. Rozengart, E.V. Bisalkaloid derivatives of dicarboxylic acids on the basis of lupinine, anabasine, and cytisine as reversible cholinesterase inhibitors. Dokl. Biochem. Biophys. 2003, 388, 39–42. [CrossRef] [PubMed] 24. Tasso, B.; Catto, M.; Nicolotti, O.; Novelli, F.; Tonelli, M.; Giangreco, I.; Pisani, L.; Sparatore, A.; Boido, V.; Carotti, A.; et al. Quinolizidinyl derivatives of bi- and tricyclic systems as potent inhibitors of acetyl- and butyrylcholinesterase with potential in Alzheimer’s disease. Eur. J. Med. Chem. 2011, 46, 2170–2184. [CrossRef] [PubMed] 25. Tonelli, M.; Catto, M.; Tasso, B.; Novelli, F.; Canu, C.; Iusco, G.; Pisani, L.; Stradis, A.D.; Denora, N.; Sparatore, A.; et al. Multitarget Therapeutic Leads for Alzheimer’s Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and β-Amyloid (Aβ) Aggregation. ChemMedChem 2015, 10, 1040–1053. [CrossRef] 26. Obaid, R.J.; Naeem, N.; Mughal, E.U.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv. 2022, 12, 19764–19855. [CrossRef] 27. Nurmaganbetov, Z.S.; Nurkenov, O.A.; Fazylov, S.D.; Mukusheva, G.K.; Gazaliev, A.M.; Muldakhmetov, Z.M. Synthesis of 1,2,3-triazolo-quinolizidines based on the quinolizidine alkaloid lupinine. Chem. J. Kazakhstan 2021, 3, 108–118. [CrossRef] 28. Nurmaganbetov, Z.S.; Savelyev, V.A.; Gatilov, Y.V.; Nurkenov, O.A.; Seidakhmetova, R.B.; Shulgau, Z.T.; Mukusheva, G.K.; Fazylov, S.D.; Shults, E.E. Synthesis and analgesic activity of 1-[(1,2,3-triazol-1-yl)methyl]quinolizines based on the alkaloid lupinine. Chem. Heterocycl. Compd. 2021, 57, 911–919. [CrossRef] 29. Nurmaganbetov, Z.S.; Fazylov, S.D.; Turdybekov, K.M.; Nurkenov, O.A.; Turdybekov, D.M.; Mukusheva, G.K.; Minayeva, Y.V.; Khabdolda, G. Synthesis and structure of 4-substituted (1S,9aR)-1-[(1,2,3-triazol-1-yl)-methyl]octahydro-1H-quinolysines of lupinine. Bull. Univ. Karaganda Chem. 2022, 2, 12–22. [CrossRef] 30. Khodja, I.A.; Boulebd, H.; Bensouici, C.; Belfaitah, A. Design, synthesis, biological evaluation, molecular docking, DFT calcu- lations and in silico ADME analysis of (benz)imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti- acetylcholinesterase agents. J. Mol. Struct. 2020, 1218, 128527. [CrossRef] 31. Aggarwal, N.; Jain, S.; Chopra, N. Hybrids of Thiazolidin-4-Ones and 1,3,4-Thiadiazole: Synthesis and Biological Screening of A Potential New Class of Acetylcholinesterae Inhibitors. Biointerface Res. Appl. Chem. 2022, 12, 2800–2812. 32. Mo, J.; Yang, H.; Chen, T.; Li, Q.; Lin, H.; Feng, F.; Liu, W.; Qu, W.; Guo, Q.; Chi, H.; et al. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorg. Chem. 2019, 93, 103310. [CrossRef] 33. Lotfi, S.; Rahmani, T.; Hatami, M.; Pouramiri, B.; Kermani, E.T.; Rezvannejad, E.; Mortazavi, M.; Fathi Hafshejani, S.; Askari, N.; Pourjamali, N.; et al. Design, synthesis and biological assessment of acridine derivatives containing 1,3,4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorg. Chem. 2020, 105, 104457. [CrossRef] 34. Catto, M.; Pisani, L.; Leonetti, F.; Nicolotti, O.; Pesce, P.; Stefanachi, A.; Cellamare, S.; Carotti, A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem. 2013, 21, 146–152. [CrossRef] [PubMed] 35. Luz, R.; Almeida, R.B.M.; Albuquerque, M.M.S.; Cerqueira, A.P.M.; Tavares, J.F.; Silva, M.S.D.; Filho, R.B.; Dos Santos Junior, M.C.; Branco, A.; Botura, M.B. Two new dilactonized glycerol glycosides of the dual anticholinesterase active extract from Ocotea daphnifolia using bioguided fractionation and molecular docking studies. Chem. Biol. Drug Des. 2022, 101, 855–864. [CrossRef] Molecules 2023, 28, 3357 15 of 15 36. DeLuca, S.; Khar, K.; Meiler, J. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand. PLoS ONE 2015, 10, e0132508. [CrossRef] [PubMed] 37. Atanasova, M.; Stavrakov, G.; Philipova, I.; Zheleva, D.; Yordanov, N.; Doytchinova, I. Galantamine derivatives with indole moiety: Docking, design, synthesis and acetylcholinesterase inhibitory activity. Bioorg. Med. Chem. 2015, 23, 5382–5389. [CrossRef] 38. Mitteroecker, P.; Bookstein, F. Linear Discrimination, Ordination, and the Visualization of Selection Gradients in Modern Morphometrics. Evol. Biol. 2011, 38, 100–114. [CrossRef] 39. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] 40. Winterfeld, K.; Holschneider, F.W. Über die Konstitution des Lupinins (I. Mitteil). Chem. Ber. Recl. 1931, 64, 137–150. [CrossRef] 41. Nurkenov, O.A.; Nurmaganbetov, Z.S.; Fazylov, S.D.; Satpaeva, Z.B.; Turdybekov, K.M.; Seilkhanov, T.M.; Talipov, S. Synthesis, Structure, and Properties of New Lupinine O-Acyl Derivatives. Chem. Nat. Compd. 2019, 55, 506–508. [CrossRef] 42. Lyskov, S.; Chou, F.C.; Conchúir, S.; Der, B.S.; Drew, K.; Kuroda, D.; Xu, J.; Weitzner, B.D.; Renfrew, P.D.; Sripakdeevong, P.; et al. Serverification of molecular modeling applications: The Rosetta Online Server that Includes Everyone (ROSIE). PLoS ONE 2013, 8, e63906. [CrossRef] 43. Kothiwale, S.; Mendenhall, J.L.; Meiler, J. BCL::Conf: Small molecule conformational sampling using a knowledge based rotamer library. J. Cheminform. 2015, 7, 47. [CrossRef] 44. Mukherjee, G.; Braka, A.; Wu, S. Quantifying functional-group-like structural fragments in molecules and its applications in drug design. J. Chem. Inf. Model. 2023, 63, 2073–2083. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.