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ABSTRACT

Since its inception in the mid twentieth century, radar ornithology has provided
scientists with new tools for studying the behavior of birds, especially with regards to
migration. A number of studies have shown that birds can be detected using a wide
variety of radar devices. Generally, these studies have focused on small portable radars
that typically have a finer resolution than large weather surveillance radars. Recently,
however, a number of researchers have presented qualitative evidence suggesting that
birds, or at least migration events, can be identified using large broad scale radars
such as the WSR-88D used in the NEXRAD weather surveillance system. This is
potentially a boon for ornithologists because NEXRAD data covers a large portion
of the country, is constantly being produced, is freely available, and is archived back
into the early 1990s.

A major obstacle is that identifying birds in NEXRAD data currently requires
having a trained technician manually inspect a graphically rendered radar sweep.
The immense amount of available data makes manual classification of radar echoes
infeasible over any practical span of space or time.

In this thesis, a system is presented for automating this process using machine
learning techniques. This approach begins with classified training data that has been
interpreted by experts or collected from direct observations. The data is preprocessed
to ensure quality and to emphasize relevant features. A classifier is then trained using
this data and cross validation is used to measure performance. The experiments in
this thesis compare neural network, näıve Bayes, and k-nearest neighbor classifiers.
Empirical evidence is provided showing that this system can achieve classification
accuracies in the 80th to 90th percentile.
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CHAPTER 1

INTRODUCTION

Motivation

Free and easily accessible WSR-88D weather radar data from the Next Generation

Radar (NEXRAD) system has opened new doors for many in the scientific community

[1, 2]. In particular, radar ornithologists have the opportunity of studying bird mi-

gration behavior from a new perspective [3]. Radar, in general, allows for such things

as monitoring bird movements at night and the NEXRAD system could provide the

ability to track migration over a much broader geographical scale. The NEXRAD

system also provides useful [4] historical data, with most sites archiving data back

into the early 1990s.

Currently, one of the biggest obstacles to utilizing this data for radar ornithol-

ogy is the lack of an automated approach for identifying radar scans that include

birds. Instead, researchers must painstakingly look through graphically rendered

radar scans and manually identify those containing echoes with the characteristics of

birds. Clearly, this can be a lengthy and expensive approach. It is also impractical

when dealing with data on the scale of the NEXRAD system, which is constantly

acquiring more data. A single site alone, completing one volume scan every ten min-

utes will produce over 52,000 volume scans in one year. This results in over 200GB

of data a year for just one site.

This thesis describes an algorithmic approach to classifying biological and nonbi-

ological echoes in NEXRAD radar data using machine learning techniques. It also

provides empirical results of applying the algorithm in various settings.
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Scope

This thesis is confined to separating biological echoes from nonbiological echoes.

Although a distinction could be drawn between birds and insects or even between

various types of birds such as waterfowl and passerines, the focus of this thesis is

simply differentiating between echoes of interest (something biological) and everything

else. Likewise, no attempt is made to classify nonbiological echoes into subcategories

such as rain, snow, dust, etc.

Outline of Thesis

This thesis is organized as follows. Chapter 2 provides a review of the background

literature and a description of the structure of NEXRAD level II data. Chapter 3

describes the process developed. Empirical results are provided in Chapter 4. This

thesis concludes with a discussion concerning the implications of the results as well

as directions for future research in Chapter 5.
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CHAPTER 2

BACKGROUND

This chapter will provide background information necessary for understanding the

problem being investigated in this thesis, beginning with a review of the literature

from the radar ornithology field, with emphasis on work related to the WSR-88D radar

installations in the NEXRAD surveillance network. This is followed by a detailed

discussion of the operation of the WSR-88D as well as the format of the Level II data

provided by the National Climatic Data Center (NCDC) NEXRAD repository.

Literature Review

Prior to the availability of radar, studying bird migration was a painstaking and

error prone task, often requiring field observers to record bird counts acquired through

visual observation. One particular problem with this approach is that some birds, such

as passerines (songbirds) and waterfowl, often do a large portion of their migration

at night [5, 6, 7].

Moon watching [8], the process of estimating nocturnal migration by recording

bird counts as they fly across the disk of the moon, was a partial solution to this

problem, but it suffered from its own drawbacks. Moon watching is particularly

limited by the small amount of observable space, the requirement of a full moon,

and clear skies. [9]. In general, visual observation of bird migrations is limited by

visibility issues relating to distance, light and weather conditions.

Radar provided a tool whereby many of the limitations of direct visual observation

could be avoided. Radar ornithology, the study of birds by radar, is almost as old

as radar itself. In fact, it was the early radar technicians in the post World War
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II era that first began noticing anomalous radar echoes that could not be properly

attributed to a source. It didn’t take long for these early pioneers to determine that

the source of these “angels” was actually birds [6, 10].

Many studies have shown the effectiveness of studying birds using a wide variety of

radars including portable marine and military radars, small surveillance radars, and

larger weather radars [11, 12, 1]. Radars are separated into classes based on operating

frequency / wavelength. These classes are designated by letters that were originally

used by the military to maintain secrecy. For the purpose of radar ornithology, only

the X, C, L and S band radars are of interest. X band radars use the smallest wave-

lengths, with operating frequencies of roughly 8 to 12 GHz. This roughly corresponds

to wavelengths in the 2.4 to 3.8 cm range. C band radars operate in the 4 to 8 GHz

range with wavelengths of roughly 3.8 to 7.5 cm, S band radars operate in the 2 to 4

GHz range with wavelengths of 7.5 to 15cm and L band radars operate in the 1 to 2

GHz range and have wavelengths of roughly 15 to 30 cm [13, 9]. C and S band radars

are optimal for studying passerines, while L band and larger wavelengths will start

to wrap around small birds and suppress them in the data [9]. Radars with smaller

wavelengths are better for studying smaller specimens and some radars, such as X

band tracking radars, can even be used to measure wing-beat patterns [14].

Radar ornithologists were quick to see the potential when the U.S. Weather Bureau

(later to become the National Weather Service) started deploying a network of WSR-

57 weather surveillance radars [15]. These S band 10 cm radars provided broader

coverage than any previous radar network that was open to the scientific community.

The real boon came to the academic community in the 1990s when the US government

started replacing the WSR-57 with the WSR-88D. In addition to the base reflectivity

product provided by the WSR-57, the WSR-88D provided Doppler information in the

form of two new data products: mean radial velocity and spectrum width [16]. This
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new network became known as the Next Generation Radar network or NEXRAD. As

the internet became ubiquitous in the academic community, a new digital distribution

network provided researchers with a fast and free method of attaining data from the

NEXRAD network [17].

Since its inception, a number of papers have been published showing that the

NEXRAD WSR-88D is an effective tool for studying bird migration and behavior

[18, 19, 20, 21, 22, 23, 24]. The field of Chiropterology, the study of bats, has also ben-

efited from this research as new studies are coming out indicating that the NEXRAD

network may also be useful in studying the flight patterns of bats [25].

It should be noted that ornithologists are not the only group interested in under-

standing the way that individual or groups of birds appear in and affect NEXRAD

data. There is also interest in the meteorological community, where scientists would

like to know how birds affect estimates of wind and other parameters. It has been

shown that bird contamination can have a measurable effect on various meteorological

products produced by the weather radar surveillance network [26, 27, 28].

Although there have been a rising number of papers relating to the identification

of birds in radar data, applications of machine learning techniques in this area are

somewhat more sparse. Most deal with clutter removal (where clutter includes birds)

through the use of neural networks [29, 30, 31]. In general, these applications have

targeted smaller radars with different operational parameters than the WSR-88D, or

they make use of the signals coming directly from the radar unit that are not available

to researchers using the processed Level II data. An exception to this is a paper by

Krajewski et al. [32] in which they use neural networks to identify anomalous prop-

agation in WSR-88D Level II data. Although similar in goal, identifying anomalous

propagation is, however, a much different problem from identifying birds.
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WSR-88D Data

Like all radar, the WSR-88D sends out repetitions of electromagnetic pulses and

measures the returned signal to sense foreign elements. Different properties of these

foreign elements can be ascertained by looking at different aspects of the returned

signal, namely signal strength and Doppler shift. These properties give us the basic

data moments of reflectivity, radial velocity and spectrum width. These basic mo-

ments combined with radar operational status make up Level II data [16]. Increasing

levels indicate increasing amounts of processing. Level I data includes the analog

signals produced by the base radar equipment and are not recorded. Level III and

higher data include derived products that are calculated from the Level II data [16].

Level II is the lowest level archived and available to the general public [17].

A single pulse repetition senses objects within the radar’s beam, which is either

roughly 1◦ or 0.5◦ in width for the WSR-88D. For weather surveillance radars to

be useful, they need to have a full 360◦ view of the surrounding air space. This is

accomplished by rotating the radar about a vertical axis while continually sending

out pulse repetitions. At its lowest level, the radar beam is nearly level with the

horizon (0.5◦ above the horizon). The elevation angle of the radar can be increased

to probe higher levels of the atmosphere.

As previously mentioned, NEXRAD radars produce three basic data moments:

reflectivity, radial velocity and spectrum width. Reflectivity is a measure of the

returned signal strength, whereas radial velocity and spectrum width are based on

the Doppler shift of the returned pulses, measuring object movement.

Figure 1 shows reflectivity data of meteorological phenomenon for an example

NEXRAD Level II scan. This scan was rendered using the NOAA Weather and

Climate Toolkit [33]. Raw reflectivity is denoted by units of Z, where Z is a signal
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Figure 1: Example NEXRAD Scan Showing Reflectivity. Blues and greens depict
lower signals while yellows and reds are indications of stronger signals.

strength scale used in meteorology. Due to its nature, reflectivity is usually converted

to a logarithmic scale and provided in decibels of Z (dBZ). In general, larger values of

reflectivity are measures of more pulsed data being re3turned. This usually indicates

larger objects (or larger numbers of small objects, e.g. rain drops). The range of

values for reflectivity depends largely on the current scanning mode being used, but

the system has an overall range of -28 to +75 dBZ.

Mean Radial Velocity measures the average velocity in ms−1 at which sensed en-

tities in the radar beam are moving towards or away from the radar. Figure 2 shows

radial velocity values for the same scan shown in Figure 1. Because it is a compo-

nent measurement, this metric only measures true ground speeds for objects moving

directly parallel with the radar’s beam. Likewise, objects moving perpendicular to

the radar’s beam will have zero radial velocity. One might think that the nature of
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the radial velocity measurement would decrease its usefulness, and at the local level

this might be true, but when radial velocity values are viewed for an entire scan, its

usefulness is apparent. As can be seen in Figure 2, the boundary between green and

red values roughly defines a line perpendicular to the direction of movement. In this

figure, shades of green represent negative values. Perhaps counter intuitive, negative

values indicate a component vector moving towards the radar. Positive values, shown

in red, indicate that the component values are moving away from the observer.

Figure 2: Example NEXRAD Scan Showing Radial Velocity. Shades of green and red
indicate movement towards or away from the radar respectively.

The last of the three basic radar products is spectrum width. As mentioned

above, the radial velocity measurement produced by the radar is an average of the

radial velocity components of all objects within the radars beam at a given range.

Spectrum width, illustrated in Figure 3, gives us a metric indicating the amount of
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variation in radial velocity among those individual objects. High spectrum width

values indicate high variability.

Figure 3: Spectrum Width

Typically, data is acquired for a subset of possible elevation angles depending on

current atmospheric conditions (i.e. clear air or precipitation). This subset is known

as the Volume Coverage Pattern(VCP). A WSR-88D using a given VCP will begin at

the lowest elevation angle, perform a scan, raise to the next highest elevation angle

specified, perform another scan, etc. At the end of the sequence the radar returns to

the lowest elevation angle and repeats the pattern. In addition to specifying which

elevation angles to use, the VCP also specifies the pulse length, the rotation speed,

and the data moments to be collected for each scan.

The fact that the VCP may indicate that only a subset of the possible data

moments may be collected for a particular scan should be emphasized. Although

both reflective and Doppler information can be collected simultaneously, it is often
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broken out into two or more separate scans. The reasoning is that the pulse repetition

frequency (PRF) that results in the best reflectivity data in terms of accuracy and

maximum range is not necessarily best for Doppler data. One cannot assume that

a given scan contains both reflective and Doppler data or that the data contained is

the best that was collected for that elevation angle. Details for the various possible

volume coverage patterns is provided in Appendix A.

NEXRAD data is conceptually organized into four hierarchical components that

describe the three dimensional space around the radar site [34]. Figure 4 illustrates

how these components fit together. The largest logical unit is the volume, representing

the entire three dimensional space around a radar site, as sampled by the current

volume coverage pattern. The shape of a volume can be roughly conceptualized as

a half sphere. This half sphere is then divided into a set of two dimensional sweeps

or scans. Each sweep contains data at a specific elevation angle. Each sweep can be

further divided into a set of rays much like the spokes on a tire. Each ray contains

data at a certain azimuth. Finally, the ray is divided into a set of bins or pulse

volumes [2, 35]. Pulse volumes can be identified by their range, or distance, from the

radar site.

Each pulse volume contains a subset of the three basic data moments defined

above: reflectivity, radial velocity and spectrum width. Each pulse volume also has

the two positional attributes of range and azimuth. These two attributes plus the

base three attributes make up the primary five attributes against which the classifiers

learn [2].

The resolution of NEXRAD data depends on the build of the radar system at the

time it was acquired. Until mid-2008, most radar sites were based on Build 9, which

provided one degree of beam width and pulse volume lengths of 1000 m for reflectivity

data and 250 m for Doppler data [34]. Beginning in 2008, NEXRAD stations started
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Figure 4: Data Organization For NEXRAD Volume Scans

moving to Build 10. Build 10 provides improved resolution by decreasing the beam

width to 0.5 degrees and by making all pulse volumes 250 m in length [36]. Starting

in 2010, NWS plans to start upgrading sites to Build 11 [37], providing support for

dual polarization. This is expected to provide at least two more data moments that

can distinguish between rain, sleet, hail and presumably different types of birds.
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CHAPTER 3

METHODOLOGY

This chapter introduces a system that employs a two stage process for automating

the identification of biological radar echoes. Pulse volumes are the units of interest

in this system. Training and classification is performed at the pulse volume level,

without the use of any sweep level information. First, expert classified training data

is used to construct a database that will be used in all subsequent experiments.

Second, classification or validation tasks are performed by retrieving data from the

database and processing it with the classification and validation modules. The first

stage is typically a onetime step while the second stage is performed multiple times

for various data subsets and experiment designs. New training data is often loaded

into the database as it becomes available using the first stage of the process.

The first stage of this process is illustrated in Figure 5. It begins with raw Level

II NEXRAD data from the NCDC data service [17]. This raw data has a metadata

file associated with it that contains classification information obtained from radar

ornithology experts or by direct observation by field agents. Both of these files are

read by the data parser. The data parser understands the compression algorithm and

underlying binary format of the raw data. It is capable of reading both Build 9 and

the new Build 10 NEXRAD data formats [34, 36]. All the relevant information is

extracted from the raw file and loaded into a unified data structure. This abstracted

data is then tagged with the sweep or pulse volume level classification information

contained in the metadata file.

After the data has been parsed, it then enters the first stage of preprocessing. This

step performs all experiment invariant preprocessing, such as data cleanup and feature
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extraction. Preprocessing is covered in more detail in the following section. Once the

initial preprocessing has been performed, the data is sent to the Data Uploader for

storage in a MySQL database. The Data Uploader understands the schema for the

NEXRAD database and performs a mapping between long term persistent storage

and the data structures used for short term experiment tasks.

Figure 5: Stage 1: Initial Data Processing

Classification and validation tasks are performed in the second stage of the process.

As shown in Figure 6, this stage begins by retrieving the specific data necessary for the

current task from the database using the Data Fetcher. The Data Fetcher is similar to

the Data Uploader, but moves data in the opposite direction, querying the database

and constructing appropriate data structures from the query results. Next, the data

enters the second stage of preprocessing. This stage performs all experiment specific

preprocessing, including feature selection and transformation (e.g. discretization).

After the second stage of preprocessing, the data is ready to be consumed by the

classifier. This takes one of two forms depending on the type of task being performed.

If a validation task is being performed, as in Figure 6(a), the only type of data being

used is training data and the Validator must separate this into separate training and

testing datasets. The other type of task, shown in Figure 6(b), is a classification task,

in which the system is simply being used to classify data of an unknown type. In

this case, the data is separated into classified and unclassified datasets when it comes
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out of the database. The classifier is either loaded from disk or is trained using the

classified data, after which the unknown data can be classified.

(a) Validation

(b) Classification

Figure 6: Stage 2

After classification and validation, the data is optionally sent to the Postprocessor.

The Postprocessor simply takes the results of the tasks and converts them into a

more useful form. This usually includes creating a text or html report and possibly

graphically rendering the classified sweeps.
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The steps of preprocessing, classification and validation are explained in more

detail below.

Data Preprocessing

Before classifier training can take place, a series of steps must be performed on

the data to improve the quality of the classifier produced. Most of these steps involve

removing data that is unnecessary, untrustworthy, or corrupt.

As mentioned above, data from the NEXRAD system comes in the form of a

volume scan, so the first step is to remove from the volume scan the pulse volumes

corresponding to all elevation angles that are of no interest. It is unlikely that any

significant quantity of birds will be found in all but the bottommost sweep when

investigating most local bird movements. Therefore, the 0.5◦ scan is saved and the

rest are discarded. The second step is to remove pulse volumes that are known to

cause problems. This includes pulse volumes within 20 km of the radar as well as

pulse volumes further than 145 km from the radar. The pulse volumes closest to

the radar are removed because they tend to contain the most contamination from

ground clutter [38]. Pulse volumes more distant than 145 km are removed due to

range-velocity ambiguity, also known as the Doppler dilemma [39]. As a result of this

property of Doppler radars, radial velocity readings beyond a certain distance are not

guaranteed to be accurate. Therefore, ambiguous data is simply discarded.

The third step is to realign adjacent scans within the same elevation angle. As

mentioned in the previous chapter, WSR-88D radars often perform multiple scans at

a particular elevation angle to improve the quality of information produced. Because

lower elevation angles tend to have more interference from ground clutter, it is im-

portant to get accurate radial velocity readings so that clutter removal algorithms do
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a better job of cleaning up the signal. Therefore, the radar will typically perform one

scan at a certain pulse repetition frequency to accurately find the position of sensed

entities and then performs one or more scans at a different pulse repetition frequency

to get accurate velocity values. Realignment becomes an issue because the radar is a

mechanical device and will not sweep exactly 360◦. This causes the azimuths of the

rays to be slightly different. This is not a problem when only dealing with reflectivity

and Doppler data separately, but it is an issue when conceptually thinking of one

pulse volume as containing all three data moments. In this case, the misaligned scans

must be sampled to produce accurate composite estimates for the conceptual pulse

volume.

The next step is to remove pulse volumes with reflectivity values that have been

flagged as bad or range-folded. A bad value, simply means that the signal strength of

the received echo is less than the signal-to-noise ratio. Generally, this simply indicates

that a particular pulse volume is empty. Range-folded values occur when echoes for

a radar pulse return to the radar after the next pulse has been sent out.

The fifth step is to mitigate the effects of bad or range-folded radial velocity and

spectrum width values. Because these attributes (collectively known as the Doppler

attributes) are typically acquired in a separate scan from the reflectivity data, it is

possible to have corrupted Doppler data for a location that contains valid reflectivity

data. Tests have shown that reflectivity is the most useful attribute for classification,

so the decision was made to simply set the radial velocity and spectrum width at-

tributes to zero when they are corrupted if valid reflectivity data is present. By doing

this, the algorithm can still exploit the reflectivity data even if the lesser attributes

are missing or corrupted.

The sixth step enhances the base set of attributes by adding nine second order

moments that are derived from the primary attributes. These derived attributes are
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(a) High Kurtosis (b) High Skewness

Figure 7: Skewness and Kurtosis Examples

statistics that describe the neighborhood of the pulse volume. For each of the three

base attributes, variance, skewness, and kurtosis are calculated over a 25x25 pulse vol-

ume neighborhood [40]. Variance is the familiar measure from classical statistics and

simply measures the variation of values within the sampled neighborhood. Kurtosis

measures the peakedness of a given distribution. Skewness, as the name implies, is a

measure of skew in a distribution. To illustrate these statistics, Figure 7(a) provides

an example of a distribution with a high kurtosis value and Figure 7(b) provides an

example of a distribution with a high amount of skew.

Haykin et al. [29] calculated skewness and kurtosis statistics for the raw in-phase

(I) and quadrature (Q) channel samples from an L band radar. In modern digital

radar systems the Doppler data is provided in digital form with real (I) and imaginary

(Q) components [13]. The idea was to use these statistics to measure the deviation

from Gaussianity. In that study, the statistics were calculated for a single pulse

volume in the same way that mean radial velocity is calculated. Unfortunately, the

Level II WSR-88D data being used by this system does not contain the original I and

Q channel samples. Instead, these statistics are calculated on a neighborhood of pulse

volumes with the idea that they might help detect boundaries and other phenomena.
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Initial experiments showed these derived features to be beneficial for classification, so

they were permanently added to the process.

Window size was chosen by maximizing information gain for the derived attributes

while varying the size of the neighborhood from 3x3 to 25x25. A 25x25 window

produced the best results. It is possible that a larger window could further improve

classification accuracy, but due to computational considerations, a 25x25 window was

the largest size investigated.

The final step is to remove any attributes deemed insignificant or detrimental, as

determined by sensitivity testing. This can include derived or base attributes. This

step may or may not be applied depending on the experiment and is conditionally

applied depending on the classifier used. This is necessary because some classifiers do

not weight attributes by significance. As a result, insignificant features can actually

confuse some classifiers, such as K-Nearest Neighbor and näıve Bayes, by diluting the

effects of more significant features.

Classification

Classification is performed at two different levels. At the lowest level, machine

learning techniques are used to classify non-empty pulse volumes as either biological

or nonbiological. These classifications are then aggregated to provide a classification

at the sweep level. Classification at the pulse volume level is performed by selecting

the class with the highest probability (provided by the classifier). Sweep level classi-

fication is slightly different. Instead of using a majority rule to classify the sweep, a

threshold is chosen. Only sweeps that contain a certain percentage of biological echoes

are classified as biological. A 70% threshold was used for the experiments described

in Chapter 4. The purpose of using a threshold is to bias the system towards making
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errors of omission rather than errors of comission. If the purpose of this system is to

reduce the number of radar sweeps that must be manually examined, it makes sense

to bias the system against flagging nonbiological sweeps as biological.

Three classifiers were investigated in this thesis: K-Nearest Neighbor, Näıve Bayes,

and Neural Networks. Each machine learning technique has pros and cons that are

discussed in the following sections.

K-Nearest Neighbor

The K-Nearest Neighbor classifier operates on the assumption that data instances

belonging to the same class will have similar attribute values. Therefore, it treats

attribute values as coordinates in N-dimensional space, where N is the number of

attributes [41]. In the context of the preprocessed data described previously, N can

be as high as fourteen when including the three base attributes, two spatial attributes

and all nine derived attributes. Given a set of correctly classified training instances,

classification of an unknown instance can be achieved by simply finding the K nearest

training instances, where K is some integer greater than or equal to 1, and using their

respective classifications to assign a class to the new instance. Figure 8 shows an

example using two dimensions. There are a wide variety of variations on the basic

K-Nearest Neighbor classifier using different distance metrics and different schemes

for determining a class given the classes of the nearest neighbors, but most use this

same basic process.

The K-Nearest Neighbor classifier is a lazy learner which means that the bulk of

the required computation is done during classification. This differs from the other

two classifiers investigated, which do most of their computational processing during

training. Training for the K-Nearest Neighbor classifier is a bit of a misnomer because

it is generally limited to just storing the training instances.
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Figure 8: K-Nearest Neighbor

Although this classifier is intuitive and fairly easy to implement, it suffers from

a number of shortcomings [42]. To start with, the K-Nearest Neighbor classifier is

sensitive to noisy training data. Unfortunately, much of the training data used in this

thesis is noisy due to the nature of radar data. Another issue is that the classification

accuracy of this classifier can degrade substantially with the inclusion of irrelevant

or low value attributes. The reason is that a greater number of attributes increases

the dimensionality of the feature space which leads to a lengthening of the distance

between related data instances. The last, and perhaps most detrimental, shortcoming

is that the computational demands are sensitive to the number of training points

as well as the number of attributes. For each new data instance that needs to be

classified, distances to a large subset or possibly the whole set of training instances

must be calculated. These distance calculations also become more costly as the

number of dimensions rises.

The experiments in this thesis used the IBk classifier provided by the Weka ma-

chine learning library [43]. This K-Nearest Neighbor implementation was used with

the classic Euclidean distance function.
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Näıve Bayes

The Näıve Bayes classifier [44] is a simple yet surprisingly effective classifier based

on Bayesian inference. At its core, the classifier leverage Bayes’ theorem:

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(1)

This theorem is usually used in the context of calculating the probability of an

event A given some evidence B. In this context, such a probability can be found by

multiplying the probability of event A by the probability of seeing evidence B, given

event A, and dividing by the probability of evidence B. In the context of classifying

pulse volumes, this theorem is used to calculate the probability of a pulse volume

belonging to a given class given its set of attributes. This can be done using Bayes’

theorem by calculating the probability of seeing the set of attributes for the particular

class, the probability of seeing the given class, and the probability of seeing the set

of attributes. All three of these probabilities can theoretically be computed from the

training data [44].

Unfortunately, calculating the joint probability for a set of attributes can be com-

putationally expensive and requires a massive amount of training data. The training

data used in this thesis can contain up to 14 multivalued attributes and two classes.

Intuitively, it might be unlikely to have even one training instance with exactly the

same combination of attributes, and many such training instances would be needed

for each class in order to accurately estimate the probability of seeing that particu-

lar combination. This combinatorial explosion makes using true Bayesian inference

infeasible for most practical applications.

In order to avoid this computational overhead, the Näıve Bayes classifier makes

the assumption that the attributes are conditionally independent of each other. This
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assumption allows the complex probability to be reduced to a product of probabilities

for the individual attributes as shown in Equation 2.

P (D|A, B, C) =
P (A|D) ∗ P (B|D) ∗ P (C|D) ∗ P (D)

P (A, B, C)
(2)

For classification, only maximization of class probabilities is required. It is only

necessary to discover which potential class has the highest probability given the at-

tributes. Determining the actual probabilities as shown in Equation 2 is not required.

Instead, only the numerator is required and the denominator can be removed. This

is valid because the denominator is invariant when only changing the class D. Given

this reduction the maximization problem given in Equation 3 can be rewritten as

Equation 4 [44].

Y = MAX(P (D|A, B, C)) (3)

Y = MAX(P (A|D) ∗ P (B|D) ∗ P (C|D) ∗ P (D) (4)

The conditional independence assumption is where the “näıve” portion of the

name comes from. Although this is a rather profound assumption in most practical

applications, studies [45] have shown that in many cases it has little effect on the

outcome. The simplicity and effectiveness of this classifier [41] makes it an obvious

benchmark for classification experiments. The disadvantage of using this classifier

is that it uses a purely probabilistic model and by definition the conditional inde-

pendence assumption means that it cannot exploit any relationships that may exist

between attributes.

Näıve Bayes does not weight attributes by importance so it can suffer from degra-

dation of performance when attributes are included that aren’t helpful in predicting a
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pulse volume’s class. For experiments that use this classifier, it is important to make

use of the preprocessing step that removes unnecessary attributes.

In order to determine which attributes should be included when using the Näıve

Bayes classifier, a version of greedy search [46] is performed. First, information gain

[44] values are calculated for each of the attributes. These information gain values

determine the order in which attributes are added. Starting with the attribute with

the highest information gain, a series of experiments are performed and the average

accuracy is recorded. The next attribute is then added and the previous step is re-

peated. This continues until the average accuracy starts to decrease. At this point the

search is stopped and the attributes that have already been added to the evaluation

set become the subset of attributes used in later experiments.

Table 1: Attribute Subset Selection
Attribute Accuracy
Reflectivity 81.25%
Reflectivity Skewness 87.50%
Spectrum Width 87.50%
Radial Velocity Skewness 87.50%
Range 87.50%
Radial Velocity 87.50%
Reflectivity Kurtosis 93.75%
Reflectivity Variance 62.50%

Table 1 shows the results of the attribute selection procedure just described. The

average accuracy remains the same or rises while adding the first seven attributes.

When the eighth attribute is added the accuracy takes a large dip. This triggers

the cut off criteria and only the first seven attributes are used. It may seem strange

that the accuracy remains the same while adding the middle four attributes. This

is not entirely unexpected because the statistic we are using for our greedy search,

information gain, is just a heuristic and does not directly correlate with accuracy.
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Therefore, even though the accuracy does not rise while adding these attributes,

there is no guarantee that the accuracy will not rise later in the procedure. This

is evident in this example by the increase in accuracy resulting from inclusion of

reflectivity kurtosis. It is true that a similar or possibly better accuracy could possibly

be achieved by leaving out some of the attributes that show no improvement, but that

would require a more computationally expensive search than the greedy search that

was used for this procedure. This may be a possible cause for further research in the

future.

The classifier implementation used in this investigation was the Näıve Bayes clas-

sifier provided by the Weka 3 machine learning library [43].

Neural Network

Neural networks [47, 48] are a popular machine learning technique used in real

world applications [49]. Although neural networks may require more overhead in

the implementation and training stages, they tend to be fast and effective for many

practical applications. They also lend themselves to parallelization and hardware

implementations. This framework, based loosely on the neural networks that make

up the human brain, can quickly be trained to map input patterns to output patterns.

By repeatedly iterating over a set of training examples, the neural network can learn

to emulate even complex non-linear functions [50].

Neural networks are composed of a number interconnected processing units called

neurons. Neurons take a set of inputs and produce a single output. The neurons

maintain a set of weights for each of the inputs and the behavior of the neuron

can be changed by manipulating these weights. The neuron functions by summing

or multiplying the weighted inputs and then passing them through a thresholding
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Figure 9: Artificial Neuron

function, such as the sigmoid given in Equation 5. Figure 9 shows the components of

an artificial neuron.

S(x) =
1

1 + e−x
(5)

The way that neurons are connected can have a significant effect on the operation

of the network. As such, there are many different possible architectures for a neural

network and some architectures are more effective for a given problem domain than

others. A survey of the different types of architectures is provided by Rojas [47].

A simple feed forward network architecture is used in this system. Figure 10

illustrates a typical layout for a feed forward neural network. The neurons in this

type of network are organized into layers. Typically, there is an input layer, an output

layer and one or more hidden layers. Starting from the input layer, each neuron is

connected to every neuron in the adjacent layer.

The power of a neural network is realized when an appropriate learning algorithm

is employed to learn the weights that correctly produce the desired output given a

specific input. Backpropagation [51, 52] is a common learning algorithm for this task.
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Figure 10: Feed Forward Neural Network

This algorithm uses a gradient descent strategy that calculates derivatives in order

to propagate errors back through the network and update weights accordingly. Back-

propagation gives these networks the ability to automatically learn complex functions

simply through repeated exposure to training examples.

For the problem being investigated, the pulse volume attributes serve as the inputs

to the neural network and the classification (1 for biological, 0 for nonbiological) is

the output. It should be noted that “1” and “0” are simply nominal class values.

The internal mechanics of the neural network use the more standard -1 to 1 scale for

outputs.

The disadvantages to using a neural network include (1) increased implementation

overhead, (2) difficulty in deducing any decision making knowledge from inspection
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of the weights, and (3) the network can take a prohibitively long time to converge to

a solution on complex problems [44].

Despite these setbacks, neural networks have found their way into a wide range

of real world applications because they can learn complex relationships between the

attributes used as inputs and once they have been trained, classification can be per-

formed quickly [49].

The backpropagation network implemented by the multilayer perceptron classifier

in Weka [43] was used for this investigation.

Validation

As with any classification problem, validation is of the utmost importance. Most

validation schemes involve separating the data into a training set and a testing set.

The classifier is constructed using the training data and then its accuracy is validated

using the testing set. This type of scheme can help avoid the situation where the

classifier simply memorizes the training data. Classifiers that fall into this trap will

appear to perform well when tested against the training data but usually perform

poorly on new data. This simple scheme does not work well, however, when the

amount of data is limited because using too much data for validation does not leave

enough training data to produce a good classifier; and, using too little data does not

do a good job of validating the classifier’s accuracy.

Cross validation [53] offers a good alternative to the simple validation scheme

described above. With cross validation, the available data is evenly divided into a

number of subsets known as folds. Validation then occurs in an iterative fashion. On

each iteration, one fold is held out for validation and the remaining folds are used for
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training. At the end, each fold has been held out exactly once, and the results are

averaged together to obtain an overall accuracy.

All of the experiments in this thesis use tenfold cross validation, but it is employed

in two different ways. The original dataset was classified at the sweep level, so the

40 training sweeps are divided into ten folds, each containing four sweeps. More

recent experiments, have been working with goose data that is actually classified at

the pulse volume level by workers in the field. For these experiments, the training

dataset consists of 1352 pulse volumes, so each fold contains 135 pulse volumes.

A related factor that can have an effect on the quality of the classifier is the

balance of classes within the data. An unbalanced dataset can lead to results that

are not representative of the classifier’s actual effectiveness. For instance, if 80% of

the instances in a dataset belong to class 1, a classifier could simply classify every

instance as class 1 and it would appear to have an accuracy of 80%. Obviously, this

classifier could produce widely varying results when used on real-world data.

To avoid balance issues, random over sampling (ROS) and random under sampling

(RUS)[54] are employed to balance the dataset. This scheme randomly removes in-

stances of the majority class and randomly duplicates instances of the minority class.

This procedure works well for correcting mildly unbalanced datasets, but highly un-

balanced datasets can still lead to problems due to the lack of diversity in the resulting

minority class. The unbalanced training data used in Chapter 4 contains 30% to 40%

nonbiological training examples and 60% to 70% biological echoes.

In order to truly have a balanced validation procedure, it is also important to

make sure that the resulting folds have roughly the same distribution of classes as the

composite dataset (the dataset resulting after ROS and RUS have been performed).

Stratification is a process that randomly swaps training examples between folds until
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all folds have the same class distribution. Stratified tenfold cross validation is used

whenever possible.

Software Source Code and Documentation

The process described above was implemented in Java and leverages the Weka

machine learning library [43]. All source code and documentation for this project is

available as part of the nexrad-mltoolkit project on Google Code [55].
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CHAPTER 4

RESULTS

In the following sections, empirical results are provided for a number of exper-

iments using this system in several different contexts. The results for the original

set of training data, which will henceforth be referred to as the Passerine Dataset,

are provided in the first section. This dataset contains a set of classified sweeps for

Lincoln, IL and surrounding areas. The training data is classified at the sweep level

by experts with experience identifying biological echoes in Doppler radar sweeps.

Then results for geese data, which will be referred to as the Geese Dataset are pro-

vided. The majority of this data was collected around Aberdeen, SD and Hastings

NE. This training data is classified at the pulse volume level and has been provided

by researchers in the field. Finally, the results of applying this process on a large

scale are briefly discussed in the third section. Radar data for an entire fall and

spring migration season was collected for three sites including Milwaukee, WI, Green

Bay, WI, and Great Falls, MT. This data is referred to as the Migration Dataset in

the following sections. For these experiments, the classifiers provided by the Weka

machine learning framework [43] were used.

Passerine Data

The Passerine Dataset originally contained 40 training sweeps provided by Dr.

Robb Diehl, University of Southern Mississippi. This data was classified at the sweep

level. Each sweep was a prototypical example of either biological or nonbiological

echoes. Theoretically, none of the sweeps contained a mixture of both echo types.

Accuracy and time estimates for the three classifiers investigated are provided in
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Table 2. Typically, timing results are not included in academic publications, because

they can be affected by so many outside influences. These timing results are provided

simply as anecdotal evidence of the difference in computation between the K Nearest

Neighbor classifier and the other two.

Table 2: Original Diehl Dataset
Classifier Correctly Classified Sweeps Experiment Duration
K Nearest Neighbor 39 / 40 191 min
Näıve Bayes 39 / 40 5 min
Neural Network 40 / 40 17 min

This dataset was eventually supplemented with more sweeps from Dr. Diehl as

well as some sweeps from Mr. Manuel Suarez of the USGS. After the dataset was

balanced using ROS / RUS, the new dataset contained 100 classified sweeps. With

the additional training data, it became apparent that using K Nearest Neighbor was

infeasible due to its high computational cost. Therefore, experiments after this point

focused on comparing Näıve Bayes with the Neural Network. The results for the new

dataset are shown in Table 3.

Table 3: Expanded Diehl Dataset
Classifier Correctly Classified Sweeps

Näıve Bayes 83 / 100
Neural Network 96 / 100

Geese Data

The focus of the Geese Dataset is to facilitate a set of experiments for which ground

truth is known. Unlike the sweeps in the Passerine Dataset which are classified at the

sweep level by radar ornithologists, the Geese Dataset is classified at the pulse volume

level. Biological classifications are drawn from direct observations of geese in the
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airspace recorded by researchers in the field. This data includes latitude, longitude,

altitude (AGL), number of geese, direction of flight, and weather. Nonbiological

training instances are collected for the same geographic area by utilizing historical

weather data to find precipitation events occuring at times when birds are not present.

Most of these observations come from the Aberdeen, SD area. This dataset is the

first to almost exclusively use the new higher resolution data provided by NEXRAD

Build 10. Performing ROS / RUS produced a balanced dataset containing 1352 pulse

volumes. The results of ten test runs have been averaged to provide the confusion

matrices in Table 4 and Table 5.

Predicted Class
Actual Class Nonbiological Biological
Nonbiological 619.9 (91.7%) 56.1 (8.3%)
Biological 284.9 (42.14%) 391.1 (57.86%)
Accuracy = 74.9%

Table 4: Näıve Bayes Classifier Results for Goose Dataset

Predicted Class
Actual Class Nonbiological Biological
Nonbiological 565.1 (83.59%) 110.9 (16.41%)
Biological 183.2 (27.1%) 492.8 (72.9%)
Accuracy = 78.3%

Table 5: Neural Network Classifier Results for Goose Dataset

The confusion matrix [56] allows us to see the number of correct classifications as

well as the number of false positives and false negatives. These results show slightly

lower accuracy than that achieved with the passerine data. This could be the result

of additional noise resulting from geolocation problems. One further point of interest

is that the neural network not only has a higher overall classification accuracy, but it

also has a much better classification accuracy for biological echoes in particular.
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Two Season Migration Data

The Migration Dataset is intended to test this algorithm’s ability to process large

amounts of data. Hourly sweeps were acquired for Milwaukee, WI, Green Bay, WI,

and Great Falls, MT spanning a time period of 180 days split between fall 2007 and

spring 2008. This dataset is not intended to test the classifier’s accuracy, as it is

composed entirely of unclassified data. Never-the-less, a subset of the results can still

be examined to get an idea of how the classifier is performing.

Unlike earlier classification tasks, it does not make sense in this case to classify

every sweep as biological or nonbiological. Some sweeps are bound to be empty or

nearly empty and giving such a sweep either classification is misleading. Therefore, a

threshold of at least 10,000 non-empty pulse volumes must be reached for a sweep to

receive a classification, otherwise it is simply classified as “No Data”. This threshold

was chosen after considering pulse volume count histograms for both the Passerine and

Migration datasets. For reference, the average number of non-empty pulse volumes

in a biological sweep from the Passerine Dataset is almost 37,000.

This dataset includes 12,437 sweeps. A neural network was trained using the

passerine data and the total time to classify all sweeps was 78 minutes. The break-

down for classifications is provided below.

This breakdown is plausible for what might be expected during a seasonal mi-

gration. Almost half of the sweeps show little to no activity with the other half

containing roughly two-thirds biological with one-third nonbiological.

Only the Milwaukee migration data is considered for further analysis below be-

cause it covers an overlapping area with Green Bay and this particular area has been

studied by a number of experts. These experts can provide valuable information,

such as time frames when large migration should be detected. The breakdown for
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(a) Composite

KGRB, KMKX & KTFX
Classification Sweeps
No Data (Empty) 5886
Nonbiological (Precipitation) 2150
Biological 4401

(b) KMKX

KMKX (Milwaukee)
Classification Sweeps
No Data (Empty) 1739
Nonbiological (Precipitation) 485
Biological 1989

Table 6: Migration Data Class Distribution

Milwaukee is shown below. The breakdown is similar to the composite figures above,

and seems plausible.

The histograms for hour of sweep acquisition can also provide insight into the

performance of this technique. Figure 11 provides the histograms for biological, non-

biological, and no data classifications.

The first obvious observation in all three graphs is a departure from uniformity

or normality. This is important because it is not what one would expect to see if the

difference between these classifications and a random set of classifications was not

statistically significant.

Looking specifically at the biological histogram, another interesting characteristic

is observed. A large portion of the biological sweeps fall in the 4:00 to 5:00 GMT

range. This is consistent with expert opinions regarding frequent migration event

times [38].

Another interesting statistic to examine is the frequency of class change when

considering sweeps in chronological order. One would expect sweeps before or after
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(a) Biological (b) Nonbiological

(c) Clear-Air

Figure 11: Sweep Hour Histograms



36

a sweep with a particular classification to have a higher probability of sharing that

classification.

Counting the number of times the classification changes for the Milwaukee data

produces a frequency count of 599 for 4213 sweeps. This means that there are long

stretches of uniform classification, which is what one would expect to see for long

migration or precipitation events. For reference, the average frequency count for the

same amount of randomly generated classes is about 2800. This is further evidence

that the algorithm is, indeed, identifying pulse volumes associated with birds.

(a) Sample 1 (b) Sample 2

Figure 12: Example Biological Sweeps

As a final investigation tool, several sweeps can be rendered and visually inspected

to validate the classification. Figures 12 through 14 show example sweeps selected

from each classification. These examples were randomly selected.

(a) Sample 1 (b) Sample 2

Figure 13: Example Nonbiological Sweeps
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The sweeps classified as biological in Figure 12 show the tell-tale signs of bird

activity [38]. The elliptical shape and distribution apparent in this sweep is typical

for bird events. This is in contrast to the nonbiological sweeps seen in Figure 13.

These sweeps have irregular shapes which are typical of precipitation events. Finally

the empty sweeps shown in Figure 14 are indeed mostly empty, containing only a small

number of echoes close to the radar site. These echoes are probably from clutter that

is present at lower altitudes near the radar.

(a) Sample 1 (b) Sample 2

Figure 14: Example Clear Air Sweeps

The examples in Figures 12 through 14 are admittedly anecdotal, but they show

that this technique appears to be working in the desired manner. This particular

experiment demonstrates that this system is able to process large amounts of real

data in an acceptable amount of time.
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CHAPTER 5

CONCLUSION

Prior to this research, there were no published accounts of applying artificial

intelligence methodology to identification of birds in NEXRAD weather radar data.

Now, the process described makes it possible for researchers to utilize the wealth of

new and archived weather radar data in a new, automated way. The goal of this

research was to produce a system that could substantially improve upon the time

required for radar ornithologists to manually classify the echoes contained in radar

sweeps. This goal has been achieved.

After being trained, both the Näıve Bayes and Neural Network classifiers are

capable of classifying all the pulse volumes contained in a sweep in a matter of seconds.

As seen in the previous section, the data from an entire migration season for one

station can be processed in a matter of hours.

Furthermore, detecting biological echoes in NEXRAD radar data with a classifi-

cation accuracy in the mid 80th to mid 90th percentile range is feasible using machine

learning techniques. The comparison of classification techniques revealed that both

the Näıve Bayes classifier and the Neural Network are suitable candidates for real

world application. Although Näıve Bayes had a slight edge in computational perfor-

mance, most of those savings were in training time, which should only need to be

done a few times in a practical application. In terms of accuracy, the Neural Network

produced better results. All things considered, the Neural Network would seem to be

the better choice for an automated data classification system.
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Limitations and Future Directions

Although the results provided are encouraging, the system described in this thesis

suffers from several limitations:

• Restrictive training data format

• Coarseness of output

• Individual pulse volume geolocation issues

Training Data Format

The initial classification scheme for training data was restrictive in that classifica-

tions were made at the sweep level. This constraint limited the amount of potential

training data, because radar sweeps rarely contain only one type of echo. Even the

sweeps that have been designated as only biological or only nonbiological probably

suffer from a certain amount of noise caused by other echo types.

Another potential issue stems from the use of these sweeps for validation. Sweeps

that are prototypical examples of biological or nonbiological events are understand-

ably the easiest to classify and this might have resulted in overly optimistic results.

In the future, a tool will be needed that allows experts to classify portions of

a sweep. This could be accomplished with a simple graphical interface that allows

a user to draw polygons around certain regions of a sweep. A more advanced tool

might leverage image processing techniques to automatically segment a sweep. In

this scenario, an expert would be prompted to provide classifications for each of the

identified regions.
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Coarseness of Output

This issue is closely tied to the issue described in the previous section. Because

the training sweeps used for validation were classified at the sweep level, the system

was initially designed to aggregate pulse volume classifications to produce a sweep

level classification. However, this is fairly restrictive because only allowing entire

sweeps to be classified as biological or nonbiological is unlikely to be useful in most

real applications.

Improvements in this area would provide finer details for classified sweeps such as

number and size of biological regions in addition to the percentage of echoes classified

as biological. This information could then be combined with a graphical rendering to

produce more useful results.

Pulse Volume Geolocation

The ground truth provided by the observations from the Geese Dataset adds

further credibility to this process, but many obstacles to utilizing these observations

were discovered. Resolving these issues will be part of the focus of future research.

The first issue is calculating the beam height at the location of the observation. Any

observed birds must be flying within the beam for the observation to be useful. In

order to do this, several things are necessary: an accurate method of calculating the

height of the beam, an accurate way to estimate the height above ground level of the

birds and an accurate way to calculate the height of the observer. These calculations

are further complicated by differences in the reported height above sea level given by

different models of the earth [57].

Another issue is that most sweeps occur at roughly five minute intervals. Observers

in the field have no way of knowing when the radar is actually detecting what they
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are seeing. This becomes a problem when birds are flying at high speeds because they

can cross pulse volume boundaries. Likewise, when birds are ascending or descending

they can fly into or out of the beam. The issue of crossing pulse volume boundaries

is exacerbated by the new Build 10 systems that offer finer resolution by decreasing

the size of pulse volumes.

Finally, mapping a pulse volume to a geographical location can require some

complex math due to the curvature of the earth and the angle of the beam. Intuitively,

this problem is worse as an observer gets farther from the radar station. Current work

on improvements to the system will help resolve the problems just discussed.

In addition to addressing the limitations described in the previous section, there

are a number of aspects of this research that could be expanded upon:

• Independent validation of results

• Increased number of potential classes

• Incorporation of sweep level features

• Integration with GIS systems

• Application of System

Independent Validation of Results

More research is required to corroborate the results found in this thesis. Ideally,

this corroboration would come from an independent study. One possible method of

doing so would be to use this process to find areas of high bird use and then confirm

these results using bird data collected from field researchers ( similar to the Geese

Dataset). Some form of independent validation is going to be required for this tool

to gain acceptance in the broader scientific community.
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Expanded Classification Types

Increasing the number of classes is one way that the system could be substantially

improved. The current use of only biological and nonbiological classes is obviously

restrictive. Possible class types could include rain, snow, insects, passerines, water-

fowl, etc. The ability to differentiate between types of birds would be particularly

useful for researchers with a particular focus, such as studying goose migration.

Sweep Level Features

Classification based on sweep level features is an obvious extension of this research.

The process described in this thesis is purely based on pulse volume level classification.

Although the process can produce classifications for entire sweeps, no sweep level

features are considered when producing that classification. Instead, it is simply an

aggregation of the classifications made for the pulse volumes contained in that sweep.

Possible sweep level information that could be useful for classification might in-

clude texture and distribution features for groups of echoes defined by segmentation

or clustering. Another possible extension would be to feed entire neighborhoods of

pulse volumes into the classifier. This would be an intermediate level of informa-

tion, somewhere between sweep and pulse volume level depending on the size of the

neighborhood.

GIS Integration

Another obvious question, that should be considered in the future, is how the

process developed in this thesis can be utilized by researchers. Scientific data visual-

ization will be necessary in order to present the information produced by this system

in a way that can be understood by scientists and other interested parties. A logical

next step would be to provide a mechanism, whereby the results of this process can
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be utilized by GIS systems. This integration could allow maps to be made of hotspots

or show how migration trends change over time.

Applications

This system could be used to advance understanding of avian behavior in a number

of practical applications. Studying migration phenology and migration corridors are

two examples of applications that are currently getting a lot of attention.

Climate change is currently a topic of great interest. One possible way of studying

climate change is to look for changes in migration phenology occuring in the past

several decades. Archived WSR-88D data could provide exactly the data needed for

such a study. Using this system, researchers could identify shifts in migration timing

resulting from changes in climate.

Identification of migration corridors is another practical application that could

benefit from this system. In addition to interest from the ornithology field, a better

understanding of migration corridors would benefit wind energy projects with an

interest in reducing bird-turbine collisions. This could be done by either placing

facilities in areas with less migration or by only operating the facilities during times

that do not coincide with migration events.
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Volume Coverage Patterns

A Volume coverage pattern(VCP) is a program telling the radar which elevation

angles to scan as well as how to scan them. These patterns are designed to produce

the most useful data for current environmental conditions.

The WSR-88D has two general modes of operation: Clear-Air and Precipitation.

Intuitively, Clear-Air mode is used in the absence of any precipitation events and can

provide more accurate measures of low level signals. Precipitation mode is intended

to provide useful information in the presence of precipitation or extreme weather

events. Although a radar technician can manually cause the equipment to enter

Precipitation mode, it is more common for this mode to be entered automatically

when a precipitation event is initially detected.

Table 7 provides general technical information for the volume coverage patterns

used by the WSR-88D [58, 59]

Table 7: Volume Coverage Patterns
VCP Operational Mode Number of Scans Total Duration

11 Precipitation 16 5 min
12 Precipitation 17 4.2 min
21 Precipitation 11 6 min
31 Clear Air 7 10 min
32 Clear Air 7 10 min
121 Precipitation 20 5.5 min

VCP 11

VCP 11 is a convection oriented coverage pattern that is designed for both severe

and non-severe precipitation events. This pattern provides good overall storm cover-

age by scanning 14 elevation angles in about five minutes. Split cuts are used for the

bottom two elevation angles. Precise elevation angle details are provided in Table 8.
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Table 8: Elevation Angles for VCP 11
Scan Number Elevation Angle Scan Type

1 0.5 Reflectivity Only
2 0.5 Doppler Only
3 1.45 Reflectivity Only
4 1.45 Doppler Only
5 2.4 Reflectivity and Doppler
6 3.35 Reflectivity and Doppler
7 4.3 Reflectivity and Doppler
8 5.25 Reflectivity and Doppler
9 6.2 Reflectivity and Doppler
10 7.5 Reflectivity and Doppler
11 8.7 Reflectivity and Doppler
12 10.0 Reflectivity and Doppler
13 12.0 Reflectivity and Doppler
14 14.0 Reflectivity and Doppler
15 16.7 Reflectivity and Doppler
16 19.5 Reflectivity and Doppler

VCP 12

Like VCP 11, VCP 12 is intended for use with convection. It is specifically in-

tended for deep convection and provides better vertical resolution and faster scan

times than VCP 11. Overlap of lower elevation angles provides better coverage of

the lower levels of precipitation events. Table 9 provides specific elevation angles and

scan types for VCP 12.

VCP 21

VCP 21 is designed for shallow, generally non-severe precipitation. It is appropri-

ate for slowly changing conditions like stratiform rain and snow. VCP 21 has a slower

overall scan time than VCP 11 or 12 and only scans nine elevation angles. Table 10

provides further elevation angle details.
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Table 9: Elevation Angles for VCP 12
Scan Number Elevation Angle Scan Type

1 0.5 Reflectivity Only
2 0.5 Doppler Only
3 0.9 Reflectivity Only
4 0.9 Doppler Only
5 1.3 Reflectivity Only
6 1.3 Doppler Only
7 1.8 Reflectivity and Doppler
8 2.4 Reflectivity and Doppler
9 3.1 Reflectivity and Doppler
10 4.0 Reflectivity and Doppler
11 5.1 Reflectivity and Doppler
12 6.4 Reflectivity and Doppler
13 8.0 Reflectivity and Doppler
14 10.0 Reflectivity and Doppler
15 12.5 Reflectivity and Doppler
16 15.6 Reflectivity and Doppler
17 19.5 Reflectivity and Doppler

Table 10: Elevation Angles for VCP 21
Scan Number Elevation Angle Scan Type

1 0.5 Reflectivity Only
2 0.5 Doppler Only
3 1.45 Reflectivity Only
4 1.45 Doppler Only
5 2.4 Reflectivity and Doppler
6 3.35 Reflectivity and Doppler
7 4.3 Reflectivity and Doppler
8 6.0 Reflectivity and Doppler
9 9.0 Reflectivity and Doppler
10 14.6 Reflectivity and Doppler
11 19.5 Reflectivity and Doppler
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VCP 31

VCP 31 is the first Clear-Air mode pattern. It is intended to be more sensitive

to low level signals. Unlike precipitation mode patterns, VCP 31 and 32 scan much

fewer elevation angles and spend more time doing it. VCP 31 samples five elevation

angles in about ten minutes. Elevation angle details are provided in Table 11

Table 11: Elevation Angles for VCP 31
Scan Number Elevation Angle Scan Type

1 0.5 Reflectivity Only
2 0.5 Doppler Only
3 1.5 Reflectivity Only
4 1.5 Doppler Only
5 2.5 Reflectivity Only
6 2.5 Doppler Only
7 3.5 Reflectivity and Doppler
8 4.5 Reflectivity and Doppler

VCP 32

VCP 32 is similar to VCP 31, but it uses a short pulse rather than a long pulse.

The short pulse causes VCP 32 to be somewhat less sensitive than VCP 31, but it

results in fewer velocity dealiasing failures. Table 12 provides further details.

Table 12: Elevation Angles for VCP 32
Scan Number Elevation Angle Scan Type

1 0.5 Reflectivity Only
2 0.5 Doppler Only
3 1.5 Reflectivity Only
4 1.5 Doppler Only
5 2.5 Reflectivity and Doppler
6 3.5 Reflectivity and Doppler
7 4.5 Reflectivity and Doppler
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VCP 121

This VCP was designed as a temporary solution to the problem of excessive range

folding and incorrect velocity de-aliasing. These problems are mitigated by perform-

ing multiple Doppler scans at the lower elevation angles. Unfortunately, due to the

increased scan time, VCP 121 may not be appropriate in situations where conditions

are changing rapidly. Individual scan details are provided in Table 13.

Table 13: Elevation Angles for VCP 121
Scan Number Elevation Angle Scan Type

1 0.5 Reflectivity Only
2 0.5 Doppler Only
3 0.5 Doppler Only
4 0.5 Doppler Only
5 1.45 Reflectivity Only
6 1.45 Doppler Only
7 1.45 Doppler Only
8 1.45 Doppler Only
9 2.4 Reflectivity and Doppler
10 2.4 Doppler Only
11 2.4 Doppler Only
12 3.35 Reflectivity and Doppler
13 3.35 Doppler Only
14 3.35 Doppler Only
15 4.3 Reflectivity and Doppler
16 4.3 Doppler Only
17 6.0 Reflectivity and Doppler
18 9.9 Reflectivity and Doppler
19 14.6 Reflectivity and Doppler
20 19.5 Reflectivity and Doppler
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