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Abstract:

Electron-positron pair creation is investigated in and around accretion flows within active galactic
nuclei. First, two-temperature accretion disk models from the 1970’s are re-examined, and the effects
of pairs on disk structure are calculated. It is found that thermal pah- production produces insufficient
pairs to greatly affect the disk, but that nonthennal processes produce sufficient pairs to significantly
alter flow structure for a wide range of parameters. Then improvements are made upon earlier studies
of pair-induced over- cooling of two-temperature spherical accretion flows. It is found that thermal
processes produce insufficient pairs to cause over-cooling; however, nonthennal pair production can be
an effective cooling agent. Finally, the origin, vertical structure, and radiation spectrum of steady-state
pair cascade atmospheres surrounding accretion flows are investigated, by developing computer codes
to model radiative transfer, scattering, pair production, and pair annihilation. It is found that substantial
pair atmospheres may develop above accretion flows which emit even a small fraction of their
luminosity as gamma- radiation. The radiation spectrum emitted by the flow may be significantly
reprocessed during transit through the atmosphere, leading to interesting observational consequences.
The conclusion is reached that under modest and reasonable assumptions, pairs can significantly alter
the accretion flows within, and the radiation spectra emitted from, the central engines of active galactic
nuclei.
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ABSTRACT

Electron-positron pair creation is investigated in and around accretion
flows within active galactic nuclei. First, two-temperature accretion
disk models from the 1970’s are re-examined, and the effects of pairs
on disk structure are calculated. It is found that thermal pair
production produces insufficient pairs to greatly affect the disk, but
that nonthermal processes produce sufficient pairs to significantly
alter flow structure for a wide range of parameters. Then
improvements are made upon earlier studies of pair-induced over-
cooling of two-temperature spherical accretion flows. It is found that
thermal  processes produce insufficient pairs to cause over-cooling;
however, nonthermal pair production can be an effective cooling
agent. Finally, the origin, vertical structure, and radiation spectrum
of steady-state pair cascade atmospheres surrounding accretion flows
are investigated, by developing computer codes to model radiative
transfer, scattering, pair production, and pair annihilation. It is
found that substantial pair ‘atmospheres may develop above accretion
flows which emit even a small fraction of their luminosity as gamma-
radiation. The radiation spectrum emitted by the flow may be
significantly ~ reprocessed  during  transit through the  atmosphere,
leading to interesting observational consequences.  The conclusion is
reached that under modest and reasonable assumptions, pairs can
significantly  alter the accretion flows within, and the radiation
spectra emitted from, the central engines of active galactic nuclei.




CHAPTER 1
INTRODUCTION

Among the most intriguing objects in nature are the quasars, the
brightest and most distant objects known. In tﬁe years since their
discovery in the 1960s, astronomers and astrophysicists have come to
the realization that these objects are (exceedingly bright) members of
a much larger and tremendously varied group: the active galaxies.
These galaxies derive their name from the fact that the galactic
central core region, called the. galactic nucleus, is unusually
energetically  active. Some  measure  of appreciation  for  the
extraordinary nature of active galactic nuclei (AGNs) may be gained
from a glance at a few of .their many spectacular characteristics. For
example, the central engine of AGNs “(the region' where most of the
energy is produced) is thought to be some 10 orders of magnitude
smaller than the host galaxy as a whole, but can, in the case of
bright quasars, outshine the rest of the galaxy by a factor of 10° or
more. Some AGNs (in what are known as radio galaxies) are seen to
propel powerful and remarkably coliimated beams of radiation and
matter (cosmic jets) _which fpel‘ vast radio-emitting structures (radio
lobes) a -thousand times larger than the host galaxy. And many AGNs

exhibit the 'intriguing ability to radiate more or less uniformly across
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some 11 or so decades of frequency, from radio through hard gamma-
rays. Many of the prominent spectral features observed in AGNs,
along with many theoretical considerations, are consistent wi'th the
now almost universally accepted model of an AGN as an accreting ..
supermassive black hole (M=1u06'9Msol), residing in the center of the
galaxy. If any readers are not familiar with basic AGN theory and
observation, they are urged to look over the necessarily brief AGN
primer found in the Appendix, before reading the remainder of this
paper.

This thesis deals with the effects of ‘electron—.positron pairs in
AGNs. In this introductory chapter we shall first review simple
arguments for the possibility of pair creation in AGNs. We then
illustrate the need for studying pairs in AGNs by examining the
literature, noting what work has been done in this field and what
important lines of inquiry have been inadequately treated. Finally we
propose the specific goals we wish to achieve in this thesis, and the

methods by which we shall achieve them.

The Possibility of Pair Creation in Active Galactic Nuclei

Nonthermal Pair Creation

Of the AGNs close enough and bright enough to be viewed in Y-
rays, many are found to be strong 7-ray -emitters (see Appendix).
Jelley (1966) was the first to suggest that electron-positron  pair
creation may occur in AGNs, when Y-rays interact with low energy

photons through the quantum electrodynamical process:




YHy—ette . (1.1)

The subsequent 15 years or so saw relatively little progress made in
investigating the consequences of this possibility. (Notable exceptions
include ‘Bonometto and Rees 1971, Herterich 1974, and Cavallo and
Rees 1978.) This was due, in large part, to the exceedingly complex
physics involved in accelerating particles to energies high enough to
produce the fy-radiation necessary for pair creation. (If electrons
produced the hv>100MeV photons observed in sorﬁe sources, they
would have to be wultrarelativistic, with Lorentz factors  y>102)
Plausible acceleration mechanisms include: strong shock waves, violent
magnetic  reconnection, and strong electric fields, among others.
Interest in the field was renewed when Guilbert, Fabian, and Rees
(1983) sidestepped the stubborn issue of acceleration physics and
made the obvious but quite fruitful suggestion that much could be
learned about AGN behavior by simply modeling panicIel acceleration
as a  continuous injection of some high-energy,  nonthermal
distribution of particles (usvally -electrons) throughout the emission
region. The reasoning was that: (1) the violent variability seen in
AGN spectra is a strong indicatioﬁ of chaotic conditions in which at
least some particle acceleration is guaranteed; and. (2) preliminary
studies have shox;vn that most of the mechanisms listed above may
produce quite similar power-law particle spectra, so that only a few

free parameters (power-law slope, upper and lower energy limits, and

. total injected power) would be needed to model a generic acceleration

mechanism. The newly-accelerated paiticles would then cool by
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Compton upscattering  soft photons, by bremstrahlung emission, or by
synchrotron  emission, producing  y-radiation m ~thel process, which
would then produce pairs.

As Lightman and Zdziarski (1987) point out, acceleration of some
electrons to Y>>1 is energetically feasible because typical black hole
accretion efficiencies (ratio of luminosity to rest mass accretion rate;
see the Appendix) of 10% make available an energy. up to 0.1 mpc2
per ionization electron (where m, is the proton mass and we assume
ionized hydrogen is accreting). This scheme is the basis for all
"nonthermal" pair creation models considered in this paper. |

If a significanlt fraction of accretion energy is indeed channeled
nonthermally  to  y-radiation, the criterion for significant  pair
production is that the source be sufficiently compact and luminous,
and the resulting photon densities great enough, so that fy-rays will.
interact and pair produce instead of escaping from the system. This
point may be quantified by a simple, widely used, estimate invqlving
the 'compactness parameter l (Guilbert, Fabian, and Rees 1983), whjch

is a dimensionless ratio of source luminosity L to source size

| = —— (1.2)

where Gp Iis the Thomson cross section. When [>>1 pair production
should be important, with most =1MeV Y-rays pair producing instead
of escaping. When /<<l most of these photons will escape and little

pair production is expected (see Chapter 2).
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When applied to AGN central engines, the compactness parameter
tels us on both theoretical and observational grounds that pair
production could be importait in these objects.  Theoretically,
following Lightman and Zdziarski (1987) and others, we may rewrite [

as product of dimensionless ratios
I= (1/2) (myfm) L/Lg,) @) (1.3)

where L., ¢ is the Eddington luminosity (see Appendix), rg=2GM/c2 is
the Schwartzchild radius of a black hole of mass M, and G is the
gravitational constant. For rz'l()rg, typical of many models, [ can
exceed unity even for sub-Eddington luminosities.

Observationally, we can estimate the compactness parameter by
calculating L from an observed spectrum (the distance to the object
must be known), and estimating source size r by the timescal’el of

variabilty At (see the Appendix):
R=cAt , ' (1.4)

to obtain the observed compactness parameter:

(1.5)

AGN surveys (see Lightman and Zdziarski 1987 for a complete list)
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indicate values of [ spread fairly uniformly over the _interval 103 to
101, indicating the possible importance of pairs in many AGNs.

If vy-ray production does occur and if the source is sufficiently
compact, so that some pairs are produced, there .exists the
possibility that these pairs will initiate a "nonthermal pair cascade"
producing many more pairs. The cascade functions as a positive
feedback loop in which the initial relativistic pairs  cool by
upscattering ambient soft photons to Y-ray energies; these new
gamma rays produce a second generation of pairs, which will prodice
more Yy-rays, which will produce more pairs, and so on. Whether these
nonthermal processes will be effective or not is a complicated and

highly model-dependent question.

Thermal Pair Creation

In contrast to the unequal shating of ‘energy characterizing
nonthermal models, in models of "thermal" pair production, available
energy is shared more. or less equitably among electrons. Here the
importance of pair production depends critically on the electron
temperature T, If the dimensionless temperature E)‘:'s-k"f‘e/mevc2 is
greater than unity, most electrons will be relativistic and readily
produce Y-rays, which in turn will produce pairs. If O, is not far
below unity, the high energy tail of the Maxwell-Boltzmann
distribution remains relativistic, and some Y-ray and pair production
may result. Many AGN accretion flow models exhibit electron
temperatures  around 0.1<6.<0.5, - indicating  the possibility  of

significant thermal pair production. Whether pairs will indeed be
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important is, as was the case for nonthermal models, a difficult and
highly model-dependent question.

In addition to photon-photon pair creation, there exist many
other pair producing reactions, including photen-electron T+e—ete’e,
electron-electron e+e—etete’e’, photon-proton y+p—p+ete, and so on.
The photon-electron cross section is down by roughly a factor ‘cl)f‘ oL,
the fine structure constant, from the photon-photon  cross section.
The electron-electron cross section is down by an additional factor of
Oy
reactions appear always to be the dominant pair creation process in
AGNs (see Svensson 1987) because of the large value of its cross

section and because particle densities remain too low in most AGN

models.

Direct Observation of the 511 KeV Annihilation Line in AGN Spectra
e seesa el B R AL AoV Annihation Line i AGIN dspectra

No direct observation of the 511 keV annihilation feature has
been reported in extragalactic AGN spectra. This is by no means a
death nell to the theory of pairs in AGNs, however. Many theories
have been set forth in which the annihilation Iine is scattered or
absorbed on its way out of the source, or is merely intrinsically too
weak to be detected. New more powerful detectors slated for the
coming few years, and improved modeling (this paper, for example),
should shed considerable light on the subject. |

We note that an on-again, off-again annihilation line, carrying
1037erg/s (Phinney 1983), has been observed coming from our Galactic

center. Our Galactic nucleus has long been suspected to be weakly

, and the corresponding proton rates are even lower. Photon-photon




|- \! e U |

il

|

8
active, and if these observations are confirmed, we will have the first

(but only) direct evidence of pairs in AGNs.

The Investigation of Pair Creation in Specific Accretion Models

Current theory tells us that matter accreting onto a black hole
may assume any number of geometrical forms. However, if any
angular momentum is originally present as mass is fed into the system
from great distances, or if the hole is spinning and the Lense-
Thirring  effect is in operation, the accretion flow should settle into
some sort of accretion disk in the region near the hole (see the
Appendix). It is in this central portion of the accretion flow where

most of the gravitational potential energy is released. Any- atmosphere

of matter or radiation present in the space surrounding the flow

(above or below the disk) may scatter, absorb, or re-emit portions of
the primary spectrum emitted from the accretion flow, constituting
so-called spectral reprocessing. What we see through our telescopes
and detectors is the reprocessed primary spectrum. Any successful
model of AGN central engines must therefore address both accretion
flow and atmosphere. We now consider specific important AGN flow
and atmosphere models in which the effects of pair creation could be
great, but for which this possibility has not been adequately
investigated, or investigated at all.

A quick survey of conventional wisdom tells us that accretion
flows can surround themselves with at least five fundamentally
different kinds of atmospheres : (1) radiation pressure driven winds,

in which intense radiation from the inner regions of the flow blows
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matter (pairs or otherwise) outward (Leighly 1990); 2)
evaporative/diffusive atmospheres, in which particles with
sufficiently high velocities may overcome any (as yet unknown)
containment forces and ‘"evaporate” from the surface of the flow
(Shakura and Sunyaev 1973); (3) magneto-coronal  atmospheres, in
which shear amplified magnetic fields induce an instability by which
matter in magnetic flux tubes becomes buoyant and rises up out of
the flow, perhaps resulting in magnetic flares, prominences, and a
high temperature corona much like these seen on the sun (Galeev,
Rosner and Vaiana 1979);- (4) cosmic jets, in which a complex of
ordered magnetic and electric fields tap into the rotational energy
of the (spinning) black hole and propel radiation and/or matter out
more or less along the rotational axis (Phinney 1983; Bumns and
Lovelace 1982); and (5) pair cascade atmospheres, in which Y-rays,
emitted from the flow, or produced by, say, high temperature
electrons in a mageto-corona, initiate a pair cascade which populates
the atmosphere with pairs (see comments in Svensson 1 985).

Of these five models, only pair winds and jets have received a
great deal of “treatment (see the above references). We turmn our
attention to one of the neglected areas, the pair  cascade
atmosphere. If the assertion By Guilbert, Fabian, and Rees (1983) is
true, and AGN accretion flows are indeed natural Y-ray emitters,
pair production should not only occur inside the flow, but outside as
well, and- some sort of pair atmosphere should form. This has yet to
be investigated in any detail at all. The task is a difficult one: the

situation  is  intrinsically  three-dimensional; the outer limits and
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spatial  structure of the atmosphere are a priori unknown; the
atmosphere may be optically thin, so that radiative transfer will link
together  all regions of the atmosphere; the atmosphere  depends
critically on the emission spectrum  and geometry of the accretion
flow, which in turn may be affected by the atmosphere; and several
physical  processes (scattering,  pair  creation, pair  annihilation,
radiative transfer, particle transfer, ect.) are concurrently at work.

A survey of the literature reveals a lafge number of accretion
disk models that have been proposed over the last twenty years or
so. Many of these are variations on one or the other of the two most
widely referenced models, the cool, optically thick, geometrically thin
disk of Shakura and Sunyaev (1973), and the hot, optically thin,
geometrically thin, two-temperature disk of Shapiro, Lightman, and
Eardley (1976). These two models were originally formulated as pair-
free, without taking into account any possible pair creation. Let wus
turn our attention to the two-temperature disk. As we note in the
Appendix, two-temperature accretion flows are predicted for a large
range of flow conditions in AGNs. The presence of pairs could
significantly alter the state of matter and radiation within the disk,
affecting disk structure and emission spectrum. Before the present
work, tﬁe only attempt to calculate equilibrium pair depsities in the
two-temperature disk was by Liang (1979), who noted correctly that
the high electron tempertures in the pair free model (Te=109'10K)
indicated pairs might be important. His results, which showed that
thermal paﬁ production was very important, with the density of

paits greatly exceeding the density of protons, were seriously
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questioned however, when Svensson (1985) and others found his
methods to suffer many critical flaws. Also, no investigations into
nonthermal pair production have been conducted on this or any
other disk whatsoever. |

Inflated accretion flows (spherical or quasi-spherical geometry)
have been investigated somewhat more thoroughly for the effects of
pairs than have the disks (see, for example: Svensson 1987; L_ightman
and Zdziarski 1987; Done and Fabian 1989; Fabian et al. 1986; and
Begelman, Sikora, and Rees 1987). As was the case with the disks,
there are many models of spherical accretion from which to choose,
but we shall again limit discussion in the present paper to two-
temperature  class of flows. It is of course desirable that two-
temperature flows be investigated for the effects of pairs in both
their thin disk and inflated limits. About the only work done in the
spherical limit was the pioneering paper of Begelman, Sikora, and
Rees (1987), who wused crude estimates of both thermal and
nonthermal pair creation rates to estimate the effects of pairs on the
thermal instability to possible collapse of the innermost regions of
the ijon pressure supported flow due to the overcooling of ions by
pairs through Coulomb collisional energy transfer. The collapse, and
particularly the size of the collapsed region, influence heavily the
geometry and primary spectrum of the flow (see Begelman, Sikora,
and Rees 1987). A revisitation of the work of Begelman, Sikora, and
Rees (1987) utilizing more detailed calculations of pair creation rates

]

is needed.




12

The Present Problem: Detailed Calculations of

the Effects of Electron-Positron Pairs in Two-

Temperature __Accretion Flows: and  the Origins.

Structure, _and__ Spectral  Reprocessing of Pair

Cascade Atmospheres in Active Galactic Nuclei

In this thesis we propose to remedy several important deficiencies
in the development of accurate, self-consistent models of AGN central
engines in the following manner. (1) We will investigate the effects
of pairs on the classic two-temperature disk model of Shapiro,
Lightman, and Eardley (1976). We will do this by improving the
original pair free model, generalizing it to accommodate the presence
of any pairs, developing accurate thermal and nonthermal models of
pair creation within the disk, and numerically solving the model to
determine the nature and extent of the effects of pairs. (2) We will
improve upon the pioneering work of Begelman, Sikora, and Rees
(1987) by wusing more accurate treatments of both thermal and
nonthermal pair production to determine the nature and extent of the
effects of pairs on the over-cooling and collapse instabilities in two-
temperature  quasi-spherical  accretion flows. (3) We will develop
detailed numerical models of pair cascade atmospheres. Computer
codes will be developed which, for any primary spectrum emitted by
an accretion flow, will numerically solve for the three-dimensional
structure  of, and the spectral reprocessing by, the resulting
atmosphere. Two distinct models will be developed. The first is a

"pair cascade shower atmosphere," which employs many simplifying
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assumptions. The second, called "the general cascade atmosphere,” is a
more accurate meodel with many simplifying assumptions relaxed. We
will make primitive comparisons with observation Where appropriate

and possible.
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CHAPTER 2
PAIR PRODUCTION WITHIN TWO-TEMPERATURE ACCRETION FLOWS

Two-temperature  accretion flows, in which protons maintain
higher temperatures  than  electrons, are an important class of
accretion flows, and are predicted to be present in many AGN central
engines (see the Appendix). To investigate the effects of pairs on the
structure and properties of two-temperature accretion flows, we adopt
two extreme cases, a disk and quasi-spherical approach, which
together, hopefully, would give some realistic insight to the actual
physical situation. In disk accretion, the two-temperéture hot region
should be geometrically thick (see Appendix). However, a realistic
model of such an inflated torus is non-existent. Therefore, we adopt
the hot two-temperature thin disk model of Shapiro, Lightman, and
Eardley (1976), the best available at the moment. They estimate that
the thin disk model should remain acceptably accurate (to within a
factor of about 2) even when the half-thickness h of the disk grown
to the order of the radial distance r from the center of the disk:
h~r. OQur results should be accurate within the region h < r and at
least qualitatively valid up to moderately inflated states, h ~ r, at
which  point  spherical or  quasi-spherical inflow has  become

appropriate (White and Lightman 1989). In our quasi-spherical model
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we adopt the approach of Begelman, Sikora and Rees (1987) where
the effect of the angular momentum is taken into account by allowing
the infall velocity v to be less than the free fall velocity by a factor
M. This crudely models accretion as matter spirals, rather than
directly falls, in toward the black hole. The quasi-spherical results
should be valid in geometries ranging from moderately thick tori, h~r,
to essentially spherical inflow, h>r.

If the electron temperature is sufficiently high, bremsstrahlung
could become an important cooling mechanism (see White and
Lightman 1989). However, we adopt the view that the observed
broad-band composite spectra of continuum radiation from Seyfert
nuclei and typical radio-quiet quasars are more npaturally explained by
unsaturated Comptonization of soft photons by energetic electrons
(Tsuruta 1988), and thus we do not discuss bremsstrahlung models in
this paper. (See, however, White and Lightman 1989 for discussion of
one-temperature  bremsstrahlung disks which do not contradict the
observational absence of a Wien hump in low luminosity Seyferts, for
instance, but do appear to be inconsistent with gamma-ray
observations and observed power-law slopes.) The soft photons may
refer, e.g., to the UV bump observed in many of these objects or
infrared emission through cyclotron higher harmonics (Takahara and
Tsuruta 1982). When Comptonization is unsaturated, the outcoming
radiation has a power-law spectrum (e.g., Shapiro, Lightman and
Eardley 1976). Our thermal models are, therefore, constructed to

satisfy the impertant constraint that the energy slope o of the
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'observed power-law X-ray spectra is ~0.3-1 for AGNs in general, and
~0.7 for Seyfert 1s in particular.

Within our two-temperature accretion flows near a black hole the
proton temperature is comparable to its virial value, which is ~10'K
to 102K, while the expected electron temperature of around 10°K is
of the order of its rest mass energy (Shapiro, Lightman and Eardley
1976). Under such high temperatures the thermal production of
electron-positron pairs could be important. On the other hand, it has
been pointed out that pairs can be produced even more efficiently
through a nonthermal process (e.g. see Rees 1984, Guilbert, Fabian
and Rees 1983, Fabian et al. 1986). These authors argued that in the
environment of the accretion flows .near a black hole some fraction
of electrons could be accelerated effectively to highly relativistic
energies through shocks, magnetic reconnections, etc., and these
electrons will produce pairs through a cascade process, described in
detail in Chapter 3. Therefore, in our work we consider both
thermal and nonthermal pair production, m both our disk and quasi-

spherical models.

Two-Temperature Disk

Model with Thermal Pair Production

We refer the reader to the pair-free disk structure equations of
Shapiro, Lightman, and Eardley (1976). Taking n=n+2n_ to be the
total eleptron density ‘(ionization electrons plus pairs), where n, is
the ion (proton) density, and n . is the positron (=pair) density, we

accommodate the presence of pairs by formally including the pair
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contributions to the gas pressure and mass density in the equation of

state and the condition of hydrostatic equilibrium:
P = n kT +nkT, , : (2.1)
= 3
Ph = (neme+nimp)(GM/r )h . 2.2)

Here T, is the electron (and positron) temperature; T, the ion
(proton) temperature; P the pressure;. M the mass of the accreting
black hole (107MSol for models presented in this chapter); and h the
disk half-thickness at radius r where h<<r is the thin disk criterion.
We ignore the radiation pressure contribution to the total pressure P
in equation (2.1). Radiation pressure will become important at super-
Eddington accretion rates (see Appendix). and should be considered.
However, at such high accretion rates we find that the flow inflates
considerably (see "Results” section of this chapter) and our thin disk
analysis no longer holds. Equation (2.2) represents the balance
betwee;l the  vertical component of the gravitational force
Fg:(GMp/rz)(h/r) vand' the pressure force Fp=P/h. Here we have
invoked the thin disk assumption h<<r to wuse the small angle
approximation  h/(t>+h®)2~hfr. The electron contributions to the
pressure and density will be important in pair-dominated plasmas,
but remain small when pair densities are low. The equation of
conservation of angular momentum remains unaltered from Shapiro,
Lightman,  and Eardley (1976), (shear stress)(area)r=(angular

momentum transfer):
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o, P @nr2h) r = (GM)'? Mo . (2.3)

Here M is the mass accretion rate; o, the so-called "viscosity
parameter” satisfying the wusual viscosity law: (shear stress)=a, . P,
with 0.01<c , <1 (see Shakura and Sunyaev 1973 and Shapiro,
Lightman and Eardley 1976); and &(r)=1-(6GM/c*/)2, which reflects
the absence of viscous stresses at the disk’s inner edge where matter
leaves  its quasi-Keplerian orbit and quickly falls toward the horizon
(see the Appendix; Shapiro and Teukolsky 1983).

We use the expression of Stepney and Guilbert (1983) for the
collisional energy transfer rate from the hot ions to the cooler

electrons, which is considerably more accurate than the treatment in

Shapiro, Lightman, and Eardley (1976),

, 3m, k(T T,)
4, =——1nccloA .
2m_ K, (1/6.)K,(1/6,)
2(0.+6,)%+1 6,46, [ 0.+0,
X' K1 . = +2K0 24
L 6.+6, \ 089, 0,6,

where  0=kT/(mc?), 6=kT/(m ¢, InA=25, o, is the Thomson cross
section, and Ki is the modified Bessel function of the second kind of
order i. This expression fesults from intégr_ating the Rutherford
differential  cross section for coulomb collisions over relativistic

Maxwell-Boltzmann  distributions using relativistically correct two-body
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reaction rates formalism (see Weaver 1967). Taking the low-
temperature limit I>>0>>0, (involving asymptotic expansions of the
Ki(z); see Abromowitz and Stegun 1965), the approximate form of
eciuation (24) used by the above-mentioned studies is recovered;
g o(T-T )T, 2, |
Ion energy balance is accompl‘ished by matching ion cooling,

equation (2.4), to viscous-heating of the disk at all r:
(2.5)

where shear stresses heat the disk at the rate (see Shapiro,

Lightman, and Eardley 1976)

u, = 3/@rMGMA)®M . (2.6)

In order to calculate pair production from photon-photon  and
photon-electron  interactions the photon spectrum within ‘the disk
must | be specified (the electron distribution will be addressed shortly).
However, the radiation spectrum depends upon the particular electron
cooling mechanisms at work. Facilitating comparison with the original
pair-free disk model of Shapiro, Lightman, and Eardley (1976), we
follow these authors and assume the existence of a copious source of
soft photons (UV or softer) which are Compton  upscattered
(Comptonized) off the hot relativistic electrons and subsequently

escape from the disk. This is the so-called "Comptonized soft-

photon” model. This approach has a number of commendable features.
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First the form of the Comptonized spectrum depends very weakly, or
not at all, upon the spectral shape, mean photon energy, and
strength, of the soft source (Lightman and Zdziarski 1987). This
eliminates a build-up of free parameters needed to specify the soft
source. Secondly extensive monte carlo and a1‘1a1~y-tica1 work of others
(Pozdnyakov, Sobol, and Sunyaev 1977 and 1979, Zdziarski 1985;
Sunyaev and Titarchuk 1980) has provided accurate, convenient,
analytic fits to Comptonized soft spectra in idealized geometries.
Thirdly unsaturated Comptonization easily provides the UV-X-ray
power-law characteristiés of most Seyfert 1 spectra (see Appendix).
Finally a soft UV source would be a natural consequence. of any
cooler (10*5K) gas clouds in and around the hot (10°%1’K) disk we
are considering. Alternative electron cooling mechanisms
(bremsstrahlung and Comptonized bremsstrahlung) have been
investigated by White and Lightman (1989).

The Comptonization process proceeds as follows. Soft .photons of
initial (dimensionless) energy X, are repeatedly upscattered by thermal
electron of (dimensionless) temperature O  until either they escape
from the disk or reach energies of =x~0, after which the process
saturates and further scatterings result in no net energy transfer
between photon and electron populations. Saturation is marked by the
development of thermal population of photons, the Wien spectral
component.

Those photons not reaching thermal energies before escape will
in general form a power-law distribution, as’ we now demonstrate.

Photons far below the electron thermal energy (xi<<Oe)‘ will undergo a
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mean energy amplification given by A=1+49@+16662. This popular

formula  conveniently - combines the nonrelativistic (6,<<1)  result

A =1+46~;3 with that in the extreme relativistic (9é>>1) case .

nr

Aer=16662' in a smooth manner. We let T, be the optical depth to
Thomson scattering (t=no.h) and note e s roughly the mean
probability of escape per' scattering. The mean probability that a
photon anywhere within the system will scatter rather than directly
escape is Psct=1-e'.1e. If the system is optically thin, T<(a few), the
probabilitsr of exactly k scatterings before escape - Pl:cte'Te can be
approximated as simply P‘s‘ct. After k scatterings the photon energy
has risen to x=xiAk,‘ producing a photon spectrum (for x<6?):

L(x):L(xi)Pl;ct. We can rewrite Pl:ct as follows:

( logP  /logA )k
A o :

X logP 0ogA
_ (_J ! -
\ %
and obtain the power law I(x)e<x™* with energy index
-logP
o= sct . (2.8)
logA

This useful result was first shown by Y.B. Zeldovich and numerically

verified by Pozdnyakov, Sobol, and Sunyeav (1977) and many others.
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We can therefore safely treat the radiation field within the disk
as a superposition of a power law and a Wien component, following
Zdziarski (1985):

-x/0

Ox + 2N (x/8 )3 (™

n(x) = ZN,(x/6) e o)x 2.9)
where x=hv/(1héc2) is the dimensionless photon energy, o is the
energy index of the power-law portion of the spectrum, Ny, is the
total density of Wien photons, and N, is related to the power-law
photon density (Svensson 1984). Using numerical monte carlo
calcula_tions, Zdziarski (1985) has found that equations (2.8) and (2.9)
together are quite accurate if the relative strength of the two
spectral components is given by the fitting formula:

N,/Np = [T(o)/T'(20+3)]P (2.10)

sct ?
where I' is the Euler gamma function.

The power-law index o is fixed by observation in our 'models (a
free parameter, in other words). Many Seyfert 1 spectra exhibit o~0.7
in the X-ray region (Mushotzky 1984, and the Appendix) and we set
0=0.7 for models presented in this chapter. Equation (2.8) is therefore
a constraint between T, and 0_.

We normalize the photon spectrum by equating, at each radius,
radiative luminosity to viscous heating:

=u

[ax(1,7 )h/c] , (2.11)

rad’
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where u, d=(3/2)kTer + (1/2)1"‘(1-()L)kTeNP is the photon energy
density within the disk, obtained by integrating equation (2.9).
Pair equilibrium requires the balance of pair creation, annihilation,
and inflow:

0=n =n" +n™ +p, (2.12)

We take annihilation to proceed at the rate (see Svensson 1982):

0™ = (3/32)g,0.c(nn)(n+n) , (2.13)
with:
g, = [1+20%In(1.120 +1.3)" . (2.14)

This is a convenient and quite accurate fit to the exact result. (The
exact rate is obtained by integrating the annihilation cross section,
given in Chapter 4, over a relativistic Maxwell-Boltzmann distribution
of electrons and positrons). If pairs are advected inward with the
flow of the ions, then the disk geometry casts pair inflow into the

form:

=@t S, n) 2.15).

where:
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v. =M /[41thr(nimp+neme)]' (2.16)
is the net inward velocity of accretion, obtained from examining mass
conservation. |

Pairs  will be produced through photon-photon interactions
y+y—e'e” and photon-electron interactions YHe—ete’e. All other pair
producing reactions (electron-electron, along with all proton and
three-body reactions) are neglected (see Svensson 1984 and Liang
1979). The <division of the photon spectrum into two components,
equation (2.9), requires five pair production rates to be found
interactions between (1) power-law photons, (2) power-law and Wien
photons, (3) Wién photons, (4) power-law photons and electrons and

(5) Wien photons and electrons:

i!'-cre — ilPP + i!‘-PW + ilww + iere + I',!I-We . (2.17)

The utility of the fit in equation (2.9) is presently seen by the fact

that we may analytically reduce all three photon-photon rates down
to the same singlé integral over the cross section, and the two
photon-electron rates down to a (different) single integral over the
cross section.

We shall first derive the v+y pair creation rate. rgy from the

interaction between two isotropic populations:

nG) = 3N, /007 % Xt/ 2.18)
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and:
() =N, (/0% K (2.19)

The probability per wunit time of absorption by population 2 photons

for a photon from population 1 with energy x, is

(<]

TC
dt(x,)
= J G, (9 c(l-cosd) Zsindn,(x) dx,do 2.20)

0

dt T
0

where © is the collision angle between x, and Xy, %sinenz(xz)dxzde is
the differential population 2 photon density, c(l-cos®) is the relative
velocity of X, along the direction pf motion of X,, and O'W(s) is the
total pair production cross section, which is. a function of the center-
of-momentum (c.m.) frame energy Yy of either photon (see Gould and

Schréder 1967):

1+B

0(®) = gme? (1B ( (3-p) In -28(2-p%) ] @21y

Here B=(1-')('2)1/2 is the cm. velocity of either electron, s=y2,
2s-—fx1x2(1-cose), and 1, is the classical electron radius. Switching

integration variables from 0 to s yields:
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du(x,) 2 ey (TR
T(X, CTUr n,(x G _ (s)s
L -0 J dx, =2 J ds (2.22)
dt X12 x22 nr02
0 0

Defining the inner integral as the dimensionless function o(x,x,) (see
Gould and Schréder 1967) and noting the total' creation rate will be

the integral of equation (2.22) over dn1(X1)’ we have the symmetric

form
. { o0x,x,)
p 7 = o2 f J;ZT;TZ n, (x,)n,(x,)dx, dx, . (2.23)
172

Inserting the spectral functions of equations (2.18) and (2.19) into

equation (2.23), defining $o=X;X, and switching variables from X, to
s, we have
N N. : )
qu = c1tr02 L2 sto P(s,) SO(_3'062) GIOLIGZO(’Z
1
X dei Xl(-l-ocl—ocz) e X)/0-54/(x,6,)) (2.24)
0

The X, integral can be found in Gradshteyn and Ryzhik (1980) as

#3.471.9. Inserting a factor 1/(1+8,,) to avoid double counting in the
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case populations 1 and 2 are the same population, we arrive 4t

NN

2" = (3/16) o 1 :6, 2_ (0,002
12
: , 4s 1/2
X sto o) s, Ot g | 2] 2.25)
27068, )
1

This result was found by Svensson (1984). Here ilPP is obtained
when o =0,=01, N;=N,=N,, 91=62=Be and 612=1; ilpw is obtained when
op=er, 0,=-3, N=N,, N=Ng, 6,=6=6 and 5.,=0; and "V is
obtained when o, =6, =-3, N,;=N,=N, 6,=0,=6_ and 812=1. An
accurate analytic fit to (p(so) is found in Gould and Schréder (1967),
after correcting a critical misprint. Equation (2.25) s integrated
numerically for various 8, and the results stored for tabula;r
interpolation. |

We next calculate the pair production rate from interactions

between an isotropic Maxwell-Boltzmann electron  (and positron)

distribution at temperature 9,

2 1/2
e-_(Pl +1) /91

n(,) =N;p? (2.26)

0,K,(1/0,)

and the isotropic photon distribution given by equations (18) or (19):
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n,{p,) = %Nz (p,/0,) %2 P/ 62)/p2 : 2.27)

Hete p, and p, are the electron and photon momenta respectively.
‘(We suppress factors of ¢ and mec2 throughout, so that the
dimensionless energy-momentum relationships read x=p for photons
and y’=p’+1 for electrons.) - We will first calculate the differential
reaction rate dR (cm> sec!) in a beam' of electrons with density
dn, and energy 71:(1_[3,12-)1/2 colliding with a photon beam of density
dn, and momentum pz,' where the collision angle is 6. We temporarily
swittch to the electron rest frame (signified here by primed

quantities) where the physics is much simpler and calculate the

(Lorentz-invariant) rate

dR = dR’ = dnidn’2 ccye(p’z) , (2.28)
where
P, =DyY, (1-B,cosb) . (2.29)

is the rest-frame photon momentum. Here ¢ is the  relative velocity
and O',Ye(p;) is the total photon-electron pair creation cross section.
Accurate analytic fits to 'oYe(p’z) are calculated by Haug (1981) and
presented by Stepney and Guilbert (1983). Invariance of the dot
product of the four-vector currents j 1=n1(11,[341<r\1) and j2=n2(1,<'\2)

yields the density transformation:
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dnidn), = dn,dn, (I-B,cos6) = dn,dn, p;](pzyl) , (2.30)

where the second equality follows from equation (2.29). We now
substitute equation (2.30) into equation (2.28) and integrate over the

(isotropic) distributions to obtain the total rate

- ve _ 1 . N ‘ p; ’
n = 2C 1 HI(PI)DZ(PZ) - Gye(p2) dpldpzdu » (2.31)
' P

211

where u=cos® and the factor of 1/2 removes a spurious factor of 2
introduced by the u integration. We change variables from u in favor

of p/, via equation (2.29)

A1 =2 JdP; ®)p;
4
nz(pz) n]_(pl)
XJ , > P — , (2.32)
wheré:
. P, P
prim =2 |22 (2.33)
P, P,

The lower limit to the p’2 integration represents the reaction
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threshold, which defines a minimum energy state in the c.m. frame.
Threshold for this reaction occurs when -all three electrons (incident
plus created pair) are at rest in the c.m. frame after the interaction,
giving a total c.m. energy of E.=3. Before the interaction this
energy is carried by the incident photon x,, and the incident
electron, whose c.m. energy is determinéd by the requirement that
the incident momenta of the photon and electron must be the same.

That is,

E_=3-= xcm""(xcﬁ{"l)l/z i (2.34)

[

This expression gives the c.m. photon threshold energy‘ X = % The

Lorentz factor y_, of the relative velocity ﬂrel between the c.m. and

elctron rest frames is
T = U4x ) - (2.35)

which gives y = % and Brd: % We then Lorentz transform X, back

to the rest frame

X =x_ Y B, (2.36)

rest

4

and obtain the threshold value x = % (1= 4,

rest
The lower limit . plmi“ to the p, integration is found by
examining equation (2.29) for the smallest value of p,(=v,B,) for any

choice of p, p, and cos6. If p, is considered a function of the
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variables p; /p,=a and cos@=u, it is immediately obvious that for any
a<l the minimum for p, occurs when u=+l, yielding plmi“=(a'1-a)/2.
For any a>1 the minimum occurs when u=-1, yielding plmi"=(a—a'1)/2.
These two results are equivalent to pl“‘"n given in equation (2.33).
Substituting the spectral shapes of n () and nyp,) from

equations (2.26) and (2.27) into equation (2.32) gives

(o]

- Ye C ’ N2
8% =3 Jdpz O PP}
4

o0 . 5

g J dp, % 20,/8,)"2 e(-pz/ez)/p;
0

f" &P D0,
x | dp, N;p, : (2.37)
‘ ‘ ™
p,min 0,K,(1/8,))1, B,
1

The p, integral is trivial (writing p, and ‘B1 as functions of y,) and

produces:

[e0e]

cN,N.0,%

- ve 17272 Jd , PR
=———— | dp, o_.(P)p
1’5_ 4K2(‘1/91) ) ., 2 Ye 2) 2
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o

-6, + (20,p)Ip, - pY/(26.p,)

0

(2.38)

The p, integration is done with the help of integral #3.471.9 in
Gradshteyn and Ryzhik (1980), and we obtain the final result

(changing the dummy variable to x for ease of notation):

(=)

, -(2+0.,)/2
cN.N. X 2

iy;ye =—t2 9 20°2 de c, . (X)x |
2K,(1/8,) v (26,/0,)+(1/x)

X K 2 + : . (2.39
2 20, | 0, 2x6, ] )

where n* results when N.=n, 0.=0=0, o=0, and N =N_; and
n 170 Y1500 O 2~p

i;rwe results when N,=n, 61=92=Ge, o,=-3, and N,=N,. This result
was found by Zdziarski (1985). Equation (2.39) is integrated
numerically for various ®, and the results stored for tabular
interpolation. |

Equations (2.1)-(2.3), (2.5), (2.8), and (2.10)-(2.12) constitute the
eight equations necessary for the solution of the eight variables

describing the thermal disk at any radius r; n, n, T, T, P, h, N,

e’
and Ny. Model parameters to be specified are: M, ms= MM,
o,, and o. Here, M’E i d02 is the Eddington luminosity. Results are

given in the "Results" section of this chapter.
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Model with Nonthermal Pair Production

We adopt the scheme (see, e.g. Lightman and Zdziarski 1987)
whereby some fraction €, of the power developed through viscous
dissipation within the disk goes to the acceleration of some electrons
to relativistic energies (y >> 1). The vy-rays produced as these
relativistic electrons quickly cool will produce pairs, which, in turn,
cool and produce additional fy-rays. Depending wupon conditions,
several generations of pairs may be produced in a nonthermal pair
cascade process. Detailed investigations into the efficiency of
producing pairs through this process have been carried out for the
idealized case of uniform, spherical sources (see Lightman and
Zdziarski 1987, Svensson 1987, Done and Fabian 1989). These authors
find that for a wide 'range of -parameters, the "pair-yield,” PY (that
fraction of energy  initially directed to  nonthermal electron
acceleration which ultimately appears as rest mass energy of pairs), is

solely a function of the "electron compactness parameter,"” le:

2x10°% 3<I <50
PY = (2.40)
0.1 [>50
where (see, e.g., Begelman, Sikora, and Rees 1987):
I, = (Lo /mc’) , (2.41)

and L_ is the total power given to electron acceleration in a source

of size r. Detailed investigation (or any investigation) of pair
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cascades in the context of a two-temperature (or any) disk has not
yet been done. As a starting point then, we apply equations (2.40)
and (2.41) to the disk, noting (see, e.g. Lightman, Zdziarski, and Rees
1987) that this treatment would 'be appropriate in the case of
marginally thick disks (h/r < 1) with high viscosity (o, = 0.1).
Then:

— o7 = 19 \NA-2 \
L, =gl =¢(l/12)Mc (2.42)
is the power going to nonthermal electron acceleration throughout
the disk. Here we have integrated equation (2.6) to obtain L = (1/12)
M 02, the total viscous dissipation of the disk (see  Shapiro,
Lightman, and Eardley 1976). The pair production rate is now

™ =PYeu, /(2mc?) . (2.43)
We retain the annihilation and inflow terms from the thermal model,
as well as equations (2.1)-(2.3). The passage of energy through a
nonthermal channel we reflect in a modified ion energy balance
equation, which replaces equation (2.5):

u, = (1-e)u, . (2.44)
We no longer require detailed specification of the photon spectrum,
so we replace equation (2.8) by the condition of unsaturated

Comptonization:
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y =46, (40,+1) max(t,t) =1 . (2.45)

Equations  (2.1)-(2.3), (2.12) [with pair creation given by (2.43),
annihilation by (2.13), and inflow by (2.15)], (2.44), and (2.45) are
solved for the now six wvariables n, n, T, Ti, P, and h. The list of

parameters to be specified is M, m, o

i and €, Results are

presented in the "Results” section of this chapter.

Two-Temperature Quasi-Spherical Flow

Model with Nonthermal Pair Production

We next investigate pair-induced over-cooling of quasi-spherical
two-temperature flows, extending the treatment of Begelman, Sikora,
and Rees (1987). Here we approximate the inflow as spherical, but
adjust the accretion velocity to some fraction - of its freefall value
to accommodate in a simple manner any angular momentum of the

flow. Mass conservation then gives:

n, =M/ (my, 4nc) (2.46)
where
v =p QGMMY2 ;  0<p<l . (2.47)

acc

Begelman, Sikora, and Rees (1987) define a critical radius, S

interior to which, Coulomb energy loss from ions to electrons
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overwhelms ion heating:

=u_ at r

U, =u it ? (2.48)

where i.lsp is given by equation (2.4) and ilgr=G1\’]M /(4m*y is the rate
of gravitational energy dissipation at r. We set the ion temperature
to remain near its virial value (T>>T,) outside the stongly cooled

region:
(3/2kT, = eth(GMmp/r) ; €<l . (2.49)

Adopting a nonthermal scheme similar to that used with the disk
flow, we divert a fraction g, of ilgr to accelerate a small nonthermal

population of electrons, and write pair production as
™ =PY eq, / @mc?) , (2.50)

where equation (2.40) gives PY, equation (2.41) gives l,, and now the

total power given to electron acceleration is:
= = ¢ (1/6 M2
L, = gL =¢(1/6)Mc” . . (2.51)

Here we have assumed radiation is produced down to at least
r=6GM/c?. Integrating gravitational potential energy dissipation down
to this radius gives the total luminosity L=(1/6)Mc%. We approximate

pair inflow:




LA 3

37

po= g; @n,v,e.) @5
r
by
'™ =nv /. (2.53)

Electron cooling will be unsaturated Comptonization: y=1 [equation

(245)]. - We solve equations (2.46), (2.48), (2.49), (2.12) [with pair

creation given by (2.50), inflow by (2.53), and annihilation by (2.13)],
and (2.45) [with T=n o defining the ‘electron scattering optical
)s

and E,. Results

depth for spherical geometry] for S Te(rcrit)., T‘i(rcﬁt), ni(rc]rit

and ne'(rcﬁt). Model parameters are M, m, J, Eypo

are presented in the "Results" section of this chapter.

~ Model with Thermal Pair Production

In our final model we examine the effect of thermal pair
production on the two-temperature, quasi-spherical flow. Pair
creation is accomplished through the same physical processes assumed
in the thermal disk model. Again, a Comptonized photon spectrum is
given by equation (2.9). The seven flow variables at the critical

radius [rcﬂt,

T

crit

)‘7 TI(I'

crit)’ ni(r

crit) ? ne(rcrit)" NP(rcrit)’ and

NW (rcrit

& (2.10) [both with T=n0x], (2.12) [with pair creation given by
(2.17), annihilation by (2.13), apd inflow by (2.53)], and (2.54):

)] are found by solving equations (2.46), (2.48), (249), (2.8)




Li

38

u =u

1 o [ [max(lT)r/c] . (2.54)

Model parameters are M, m , O, WU, and €y Results are presented in

the following section.

Results

Two-Temperature Disk
A computer code was developed to obtain the following solutions
to the two-temperature disk. The code is sufficiently general to be

used for both the thermal and nonthermal disk models.

Model with Thermal _Pair Production. The pair inflow term given

by equation (2.15) renders pair equilibrium, equation (2.12), a first
order differential equation in the variable r. Thus solutions to the
disk models detailed in the preceeding sections are obtained by
numerically integrating equation (2.12) in from some large radius to
near the inner edge of the disk: rin=6GM/cz=3rg. At each step along
the integration the model equations are solved simultaneously
(numerically) for the various disk variables. The boundary value we
supply to the differential equation at the starting point is the value
of the accretion pair flux: hrv._n . The starting radius is always

acc +°
chosen large enough so that setting hrv. n_ either to zero or to
its static value (neglecting the pair inflow term) would introduce
acceptably small errors (<10%) in pair density at all subsequent
points along the integration. All integrations terminate at r = 3.5rg.

(The disk model breaks down as r, is approached.)
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Figares 1 and 2 present solutions to the thermal disk for two
reasonable values of the viscosity, ozvis=0.1 and 0.5, and for a wide
range of m. The power-law index of the photon spectrum is set to
0=0.7 for all thermal model runs that we consider in this paper,
consistent with observations of a majority of Seyferts (see, e.g.

Mushotzky 1984). The black hole mass is set at 10/M throughout.

sol
Lines of constant pair abundance z=2n /n, are shown in the figures
as solid lines, and lines of constant h,=h/r are drawn dashed. The
thin disk criterion (h,<<1) is strictly met only far to the left of the
h,=1 line, though results should be accurate to within a factor of
about 2 in the neighborhood of this line (see Shapiro, Lightman, and
Eardley 1976). We find pair densities in the thermal disk remain well
below ion densities, with z<l for all reasonable parameter choices. We
also find z generally to increase with decreasing r and increasing m .
Exceptions are the dropoff in z very near the disk’s inner edge [due
to the zero-stress boundary condition produced by @ in equations
(2.3) and (2.6)], and a turnover seen for IZOcviSZO.S in the h,21 region
(see, e.g., Figure 2). Here increasing m causes the electron scattering
optical depth to rise sufficiently to force equation (2.8) to lower the
electron  temperature. Thermal pair production rates, which are
extremely sensitive to the electron temperature, fall, suppressing pair
production. We find the presence of pairs to inflate the disk: h/r
increases at constant r/;g. However, the low pair abundances in the
thermal disk keep this inflation negligibly small (the lines of constant
h/r in Figures 1 and 2 would not be altered w.ere there no pairs

present).
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Thermal pair production has little effect upon disk temperatures.
Figure 3 shows ion and electron temperatures in the thermal disk
with o . =0.1 for several accretion rates. Ion temperatures are quite
high (Ti=,1010'12K), while electrons are much cooler, with Te=1-3x109
(0,~0.3). Tuming off pair production (setting i1°’e=0) produces no
change in the figlire (compare Figure 9), though indeed a slight rise
in the ion temperature and drop in the electron temperature for a
given m and r/rg always accompanies the inclusion of pairs in the
model. Thermal pair production has a sl:ightly greater effect on the
scattering optiéal depth of the disk than on temperature. Figure 4
shows the electron (solid line) and ion (dashed) optical depths for the
thermal disk for the same parameters as Figure 3. The dotted lines of
Figure 4 indicate T(=t) with no pairs. The effect of pairs is to
lower ’i:i from its pair-free value, and to raise T, (see also Figure
10).

Similar results were obtained when varying the power-law slope
over the range 0.3<0<0.8, which covers essentially all Seyferts and
radio-quiet quasars (e.g. see Lightman and Zdziarski 1987 and the
Appendix).

Recently other authors have investigated the effects of thermal
pair production on optically thin accretion disks. White and Lightman
(1989) investigated - the disk in both the one-temperature and two-
temperature  versions, including as electron cooling mechanisms: pure
bremsstrahlung, Comptonized bremsstrahliung, and Comptonized
external soft photons. Their results verified ours in thé external soft

source model. They found, however, that the bremsstrahlung models
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exhibited a critical accretion rate above which pair runaway is
predicted in the innermost regions of the disk. Below the critical
rate, high and low pair abundance states are both possible. Kusunose
an(i Takahara (1988) investigated the two-temperature disk, including
pure  bremsstrahlung and Comptonized cyclotron higher harmonics.
They found a critical accretion rate and high and low pair states in

aggrement with White and Lightman (1989).

Model with Nonthermal Pair Production. Figures 5-8 present
solutions to the nonthermal dis1_< model for various choices‘ of o
aﬁd €. For a wide range of the viscosity, pairs can dominate ions if
nonthermal processes receive more than about 1/3 of the power
generated through viscous dissipation, i.e., €>0.3. When a majority of
the luminosity is funneled through the nonthermal channel, z can
reach a maximum value of 5-10 (see Figure 8). We find z to increase
with both increasing €, and increasing o; ._for a given mand /r,.

Figures 5-8 indicate that pair abundance varies with accretion
rate as zenit for low z regions (small m and large r/rg). Earlier
studies of nonthermal pair creation in spherically accreting systems
(ie., Lightman and Zdziarski 1987) exhibit the weaker dependence
zoctit. The author was the first to obtain, and explain, this important
difference between disk and spherical flows. The difference arises
from Fhe competition between annihilation and inflow in pair balance
in the small m region. Inflow dominates for spherical models, but the
disk model reverses the situation and annihilation dominates, giving

rise to the differing forms of z(i). To show this, we first examine




$P

" Cu
% - t ! % - $ # # $$ #P # # & $
- $

_) $ #ll $# LI . )
: 6$\/|3”1 nqn $<
h M3"1 $



% - $< # (#H-< $$ #P # YH#H& $< B

+" B"
%0-) X )% ) - )t %) )9 $) $ X
%S H# L B "M34, M3'4"



+" 8" % - $< # (#-< $$ #" # Y#H& < $
(%-) X 0% ) - ) " $ )% $) $ )
)$ H#P S# ", 63T MW"



y A" '$0/0- $<f¢(¢f$-<$$§#0 #$)#&$$<$
f)%' Jod s Twre B )X) ) .



L. S

1l

A

50 _
the ratio of pair inflow [equation (2.15) for the disk, equation (2.52)
for spherical flow] to annihilation [equation (2.13) for any flow]. For
n /n<<1 we have

n of 4mm x(x or hv2

= , (2.55)
i;,ra““ (3/8)0'Tch )

in whiph we find the only difference between the disk and spherical
geometries is the choice of variables in the parentheses: r for
spherical flow and h for the disk. We hold functions of r constant
and collect m dependence. The spherical flow accretion velocity given
by equation (2.47) is a constant fraction of free-fall velocity, and has

no m  -dependence. Thus for spherical flows we have

+ inf/* ann . T s s , . . .
(rgr /r;r )Sphocml, which indicates pair inflow dom1nates»

annihilation at sufficiently small accretion rates. The disk accretion
velocity is obtained from mass conservation f[equation (2.16)]:

Ve ecm /(ngh).  For small .z the pair-free analytic  solutions of

c
Shapiro, Lightman, .and Eardley (1976) will be useful. These show
n ocm'/4 and hoenf3/12, Thus vaqcochflo/lz and
.(ili“f/i;:‘““) diskociﬁ13/12 for the disk, which indicates annihilation
dominates pajr inflow at small accretion rates. We can now use the
appropriate form of pair balance to obtain z. For spherical flow,
balancing éreati‘on [equation (2.50) - with [ <50] with inflow [equation
(2.52)] gives zeciiil. For the disk, balancing creation [equation (2.43)
with le<50]‘ with inflow gives z«<i®. In fact, insertion of the

constants and functions of r into the nonthermal disk pair balance,
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and using the pair free analytic results of Shapiro, Lightman, and

Eardley (1976) yields the estimate for the nonthermal disk:

z = 4.1x10° g 2 m*12

Vis-11/12 D312 (r/rg)‘21/8 , (2.56)
which is in good agreement with our numerical results at small m

Substantial pair production can greatly affect disk thickﬁess. We
find, as in the thermal disk, that pairs inflate the disk: h/r
increases at constant r/rg, although here the effect can be quite
large. This inflation is seen as a shift to smaller m (to the left) of
the h/r=constant lines in those portions of the m -r/rg plane in
which pairs are numerous (compare, e.g., Figure 2 with Figure 7). As
a corollary we note that significant pair production lowers the upper
limit to the range of m for which the disk remains thin (h/r < 1.
Figure 9 shows the effect of copious nonthermal pair production on
the ion and electron temperatures for o,=0.7, £=0.7, and -m =0.5.
Solid lines indicate the case with pairs present, dashed lines with no

“° set to zero). As in the thermal model, pairs elevate ion

pairs (1
temperatures and depress electron temperatures, although - here the
effect can be considerably more pronounced. Similarly, Figure 10
presents the depression and elevation of T, and T, respectively, due
to pairs for the same model parameters as Figure 9. The figure
shows that even for a pair dominated inner region, where TJ/T~5,
the ion density has been reduced to such a degree that the electron
optical depth femains below one. For €<0.1 pairs fail to dominate

ions and results closely agree with those in the thermal flow.
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The effect that pair inflow can have in lowering equilibrium pair
densities is seen in Figure 11, where the radial profile of pair
abundance z for the same parameters as Figures 9 and 10 is shown
by the solid line. The dashed .line indicates the static solution, in
which the inflow term of pair equilibrium [equation (2.12)] has been
neglected. Pair advection has lowered z by a factor = 10 in the inner,
pair-dominated  region, underscoring  the importance  of including

inflow as well as annihilation in pair-dominated flows.

Two-Temperature Quasi-Spherical Flow

To solve our models of quasi-spherical, two-temperature  flows

we conduct a numerical search for the radius, r at  which

crit?
ilep=i}gr , subject to the values of n, n, T, T, (and N, & N for
the thermal model) that we obtain by simultaneously solving the
specified set of flow equations at that radius. A computer code was
developed to obtain the following solitions to the two-temperature,
quasi-spherical flow. The code may be used for both the thermal and
nonthermal models.

Figure 12 shows the variation of r, over a large range of m
for the nonthermal model with eth=0.4; se=(),‘ 0.1, 0.3, and 1.0; and
p=0.3. Figure 13 presents the case p=0.7. On these figures, for a given

m , the radii above the r line constitute the inflated, two-

crit
temperature domain (T>>T,, ilep<i1gr)’ supported by ion pressure. The
onset of over-cooling of ijons 1is presumed to happen in the

neighborhood of r__ , where ion cooling by electrons just balances

gravitational energy release. The dashed lines in Figures 12 and 13
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indicate the location of the critical radius with no pairs present
(e,=0). We find that for a given m, pairs will greatly enlarge the
size of T 8s nonthermal pair production is turned up (increasing

€). For constant g, r

A e Ty &rows  with increasing m . The pair

densities we find at the critical radius are shown in Figure 14 for
the same parameters as in Figure 12. Note that z>1 for €20.1 at
small critical radii. We find that nonthermal pair production in the
quasi-spherical geometry, just as in the case of the disk, is
sufficiently copious to allow pairs to overwhelm ions for wide ranges
of parameters.

Thermal pair production in the quasi-spherical flow for any
reasonable choice of pardmeters, has little effect upon r_.. We find

t

that z always remains < 1 at r_, The dashed line of Figure 14
shows z due to thermal pair production at various critical radii for
typical pand €. |

We find that our treatment of nonthermal pair production
produces considerably smaller pair abundances than Begelman, Sikora,
and Rees (1987) found in their study. The latter treatment therefore
overestimated the size of the over-cooled region, and thus the size
of the critical radius, as shown in Figure 15. For 10% of the
dissipated gravitational energy going through the nonthermal channel,
we show critical radii found by Begelman, Sikora, and Rees (1987) as
the dotted line, the critical radii we found as the solid line, and the

pair-free reference case as the dashed line.
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CHAPTER 3
PAIR CASCADE SHOWER ATMOSPHERE

Chapter 2 addressed the issue of pair production within a specific
class of accretion flows. Once the pair-altered flow structure is
determined, the radiation spectrum emitted from the flow can always
in principle be determined. The battle is only partially won however,
for the question immediately arises: Is what leaves the accretion flow
surface the same as what we see through our telescopes and
detectors? Any intervening matter or radiation between the primary
source and the observer may reprocess the primary spectrum. The
composition, spatial distribution, and energy distribution of this
background atmosphere must be known in order to calculate the
nature and extent of this reprocessing. One then encounters the
following  difficulty: the atmosphere, which modifies the escaping
spectrum, is itself modified by that same spectrum. This requires a
self-consistent solution of both the modified primary spectrum and
the atmosphere. Much work to date (see references in Chapter 1 and
the Appendix) has sidestepped this issue to some degree and
arbitrarily put a scattering atmosphere into place (within appropriate
theoretical and observational constraints), and then calculated the

reprocessed radiation spectrum, approaches suffering from what might
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be called the "fiat atmosphaera” (or, "let there be an atmosphere")
syndrome.

When an accretion flow emits fy-radiation, a pair cascade may be
initiated in the space surrounding the flow, and a pair cascade
atmosphere will result. This .chapter details the scheme by which the
author obtained the first, detailed, numerical, self-consistent
calculations of the steady-state pair cascade atmosphere  and
concurrent spectral reprocessing which occur when accretion flows
radiate a portion of their luminosity as gamma-rays. We restrict our
attention in this chapter to a specific type of atmosphere, the "pair
cascade shower,” in which the scattering of radiation back down
towards the accretion flow is neglected. This and some other
simplifying assumptions are relaxed in Chapter 4, where the general

pair cascade atmosphere is presented.

The Accretion Flow as a Photon Source

Geometry

To construct a cascade shower atmosphere model, we must first
specify the shape of the emission surface (the accretion flow
surface) from which the primary spectrum emerges. As we have seen
in Chapter 2 and the Appendix, predicting accretion flow geometry in
AGNs can be an extremely model-dependent question. However, the
range of plausible geometries can be thought to lje roughly along a
one-parameter family of shapes ranging from spherical to flat. disk,
with toroidal, inflated disk, etc. lying somewhere in between. From a

practical standpoint, we shall consider the two extreme members of
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this family, which are the simplest to encode for numerical
calculation: (1) the uniform, infinite plane and (2) the uniform
spherical surface of radius I, These geometries are shown in Figure
16. Here it is' important to note that the infinite plane is limited in
practical astrophysical application on three counts. First,
observational and theoretical evidence of uniform infinite structures
in the universe is sparse. Secondly, the atmospheres we obtain in
this geometry are unphysical in that they are unbounded vertically
(see "Results" section for details). Thirdly, very near the surface of a
radiating disk of finite lateral extent (h<<R, where h is the height
above the surface, and R is a typical lateral dimension of the disk),
‘where infinite planar analysis would indeed be appropriate, equally
appropriate would be the spherical model with height h above the
emission surface much ' less than the emission radius L. Also, at
increasinély large heights h above the finite disk, the disk
increasingly resembles a point source, and the spherical model with
h>>r_ is again useful. Thus the uniform sphere can of course exactly
describe spherical accretion flows, but can also adequately describe
finite accretion disks.' The infinite plane, however, is still worth
studying both for the sake of completeness, and more importantly,
because it will provide invaluable insight to results from the spherical

case (see "Results" section).

Spectrum

Once the emission surface has been set to either planar or

spherical, the primary emission spectrum must then be specified. Our
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code will accept any input spectral shape, as long as dimensionless

8<x<104

photon energies x=hv/mec2 remain within certain bounds: 10°
for the models we present. For user coﬁvenience the code will
automatically ~construct spectra in the form of Planckian, power-law,
or.delta function distributions, or any combinations thereof.

We draw- upon Dboth observational evidence and theoretical
speculation to construct astrophysically plausible primary emission
spectra -from accretion flows. Referring. to the typical quasar spectra
shown in the Appendix, we see a prominent feature in the UV-X-ray
region which rises above an extrapolated power law. This feature is
common to a wide class of radio-quiet quasars and luminous Seyfert
galaxies, and is insightfully known as the "UV bump." The origin of
the UV bump is actively debated but a possibility is that this UV
emission is the peak of a blackbody spectrum from cool (T=10*°K)
gas, existing either as cool clouds withiq hotter  (two-temperature)
plasma, or as an optically thick, geometrically thin accretion disk.
This is quite plausible because: (1) solutions to optically thick,
geometrically thin accretion disks around black holes with masses
relevant to radio-quiet quasars and Seyfert 1’s (M=107'8Ms01) exhibit
temperatures consistent with the location of the UV bump (Malkan
1983), and (2) we have found (see Chapter 2) a broad class of
accretion flows that are unstable to collapse to a thin disk state
radiating the observed UV feature. The models we present will
therefore include as a “soft" component of the primary (input)

spectrum, F__(x) (energy per unit area per unit time per unit x

soft

emitted from the surface), which we take to be a Plankian
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distribution at some temperature T disk ©f @ monochromatic source at
the blackbody peak x=2.8kT dis (mecz).

For pair production to occur, a sufficiently strong flux of hard
(x>1) photons must be present. As disscussed in Chapter 2, it would
be difficult to envision this not to be the case, but it is equally
difficult to make specific quantitative predictions. We therefore model
this "hard" component, Foad®), quite generally as either a power

law (specifying the enérgy index o, and the upper and lower limits

X ax and X in respectively) or a monochromatic source (at some
Xpaa). The relative strength of the two components is specified by
fq the fraction ?f the total radiative flux going to the hard
component

J dx F_ &)
fid = . 3.1)

J dx [Fhard(x)+Fsoft(X) ]

The total flux can be parametrized by an effective temperature Te o

oT,.' = J dx [F,_(x)+F_ (x)] . (3.2)

Specifying the shape of n .(x) and n_ (x), along with specifying

f

hara A4 T, completely determines the primary (input) spectrum.
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Spatially Distributed Photon and Electron-Acceleration Sources

Gravitational energy dissipation within the accretfon flow may be
injected into an atmosphere not only by direct radiative emission
from the surface of the flow, but may also be transported by such’
processes .as  magnetic flares well out into the atmosphere, and there
dissipated into radiation or into the acceleration of high energy
particles  (electrons). Although similar magneto-coronal processes are
probably at work just next door in the solar corona, they are not
well understood, and accurate detailed models are not yet available.
We therefore represent any dissipation of this' kind by photon and
electron injection functions: r}n j(x,h) and 1}{11 j(')(,h). These give the
number of injected photons (or electrons) per unit volume per unit
dimensionless energy x (or Yy) per unit volume per unit time at height
h above the accretion flow surface. Particle injection is to be
considered as the acceleration of particles already present, and not
the creation of new ones. Electrons and positrons are assumed to be

accelerated in equal numbers, maintaining charge neutrality.

The Shower Approximations

We  make the important "shower" approximation to the
atmosphere: all radiation is assumed to propagate outward from the
accretion flow surface <(that is, photon propagation velocities will
always have a positive z-component in the planar geometry, and a
positive r-component in the spherical case); reflection or scattering
back towards the flow is neglected. The rationale is twofold. First,

on purely pragmatic grounds, a shower atmosphere .yields tremendous

e |
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savings in  numerical computational time over more general

atmospheres in which radiation is free to travel in any direction, as

is the case in Chapter 4. In the shower atmosphere, conditions at any
height h above the flow cannot be influenced by conditions above h.
This allows a single integration of the appropriate kinetic equations,
from the flow surface wupward, to produce a solution to the
atmosphere. In the general atmosphere, all heights h may influence all
others, and solutions to the atmosphere must be obtained through
time-consuming  iterative methods. The second, more fundamental
point in the defense of the shower approximation is that physical
conditions in the atmosphere are such that the approximation should
indeed be roughly obeyed. Since the primary emission from the flow
surface is by definition directed away from the source, the remaining
requirements for a shower are that any spatially distributed volume
sources (magneto-coronal, etc.) emit preferentially outwards (which is
certainly plausible, and weakly supported by solar flare observations)
and that the atmosphere not become very optically thick, so that
photons will on average scatter no more than a few times on their
transit through the atmosphere and thereby have little opportunity to
be back-scattered. In fact, for most of the astrophysically plausible
models we run in this chapter (see "Results" section), the scattering
optical depth in pairs remains much less than unity and always
remains < a few. The shower approximation is shown schematically in

Figure 17.

The shower assumption approximately allows for a simple,

extremely crude, treatment of radiative transfer in which radiation
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proceeds in the +z-direction for planar emission and in the +r-
direction for spherical emission (see Figure 16). The approximate
photon continuity equations, which ' describe how steady-state photon
densities at energy x and height h change with height, then take the

simple forms:

dn(x,z) n (x,z) n (x,z)
=, M planar 3.3)
dz C C
dn(x,r) n_(x,1) n .(x,1) 2n(x,1)
=y AT spherical (3.4)
dr c .C r

Here i}ct(x,z-or-r) is the net photon reaction rate from the result
of the wvarious two-body reactions we consider: photon-electron
scattering, photon-photon pair creation, and pair annihilation ¢see the
following section). The additional term in equation (3.4) is the inverse
square law dﬂution as radiation spreads radially outward: n=1/2 —
(dn)/(dr)=-2n/r.

In a second fundamental simplifying assumption, we shall employ
angle-averaged cross sections and reaction rates corresponding to
isotropic photon and electron distributions. The rationale is again
twofold. First, on pragmatic grounds, the assumption of isotropy
affords tremendous savinés in both the ease of analysis and in
numerical computational considerations. This treatment serves as a
convenient starting point Whence we proceed to Chapter 4, in which _

this assumption is relaxed and exact reaction rates are calculated for
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arbitrarily  anisotropic  distributions.  Second, isotropic reaction rates
do not differ drastically from rates corresponding to distributions
likely to be found in the shower atmosphere. To verify this claim,
and to provide an estimate of the error caused . by the use of
isotropic  rates, we calculated the exact photon-electron scattering
rate R(®) (cm? sec!) for various typical energy distributions of
photons, n (x), and electrons, N,(y), for photon and particle velocity
djrections’ uniformly distributed within a solid angle cone of half-
angle 6. Complete 4w steradian isotropy is given by O=m and narrow
beaming for 6=0. The specific densities n(x) and N,(y) are
normalized to set the total photon and electron density each to one.

We have

X n,(x) N,(y) sin6, sinb, c(lsBcoselz) O Est) 2 3.5

where  B=(1-1/»)!2, cos912=sinelsin92cos((p2-(p1)+cos9100s62 is  the
cosine of the collision angle between an interacting photon and
electron, xrest=xy(1-[3008912) is the photon energy in the electron
rest frame and Oy, is the total Klein-Nishina cross section. The
integration is easily done numerically (and one @-integration may be
dispenced with due to azimuthal symmetry). Defining (6)=R(8)/R(%)

to be the factor by which the scattering rate is reduced from its
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isotropic  value, and inserting typical spectra from our runs (see
"Results" section), we find that even for very narrow showers, with
=20°, we obtain p=0.3 to 0.4 depending upon the spectra. That is,

even for narrowly beamed showers, the assumption of isotropy yields

rates that are a factor of only 2 or 3 too large. This is wholly

acceptable in the game of AGN research. What is ‘more, in reality the
shower is probably nearly semi-isotropic (in the upward half-space),
so that 6=90°. This gives t=1.5, which is of course quite acceptable.

Although our models are of course independent of any particular
beaming angles, we note that for truly self-consistent treatment,
beaming angles of intermediate values around 30-40° are required so
that isotropy introduces small errors, but at the same time radiative

transfer remains principally in the z- or r-direction.

The Pair Cascade

To accurately describe the pair cascade in a most computationally
economical manner we use an approximate treatment similar to that
used by Lightman and Zdziarski (1987) and Fabian et al. 1986 in their
studies of uniform spherical volume sources. Most of the simplifying
approximatibns used in the treatment of the cascade in this chapter
will be relaxed in Chapter 4. We have improved upon certain of their
features, and modified the entire approach for use in the \ context of
an atmosphere rather than in a uniform, fixed-volume spherical
source. We review this ‘"standard" approxirmhate approach to the
cascade because: (1) there is a remarkably wide range of choices in

how to simply approximate the various features of a cascade; (2) the
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cascade is, of course, of central importance to the atmosphere we
construct, so the specific details of all approximations used in this
model will be important in both understanding the solutions we obtain
and, as Svensson (1987) notes, in making comparisons with other
wotk; and (3) the degree to which the present model differs from the
more accurately treated general cascade atmosphere of Chapter 4 can
only be understood if the specific details of both are spelled out, as
we now proceed to do for the case at hand. In this section we drop
the positional z- and r-dependences for notational clarity, and write
only energy dependences.

Photon-photon  pair production absorbs photons at the rate (cm™

sec! per unit x)

10/x,
i}‘bs(xl) = 020.c n(x) dx2 n(xz) . (3.6)

2/x,
Here we have approximated the photon-photon pair production cross
section as a rectangular function, equal to éero unless the product -of
incident pﬁoton energies x x, lies between 2 and 10, in which case
the cross section is 0.20;. The lower limit reflects the cross section
decrease near threshold (the threshold for head-on collisions is
x,;x,=1), while the upper Ilimit approximates the Kiein-Nishina-like
decline at high energies. Equation (3.6) leads to pairs being produced

at the differential rate:
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min(xl,IO/xl)
1\'{)1.)(7) = 2(0.2)o.c jdxln(xl) dx,n(x,) 5[7—(x1+x2)/2] (3.7
V2 2/x,

The leading factor of 2 yields two particles for every pair production
event. The limits of integration prevent double counting. The delta
function indicates we assume the electron and positron share the
‘avajlable energy equally. The newly-formed pairs quickly cool from
relativistic ~ energies (where ‘they constitute the "nonthermal" pair
distribution) down_ to subrelativistic energies (where they thermalize
before  annihilation, forming the “thermal" pair population) by
upscattering lower energy photons.

We accommodate the Klein-Nishina decline in scattering cross
section at high energies by requiring the angle-averaged initial rest-
frame photon energy X . ~Yx(1-BcosB) to be less than a certain cut-
off wvalue, yx<§, where y and x are the initial electron and photon
energies and © is the collision angle. This cut-off represents the
condition- for Thomson scattering and the resultant cascade is
sometimes called a Thomson cascade. Thus the scattering of photons

into and out of x by nonthermal electrons proceeds at the rates

3,0 = cop jdX'n(X’) Jva(v) 5(x—§~y2x’) S(%:—x’y) , (3.8
3/(4x)
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3/(4%)
B = cop | dPNG) (3.9)
1

where the step function S [S(z)=1 for z>0 and S(z)=0 otherwise]
insures Thomson scattering and the delta function reflects the well-
known photon energy gain when scattering radiation off of isotropic
ultrarelativistic electrons

Xpy = @BNPx, (3.10)

initial
Note that when pairs have cooled to the trans-relativistic regime
Equations (3.8) and (3.10) no longer hold, but fortunately little energy
transfer is involved (see Lightman and Zdziarski 1987). Electrons at Y

cool at the rate

3/(4y)
Y = -0.c (%Yz—l) | &x" nx)x" , (3.11)
0

where (%'yz-l)x" is the energy lost by the electron when scattering
off a photon of energy x": Note that the cooling rate scales as yz
while the annihilation of pairs goes as y‘z (see equation 2.14). This
is why we may neglect annihilation in the nonthermal pair population.
We ignore electron transport (diffusion and winds) throughout this

paper, and can therefore integrate the electron continuity equation to
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obtain the nonthermal electron densities

NO =" |y 0+ N - (3.12)
Y

When pairs: cool to subrelativistic energies they thermalize to a
population characterized by total density N, and. temperature T, [or,
equivalently, the dimensionless temperature 90=kT0/(mec2)]. This

population will scatter photons into and out of x at the rates

i}h & = Ngc de' n(x") ‘()"KN(X')

X O ( xX(1 + 49, - x'/[1+x']) ) , 3.13)

i_}h_(x) = Ny Op(®) nx) . (3.14)
Here we have the average fractional energy change suffered by a

photon of initial energy x as it scatters off the thermal pair

population

(3.15)

X , 1+x
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This treatment  correctly produces upscattering when x<49, and
downscattering  otherwise. The temperature 8, is determined by
requiring that no mnet energy exchange occur between the thermal

pairs and radiation
0= de AX n(x) Opp(X) . (3.16)

Substituting equation (3.15) for Ax and solving for 9, yields

1+x

X2
J dx n(x) Oy ()

6 3.17)

0
4 de x n(x) ()'KN—(X)

The density of thermal pairs is given by the balance of pair

production and annihilation
Jdv N
N2 = (3.18)
0 113
2 253 GTcgam(OO)

Finally, photons are created by pair annihilation at the rate

DX = ZNOZ%%%GTcgm(GO) 6('x—1-%9‘0) : (3.19)
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Here we assume the two photons share equally in the available

energy.

Solution Method

We difference the photon energy uniformly in the logarithm of
the dimensionless energy x=hv/(mc’) between the values 108<x<10%

The total number of =x-bins is denoted Niinsx- The photon number

X
density per unit volume per unit x at X, we denote as n(x,). The total
number density of photons in energy bin i is then n(x)Ax,, where
Ax, is the energy width of bin i, and %, is the geometric mean value
of x within the bin. Similarly we difference electron energy uniformly
in the logarithm of the dimensionless Lorentz factor y=1/(1-[32)1/2
between the limits 1<y<10®. We define N(y) to be the electron
(negative electrons plus positrons) number density per unit volume
per unit 7y at Y(always with negative electrons and positrons in equal
measure), define Ay, to be the width of the i™ bin, and note that
N(tyi)A(yi) is the total number density of electrons in the i bin,
where ¥, is the geometric mean value in bin i.

With  discretized energy spectra, the photon continuity equations
33) or (34 represent  a coupled system of Nbins’x ordinary

differential equations for the N

binsx variables n(xi,h) at each point h

in the atmosphere. These can be simultaneously numerically integrated
upward from the primary emission surface through the atmosphere. At
each integration step, equations (3.12), (3.17), and (3.18) determine
the  steady-state  electron  distributions from the local photon

distribution. The initial conditions applied at the emission surface
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(h=0) correspond to the primary spectral energy fluxes F, X)) and

F_ n(,) described earlier. The initial conditions can be written as:

Fhard(xi) + Fsoff(xi)

nx,0) = (3.20)

e o2
xi(mec)c

Two distinct integration techniques are used. The first is an
adaptive step size, fifth-order Runge-Kutta routine taken from Press
et al. 1986 and modified by the author for present circumstances.
Step size is controlled by the estimated error in the fractional
change of each n(x) over each step. The second method is an
adaptive step size, fourth-order Runge-Kutta routine created by the
author. Step size here is controlled by both the fractional change of
the thermal pair density N, and the constancy of the integrated

photon energy flux F, where

F(z) = Z on(x,,z)x,Ax,
i
= X [F, ,(x) +F,_,(x)Ax, = const , (3.21)
i

for the plane, and

F@r) = Z en(x,,1)xAx,
i
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1.2
e

= — T [F,0(x) + Fy ()IAX, = const (3.22)
I 1

for the sphere. We find little difference in results produced by the
two methods, but a significant savings in computational time
accompanies the latter. The runs presented in the following section

were done using the faster technique.

Results

Uniform Infinite Radiating Plane

Figures 18 and 19 present the vertical structure of a typical
cascade shower found by the author for emission from a uniform
infinite surface. In order to more readily gain physical insight into
the shower cascades investigated here, we do not include any
spatially  distributed photon or patticle injection throughout the
atmosphere. Figure 18 gives the density of subrelativistic pairs N,(h)
(cm™) as a function of the height h (cm) above the surface. (The
density of relativistic pairs is always much less than that of
nonrelativistic ~ pairs because we find relativistic pairs to cool
rapidly.) .Figure 19 gives the local photon spectrum (specific
dimensionless energy flux: erg/mecz,/cmz/s/x‘, where x=hv/1necz) at
several values of h, the seven lines A-G corresponding to the
spectrum at heights labeled A-G in Figure 18. Line A in both figures
corresponds to the input spectrum .at h=0. The input spectrum- has a
soft component consisting of blackbody emission at T disk=5><104 and a

hard component consisting of a power law with energy flux slope
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0=0.5 (F(x)e<x %) carrying 10% of the total luminosity (£,,.=0-1) and
extending from the blackbody maximum to xmax=104. (See the photon
source spectrum section for details.) We employ a numerical resolution
of Nbins’x=50. Figure 18 also displays the five characteristic domains,
or vertical zones, into which we generally find the atmosphere
divided. The zones are labeled I-V to facilitate reference. Figures 18
and 19 are quite representative of the atmospheres resulting from a
wide range of input spectra. In this section we shall investigate in
some detail the important features of this atmosphere, and then use
it as a point of reference from which to investigate atmospheres
formed by differing primary spectra.

Zones I and IT are quite closely fit by an exponential growth in

the thermal pair density:
N, =Ny Pl | 3.23)
where L is the scale height of the increase and Ny(@) is the

thermal pa1r density at the emission surface. The division between the
essentially flat zone I and the accelerating. growth in II marks the
location -z=L,. To explain this behavior we conduct the following
order-of-magnitude argument.

First consider one of the consequences of the "Analytic
Estimates for Power-Law Distributions” section, what may be called
the "law of steepening slope." Power-law distributions of photons

shallower than o0=1.0 will always steepen towaids o=1.0 under the
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influence of pair cascade processes. This is clearly seen in Figure
19, where the power-law portion of each spectrum steepens from line
A through line G. Next we note that the soft blackbody distribution
acts predominantly as a seed photon source: very little energy is
transferred from the blackbody photons to the power law, although
many blackbody photons are upscattered into the power law. This
means that the energy carried by the power law remains essentially
constant as one proceeds up through the atmosphere. This
conservation of power-law energy then requires the high-energy end
of the power law to drop in density and the low-energy end to gain
in depsity as the cascade progresses and the slope steepens. There
must, then, exist an energy at which photon densities do not change
as the power law steepens. This falls typically between x=1 and
x=x . Photon densities at energies near this "pivot point" will not
change appreciably during this stage of the cascade. This is easily
seen in Figure 19, where lines A, B, and C (all of which lie in zones
I or II) exhibit progressive steepening, but remain anchored at a
constant strength at energy x=~10>. This results in lines A, B, and C
evolving very little in the entire x>1 region, but considerably in the
x<1 region.

Calling the integrated density of power-law photons below x=I,

n and that above x=1, n,, conservation of energy keeps

1’

n,~constant. The rise in n, represents the effect of a positive

2 1
feedback loop in which pairs upscatter photons from the blackbody

distribution into n,, which then produce pairs, which upscatter more

photons from the blackbody component into n, and so on. Slightly

1’
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more duantitatively, we may further define n, to be the total high

energy (nonthermal) pair density, N

o to be the total density of cool

(thermal) pairs, and n, to be the integrated blackbody photon
density. The pair production requirement 2<x X, <10 (see discussion of
equation 3.6) roughly means a photon of energy x will pair produce.

predominantly with photons of energy 1/x. This means pairs are

created predominantly from interactions between the n, and n

1 2

populations. Note that the blackbody photons are too soft to pair
produce with any photons at all: 2.820 gige /X . Thus we write the
pair creation rate as

n =nnoc, (3.24)

where we approximate all cross sections in the derivation by Cp-
Since only one n, photon is absorbed to create a pair, but that. pair
will in turn upscatter many photons from n . into n,, upscattering
into n; is the dominant process in n, ’s kinetic equation,

dn nn o.C

! . . (3.25)
dh c

The mnonthermal electron steady-state balance of pair creation and

cooling by the soft radiation yields

=~ npgec . (3.26)

=N
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Substituting equations (3.24) and (3.26) into equation (3.25) we obtain

dn,
! ~anc . o (3.27)
dh 12°T , ~

which yieldé' exponential growth for n,

n, ~n,0)eP20 | (3.28)

The balance of pair creation and annihilation of thermal pairs will
determine N;:

2 o o '
N G‘TC = I‘é . . (329)

0

Substituting the above results for % we obtain
N2 = nn (0)e™20m 330
And finally, taking the square root we have:

N, = 0,20, ©0)"2%e™wd | | (3.31)

where the cascade scale height is given approximately-as

L = —— ‘ (3.32)
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Notice the length scale for exponential growth is inversely
proportional to n,, which is born out in our results (see Figure 23
and discussion thereof). More intense primary spectra, by increasing

n will result in smaller scale heights and more compact

2
atmospheres.

Figures 18 and 19 indicate that the photon spectrum shortward of
the blackbody UV-hump remains a power law throughout zones I and
II (lines A, B, and C). In the "Analytic Estimates or Power-Law
Distributions” section of this chapter, we calculate the equilibrium
thermal pair density in power-law photon distributions, which is given
by equation (3.65) as a function of power-law slope, strength, and
upper and lower limits. Applying that analysis to the input power-law
of Figure 19 (line A) we obtain an estimate for the initial pair
density of N(0), =1.77x10 cm™. Figure 18 shows the actual initial
value of 2.94x107 cm™.

Zone II of the atmosphere represents a saturation of the pair
cascade, and a consequent maximum of N, In overview, pair cascades
work to redistribute energy from a few high energy particles or
photons to many lower energy particles and photons. In particular,
cascades drive systems with abundant high energy populations towards
a state in which radiation energy is spread equally among the decades
of frequency. This state is a power law with a photon number density
slope of s=2: nx)~x~x2. Precisely how this occurs is analytically
deriveci in the '"Analytic Estimates for Power-Law Distributions”

section, and we now review the important features.
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In a pair cascade, a- photon power-law of number density slope s,
that extends - appreciably beyond mec2 will produce paJrs at the
differential rate P(y)~yP, with p=s. If a strong source of soft
radiation is available to cool the new pairs, a steady-state pair
density N('y)~y—r, with I'=s+l, will form. The upscattered photons
form a power law n’ ('y)~x's’, where s'=(1/2)(T'+1)=(s/2)+1. This new
steeper distribution of photons produces a second steeper generation
of pairs, and the cycle repeats. After i generations we have
si=(s0+2i+1-2)/(2i). Any input s<2 will steepen and approach 2. An
equilibrium exists at s=2 in which the scattered radiation spectrum
from pairs has the same slope as the photons which produces those
pairs, and no further slope evolution occurs. This cascade-driven
spectral slope evolution is clearly seen in Figure 19. By the time the
height signified by point E is reached (the end of =zone III), the
power-law slope has steepened to very near s=2, and no further
steepening occurs.

Another result from the last section of this chapter is -that
equilibrium thermal pair density in a power-law photon distribution is
maximized by s=2, for a given constant total power carried by the

power law. Thus a maximum for N_ is expected when the cascade

0
saturated, as seen in Figure 18. The maximum value of N, may be
estimated analytically by the results in the "Analytic Estimates for
Power-Law Distributions” section. Applying equation (3.65) to the
saturated s=2 power law in Figure 18, we obtain Nom‘”‘=4.02x108 cm’

3, compared with the actual value of 2.95x10% cm™ from the figure.
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Alohg with  softening power-law slopes, pair cascades work to
degrade maximum energies toward mecz. This can be seen by
estimating the maximum energy for each generation of Y-rays in a
cascade. An initial y-ray energy X,>>1 will interact with a low energy
photon 1/x, and produce a pair with energy Yo=%,/2. This pair will
predominantly upscatter soft photons xsz'10'4'5 to energies
X, =(43)) x =(x /3% =10°% 2.  The cycle then repeats for further
generations. If x0=1'04, then x1=103, x2=101, x3=10'~3, etc.. (Of course,
when x is no longer above the pair production threshold V2, no

further pair generations will be produced. The significance of this is

that, as one proceeds up through the atmosphere, by the time several

pair generations have occurred, and the cascade has saturated, the
cascade processes no longer produce any x>V2 photons in abundance.
Thus at any point in the atmosphere, the very highest energy
photons are depleted by pair absorption, but mnot being replenished.
The spectral high energy cut-off then proceeds down through the
energies, as seen in lines D thrpugh G in Figure 19. (No depletion
will be seen for x>V2 because low energy photons require an x>V2
photon to pair produce, but because of the power law, photon
densities at x<V2 are much greater than at x>V2, so that each pair
production event results in a much greater fractional density loss for
the x>V2 than for x<V2. The x>V2 quickly deplete, and x<V2 are left
virtually undiminished.) /

The height h at which the high energy. cut-off (called the v-ray

turnover by observers) has proceeded down to some energy x, can

easily and  accurately be estimated as the absorption length L %
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for a photon at x due to absorption by photons in the saturated s=2
power law (absorption by the blackbody photons is energetically
prohibited).

We have analytically estimated the absorption lengths for all x>V2
in the "Analytic Estimates for Power-Law Distributions" section, and
illustrate the results in Figure 34. The height of the curve above
energy x indicates the absorption length at that energy, L &),
which indicates the approximate height in the atmosphere at which
the exponential depletion at x begins. Or alternatively, the x
corresponding to some L is the high energy cut-off at height h=L.
This is in good agreement with the results in Figure 19. For example
Figure 19 indicates depletion at x=~10 occurs somewhere between
positions D and E, around bh=10° cm. The analytic estimates of
Figure 34 give h=10'%% cm for the high energy cut-off to occur at
x=102. Note that Figure 34 correctly predicts that higher energies
will deplete first (smaller L, We defer discussion of the behavior -
near V2 to later in this section.

Zone IV represents a steady decline in thermal pair density at

the precise rate
Ny~ 1/h . (3.33)

This behavior begins at the height where the high energy cut-off has
proceeded down into the interval V2<x<V10. The significance of this
interval is that only within this interval can two photons of the same

energy pair produce, whereas x1<\/2 must interact with x2>‘/2' and
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x1>\/ 10 must interact with x2<\/ 10. Note that the power-law form of
the spectrum dictates that the largest photon density within this
interval is the lowest energy: the first (discetized!) energy above V2
Call this energy x, and its density n,. Pair production is then
clearly dominated by x,+x, interactions, and x, is depleted at the

rate

dn,

dh

~ -nan, , (3.34)

which has the asymptotic solution

n, ~ 1/h . (3.35)

The balance of pair production and annihilation gives:

N2 ~n,n, , (3.36)
which together with equation (3.35) gives equation (3.33).

Zone V of the atmosphere is well fit by an exponential decay in
thermal pair density. Zone V begins when the high energy cut-off has
reached x, (the first discete energy larger than +V2), and n, drops
. sufficiently so that the principal pair creation mechanism is no longer
X, +x, but rather x,+x,, where x,, is the first discrete energy below
V2. The energies x<V2 suffer essentially no depletion because they

have entered pair production only with photons whose densities were
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much less than n(x). Thus the n(x<‘/2) remain essentially constant and

the depletion rate for x, becomes exponential as predicted:

dn,
dh

~ DDy , (337)

. ~ e('An**h) .

n (3.38)
where A is some constant. We balance pair annihilation with creation:
N,? ~ n,n,, , (3.39)

Equation (3.38) along with the approximate constancy of n,, gives

the exponential decay:
N, ~ At 1 (3.40)

where A is some constant. The location of the boundary separating
zones IV and V is easily and accurately estimated by Figure 34. For

N,

bins,x

50, x,=1.905. This value is shown on the figure and
corresponds to an absorption length of 2x10'3 cm. Figure 18 indicates
a boundary at 4x10*® cm.

We saw in the previous paragraph that the turnover from N0~1/h
in zone IV to N ~exp(-Ah) in zone V occurs at a height about equal
to the absorption length for x,, Labs'(x*). Note, however, that as the

numerical energy binning becomes increasingly fine (increasing the
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number of bins Nbins’x) X, approaches V2 and Figure 34 indicates
L, .(x,) increases. This is a direct result of the approximate pair
creation threshold X,X,22. Photons at V2 can only interact with
similar  photons. = As this threshold is approached, there are
increasingly fewer photons available. (This effect remai'ns when the
exact cross section is used, only there the threshold is x,x,21.) This
increase in L, (x,) should postpone thé onset of exponential
attenuation -of the pair atmosphere to larger h. In the continuum limit
x,—V2 and L, (x)—e because a photon at x=V2 can react with only
the infinitesimally small number of photens at that energy, and zone
IV should continue upward indefinitely, never turning over to zone V.

Figure 20 presents NO(h') for the model parameters of Figures 18

and 19, but for several values of N

binex The extension of the
ins,x .

Ny~1/h  behavior higher into the atmosphere is clearly seen for
increasingly fine binning. The continuum limit is easily obtained by
simply extrapolating the 1/h dependence outward indefinitely. This
affords a tremendous savings in combutational time over running large

N.. models. For N .

b =50, little error is seen in the lower
ins,x bins,x

regions of the atmosphere when binning is changed. The total
atmospheric optical depth to thermal pairs becomes logarithmically
unbounded in the continuous limit. This is predicted by inserting the
N0~h'1 dependence into the definition of the optical depth up to
height h,

h
wh) = th N,h)o,. . (3.41)

‘0
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We obtain t(h)~log(h), which is unbounded as h approaches infinity.
The logarithmic form of t(h) is seen in Figure 21, in which 1(h) is
shown for several Niinsxr  AS Nbi“s’x increases, the optical depth
follows a logarithmic profile further out into the atmosphete. For a
finite number of bins, the turn-over to zone V exponential decay will
be encountered. Since -the integral of e'h_ out to infinity is bounded,
only a finite contribution to T is gained in zone V, and the T profile
in Figure 21 levels out to remain finite. The infinite value in the
continuum limit is not altogether surprising and is simply a direct
consequence of the (unphysical) infinite uniform plane geometry
(somewhat analagous to calculating the column energy density of an'
electric field above a uniform infinite charged plane), as we shall see
in the following section.

Concern would be warranted if a second quantity, the integrated
pair yield PY, were also infinite. The pair yield (see Chapter 2)
measures the overall efficiency with which the atmosphere turns hard
radiation injection into pair creation. We must modify the definition
of PY used by others in uniform spherical volume sources (see
Lightman and Zdziarski 1987, and Fabian et al. 1986) to accommodate
the present geometry,

(o) oo

J dh J dy N, )

0 0
PY = . (3.42)

0
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The variation of PY with Niinsx 18 shown in Figure 22 and is seen

to trend to a well-defined finite limit of around 8-9%, comparable to
the uniform spherical volume source results of typically 10% or less.

Finally we investigate the effects on atmospheric structure and
spectrum caused by variations in the input photon spectrum, using the
prototypical model of Figures 18 and 19 as reference. We keep
mes’x=50. The continuum limit may be taken by inspection usually.
First we vary the partitioning of available luminosity between the
soft (blackbody) and hard (power-law) input. Figure 23 shows NO(h)
for several values of f;, _, from 10 to0 0.99.

The immediately striking feature in Figure 23 is that, as long as
the soft source remains stronger than the power law (fhar d<0.5), the

pair density profiles all end up on the same h-N,, line. This is caused

by the combined action of two effects, both of which depend on the

fact that power-law  densities are proportional to fowa O
n2~fllar @ Equation (3.31) then tells us that Lcas~f11ar d'l. a 10-fold

increase in f

harg» 10T example, will cause the pair cascade to occur

10 times further out into the atmosphliere, as Figure 23 clearly shows.
Equation (3.32) tells us that Ny~f *'. Thus a 10-fold increase in

f

hard  COTTESPONds to raising the graph in Figure 23 by a factor of

10, which is also clearly seen. When £ 0-5, the assumption of a
plentiful soft source is no longer valid in our crude estimates, and
the estimates fail, as evidenced by the anomalous behavior seen for
f, a=0-9 and 0.99.

Next - we investigate the effects of input power-law slope of the

atmosphere. Figure 24 shows the pair profile Ny(h) for several input
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power-law emergy slopes, =0, 0.5, 1, and 2 (corresponding number

density slopes are s=1, 1.5, 2, and 3). A critical value of o=1.0

(s=2.0) becomes apparent. Input energy slopes shallower than «a=1.0

evolve to saturation at o=1.0 and will produce the characteristic pair
profile (zones I-IV). Energy slopes steeper than o=1.0 have too few
high-energy photons to produce a cascade and the atmosphere merely
attenuates as fy-rays densities are gradually depleted, as seen for the
=2 (s=3) line in Figure 24. The spectral evolution for initial energy
slope 0=2.0 is shown in Figure 25 and reveals little power-law
steepening (evidence for the absence of a functioning cascade) and
high energy depletion.

Finally we investigate the results of monochromatic primary
input. Delta function input produces final (escaping) spectra quite
similar to that from distributed input, but can reveal interesting
features within the atmosphere. For instance Figure 26 shows the
radiation spectrum at various heights (increasing from lines A through
J) above a source radiating the same total energy flux as in the
model of Figure 19, but now with the soft emission concentrated at

the blackbody maximum x=2.80 and the hard emission concentrated

disk
max=104+ A power law bridging the soft and hard input energies
quickly forms from upscattered soft photons and gradually steepens
towards energy slope 1.0 as the cascade progresses, as in the
continuous -input models. However a prominent pair annihil\ation line
at x=1.0 appears in the lower regions of the atmosphere. This is seen

because the power law is not yet strong enough to overwhelm it.

Higher up the line is drowned out by the power law and no
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annihilation line at x=1.0 escapes to the observer. (It is found,
though, that many models will emit an observable annihilation
feature downscattered and broadened from x=1 by thermal pair
scattering; see Figure 19). Figure 27 shows the pair profile for the
delta function input model of Figure 26. Pair densities just above the
emission surface (small h) are quite small, because direct pair
production cannot occur between the soft and hard input energies.
Only as the power law develops and strengthens can pair densities

rise, as power-law photons begin to pair produce.

Uniform Radiating Spherical Surface

The  principal qualitative  differences between  pair  cascade
shower atmospheres formed over infinite planar sources and those
formed around spherical suface sources result from the inverse square
law dilution of densities (see the second term in equation 3.4). The
effect can be approximately cﬁaracterized by the existence of a so-
called freeze-out radius L around any spherical emission surface.
Beneath Ie the geometrical effects of curvature are negligible and the
atmosphere closely resembles that from an infinite plane. Above Ie
the inverse square law will dominate reaction rates and photon
densities drop as 1/r2. This can be seen more quantitatively, if we
define fh=r-re to be the .height above the emission radius I,
corresporiding to any position r, and write the vertical profile of

photon density due solely to geometry:
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1

nh) =nt) ——— . (3.43)
1-+(h/r,)

The freeze-out height above the emission, hf=rf-re, separating the
two regimes of behaviour is then seen to be equal in magnitude to

the emission radius
hy =1, (3.44)

When h<<re, n(h)zn(re). When h>>r, n(h)zn(re)(re2/h2). This is
fllustrated quite clearly in Figure 28. Here we have plotted as a
reference the planar source N, profile of Figure 18 (the line marked
"plane"), against the profiles obtained from emission of the same

spectrum (same shape and same total energy flux: energy/area/time

emitted), but from wuniform spherical surfaces of varying radii:

re=1013, 1014, 1015, 1‘0‘16, 1017, and 10" cm. The horizontal axis
represents h, the height above the surface. The prediction of equation
(3.44) is born out: the pair density closely follows the planar results
(Figure 18) out to her, where a turmover to inverse square law
domination N0~1/r'Z occurs. This 1% decline solves the problem of
infinitely  thick atmospheres found above uniform infinite planar
sources. Integration of 1/> out to infinity yields finite optical
depths:.

The "freezing-out” aspect of hf is strikingly shown in Figure 29,
where six lines, labeled by the size of the emission radius, denote the

escaping spectrum from each model of Figure 28. For reference, the
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initial  (input) and final (escaping) spectra for‘ the corresponding

"e__1t

planar case are plotted as lines "in" and

out,” respectively. The
final (escaping) spectrum from a spherical source with an emission
radius r  is seen to be approximately the local spectrum found inside
the equivalent planar source atmosphere at height h=r_. For example,
compare the similarity between the escaping spectrum frem a
spherical system of 1re=1016 cm  shown in Figure 29, with the
spectrum existing a distance 10'®2 cm above a planar source shown
as line "E" in Figure 19. The spectral evolution ceases, or freezes
out, at the freeze-out height.

We next present results of spherical models run with input
parameters set to a specific astrophysical context relevant to AGN.
(Refer to the photon source section and the Appendix for motivation
and details.) In particular we shall consider a typical AGN: a luminous
Seyfert galaxy or a moderate quasar. Mass estimates of the central
black hole for these objects suggest M=108Msor Without specifying
whether the accretion flow takes the form of quasi-spherical inflow
or a disk, theory tells us that most of the luminosity will be released
in the central 100rg region of the flow. We will approximate either of

these as a uniform spherical emission surface of radius
r, =100 (2GM/c®) = 3x10%%m . (3.45)
As discussed earlier, the spherical models are appropriate both very

close to and very far from a finite disk, and of course is appropriate

for a spherical flow.
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The soft emission component consists of a blackbody spectrum at
T disk=5x104K, while the hard component consists of a power law of
energy index 0=0.5 extending from the blackbody maximum
x=2.373x10° to x=10*. The fraction fiwa Of the energy flux carried
by the hard component is left as a free parameter. (No theory has
been developed to predict the partitioning of soft and hard radiation
from AGN central engines. However, Lightman and White 1988 have
found that the observed, or reprocessed, spectra from a large class of
AGNs exhibit fwq in the range 025 to 0.77.) The entire input
spectrtum is uniformly scaled up or down by specifying an -effective
brightness temperature, to provide any total luminosity L=eM c?
(erg/sec), accommodating any combination of accretion rate M and
accretion radiative efficiency €.

Figure 30 shows the total thermal pair optical depth T of the
resulting atmosphere for dimensionless accretion rates m =M /M Bad
from 107" to 10°, and for f_ =10% 103, 102, 107, 05, and 0.9.
We use £=0.1, a reasonable value. The power law dependence found in
Tt for small m and f 4 Occurs when the freeze-out height falls in
zone L. Recall that in zone I, N, is constant in h, and is proportional
to nll/zn 12 where 0 is the density of power-law photons <(>)I.

2
These densities are proportional to m and fowar SO N0~in fper 1D
complete agreement with the asymptotic region of Figure 30. Pair
optical depth is positively correlated to the accretion rate, but
saturation is always reached for sufficiently large accretion rates.

This happens when the freeze-out radius lies outside of zone III, the

cascade maximum. This is seen in the upper right portion of Figure
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30. Inverse square dilution takes over and the atmosphere thins too
quickly for the optical depth to further increase as one proceeds out
through the atmosphere. Pair optical depth is positively correlated
with f . only up to f . a~0-5, past which a decline in 7 is
encountered due to ‘the inability of the now sparse soft photon
reservior to supply many photons to the cascade mechanism. Figure
30 shows that for sub-Eddington accretion rates, the resulting pair
atmosphere remains thin, with 1<102. At moderately super-Eddington
accretion, the optical depth can approach or surpass unity, and can
reach a maximum of 1=10 for very super-Eddington accretion and
very hard input. Figure 31 presents the variation of pair yield PY
with m and fora The maximum values PY=10%-20% at -saturation
agree with the maxima found in uniform spherical volume sources
(Lightman and Zdziarski 1987, and Fabian et al. 1986).

Observationally, .the soft X-ray spectral power-law slope is of
considerable interest. Figure 32 presents the 2-10 kev (soft X-ray)
energy ‘index o for the same model parameters as Figures 30 and 31,
in which the input spectral index was 0.5. For sufficiently small L
and mthe freeze-out height is small enough to “catch" the spectrum
before appreciable spectral evolution took place. This is seen by the
trend to o=0.5 in that region of parameter space. The saturation seen

for large f and m indicates the freeze-out height was great

hard
enough to allow the cascade to evolve the spectral slope to its
terminal value of near o=1.0. Note for a given fxa the energy
index is positively correlated with- luminosity increases. Some . surveys,

however, suggest that the index remains fairly constant during





















































































































































































































































































