
Quality assurance in a free software environment
by Michael Ray Wangsmo

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in
Industrial and Management Engineering
Montana State University
© Copyright by Michael Ray Wangsmo (1998)

Abstract:
Red Hat Software's flagship product is Red Hat Linux, a Linux based operating system. The vast
majority of the components that make up Red Hat Linux are developed and maintained by a
world-wide cooperative development effort, connected by the Internet. The people that make up that
effort are known as the free software community.

The problem at hand is to modify existing quality assurance tools and methods to increase the
reliability of the software that makes up Red Hat Linux. The free software community has testing
procedures in place, but none are organized into what most people would consider rigorous practices.

Many of the techniques originally explored in the project are abandoned as they don't scale to the
complexity of the model under which this test plan operated. Along they way, several new and unique
methods were discovered and integrated into the Red Hat QA program. Much of the work contained
within this thesis should not be considered complete, but rather under continuous development. The
program itself has taken on a similarity to the cooperative development model. Based on the research
exercised for this thesis, the following three primary solutions have been developed and implemented:
1. Derivations of traditional, statistically based tools to measure and monitor the defects present within
the software packaged by Red Hat.

2. Development of methods to harness the body of people connected by the Internet and use those
resources to raise the level of testing that Red Hat's software receives.

3. Increase the awareness of Linux to involve more people and companies in the free software
movement.

A final addition to the thesis is the inclusion of the Red Hat test plan. Unfortunately, that plan was
written while the early stages of work were underway and has become out of date as this thesis is
completed. The resources and time have not been available to update it since the conclusion of the
research time frame. It is included as a work in progress and as an example for other people doing
software development tied to free software.

In summary, the results gained through this thesis effort are not attributable to any single change in Red
Hat's operating procedures; however, there is no doubt in the author's mind that the aggressive quality
assurance practices have led to Red Hat's ability to stay on top of the Linux market and to begin to
compete directly with other big name operating systems.

QUALITY ASSURANCE IN A
FREE SOFTWARE ENVIRONMENT

by

Michael Ray Wangsmo

A thesis submitted in partial fulfillment
of the requirements for the degree

Of

Master of Science

in

Industrial and Management Engineering

MONTANA STATE UNIVERSITY-BOZEMAN
Bozeman, Montana

November 1998

©COPYRIGHT

by

Michael Ray Wangsmo
Red Hat Software, Inc.

PO Box 13588
RTP, NC 27709

1998

All Rights Reserved

Red Hat, the Red Hat "Shadow Man", and RPM are trademarks or registered
trademarks of Red Hat Software, Inc. UNIX is a trademark of The Open Group.
Solaris is a trademark of SUN Microcomputers, Inc. All trademarks and copyrights
referred are the property of their respective owners.

V "

ii

APPROVAL

of a thesis submitted by

Michael Ray Wangsmo

This thesis has been read by each member of the thesis committee and has been
found to be satisfactory regarding content, English usage, format, citations, bib
liographic style, and consistency, and is ready for submission to the College of
Graduate Studies.

Dr. Paul Schillings Date ‘98

Approved for the Department of Mechanical and Industrial Engineering

Dr. Victor Cundy
T

Date / 2 /

Approved for the College of Graduate Studies

Dr. Joseph J. Fedock Date

iii

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a master's
degree at Montana State University-Bozeman, I agree that the Library shall make
it available to borrowers under the rules of the Library.

If I have indicated my intention to copyright this thesis by including a copy
right notice page, copying is allowable only for scholarly purposes, consistent with
"fair use" as prescribed in the U.S. Copyright Law. Requests for permission for
extended quotation from or reproduction of this thesis in whole or parts may be
granted only by the copyright holder.

Signature

Date ?dAJdo f r

iv

ACKNOWLEDGEMENTS

First and foremost, I have to thank Dr. Paul Schillings for keeping me working

on this project and for sticking around even when he became sick. I would like

to also thank the other two professors on my committee. Dr. John Borkowski and

Dr. Joe Stanislao for continuing to work with me even though I ended up finishing

2500 miles from where I started.

The next big round of thanks go to Red Hat Software and Marc Ewing specifi

cally. He hired me to do this work and gave me the support and freedom to do the

job right. He also was the person that allowed Red Hat to financially support the

conclusion of my graduate program. Even though it took a lot longer this way, I

believe that both Red Hat and I have a great future together. I need to thank Don

nie Barnes for the initial test plan work and for leaving me alone on Fridays and

Ed Bailey for proofreading and some latex help.

Finally, I need to thank my family for encouraging me to follow this path, even

though it took me a long way from Montana.

Contents

1 INTRODUCTION I
Background „ .. 2
Historical Problems.. 5

2 RESOURCE REVIEW 8
Traditional Quality Assurance T o o ls .. 9
Non-traditional Tools... 14

3 DEVELOPMENT OF THE PLAN 18
Situation Assessment... 19
Overview of Test Schedule..20

4 TESTING METHODS 23
Phase I - Install/Upgrade Testing...24

Install testing ... 25
Upgrade testing .. 27
Closure of the install/upgrade loop ... 29

Phase II - Package T estin g ..30
Code freezes..31
Test tracking..32
Testing criteria... 33

Phase III - Hardware Testing... 35
Differences between platforms ... 37
Kernel Issues..39
Hardware Testing Procedure - .. 40
Implementation... 44

Phase IV - Functionality Testing..47
C Libraries........................... 47
Public beta releases... • •49
Private beta re lease, 31
Internal Red Hat Usage... 32

vi

5 ANALYSIS OF THE QA PROCESS
Errata Analysis
Raw Bug Report C o u n ts
Feedback and Empirical Observations
Defect A n aly sis

Definitions of te rm s...................
Method
A n a ly s is

Defect Analysis Wrap-up...................

6 SUMMARY
What is gained....................................
Who benefits......................................
Conclusion of Research . . . '

BIBLIOGRAPHY

APPENDICES

A RED HAT TEST PLAN
Introduction......................
Installation Testing

Intel-Hardware................ ; ; ,
Miscellaneous Install Testing . .
Laptops........... , ,
Alpha-Hardware
Alpha(Misc. Install Testing) . .
SPARC-Hardware
SPARC(Misc. Install Testing) ,

Package Testing..............................
Integration T estin g

Upgradability.................................
In te l...
A lpha.................-....................
SPARC....................................

Documentation of T esting
Beta Test Program • • •
Intel Test C a s e s

Simple In s ta l l
Floppy Based Install
FTP Based In s ta l l
NFS Based In s ta ll...................
SMB Based Install

54
55
58
59
62
63
64
67
67

69
70
71
72

75

76

76
76
76
77
86
91
91
91
91
92
92
94
95
95
95
96
96
96
97
97
97
97
97
97

FLIP Device In s ta ll ... 98
Video Card Install.. 98
Sound Card In s ta l l- ... 98
Mouse Install 98
Hardware Dependent Cases .. 98
Miscellaneous Install Testing ... 98
Partitioning 98
Time zone/Keyboard/M ouse...................... 99
L IL O 99
N etw orking......................... : .. 99
X Configuration...................... 99
Sound Testing.. 100
Laptops.. 100
Total Test C a se s ■. 100

ALPHA Test Cases .. 100
SPARC Test C ases........................ 100

B TEST LAB INVENTORY 101
Adapter Cards .. 101

Disc controllers.. 101
Video c a r d ; ..102
Ethernet card 103
Mouse type 103

Intel specific hard w are ..103
Intel m otherboards.. 104
Intel based processors 104
Memory categories ... 104

SPARC specific hardware . . ' 104
Base systems.. 104
Framebuffers.. 105

C GNU PUBLIC LICENSE 106
Pream ble..106
GNU General Public License .. 107
Appendix 112

vii

viii

List of Tables

4.1 Intel hardware levels for Red Hat Linux 5.0 testing................ 42
4.2 Usable combinations of Intel hardware................................. 43
4.3 Alpha architectures.. 44

5.1 Errata item totals for recent Red Hat Linux re lease s 56
5.2 Lengths of Red Hat Linux releases' liv es... 57
5.3 Raw counts of bug reports... 58

A.l Coded Hardware L evels.. 81
A.2 Simple Install Cases... 82
A.3 Floppy Based In s ta l l ..82
A.4 FTP Based Install....................................... 82
A.5 NFS Based In s ta ll... 83
A.6 SMB Based Install.. 83
A.7 FLIP Device In s ta ll 83
A.8 VideoCard/XInstall 85
A.9 Sound Card Install . .. 85
A. 10 Mouse Type In s ta ll 87
A.ll Partition test, I Hard Drive ...88

ix

List of Figures

2.1 Sample QFD chart...10
2.2 Sample Pareto diagram for product defects... 12

4.1 Macro flowchart of install code on Intel...26
4.2 General timeline of development milestones.. 31
4.3 Typical Operating System H ierarchy... 48

ABSTRACT

Red Hat Software's flagship product is Red Hat Linux, a Linux based operat
ing system. The vast majority of the components that make up Red Hat Linux are
developed and maintained by a world-wide cooperative development effort, con
nected by the Internet. The people that make up that effort are known as the free
software community.

The problem at hand is to modify existing quality assurance tools and methods
to increase the reliability of the software that makes up Red Hat Linux. The free
software community has testing procedures in place, but none are organized into
what most people would consider rigorous practices.

Many of the techniques originally explored in the project are abandoned as
they don't scale to the complexity of the model under which this test plan op
erated. Along they way, several new and unique methods were discovered and
integrated into the Red Hat QA program. Much of the work contained within this
thesis should not be considered complete, but rather under continuous develop
ment. The program itself has taken on a similarity to the cooperative development
model. Based on the research exercised for this thesis, the following three primary
solutions have been developed and implemented:

1. Derivations of traditional, statistically based tools to measure and monitor
the defects present within the software packaged by Red Hat.

2. Development of methods to harness the body of people connected by the
Internet and use those resources to raise the level of testing that Red Hat's
software receives.

3. Increase the awareness of Linux to involve more people and companies in
the free software movement.

A final addition to the thesis is the inclusion of the Red Hat test plan. Unfor
tunately, that plan was written while the early stages of work were underway and
has become out of date as this thesis is completed. The resources and time have
not been available to update it since the conclusion of the research time frame. It is
included as a work in progress and as an example for other people doing software
development tied to free software.

In summary, the results gained through this thesis effort are not attributable to
any single change in Red Hat's operating procedures; however, there is no doubt in
the author's mind that the aggressive quality assurance practices have led to Red
Hat's ability to stay on top of the Linux market and to begin to compete directly
with other big name operating systems.

I

Chapter I

INTRODUCTION

Red Hat Software develops a Linux based operating system (OS) for Intel xB6,

Sun SPARC, and Digital Alpha based computers. The OS is a derivative of Minux

which is a UNIX-like OS for Intel processor based machines. It was first developed

in 1991 by a Finnish computer science graduate student named Linus Torvalds.

Red Hat formed in 1994 and began bundling the various components necessary for

a complete OS from the vast pool of software being freely distributed world wide

under various copy-left1 licenses. For more information on the history of Linux

in general, see h t t p : / /www. I in u x . o rg and for more information on Red Hat

Software, see h t t p : / /www. r e d h a t . com.

When a company grows from less than five employees to more than 30 in two

years, many fundamental changes take place at the administrative and organi

1The phrase copy-left was coined by Richard Stallman, founder of the GNU (Gnu is Not Unix)
project. One of the core components of the GNU project is the development of the GNU Public
License (GPL), a copy of which is included in Appendix C.

2

zational levels. As a company grows from 30 to 100 employees changes become

more subtle, but no less significant..One of the most important changes a company

can make as it grows in this age of highly competitive markets is to implement a

Quality Assurance (QA) program. For a QA program to be successful, three fun

damental components are required:

1. Support of upper management

2. A well defined test plan (with goals)

3. Qualified personnel to develop and implement the plan

For Red Hat Software, the upper management and qualified personnel were in

place; the test plan was not. The focus of the research outlined within the thesis

is the development the test plan to achieve Red Hat's business goals. In software

development, a test plan is the corner stone to managing the testing procedures.

The environment that Red Hat exists presented a unique opportunity to explore

new ground in the field of both QA and in a growing new field called free software.

Backgroyrsd

To fully understand the ramifications and magnitude of the research project, one

must first understand the concept of free software, and how a "for-profit" company

can become successful in the field. Although the "free" in "free software" can

mean "obtainable for no money", a more important meaning applies to the free

3

availability of the software's source code2. Computer professionals started writing

programs that accomplished specific tasks, desiring that others use the software

and, whenever possible, contribute improvements back to the software pool. The

only way for that to happen is for the software author to distribute the source code

with all software. Through availability and unencumbered by restrictive license

agreements, other programmers can modify and refine the original software. Thus,

free software is the basis for the cooperative development model.

The tool that makes cooperative development possible is the Internet. Using the

Internet, people around the world can effectively work together and develop soft

ware as if they were sitting in the same office. Cooperative development becomes

much more than just a project that a few people participate in at universities. Most

of the computers around the world that handle tasks such as email processing,

the world wide web, and many other services run software that has been coopera

tively developed and released as free software. The following is a description the

Free Software Model [13]:

"Probably the best feature of Linux and the GNU utilities in gen
eral and Red Hat Linux in particular is that it is distributable under the
terms of the GNU Public License (GPL). This feature has allowed re
search institutions, universities, commercial enterprises, and hackers,
to develop and use Red Hat Linux and related technologies coopera
tively without fear that their work would someday be controlled and
restricted by a commercial vendor.

2Source code consists of instructions written by a software engineer that is compiled into binary
code which is executable by a computer's microprocessor.

4

In short, the GPL changes the model of software development and
distribution to one much like the model our Legal system and its in
dustry uses. If a lawyer designs an argument that wins his case in front
of the supreme court his reward is not only the fees his client pays him
but also the additional clients that his achievement attracts to his prac
tice. The "argument" he used becomes available for any other lawyer to
use without restriction, and in fact becomes part of our collective legal
heritage.

This new model is already a new industry with companies like Cygnus
Support (see h t t p : / /www. cygnus . com)becoming multi-million dol
lar enterprises on the basis of providing support and services for large
commercial users of GPUd and other "freely distributable" software.
Red Hat Software, Inc/s rapid growth is based, similarly, on our devel
opment and support of the Red Hat Linux distribution, a product that
we distribute worldwide on CD and over the Internet under the terms
of the GPL."

In a world of constant security threats, crackers, and corporate espionage, tradi

tional OS producers move too slowly to keep up. Linux's open nature provides the

basis for constant security enhancements. Security fixes for newly discovered ex

ploits are fixed and released for the various Linux components virtually instantly.

Whereas, traditional OSes can take months to release fixes. For companies that are

moving into the world of e-commerce3,.the rapid security releases and fixes make

Linux an obvious choice.

Red Hat Software took advantage of these growing markets and focused a large

portion of their resources into them. By acting as a corporate entity, able to man

age and maintain a complete Linux distribution. Red Haf brought an image of

reliability and trustworthiness to a sometimes chaotic software development en

3This term was made popular by IBM, but generally denotes companies that do business via the
Internet.

5

vironment. Historically, Linux has been thought of as a college-level learning tool

and something that only midnight hackers could easily use. By battling such mis

conceptions, Red Hat has been able to compete with the likes of SUN, Microsoft,

and Digital. Red Hat's leadership recognized that to remain and grow it's market,

they needed to move faster and produce a more reliable and higher quality oper

ating system than it's big name competitors. Because Red Hat is a member of the

free software community, a method had to be developed to control the quality of

software produced by thousands of disjoint developers around the world.

A project was started to develop methods, tools, and metrics to monitor and

improve the quality of the software that Red Hat produced and sold. The project

was to be deployed in several phases covering four distinct areas of the operat

ing system. In addition, it was necessary to. apply a more stringent standard to

internally developed software versus packages developed outside of Red Hat.

Historiicai Problems

Before any research could be undertaken to address Red Hat's current issues, past

performance had to be thoroughly understood. As Red Hat had grown, the orig

inal staff members had to deal with many issues and their memories of some of

those issues was limited. That posed problems trying to document historical fail

ures and difficulties.

The major problem found was a lack of communication between the various de

6

partments and individuals working on Red Hat Linux. The next priority problem

was identifying bugs and fixing them with the limited resources available while

still meeting distribution release schedules. It is the classic case of determining

"when to ship" when there are more problems than can be reasonably tracked and

fixed. Red Hat had been successful enough to continue growing despite these

problems. That growth exacerbated the internal communication problems and

raised public expectations for a more polished product to a higher level.

Although Red Hat had a system in place for bug tracking, it was a limited sys

tem that didn't receive as much usage as it could have. Standard within software

companies, bug tracking systems allow individuals to enter a bug or problem into

a common database. An "owner" is assigned to the bug and the status of that entry

can be monitored. The Red Hat bug tracking system was used for long-term bugs,

not considered extremely serious. Serious bugs were handled as encountered. Ob

servations of the system revealed that its data management features were prac

tically non-existent. For example, summary reports, time usage, and developer

performance were statistics that could not be extracted from the system, thereby

limiting functionality.

The most reliable method of communication within Red Hat is the use of email.

Like the model under which Linux itself is developed, the Red Hat staff live and

die by their email. While this provides quick and efficient exchanges of ideas and

problems, it has the potential to become a source of information overload. It also

7

provides little in the way of historical documentation of problems via a common,

searchable database, and it limits access to information. Some people utilize email

better than others, but in general, it is not an ideal method for primary bug track

ing.

8

Chapter 2

RESOURCE REVIEW

Before beginning any major project, one searches for other projects related to the

proposed undertaking, which eliminates duplication of effort. When considering

Red Hat's project, circumstances were different. Not only did research results have

to be placed into operation immediately, other organizations performing similar

work were not publicizing their experiences. Also, few companies had been using

a development model similar enough to Red Hat's to warrant closer examination.

Those constraints led to the assumption that no publicly released work in this field

' had been done and therefore. Red Hat would require the development of a unique

solution.

9

TraditIosiaf Quality Assurance Tools

The project was begun by determining what traditional QA techniques could po

tentially be applied. The use of more traditional QA techniques forms the basis of

the QA plan developed for Red Hat. Trusting tools that have been tested and are

commonly accepted ensures that improvements, if possible, will be gained. The

following standard tools, in one form or another, were selected for further explo

ration:

o Factor Analysis

• o Quality Function Deployment (QFD)

o Pareto Analysis

o Factorial Designed Experiments

o Trend Analysis

o Defect Analysis

o Customer Survey Analysis

A review of each of the tools and techniques now follows:

Factor analysis is a procedure for examining a situation and determining what

specific items are related to and might have an influence on a quantity of interest.

The technique is used in almost every form of statistical analysis from sampling

to experimental design. Because QA has its roots, in the statistical sciences, it too,

makes use of factor analysis.

10

Figure 2.1: Sample QFD chart.

Quality Function Deployment (QFD) is a technique by which the needs of a

customer can be matched with the capabilities of a producer. It allows a logical

ranking of customer needs and wants that can be reasonably met by the available

resources of the production departments. In the world of computer software, the

problem is so profound, it can actually drive companies out of business by attempt

ing to meet too many customer requests. The technique uses a grid arrangement

that matches a list of customer desires with areas within the company that build

customer features into products. Figure 2.1 shows a sample QFD chart. Further

analysis of each need and capability pair results in a weighted measure. From the

11

weighted measure, a business can determine how to best allocate resources to each

area. As a branch of QFD, Survey Analysis is used to gain a true understanding of

both customer needs and wants and the abilities of the production staff. Carefully

written surveys can extract information from customers without inducing biases.

Customer survey analysis is not so much a statistical tool as it is an exercise in hu

man psychology. The production of a survey that will yield meaningful customer

opinions that are unbiased is a true art form. Surveys should be constructed to

lend themselves to valid statistical measurement upon data collection completion.

Pareto Analysis is an ordered bar graph for visualizing areas of concern within

a process; Figure 2.2 shows a sample Pareto diagram. The area of analysis can be

anything from product defects to customer complaints to product shipping prob

lems. When attempting to solve a problem, one must first know exactly what the

significant problem(s) are, or efforts and resources can be wasted. By using such a

basic tool, one can quickly and easily identify areas that need to be addressed on a

priority basis.

Factorial Designed Experiments use a binary expansion of the number of fac

tors of interest to determine the combinations of factor levels to compare during

the course of an experiment. Usually some fraction of the possibilities are used in

the interest of simplicity and efficiency. Factorial experiments require that factor

levels be discrete. One of the outcomes from an analysis of a factorial design is the

ability to make inferences about potential interactions that may exist between fac-

12

Types of Dcfects/Problcms

Figure 2.2: Sample Pareto diagram for product defects.

tors. A complete explanation of factorial experiments [11] is well beyond the scope

of the research applied to the problem. In the methods derived here, successive

fractions of the complete design were selected and examined. The typical factorial

experiment design does not apply well to this case, but based on the methods of

binary expansion and randomization, a modification of the 2k design was devel

oped.

Appendix A is a complete copy of the current Red Flat Test Plan [15]. The plan

is an on-going model that evolves with Red Hat's growth. Although the plan is

not directly tied to the actual content of this thesis, it is a product of the work done

for this thesis. Based on the fundamental principles of QA, the test plan is con

stantly subjected to modifications from each release cycle. The plan is maintained

consistent with Juran's continuous improvement concepts[9].

Trend Analysis is a statistically based tool generally associated with forecast

ing and time series analysis, also known as trend modeling [12]. Trend analysis

13

is a method of extracting a trend component, if it exists, from a series of observa

tions. There are generally assumptions placed on the observations, namely that

they form a time series; however, it is possible to use the graphical component

alone [5]. Through the examination of the patterns present, and using the tech

niques of pattern analysis for forecasting, the optimal timing of checkpoints in the

software developmental cycle can be discovered. Trend analysis requires historical

data before it can be used as an indicator. No data had ever been collected before,

therefore trend analysis could not be performed until future data can be collected.

Defect Analysis is a methodology that measures the severity and prevalence of

particular defects within a process. The primary information that is provided by

this type of analysis is to pin-point the largest source of problems within the pro

cess. Although, extrapolation is required to link the primary defect to it's source,

if the method in which the defects are measured is precise, drawing that link is

straight forward. Pareto diagrams are used to present the summary information.

Customer Survey Analysis is not so much a statistical tool as it is an exercise

in human psychology. The production of a survey that will yield meaningful cus

tomer opinions that are unbiased is a true art form. Surveys should be constructed

to lend themselves to valid statistical measuring upon data collection completion.

14

Non-Itiradlitionai Tools

Linux has been developed in a unique way. Therefore, the primary tools and meth

ods used to develop QA procedures for Red Hat Linux are non-traditional in the

field of QA. The most notable non-traditional approach is the use of anonymous,

public testing. This radical approach is discussed in greater detail in this section,

along with the following other other tools:

o Automated Software Test Suites

o Beta Test Groups

o Public and Private Mailing Lists

o Bug Tracking Systems

o Public Developers web site

It is generally accepted that modifying existing tools for a project is preferable

to the creation of new tools. Given that the Red Hat Linux distribution has over

450 individual packages, runs on three hardware platforms, and has a long list of

supported hardware, automated testing is considered a priority. However, the use

of an automated software test suite to test an entire operating system is not a small

task.

A large assortment of automated testing suites exists. Most were written for

use on Microsoft operating systems. A small number have been written for UNIX

platforms, are expensive and, at the time of writing, none have been ported to

15

Linux. Test automation is critical to alleviate the tedium of repetitive, fundamental

"sanity" testing. For non-graphical based applications, traditional scripting lan

guages (shell, tcl/tk, expect, etc.) seemed to be the most reasonable approaches.

Automated testing of graphical based applications is complex and tools to perform

such testing are not readily available. Several commercial options were examined,

but due to the cost of licensing, none were adopted. The decision to construct a

system utilizing the two previous methods was made and will eventually be im

plemented.

A private beta test group made up of selected individuals willing to test and

submit detailed bug reports has been established. Careful screening of candidates

should keep the pool small, manageable, and a good source of reliable bug reports.

The group has direct contact with the development and QA staff; their bug reports

are recorded and carefully examined. The availability of skilled testers at no cost

to Red Hat represents a real world resource that cannot be replicated in a test lab

environment. Each major beta release is sent to each group member on CD-ROM

and the group receives instructions on the parts of the OS to test. Although the

beta test group members work for free and donate resources required for testing,

it is a standard practice to reward them with copies of final products. The primary

method of communication with Red Hat is through a private mailing list.

Public beta mailing lists should be established when public beta releases are

made to allow the Internet based public testers a forum to communicate through.

16

The use of these groups os commonly referred to as leveraging the 'net community.

These lists can be monitored by Red Hat staff to retrieve the testers feedback.

By using these non-traditional tools. Red Hat can make use of the willing pool

of public testers and increase the quality of Red Hat Linux. Finding an effective

method of extracting valid bug reports becomes the most difficult problem asso

ciated with publicly supplied problem reports. There is no reasonable method of

automation to assist with the sorting. Instead, it must be done by hand, although

the use of mail filters helps. In the end, however, the QA staff still must read a

massive amount of mail to extract the good information. The next hurdle to over

come is determining what to do with the information. Unless action can be taken

immediately, it is likely that the information will be lost, never to be seen again. In

the short term, writing reports on white boards works, but anything left on a white

board for more than a week generally gets lost in the clutter.

Bug tracking systems have been developed for the purpose of categorizing and

retaining problem and bug reports. Bug tracking systems are specialized databases

that allow information to be stored and searched according to many criteria such

as owner, severity of bug, etc. A good bug tracking system allows assignment

of ownership to each entry and also maintains a method of reminding owners of

their open bugs. The ability to produce summary reports is also a desirable feature

enabling tracking of bug reduction progress. A further feature of the ideal bug

tracking system is one in which the ability to track and measure defects exists. That

17

functionality was not present in Red Hat's system, but is considered a priority for

the future replacement system.

A final tool that is beneficial to promoting better QA and communication is a

web site dedicated to expressing the current status of beta release software. That

beta site needs to include such items as:

o Location of the beta software

o How and where to report bugs and problems

o Change log information explaining what changes have taken place since the
last revisions

o Specific areas of testing currently being worked on

o Procedures for submitting patches or bug fixes

.

The developer web site should be publicly available and regularly updated.

The need also exists for a section within the site that is restricted access for the pri

vate beta testers. That section should explain things like schedules, special server

locations and how to access resources made available to them.

18

Chapter 3

DEVELOPMENT OF THE PLAN

To begin the project, the author was given a copy of the existing test plan written

by Donnie Barnes [4]. A complete revision of that test plan became the founda

tion for the testing cycle for Red Hat Linux 5.0. Contained within that document

is the knowledge gained from the previous two years of development and testing.

It gave a great amount of insight to problem areas and provided a sound starting

point. Based on that, the author released a complete revision of the document.

The current version, which is based on Red Hat Linux 4.2 and modified for Red

Hat Linux 5.0, is included in Appendix A [15]. The revised document was writ

ten entirely on instinct based on academic experience with testing and a strong

familiarity with the Linux operating system.

19

Situation Assessm ent

During the time spent writing the new test plan, an overall assessment of the needs

of Red Hat was completed. Within that needs assessment, the potential impact of

various testing methods was evaluated. Because the actual deployment of the test

plan was placed into service as it was developed on a running business, minimiza

tion of potential side effects was a concern. Based on the study of the original test

plan and a situational assessment at Red Hat, the following decisions were made:

1. A test lab would be designed and maintained by the author throughout the
testing/ development cycle for Red Hat Linux 5.0.

2. All design changes to packages would be tested and approved by the author
before release to the public.

3. The beta test group would report to the author, who would filter the bug
reports, passing them to the development staff.

4. The author would acquire as much diverse hardware as the budget permits
while still remaining feasible to test.

5. Package testing would be performed primarily by the author, with minimal
help from the development staff.

The above list presented the opportunity to deploy a rigorous testing plan into

Red Hat without drastically disturbing normal operations. Once the first develop

ment and release cycle had been completed, the whole system would be revised

and improved in an effort to address the lessons learned from the first pass through

the system. A further problem of this research project was that work needed to be

gin on QA testing as soon as the assessment of the situation was completed.

20

Overview of Test Schedule

The testing schedule was developed and implemented in real time as the author

learned more about Red Hat Software's expectations and needs, which kept devel

opment and testing schedules in a fluid state. Many projects were thusly delayed

and in the end, rushed to completion.

Initial research began in March, 1997 when the author was hired by Red Hat

for a summer internship. The research performed at that point was limited to

speculation regarding limited prior knowledge of procedures and practices at Red

Hat. By May 1997, the author was at Red Hat's facility and began initial assessment

of the situation to prepare for the upcoming development cycle. At about this

time, the main development group had constructed what would become the first

of several design goals for Red Hat Linux 5.0. The release date for Red Hat Linux

5.0 was set at December 1 ,1997 with November IOth the final product due date for

shipment to the production house.

Through the months of June, July, and August, initial development of features

for Red Hat Linux 5.0 began. Part way through that time, a major shift in the design

goals occurred, and many earlier features were scrapped. Also, during that time

frame the author designed and built the test lab that would become a cornerstone

of testing at Red Hat Software. Although a limited amount of testing took place

during those months, the author began to learn the details of how things worked

at Red Hat.

21

Starting in September, serious testing of the install code began in anticipation

of the first beta release, version 4.8 named Thunderbird. The beta release was

sent out for testing near the middle of September. While release testing proceeded,

the author prepared for the next beta release and populated the test lab with the

hardware required which would ensure that the next beta would get adequate

hardware coverage. Several refreshes and updates of the 4.8 beta were built and

released. Near the middle of October, the second beta release, version 4.9 named

Mustang, was released. Mustang contained a much-improved installation pro

gram, as well as a few package updates. Consistent with the 4.8.x sequence, several

refreshes of the 4.9 beta occurred. During this time all packages in the distribution

were updated.

Based on the assumption that the device driver code would not change sig

nificantly between the pre-release kernel and the actual kernel1 (shipped with Red

Hat Linux 5.0), testing began on the hardware and devices. At this time, the Alpha2

port of the beta was also released, which required that testing take place on two

platforms concurrently3. Once the hardware testing had been completed, pack

age testing became the primary focus. Package testing was primarily designed to

locate problems with how the individual packages were built and that programs

contained within those packages executed properly. One of the major changes

1The kernel is the core piece of software the makes up an operating system. The kernel is
the piece of code that translates user level instructions to machine code that the hardware can
understand.

2See page 37 for more information on the different the platforms.
3Due to problems with libraries and kernels, the SPARC port was not included in testing.

22

between Red Hat Linux 4.2 and the Red Hat Linux 5.0 was in the C library, see

page 47 for a detailed description of this change. The main reason for the change

was to move to a POSIX4[I] compliant C library, called glibc (GNU libc). Because

of this library change, the work in testing was essentially equivalent to testing a

completely new port as every single package/program had to be rebuilt and indi

vidually tested.

During the last 15 days of the developmental cycle, a code freeze was imple

mented which restricted code changes to those fixing bugs and problems and no

new features or packages were allowed. Beta tester feedback was critical at this

stage. The feedback from both the private and public testing groups resulted in

a constant stream of potential bug reports that needed to be tracked down and

fixed. The distribution was packaged and released on time, although all known

problems were not fixed due to time schedule constraints.

4Portable Operating System Interface

23

Chapter 4

TESTING METHODS

The testing portion of the development cycle was reduced to four phases:

I: Install/Upgrade Testing

II: Package Testing

III: Hardware Testing

IV: Functionality Testing . ■ •

The main purpose for splitting the testing into distinct phases was to allow mul

tiple testers to work in parallel on different components of the testing. Although

parallel testing procedures were not implemented initially, the methodology was

put in place for parallel work as Red Hat expands. There does exist some minimal

. overlap between the phases, but in general, the phases, can be run independent of

each other.

24

Phase I - Install/Upgrade Testing

The most distinctive part of Red Hat Linux is the installation software. Testing

and development of the install software is one of the most important areas of test

ing. The software that installs Red Hat Linux sets Red Hat apart from all other

operating systems. The install software is written in house and has unique test

ing requirements. Therefore, the amount of time and resources spent on testing

the install software was equivalent to that spent on the remaining three phases

combined.

At the beginning of Phase I, several people met to determine what new features

needed to be added to the installation software. Also finalized at this meeting was

a list of bugs from the previous version and how they would be addressed. The

features that were discussed were ranked based on importance and feasibility of

implementation. A valuable tool that can be used to assist with this process is

Quality Function Deployment (QFD). QFD was not used due to a lack of prerequisite

information; however, the framework for it has been put in place for use during

the next release development cycle.

Features desired by customers are ranked on the horizontal rows by relative

importance. The technical specifications of what the install code needs to do (and

can feasibly be implemented) are listed in the vertical columns, along with a fea

sibility ranking. Within the grid area, a scale of 1-5 is used to match correlations

between features and specifications. Then, based on the feasibility and customer

weights, new install features can be prioritized.

25

Install testing

Figure 4.1 shows the . install code has 5 distinct paths, one for each installation

method. Although some of these paths are not present on the Alpha and SPARC

architectures, for the purposes of this discussion, that point doesn't matter. NFS

stands for Network File System, which is a protocol used to share file systems across

a network. FTP stands for File Transfer Protocol, which is a method of moving a

single file from one machine to another. SMB stands for ServerMessage Block, which

is a protocol for sharing files and devices developed by Microsoft.

During the initial stages of development and testing, only the NFS path was

used. Updating the install tree1 on one machine and exporting the tree via NFS is

much simpler than re-mastering a CD to test the new install tree. Also, because

the FTP method requires a supplemental disk to be loaded at boot time, it's much

quicker to use NFS in the test lab. Once most bugs have been worked out of the

code, a CD-ROM is created to facilitate testing CD-ROM installs. The CD-ROM

is then transfered to a Microsoft Windows based machine. The CD-ROM is con

figured as a standard Windows "shared" which can be accessed by the installer

as an SMB filesystem. Next, FTP installs are tested to make sure that there are no

problems down that code path. The install tree being tested is copied to a Jaz2

cartridge, which is then inserted into a test machine. A local hard drive based

1The directory structure that contains the Red Hat installer, supporting files, and all packages is
referred to as a tree.

2A removable IG hard disk cartridge system manufactured by Iomega.

26

— First Stage)

(^Hard Drive)(c d -r o m)

configurations
Post install

Select packages
to be installed

Establish
Network
connection

Locate
CD-ROM
device

Create boot floppy
install bootloader

Establish prerequisites
to load second stage

These three methods
share similar code

These two methods
share similar code
paths.

Install medium:
(1) CD-ROM
(2) NFS
(3) Hard Drive
(4) FTP
(5) SMB

Included in this step are such
items as printer config, X config,
root password, networking, etc.

Although there are some subtle
differences between code paths
regarding these steps, for the
most part they are identical.

CD-ROM and NFS load
second stage off remote
media. HD, FTP, and
SMB all require a
supplementary diskette
to load second stage.

Figure 4.1: Macro flowchart of install code on Intel.

27

install can then be tested. All problems, bugs, and behavioral inconsistencies are

recorded by the tester(s) and passed on to the developmental team. The previous

steps are repeated as often as necessary until all code paths in the install can be

executed without problems. Check lists are used to ensure that all paths have been

examined.

Upgrade testing

At this point, the upgrade paths remain untested. Meticulous care must be taken

to ensure that a reasonably configured system can be upgraded with little loss of

previous system integrity. The question is, what defines reasonably?

It is easy in the test lab to install a previous version of Red Hat Linux, upgrade

it, then reboot the machine and note what problems occur. However, few people

actually run unmodified Red Hat Linux systems. Chances are that the system has

been heavily modified from its original state. Creating a "lived in" system in the

test lab is expensive in terms of labor and time.

In an effort to address those issues while providing timely testing, a method

of creating a "lived in" machine was developed. There were many servers and

workstations throughout the Red Hat offices that are based on Red Hat releases

of varying vintages. The solution to this problem was to take a snapshot of the

root file system of those machines and store the snapshot on a CD. Those CDs can

then be used to recreate the original, "lived-in" environment on a test lab machine

28

in a short amount of time. These replicated systems can then be upgraded again

without consuming a large amount of resources.

The same methods used for installation testing are used in upgrade testing. Al

though install and upgrade testing are performed in a repetitive, cyclical fashion,

the install paths are usually tested first, allowing a period in which only upgrade

paths are tested. When it comes to upgrades, no amount of testing on Red Hat's

part can replace a well maintained machine with proper backups. The goal is to

make the upgrade work well, and return a bootable system with all original config

files preserved.

Most people do not want to extensively reconfigure their systems after an up

grade; however, the cost of making upgrade code that can understand all possible

system configurations is infeasible. When a package is initially built, all the files

that are considered configuration files are tagged with a special .flag in the RPM3

database. When that package is upgraded to a newer version, all configuration

files from the original package are moved from their original name to the same

name with a .rpmsave extension4. Once the upgrade is complete, the user then

proceeds through the various .rpmsave files and restores their customized config

urations. From a testing point of view, it is critical that the configuration files do,

in fact, get saved.

3KPM stands for Red H at Package M anager which is the foundation tool used to maintain the
software installed on a Red Hat Linux machine.

4If the configuration file contained in the upgraded package is identical to the one already on
the system, then the file is left alone and not renamed.

29

Closure of the mstall/upgrade loop

The final stage of Phase I testing is to verify that all bugs in the bug tracking sys

tem have been addressed in the current revision of the install code. The step is an

application of Juran's QA methods of continuous improvement [9]. At this point,

the development and testing groups are faced with the classical "When to ship?"

question. Although the install and upgrade code is only the first part of devel

opment and testing for a release, the amount of time spent on it must be limited.

Items from the original "wish list" of features that did not get implemented are

recorded in the bug tracking system as change requests for the next revision of the

install code.

At points through, the development of the installation code, beta releases are

put together and tested. Those betas are then released to the beta test group and

their feedback carefully monitored. If there are enough changes (and enough time)

to allow for a public beta release, the release is named and posted5 for public test

ing. A public beta release is desirable because it exposes the software to a diverse

and scrutinizing audience. The software is put through every imaginable scenario

and many problems that do not surface in the test lab are reported.

5Posting a release implies moving the entire tree to a location on the public FTP servers and
making appropriate announcements regarding its availability.

30

Phase BI - Package Testing

Package testing can be an overwhelming task when one considers the vast number

of items to be tested. There are more than 450 packages on three platforms, each

containing an average of ten executables, which equates to 15,000 executables to be

tested. Ninety-five percent of those packages are not developed or maintained by

Red Hat staff, but rather by people in the free software community. Those people

do not work on Red Hat's schedules, which also increases the complexity of the

test plan. The maintainers of those packages release periodic, stable releases. At

a fixed point in time. Red Hat packages the latest, stable releases and uses those

packages for the basis of the Red Hat Linux OS.

Red Hat customers are accustomed to getting the latest versions of all pack

ages contained within Red Hat Linux. That fact forces the package updating stage

of building a release to be pushed as close to the actual release date as possible,

which becomes a min-max type problem. The goal is to maximize the amount of

time passing between the package freeze date and the product ship date while min

imizing the number of packages that have a newer release before Red Hat Linux

is shipped. Given the pace at which some packages are updated (at times daily),

it is not possible to capture all the latest releases within a single version of Red

Hat Linux. It becomes necessary to focus on the larger packages and to make all

reasonable attempts to integrate the latest minor and major versions, ignoring the

patch level revisions that occur frequently. Another key to making this process

31

work is for Red Hat developers to be in contact with the people that maintain the

various major packages and be aware of package release time frames.

Code freezes

Once a ship date has been established for a release, the scheduling begins by work

ing backwards from that date. See Figure 4.2 for a representation of the timeline.

A minimum of I week of hard code freeze is required. The definition of hard code

freeze is "a date such that any changes made between that date and the ship date

are considered bugs in the release itself." Although fixes can be made, they occur

only for extreme cases. The hard freeze date also translates to the last date where

external testing of individual packages has significant value. Up until that point,

testing feedback to the developers translates into fixed and better packages.

Approximately 2 weeks before the hard freeze, a soft freeze is implemented.

The vast majority of package testing is accomplished between the soft and hard

freeze. A constant flow of email between testers and developers takes place. Pack

ages are tested, bugs found and are fixed by developers.

The general freeze date is at least three weeks before the soft freeze. Items

General development

4 weeks 2 weeks I week

Figure 4.2: General timeline of development milestones.

32

covered by the feature freeze includes the install code and any major, new features

that the release might contain. The period between the general freeze and the

soft freeze is also used to test the overall stability of the beta level distribution.

During this stage, most developers' individual workstations are upgraded to the

beta release and outside testing by public and private beta testers occurs.

Test tracking

A well maintained database that consists of every package contained within the

Red Hat distribution is necessary to track the status of the packages both dur

ing testing and during defect analysis. Among the many features that a database

should have are the tested status of packages, package owners (both development

and QA), and many other items related to package dependencies. In lieu of having

that package tracking database, text files were maintained, listing all the packages

that were in the release, their version numbers, and their tested status. The status

was limited to pass or fail. Once a tool is in place to monitor all the relationships

present between people and packages, the package testing phase will be much

more manageable.

'33

Testing criteria

Packages are tested based on the following criteria:

o Installability

o Removability

o AU executables execute

o Documentation is present

o Minimal functionality

Installability is the ability of the package to be installed without errors. If the

package has dependencies6 which are unsatisfied by the machine onto which it

is being installed, then RPM needs to report those dependency problems. File

conflicts, previously installed Versions, etc. can all lead to installation problems.

Most of these problems are solved by installing the prerequisite packages and then

proceeding with the tested package's installation.

Removal testing is quite similar to installation testing, only in reverse. A pack

age should not allow itself to be removed if other packages depend upon its in

stallation. Warnings need to be issued, and the user made aware of the conse

quences of removing that package. RPM also needs to perform any tasks that are

listed in the package's post uninstall routines, such as removing its entry in the

6Most packages require that other packages be installed before they can function. Built into
every package is a list of the packages it requires to install. RPM will report errors if those depen
dencies are not satisfied when attempting to install the new package.

34

/ e t c / r c . d / i n i t . d directory (for packages that contain services started at boot

time).

When an executable core dumps7 (or fails catastrophically) it reflects negatively

on the software. To test this aspect of a program, execution of the program is

attempted. If it executes and performs simple tasks, the test is passed.

All packages shipped in Red Hat Linux need to be accompanied by some form

of documentation. In the UNIX world, most executables are documented via man

pages and README files. A man page is a piece of documentation that is displayed

via the man command, i.e. man emacs. The man command will handle the for

matting of the information to provide quick and simple text based documentation

online. READMEs are a plain, ASCII text files supplying general information about

a program's functionality. They are a little less practical, but still a valuable source

of information. When Red Hat makes a RPM package of something for inclusion

into the main distribution, occasionally documentation files are missed. This test

ing makes sure that available documentation is included with the package.

Finally, minimum functionality is a test that may seem somewhat obvious to

the casual observer, but in reality, requires a large amount of work to be done

correctly. Although similar to executability testing, functionality testing is reserved

for more complex packages. For example, the tetex package contains the document

7A core dump is the output of the program's memory after it has died abnormally. A core file
(the actual memory file produce by the core dump) can then be diagnosed for clues to the problems
that caused the program to die.

35

formating language called latex. Simply'testing that latex executes is not sufficient

testing. Making latex format some . te x files and then viewing the output verifies

that latex does what it is supposed to do.

Given the diversity of the packages that are included within Red Hat Linux, the

tester has to be well versed in thq entire spectrum of UNIX applications to perform

this stage of testing. Many of the applications within the distribution are complex

and difficult to use. Testing of this type requires prior knowledge of those appli

cations that have been known to cause problems in the past8, as well as those that

are widely used by the customer base. Components of the distribution are ranked

and testing proceeds based on prioritization of the importance of the various pack

ages. The concept of "when to ship" is most evident during this stage of testing.

Without performing a complete audit of all the software in the distribution, certain

trade offs have to be made to actually ship the product. Beta testers play a key role

in this area of testing because they extensively use a wide spectrum of the tools

and packages in the distribution. They are more than willing to inform Red Hat

when tools do not work as expected.

Phase BBB - Hardware Testing

Hardware testing can be the most interesting part of the testing procedures as well

as the most frustrating. Very little control over problems with particular, pieces

8By re-examining previous problems and bugs, this is a form of regression testing.

36

of hardware exist within Red Hat. The Linux kernel determines which pieces of

hardware work and to what degree they work. Although Red Hat has some influ

ence within the kernel development community, the final determination of what

device support will be included in the official Linux kernel rests outside of Red

Hat. However, Red Hat does have the option of disabling parts of the kernel that

cause problems, of adding fixes and additional features to the kernel.

The main reasons for testing hardware are (a) to provide a list of hardware

that works with the OS, as well as some relative scale of the level of functionality

associated with each tested hardware item, and (b) reduce the cost of supporting

the OS by solving problems with particular devices before customers experience

them first hand.

. For a well-populated test lab containing legacy, current, and yet-to-be-released

hardware. Red Hat must contact hardware manufactures directly and encourage

them to support the Linux community. Although this process was initially met

with resistance, companies started to ship hardware to the Red Hat test lab, which

enabled Red Hat to improve the level of support for many devices. That reduced

the cost of supporting the OS as well as created a larger potential user base for both

the hardware vendor and Red Hat.

37

Differences between platforms

Red Hat Linux has been ported to and is supported on machines based on the In

tel x86. Digital Alpha, and Sun SPARC processors. Aside from the fact that the

Intel architecture is by far the most popular choice, there are other significant dif

ferences that separate these architectures; most notable, the Alpha processors are

64 bit whereas the Intel and SPARC processors are 32 bit. The bit measurement of a

processor is the length, in bits, of a single word that the processor can handle at one

time. The word length is a measure of how much data the processor can move.

Obviously moving 64 bits at a time is much more efficient than moving 32 bits.

Difficulty arises because software written for a 32 bit processor may not be "64 bit

clean"9. There can be problems arising from longer word lengths that need to be

examined individually when they occur.

As a measure of comparison, the processors in Commodore 64s and Apple Hs

were 8 bit processors. With the advent of Intel's 8086 came the 16 bit processors.

Although the 32 bit Intel 80386 (and greater) processors have been the standard

since the 80386's introduction in 1985, they too are being phased out. The Alpha

processor has been around since 1992. SUN now only produces its Ultra SPARC

processor which is 64 bit and Intel is gearing up to release it's Merced processor in

1999 which will also be 64 bit.

9The software for the different architectures is built from a single source code repository. No
distinction is is made for architecture specific sources (in general). Therefore, some software may
be written to take advantage of a known 32 bit word length. When that software is compiled on a
64 bit architecture problems with data management can occur.

38

The next major difference between these architectures is at the motherboard

and BIOS/PROM10 level. The Intel boards are based (mostly) on a bus11 technology

called PCI. The Alpha boards also use that bus standard as well. SPARCs use

a more proprietary bus called S-BUS. Because S-BUS is proprietary there exists

limited hardware availability. Although that translates to fewer choices for the

hardware purchasing customer, testing on the SPARCs is simplified.

Intel motherboards use a simple BIOS that allows the user to configure the be

havior of the system and to configure the core level device information. Alphas

motherboards use enhanced types of BIOSes called ARC/AlphaBIOS or SRM con

soles. These add a boot loader and other higher level system functions not present

in an Intel BIOS. The SPARC uses a PROM which is an interactive, command-line

console. Hardware and boot options (as well as networking information) can be

configured with the PROM.

A final difference between Intel/Alpha and SPARC is the support of serial con

soles on SPARC. The serial console is a mode of operation in which all input and

output can be directed to the serial port instead of a traditional monitor and key

board. A serial cable is run from the SPARCzS serial port and, via a NULL12 mo

10The BIOS or PROM (depending on architecture) is the low level instruction interface that con
figure the hardware physically attached to the motherboard of a computer. That instruction set also
is responsible for pointing the processor to the bootable media source such as a floppy disk or a
hard drive.

11The bus of a computer (most have several) is a data path between devices, memory to processor
to I/O. The buses also follow standards such as ISA or PCI which define things like the data speed,
data path width, hardware settings, etc.

12A NULL modem is a serial cable adapter that allows to serial devices to talk to each other
directly.

39

dem, connected to another machine's serial port. Normal console activity of the

SPARC is possible by running a terminal emulation program on the second ma

chine. Because Red Hat Linux supports running the install program though a serial

console, this mode of operation must be integrated into the test plan on SPARCs.

Kernel Issues

Because the level of hardware support and compatibility are completely deter

mined by the kernel, a short discussion of the Linux kernel follows. The kernel

is the code that becomes the interface between the hardware and the software run

ning on the computer. All OS's are based on a kernel, although some OS's do not

show off their kernel quite as much as Linux does. The Linux kernel is a coop-

eratively developed effort by people throughput the world. Linus Torvalds, the

creator of the Linux kernel, maintains the official source trees and has the final

say as to what code will be integrated. The Linux kernel has a unique method of

development. Two trees are maintained simultaneously, a stable tree13 and a devel

opmental tree. The kernel versions consist of a three position number a.b.c where

a is the major kernel version/family (currently 2). Position b is the minor version

where an even number indicates a stable branch and an odd number indicates a

developmental branch. These two numbers work in pairs (i.e. 0-1, 2-3, etc.). For

example, when the .0 branch is released and stabilized, work begins on develop

13The usage of the word tree in this context refers to the source code directory structure of the
kernel.

40

ment in the .1 branch. Position c indicates the kernel's patch level. For the stable

branch, the patch level usually does not change more than once a month. In the

developmental branch, it can change daily. As a measure of how much source code

actually makes up the Linux kernel, there are over one million lines of source code

taking up over 50 megabytes of disk space.

The stable kernel branch is updated to add security patches or to fix serious

bugs. As kernel updates are released, some device drivers are updated. To allow

new or modified code to go into a stable branch kernel tree, the code is tested by

a comprehensive process of public testing. The goal of that testing is to ensure

that the new code doesn't break anything else within the kernel, because people

depend on reliable stable kernels.

There are several reasons Red Hat hired some of the main kernel developers,

but the most important is that these people are then funded to continue their work,

ensuring that kernel development continues. A secondary reason is that Red Hat

maintains strong ties to the kernel community.

Hardware Testing Procedure'

Determining the best order to test hardware to obtain maximal coverage with min

imal effort was a difficult hurdle to overcome conceptually. In practice, it was

not that difficult because the Red Hat test lab had limited hardware in inventory.

As Red Hat (and the test lab's inventory) grew, the problem became more pro

41

nounced. Labor required to test all hardware in the inventory became the bottle

neck.

At the onset of the test plan's development, the goal was to create a method

to perform testing based on fractional factorials of the complete population of the

test lab's hardware inventory. As more of those fractions were tested, the results

converged on a complete census rather than a sample Of the test lab inventory. The

only modification to a completely randomized orientation of the fractions was to

weight each hardware item based on its perceived market share. The primary goal

of hardware testing was to ensure that Red Hat Linux worked best with the most

popular hardware, hardware not as popular received less testing. It makes little

sense to expend the same effort testing a 4-year-old obsolete piece of hardware as

on hardware that is currently being sold at the rate of 40,000 units per month.

The concepts of traditional factorial analysis were used as the basis for the hard

ware testing method. In factorial analysis, there are 2k elements to be tested where

k represents the number of variables in the model expressed at two different levels.

For hardware testing, the variables of interest are the different categories of hard

ware, whereas the levels are the different pieces of hardware within that category

contained in the test lab inventory. Table 4.1 shows the breakdown for Intel hard

ware combinations. Table 4.2 shows the actual combinatorics that were established

based on the test lab hardware inventory. See Appendix B for a detailed list that

corresponds to the combinatorics table.

42

Class Levels
Motherboard 6

Processor 5
Memory 2
Disk type 3

SCSI adapter 18
Video card 14

Ethernet card 17
Mouse type 3

Table 4.1: Intel hardware levels for Red Hat Linux 5.0 testing

The following assumptions were made during hardware testing:

o Interactions are equally likely across all components

o All interactions are independent

o The tester is independent of outcome

It should also be noted that the kernel version used for initial Red Hat Linux 5.0

testing was the 2.0.30 kernel with a pre-release patch to the next version, 2.0.31. An

assumption was made concerning the testing of device support under a patched

kernel. The assumption was that the device drivers in the patched kernel would

be the same as the Ones in the final release kernel. That assumption turned out to

be correct. However, the final release kernel was delayed, and Red Hat ended up

shipping the 5.0 release with the patched kernel.

While Red Hat was working on the glibc port, the Red Hat development staff

ran into some low level and difficult problems on the SPARC. Timing was unfortu

nate because most of the kernel developers working on the SPARC port were busy

43

PCI based motherboards
ID mother board processor ethernet card video card disk controller
I I 3 2 I la
2 I 4 4 5 2b
3 I 5 5 7 2e
4 2 4 6 8 2f
5 3 4 7 9 2h
6 4 4 9 10 lb
7 4 4 12 11 2j
8 4 4 14 12 2k
9 4 4 17 13 2m
10 4 4 12 13 2n
11 4 4 12 13 2o
12 4 4 12 , 13 2p
13 4 4 12 13 2q

ISA based motherboards
ID mother board processor ethernet card video card disk controller
14 5 I I 2 la
15 5 I 2 3 2a
16 5 I 3 4 2c
17 5 I 8 6 2d
18 5 I 10 14 2g
19 5 I 11 3 2i
20 5 I 13 3 21
21 5 I 15 3 2r
22 6 I 16 3 la

Table 4.2: Usable combinations of Intel hardware

44

with both their regular jobs and with work on the 64 bit version of the kernel for

the UltraSPARC processors. It was decided to not ship Red Hat Linux 5.0 for the

SPARC, which made testing simpler, but did not make happy customers. From a

QA standpoint, it was better not to ship the SPARC port in a beta state for 5.0, but

instead, allow for more development and release a more stable port when Red Hat

Linux 5.1 was finished. Therefore, there will be no further SPARC discussion.

At the time Red Hat Linux 5.0 was being developed, the test lab had a total of

three different Alpha based machines. Table 4.3 shows the Alpha machine types

that were available for testing.

Alpha Architecture Bus
PC 164

UDB Noname
Cabriolet

ISA/PCI
PCI

ISA/PCI

Table 4.3: Alpha architectures

The Alpha port was not tested as extensively as the Intel port due to a large

discrepancy between the volume of unit sales between the two architectures. Sub

sequent policy changes have erased this practice and treat all fully supported Red

Hat Linux ports equally.

Implementation

A candidate kernel package was built based on version 2.0.30 with the pre-patch

to version 2.0.31. The kernel package was then integrated into the development

45

build tree, which in turn fed the QA installation trees. The kernel and associated

driver modules14 were extracted from the package and integrated into the Red

Hat installation boot floppy image. An important point to be noted here is that

the kernel used to boot and install the system is the same kernel that is actually

installed on the system during the package installation phase. Future work may

cause this to change, but during work for this project, it was a crucial point.

The primary purpose of a single kernel is for the benefit of both Red Hat sup

port and for QA. Support can assume that if the install software was able to recog

nize all present hardware, the resultant installed machine will as well. For QA, the

single kernel reduces the number of variables present within a release.

At times, both the device driver and the install code were broken. Although

repetitions showed that there was definitely a problem, there was no simple way

to isolate the problem's location. Some of the hardware in the test lab is not well

documented, so the author was forced to learn how to make the drivers work with

the hardware while at the same time determining whether or not the installation

software was at fault. At this point, the author relied heavily on people from the

developmental team. With their help, the author was able to determine that some

SCSI15 controllers simply did not work, and that the install code was doing the

correct things. The user interface of the install software received simplifications

14Red Hat uses a modular kernel that allows parts of the kernel, typically device drivers, to
dynamically loaded and unloaded from memory as needed.

15Small Computer System Interface

46

with respect to how it deals with some types of hardware to alleviate the driver

configuration problem.

Those difficulties aside, this approach worked well. There was little wasted

effort spent testing hardware only, or testing the install software only. It should

be noted that at the time the work was being done, the author was the only per

son involved with QA, so this method was successful. As more people became

involved with the testing process, the coverage of both hardware and install soft

ware testing deteriorated. That showed that the independence assumption made

previously was good. In fact, independence is required when more than one tester

is involved. The actual implementation of independent phases slows the progress

of QA, but increases the coverage by having more people involved with the pro

cess.

Many times, brute force was resorted to; the author simply plugged card after

card into machines until complete coverage had been obtained. There was a certain

degree of overkill involved with these sessions. It ensured that while the theory of

the QA procedures was being developed, the overall quality of the product would

not suffer. Confidence was high in the new ideas; however, reality dictated that

brute force be used as well. The research completed laid the ground work for the

future direction of Red Hat's QA programs.

47

Phase IV - Functionality Testing

To test the functionality of an OS, several things need to happen.

1. Wide coverage of testers using various applications on the OS

2. Interoperatiblity of the applications and packages that are distributed with
the OS

3. Continuous, day to day desktop usage

4. Continuous, day to day server usage

Because of the staff limitations within Red Hat, extensive internal coverage was

not possible. During functionality testing, the public beta releases and the private

beta test group were most valuable. Before the actual functionality testing issues

can be addressed, a short background on the subject of C libraries is required.

C Libraries

Figure 4.3 shows a simplified computer system hierarchy. Each layer of the di

agram depends upon lower layers working correctly. Each layer is functionally

independent of the layers above it. The position of the C library shows how signif

icant it is to the overall functionality of the system from the users' point of view.

The C library is the library of function calls providing the basic interface to

system functions and the runtime support defined in ANSI. [6] These functions are

segments of code that can be called by higher-level programs to make building

48

User Level Applications

Applications Layer

C Library layer

Kernel/device driver Layer

Hardware Level

Figure 4.3: Typical Operating System Hierarchy

applications simpler and more portable16.

The C library is fundamental to the majority of applications and software that

make up Red Hat Linux. Therefore, when a core level change in the C library is

made, all the software within the distribution has to be rebuilt and re-tested. There

are problems associated with the switch from IibcS (version of C library used by

Red Hat Linux 4.2) to glibc (GNU libc). The switch was necessary because IibcS

was no longer being maintained. In addition, it had many fundamental problems,

such as lack of POSIX compliance [I]. Many applications that were written specif

ically for Linux did not conform to POSIX standards by using hooks contained

in libcS. The adoption of glibc was undertaken by Red Hat Software to improve

Linux in general. The developers at Red Hat spent almost a year porting all the

^Portability in the context of software programming describes the ability of the software's source
code to be compiled on other computers and operating systems.

49

software applications that make up Red Hat Linux to glibc. It was because of this

tremendous shift in the core of the OS that functionality testing became so crucial.

Another major benefit driving Red Hat to adopt glibc is glibc's uniformity be

tween architectures. Before Red Hat Linux 5.0,. the C libraries on the Intel, Alpha,

and SPARC ports were all different and caused discrepancies among builds of the

same packages on different architectures. Since the change, virtually all of these

types of problems have ceased to exist.

Public beta releases

Because of these major changes to the C library, functionality testing was critical.

There were two minor releases of Red Hat Linux under the public beta program.

Red Hat Linux 4.8 (aka Thunderbird) and Red Hat Linux 4.9 (aka Mustang). These

betas had a life of approximately six weeks each. There were mailing lists set up for

each beta and most of the Red Hat development staff monitored mail traffic daily.

Unfortunately, a method of defect analysis or tracking was not in place at that time,

therefore, the actual significance of these public releases couldn't be measured.

However, it was the general consensus of all involved that the feedback received

from the public betas was valuable enough to justify the effort administering them.

The largest problem with public beta testing is that people are not on Red Hat's

schedule and are not privy to internal information. These factors contribute to the

downside of the public betas; people using the betas were not providing feedback

50

on the same time frame that Red Hat needed. During the first beta. Red Hat's

primary focus was the install code, not the packages that made up the distribution;

however, most of the people using the first beta saw it as a chance to gain a sneak

peak at the next Red Hat release. They didn't realize that it was a beta and that

only certain portions of the distribution had been modified. A large amount of

feedback was given to the Red Hat staff, but because a significant amount of the

feedback referred to areas of the distribution that weren't being worked on yet,

good information was lost.

The second beta, with it's huge assortment of updated packages, reduced the

complaints oh the beta list. People then began to submit real, valuable function

ality feedback. It was during this phase that the open, public beta really began to

show its worth. The only drawback to this beta was the Red Hat time schedule.

By the time the second beta was released, it was getting close to final code freeze,

which meant that it was increasingly difficult to make changes or update any pack

ages. People on the outside did not know this, nor could they be told. Feedback

kept coming in, but internal development had stopped. It was unfortunate, but be

cause of this. Red Hat shipped release 5.0 with known bugs and problems. There

were updates available on the Red Hat FTP site at the same time as the release of

5.0, but because of marketing schedules, it was not possible to delay production of

the actual product.

A final drawback to the public beta testing is that it virtually stopped the sales

51

of Red Hat Linux 4.2. People become aware that Red Hat had a new release in the

works and they held off purchasing the current release with the anticipation of a

newer version just around the corner.

Private beta release

At the same time the public betas were being released, CD images with the same

releases were being shipped to a private group of beta testers. Those people were

placed onto a private beta test group mailing list along with the Red Hat develop

ment staff. These people were much more diligent and had their focus much more

in tune with Red Hat development. They were also informed of critical marketing

and development schedules, which made it easier to communicate with them.

Because of the higher level of technical proficiency and general Red Hat Linux

background, the signal to noise ratio17 of the beta testers list was very good. One

of the primary objectives of that list was to maintain group focus at all times and

test only areas of the distribution that were being developed by Red Hat staff.

The greatest contribution of the private beta testers fell in to the areas of install

code testing and hardware testing. They were focused in their attempts to make

the software fail. When software did fail, they had all the necessary technical skills

to report the failures intelligently and in a manner almost always reproducible,

which improved trouble shooting.

17The signal to noise ratio of a mailing list refers to the amount of unfocused debate and mean
ingless topic threads versus the amount of concise, relative information posted.

52

Functionality testing was better in the private than the public group, but again,

because of the production deadlines it was difficult to integrate all problems found

by the group.

Internal Red Hat Usage

All beta releases were installed on internal Red Hat workstations, ,giving the OS

good day to day coverage. Once things began to stabilize, some of the OS compo

nents were installed on machines running the Red Hat web sites and FTP servers.

Since Red Hat used those machines for day to day operations, it was crucial that

changes made to them were as non-disruptive as possible. The Red Hat web site

averaged around a million hits18 per day, and the FTP machines served out about

five gigabytes of data per 24 hour period, throughly stress testing some compo

nents.

Between employee workstations and the servers, a large cross section of pack

ages in the OS were tested reasonably well. When internal Red Hat machines

experience problems with a package, it is easier to gather information about the

problem. Normally, external bug reports have to be replicated internally, which

lower reliability and create time delays.

The most beneficial segment of users within Red Hat is the support staff. The

people who work in support tend to focus on historical problems because of their

18A hit is defined as a w eb browser requesting a w eb page or part of a w eb page from a server,

day to day involvement with reported problems. The support staff perform a good

job of regression testing, that is, making sure that,previously corrected problems

have not been reintroduced into the distribution.

54

Chapter 5

ANALYSIS OF THE QA PROCESS

On May 29th, Red Hat Linux 4.2 was released, thus signaling the start of work on

version 5.0. On June I, Red Hat Linux 5.1 was released which was the end of 5.0's

life. The period of time covered by the research on this thesis is between those two

dates.

The process of measuring the impact that the tools and procedures developed

in this research is every bit as complex as the QA process itself. Part of the problem

was to ensure that accurate records were taken during the process of development

and testing so that analysis could be performed upon completion of the project.

Unfortunately, resource limitations limited the ability to accurately track all defects

and problems with the release.

55

The following metrics were used to measure the success of the project:

1. Number of non-security errata items for Red Hat Linux 5.0

2. Raw counts of bug reports (where ever possible)

3. Feedback from Red Hat staff

The first two items are self explanatory metrics requiring little interpretation.

Number three is a measure that provides indications of customer difficulty with

the release, which is not numerically measurable. The results of querying people

within Red Hat can be used to judge overall impressions of the QA process.

The Red Hat errata are updates to a release that are crucial to a machines' func

tionality. The errata items fall into the following types:

o Security

o Non-security, critical system component

o Non-security, non-critical system component

o Other

Any situation that allows for exploits, denial of service (DoS) attacks, or other

breeches of system integrity are classified as security errata items. Since the complete

source code to the Red Hat Linux OS is freely and publicly available, there are

56

people who search though it looking for exploits. At the same time, other people

hear about those exploits and modify the source code to prevent the attack. Many

times security errata items are available from Red Hat's FTP server before the attack

or exploit is openly published.

Since exploits and attack methods are not something that can be tested for dur

ing development in a reasonable manner, security errata items are not considered

defects or blemishes against the overall quality of a Red Hat release.

All other errata items are considered non-security and are counted against the

quality of the release. Items that can fall under this category include, but are not

limited to, packages that do not work, packages that work only partially, and other

problems that impede system performance. All of these items are considered de

fects and reflect negatively on the overall quality and reliability of the release. A

primary goal of QA at Red Hat is to reduce the number and severity of the items

that fall into this category.

Table 5.1 shows the number of packages that were released as security updates

to recent Red Hat Linux releases. It also shows the total number of errata items that

Red Hat release security total percentage
4.0 20 61 33%
4.1 14 53 27%
4.2 43 57 75%
5.0 40 82 49%

Table 5.1: Errata item totals for recent Red Hat Linux releases

57

were posted as updates to each release. The percentages ,show what proportion of

the updates were security related. The higher the percentage, the better the overall

quality of the release. Although 4.1's percentage went down, the jump from 4.0

to 4.2 is significant1. The important observation that can be drawn from the table

is how much higher the percentage is for 5.0 as compared to 4.0. Both 4.0 and 5.0

were the first release of a major version change for Red Hat Linux. Both had a great

many feature and package changes. Given those changes, noting that non-security

updates were lower in terms of percentages shows a significant improvement in

the testing that took place for Red Hat Linux 5.0.

Table 5.2 shows the approximate length of time that each recent Red Hat Linux

release was current. The point to focus on is the correlation between the lengths of

time that 4.0 and 5.0 were current and their errata totals. 5.0 lived 50% longer than

4.0 and the yet, the number of total errata items only increased by 33%. When the

fact that the ratio of security related errata items to total errata items increased by

42%, it becomes clear that 5.0 was a better tested release.

14.2 was the last release of the 4.x series

Red Hat release Release Date Life Length
4.0 Oct 1996 4 months
4.1 Feb 1997 3 months
4.2 May 1997 7 months
5.0 Dec 1997 6 months
5.1 Jun 1998 current

Table 5.2: Lengths of Red Hat Linux releases' lives

58

In future work, bug report counts will be tracked more accurately. It was one of

the areas that resources were not available to fully track during the research time

frame. However, the raw information in Table 5.3 is presented.

The contents of the table show the volume of mail received on the beta mailing

lists during the stages of beta testing for Red Hat Linux 5.0. The first column is the

approximate number of items reported as bugs in the two public betas (Thunder-

bird 4.8 and Mustang 4.9) and the private beta testers group. The second column is

the total volume of mail received on each list during the betas. As can be seen, the

total volume of mail increased significantly in the second public beta, which can

be attributed to two causes; first, the second beta was closer to final release quality

and content and second, news of the Red Hat betas slowly ramped up over time.

Interestingly, the ratio of bug reports between the two public betas remained fairly

constant. Not surprisingly though, the private beta group had a higher signal to

noise ratio.

Although the numbers do not show this information, personal exposure to the

Mailing list Bug instances Total messages Ratio
Thunderbird 48 393 12%

Mustang 152 1036 15%
Beta Testers 145 682 21%

Table 5.3: Raw counts of bug reports

59

mail messages posted indicated that the level of technical competence and focus

was much higher in the private beta group. That comes as no surprise as those

people are carefully screened and are compensated (free software products) for

their time.

Feedback and EmpiricaS Observations

The material in this section was derived from interviews and discussions with var

ious Red Hat staff members, including Bob Young, CEO of Red Hat. An aggressive

QA program has drawbacks, among them are the following:

o Increased development to production time frame

o More bureaucracy is induced into the system

o Increases in tension between various groups within the organization

o Costs for projects that do not directly produce revenue

All of the above costs are negligible when the results of those costs are signif

icantly increased overall revenue. Red Hat's gross revenue more than doubled

during the fiscal year during which Red Hat Linux 5.0 was released. Although,

there are many other contributing factors to that increase, the overall quality of the

OS is one of the primary factors.

By working with individuals from each group involved and with the entire

developmental process, procedures were developed to avoid conflicts between

60

groups. The most notable potential conflict is between development and QA. This

conflict results when a development team works on a project and then hands it off

to QA for testing. For QA, this becomes the first glimpse of the project and usually

finds problems that development needs to address. This is an example of over the

wall development. In order to reduce the level of conflict and tension, the granular

ity for which projects are developed is increased. By integrating development and

QA on projects, the projects are finished more quickly and with less adversarial

tensions.

Another area of potential conflict is between marketing and QA. QA performs

the final check on the product between the time that development has finished and

marketing's production date. To make room for the final round of testing for Red

Hat Linux 5.0, marketing's ship date had to slip. Development's schedules cannot

be pushed backwards once a start date has occurred. To make room for final QA

testing, marketing's schedule was forced to slip forward. After the initial intro

duction of QA into the process, development's start dates are adjusted to allow for

more time at the end of the time line before the production date.

The final costs of the QA program to address are the actual dollar costs associ

ated with the processes. QA will likely never become a profit center for Red Hat

software, but the department can perform services that help offset Red Hat's oper

ating costs. One of the programs that is being examined is hardware certification.

By expanding the function of the QA department to become a testing center for

61

hardware. Red Hat can charge hardware companies a reasonable fee for certifica

tion of their hardware as well as the right to use a Red Hat logo. By offsetting the

cost of overall QA, the testing department is able expand further to begin lower

level testing of the core components that make up Red Hat Linux.

The benefits of the aggressive QA program developed for Red Hat 5.0 from a

marketing point of view are immense. Among the more notable points are the

following:

o Independent Software Vendors (ISVs) feel better porting their products to a
well tested OS

o Top Red Hat management can point to an organized QA process when other,
companies are looking at Red Hat for stability and future growth potential

o Customers require a higher level of stability

o An organized QA department provides accountability

o Metrics to measure the stability of Red Hat Linux are possible

Demand for software companies to port their products to Linux is beginning

to run high. However, many ISVs are cautious about porting to Linux because

of unfamiliarity with the free software model. With an established QA program,

ISVs are reassured of the stability and integrity surrounding Red Hat's version of

the Linux OS. Red Hat gains from this by having more applications running on

Red Hat Linux as well as causing more overall growth in the Linux market. The

ISVs benefit from this partnership by increasing the pool of potential customers for

their products.

62

Having well defined QA process in place gives Red Hat credibility to compa

nies that do not understand how the cooperative development model works. Most

companies realize that Linux is based on freely available software components

from the Internet. Most traditional companies are hesitant to accept the credibility

of Linux without a corporate organization backing the OS. People in companies

tend to follow the saying of "Nobody was ever fired for going with IBM" which

has be updated to read "Nobody was ever fired for going with Microsoft." The

established QA procedures in place at Red Hat pushes Red Hat Linux into a tradi

tional, mainstream paradigm.

The final major benefit of Red HaTs QA processes is the ability to measure the

stability of new releases. Methods have been developed, as a result of the work

done in this project, that allow metrics to measure the quality and stability of the

release. By analyzing the number, type and severity of defects of a release, the

development staff is able to produce a better product. The QA process is then

modified to ensure that more extensive coverage exists so that less defects slip

though the QA process.

Defect Analysis

Defect analysis is the examination of a process and its output. By setting a level

of acceptability versus unacceptable, a measure of defective output can be devel

oped. Based upon types and quantity of defects present in a process, changes to

63

the process can be implemented to reduce the quantity and severity of the defects.

The fundamental principle of total quality management states that the cycle of con

tinuous improvement can only become a closed loop when metrics for the amount

of defects and waste in a process are established. By analyzing those measure

ments, locations in the process causing the most problems can be addressed and

corrected.

Based on the work done for Red Hat Linux 5.0, a method of defect analysis was

developed. It is a first abstraction that will be implemented in future releases and

modified based on its results. The most difficult part of defect analysis in Red Hat

is the tracking of the defects. As with most organizations, the last part of a process

to be improved is process accounting. In this proposed defect analysis method, the

information necessary for the analysis will be tracked in the bug tracking system

previously discussed.

Defect analysis at Red Hat has two goals:

1. To provide a means of relative comparison of quality between Red Hat re
leases

2. Identify areas of testing and development that need improvement

Definitions of terms

O defect: anything that impedes the proper (or correct) operation of a piece of
software.

64

o bug: see defect,

o observation: see defect.

o population: all possible sources of defect reports

o sample: group of observations from a well defined population,

o sample frame: length of time covering sample,

o sample size: number of observations in sample.

o Type I error: concluding that sample I has a higher level of defects than sam
ple I I when it doesn't.

o Type I I error: concluding that sample I does not have a higher level of defects
than sample I I when it does.

o class: mutually exclusive categories of observations.

o score: adjusted observation measurement.

Method

Classes need to be defined in order to preserve the scope of the analysis as well

as to allow the data to be collected in meaningful components. To that end, the

following classes have been established (where R is a scaling factor):

1. install/upgrade (R = 1.5)

2. packaging (R = 1.2)

3. functionality (R = .8)

4. security (R= .2)

5. documentation (R = I)

65

Although there might appear to be some overlap between these classes, they

are by definition, mutually exclusive. Care needs to be taken to ensure that obser

vations are placed into the correct class.

Observations can come from the following sources (where w is a weighting factor):

1. bug reporting address and mailing lists {w = 4)

2. support mail (w = 5)

3. support staff {w — 4)

4. development staff {w = 2)

5. QA staff (w = 3)

6. rumors/other (w = I)

Proper tracking of observation source location is critical to assigning accurate

weights to. each observation. The Red Hat bug tracking system will be used to

maintain this information.

When an observation is recorded, a severity weighting is associated with the

observation. The allowed values are s = 1,2,3 where I is low severity and 3 is

high severity.

Each bug is assigned a weight based on how long it has been in the bug tracking

system as an open bug (the life measurement is in days).

o t = l} life< I

o t = 2; I <life< 7

66

O t = 3;7 <life< 14

o i = 4; 14 <life< 30

o t = 5; life> 30

Once an observation has been recorded in the bug tracking system, repeated

observations of the same bug are also recorded. Therefore, there exists a counting

factor, cl, ...c6 that represents the number of occurrences of the same observation

within each source group.

Each observation obtains its score by the following method:

scorec = ELl Cn .

Periodic assessments of the overall score for a class can be obtained by comput

ing the above value for all observations within the sample frame. The weighted

arithmetic average of those scores represents the sample's score.

S CLmpl SgcQrc
YjI^scorecRc

5

where Rc is the scaling factor for class c. ■

67

Analysis

The tracking information provided by this method allows indications of problem

areas within the distribution development process and QA procedures. Once iden

tified, problem areas can be corrected and the resultant scores should indicate a

downward trend. By using Pareto diagrams, the information calculated can be

clearly displayed and significant sources of defects can be easily identified.

Until further research can be performed, error analysis is not possible. The val

ues obtained from these procedures have errors associated with them. Particularly,

Type I and II errors. Although both types are bad, it is the Type I errors that can

be the most misleading. One method to reduce Type I errors is to have the same

people recording observations across all sampling frames. Since that isn't always

possible, clearly defined boundaries for all categories and classes must be made

and followed when recording observations.

Defect AoaBysiis Wrap-up

The processes examined in this project are not complete. They have begun to look

a lot like the free software community which they are attempting to improve. The

procedures that were examined and put in place during the Red Hat Linux 5.0

development and release cycle provided a solid foundation for future growth and

expansion. Although not every topic investigated was implemented at Red Hat,

68

most were and have proven to be successful. The expectations of the Red Hat staff

as well as customers is much higher presently than when the project started.

Chapter 6

SUMMARY

Although measuring quality for Red Hat Linux is a continuous process that can

not be quantified in terms of a single starting and stopping point, a relative mea

surement of the improvements between two points can be examined. The entire

goal of the work in this thesis was to make the processes at Red Hat work better.

Better processes lead to more efficiency within the organization, which leads to

higher productivity, which leads to the company becoming more profitable. Based

on how well this implementation works, the company will then be able to justify

more resources for QA.

When the work in this thesis started. Red Hat had just finished releasing Red

Hat Linux 4.2, and developmental work on Red Hat Linux 5.0 was beginning. The

thesis was meant to cover the work that was done to develop procedures for 5.0,

but since both the author and Red Hat have not remained static, the actual content

70

of the thesis encompassed more material and time. At the time this summary was

written. Red Hat had released Red Hat Linux 5.2 and was beginning to develop

Red Hat Linux 6.0. That should give the reader some insight as to the pace that

development occurs at Red Hat.

Red Hat's sales have more than doubled during the time frame that this thesis

covers. Although there are many attributable causes for that growth, a significant

amount is due to the concepts and procedures that were developed and imple-.

mented by the author. As was shown in the previous chapter, there was a tremen

dous change in the type of defects, and the level at which Red Hat's customers

scrutinize the operating system. Those same people are not only taking notice of

Red Hat Software, but are also demanding a higher level of stability, quality and

features in Red Hat Linux. ,

Because of the increased awareness of Red Hat Linux by corporations world

wide, the demand for Red Hat products and services has increased dramatically.

The major future growth area for Red Hat is supporting the organizations that use

the OS. Increased quality and reliability is one of the major contributing factors to

this growth.

71

Who benefits

It is difficult to assess the full spectrum of organizations that benefit by the in

creased presence of Red Hat Linux. The following categories are some of the major

groups that can reap the benefits of Linux's growth:

1. Educational institutions

2. Government installations and organizations

3. Small and medium sized businesses

4. Independent Software Vendors (ISV)

5. The free software community at large

Universities are always the first place to reap the rewards of a better quality op

erating system at a reduced cost. Learning institutions are able to take advantage

of older hardware as well as reduce the amount of money spent on licensing com

mercial operating systems. Historically, that worked well for certain segments of

the university population (such as computer science departments) that were able

to fix things that broke because of Linux's immaturity. However, with the recent

improvements in quality, other departments within the university are also able to

enjoy these benefits.

Government organizations are always under pressure to reduce their operat

ing budgets but at the same time increase their responsiveness to the tax paying

public. To increase the responsiveness, faster and better computer systems are in

tegrated into their operations. Until Linux matured to the point it is today, it was

72

not acceptable to use it in mission critical environments. It is now acceptable and

common place for government groups to run part or all of their systems on the

Linux OS. Not only does it increase the stability of their systems, it greatly reduces

the costs associated with true enterprise class operating systems.

Small businesses are always looking for advantages in the market place to grow

into larger companies. With the growth of Linux's popularity more ISVs have

ported their applications to Linux. Products such as Wordperfect, Netscape, Mat-

lab, Oracle and many others have been ported to Linux, providing growing com

panies with a reasonable alternative to expensive commercial operating systems

to build their businesses around. ISVs also do well because of Linux's growth by

opening up larger markets for their existing customer base as well as being able to

expand their product lines into new markets.

The final beneficiary to be mentioned is Red Hat software. By increasing the

growth and acceptance of the Linux OS, Red Hat is able to provide more solutions

to customers and is able to access more resources to improve on the foundations

that make the company successful.

Conclusion of Research

Although many topics that were explored in this research project have not been

resolved to a definitive answer, much progress has been made. Red Hat truly is

better off for having started down this path. Many of the topics that were explored

73

have led to new areas of exploration for advancements in Red Hat's QA programs.

Some of the concepts and topics that were initially explore have been abandoned

for one reason or another. That does not mean that the time was wasted, it shows

that not every procedure can be applied effectively to every situation.

Much work remains to be done, both in the field of QA applications to free

software and at Red Hat specifically. One of the great things about doing this work

at Red Hat is the company's willingness to share all discoveries with the public.

Just as all software developed by Red Hat is freely released, the work performed

to develop QA methods and practices is also. Any tool or software developed in

the course of this work is released so that others may benefit from the effort.

As an example of that free release of information, the Red Hat test plan has been

included as a part of this thesis. Appendix A is a complete copy of the test plan that

was developed during the 4.2 to 5.0 transition period[15]. The plan is an on-going

model that evolves with Red Hat's growth. Although the plan is not directly tied

to the actual content of this thesis, it is a product of the work done for this thesis.

Based on the fundamental principles of QA, the test plan is constantly subjected

to modifications from each release cycle. The plan is maintained consistent with

Juran's continuous improvement concepts[9].

It really makes doing the work feel like an accomplishment. Although Red Hat

may not benefit from some topic exploration, another company may use that work

as a starting point for them. As more companies begin to understand the free soft

74

ware model, QA methods that work in that environment are going to become more

beneficial. It is hoped that many others will take a look at the work performed here

and raise it to new heights.

75

Bibliography

[1] IEEE POSIX Standards Organization, http: / /standards.ieee.org/regauth/posix/index.ht
1998.

[2] Linux documentation project, 1998. http://www.redhat.com/linux-
info/ldp/.

[3] Bailey, E. Maximum RPM. Red Hat Software, Inc., 1997.

[4] BARNES, D. Red hat test plan, version 1.0,1996.

[5] CLEVELAND, W. S. TheElementsofGraphingData. Hobart Press, 1994.

[6] DElTEL, H. An Introduction to Operating Systems. Addison-Wesley Publishing
Company, 1990.

[7] DeVor, R. E., Chang , T., and Sutherlan, J. W. Statistical Quality Design
and Control. MacMillan Publishing Company, 1992.

[8] Grant, E. L., and Leavenworth, R. S. Statistical Quality Control, Fifth
Edition. McGraw-Hill, Inc., 1980.

[9] JURAN, J. Juran on Quality by Design. MacMillan, Inc., 1992.

[10] Kolarik, W. J. Creating Quality. McGraw-Hill, Inc., 1995.

[11] Montgomery, D. C. Design and Analysis of Experiments, 3rd Ed. John Wiley
and Sons, Inc, 1991.

[12] Pole, A., West, M., and Harrison, J. Applied Bayesian Forecasting and Time
Series Analysis. Chapman and Hall, 1994.

[13] Red Hat Software, Inc . The Official Red Hat Linux Installation Guide. Red
Hat Software, Inc., 1997.

[14] WANGSMO, M. Ime 577 final project. Final project for IME577, May 1997.

[15] Wangsmo, M., Barnes, D., and Tatersall, D. Red hat test plan, version
1.1.1,1998.

http://www.redhat.com/linux-info/ldp/
http://www.redhat.com/linux-info/ldp/

76

Appendix A

RED HAT TEST PLAN

Author's note: This test plan is considered a work in progress and is incomplete. It is
provided as a reference and as an example of some of the work completed as part of this
thesis.

Introduction
This test plan is based on Donnie Barnes' original testing plan, but has been ex
tensively modified and should be considered the ideal testing plan. Because of
time, money, and hardware constraints, the actual testing plan will likely be a
trimmed down version of the test combinations presented in this document. Once
a complete installation flowchart has been completed, there will likely be addi
tional modifications and reasons for a reduction in the number of actual installs
necessary to achieve reliable confidence.

One of the main goals of this methodical testing plan is to attempt to capture
any and all bugs and in the Red Hat installation software. Although that goal may
appear to be a very lofty destination, it is not one that is out of reach. The concept
of continuous improvement through aggressive testing and methodical analysis is
going to be the driving force behind the success of this mission.

Installation Testing
The concept of install testing is very simple, but becomes complex given the wide
array of hardware choices available, especially on the 1386 platform. Varying de
grees of hardware combination resolution will be employed to create a suitable
mixture of feasibility and confidence in our product. At the highest level, the test
ing strategy breaks into the three broad categories of 1386, Alpha and SPARC. Test
ing of installation should be broken across those three platforms independently.

77

Within each of those three categories, testing will be performed as a complete fac
torial experiment with each factor representing the peripheral hardware items and
the levels representative of the individual devices within each of the factors. One
needs to be very careful to not make inferences regarding extrapolations from one
hardware device to another similar device. This is also to include devices made
by the same manufacturer and even with the.same "brand/product" name. Hard
ware manufactures are notorious for changing firmwares and chip sets on the same
cards. To account for this, exact bios revision numbers should be recorded as part
of the testing documentation.

It can be assumed that each piece of hardware is independent of the other com
ponents that are installed in the computer. Because of that assumption, random^
ization of the testing patterns is not required to return valid results. Also, all com
binatorics of hardware need not be considered. All combinations of hard-drive,
CD ROM, and controllers should be tested with all the different install methods,
this is to ensure that all parts of the install code get tested.

NOTE: The testing scheme presented ip this paper is a brute force approach
of ensuring that every possible combination of hardware is tested. This level of
complexity will become unnecessary once a detailed flow chart of the installation
tool is complete. Based on that flow chart, a possible paths approach to testing can
be undertaken to greatly reduce the complexity of the testing system.

Intel-Hardware
Since the Intel platform is the most widely used and also contains the widest ar
ray of potential components, it will take the longest to test and will be the most
complex. At the fundamental level, we support only 100% Intel compatible pro
cessors in non-SMP configurations. The complete list of supported processors is:
80386, 80486, Pentium, Pentium w / MMX, PPro, PPro w / MMX, and the Pen
tium II. Since the 386's are all but obsolete, they are excluded from the list of test
processors. Also, since all the various Pentium chips perform in a similar fashion
under Linux, only base Pentiums are necessary to be tested. Bus configurations
are tested by way of testing performed on the 486 processors since most are not
on PCI based boards. The final fundamental test criteria is the amount of RAM in
the system. Tests need to be performed that demonstrate the ability of the RHD
to install and function in SM of RAM. This testing should be applied to each of
the different installation mediums. The laptop installation testing is described in a
separate section.

Declaration of Test Factors

The following items are the test factors of interest for testing purposes:

o Installation Medium

78

o Type of Installation *

o RAM*

o HD Controller Type

o CD ROM Type

o Network Card

o Video Card *

o Sound Card *

o Mouse Type *

(*) Indicates a category in which combinatorics of factor levels are not necessary.

Factor Levels

1. Installation Medium

o CDROM
o Hard Drive
o FTP
O NFS
o Floppy
o FLIP
o Zip Drive
o SMB

2. Type of Installation

o Minimal
o Non-minimal

Minimal installation is one in which nothing other than the base packages
are installed.

3. RAM

o SM
o >8M

79

The SM cases only need to be tested once with each installation medium to
confirm the ability of the installation to be performed in low memory condi
tions.

4. HD Controller Type

o (E)IDE
o SCSI **

- Adaptec AHA-154x
- Adaptec AHA-294x
- Advansys
- BusLogic
- NCR 53C810

5. CD ROM Type

o (E)IDE
o Mitsumi
O SCSI **

- Adaptec AHA-154x
- Adaptec AHA-294x
- Advansys
- BusLogic
- NCR 53C810

(**) Testing of interactions between SCSI cards is not necessary therefore, the
same SCSI controller will be used for the CD ROM and the hard drive when
testing occurs at these factor levels.

6. Networking Card

o 3c509
o 3c59x
O 3x905
o DE435
o DE500
o NE2000
o SMC EtherPower
o SMC Ultra

80

7. Video Card

o CirusLogic 542x
o CirusLogic 543x
O #9 GXE64 Pro
o Diamond Stealth 2000
o ArkLogic PVlOOO
o S3 Trio64V
o SS-Virge
O ATI Mach-32

8. Sound Card

o AdLib
o Ensoniq SoundScape
o Gravis Ultrasound
o Gravis Ultrasound Max
o Microsoft Sound System
o Pro Audio Spectrum 16
o Sound Blaster Pro
o Sound Blaster 16
o Sound Blaster 16 PnP
o Sound Blaster AWE32
o Turtle Beach Tropez

9. Mouse

o No Mouse
o Microsoft
o Logitech Mouseman
o Mouse Systems
o PS2 Mouse
o Microsoft Bus Mouse
o Logitech Bus Mouse
o ATI Bus Mouse
o Emulate 3 Buttons

81

- With 3 Button Emulation
- Without 3 Button Emulation

This list of hardware to be tested is based on the current inventory of hardware
we have available. As time progresses, it would be wise to increase this supply
of testable hardware. Attempts should be made to assure that we are able to test
hardware that will cover at least 80% of the most popular hardware in use. Ways to
increase out testable hardware base include correspondence with hardware man
ufacturers requesting test hardware, possibly soliciting the Red Hat/Linux com
munities for older hardware to be bought at reasonable prices, and of course an
aggressive purchasing plan by Red Hat.

A side note here is the desire to entice hardware manufacturers to submit hard
ware to be tested and certified as Red Hat compliant. This serves several purposes,
namely more current hardware is brought into the test lab. A secondary benefit of
a program like this is it encourages hardware vendors to consider Red Hat Linux to
be the linux platform to be compliant with. It positions Red Hat as the recognized
leader in the Linux community.

Testing Design

NOTE: As stated previously, this is a "brute force" testing approach and will change
as soon as the install tool flow chart is complete.

XServer Types - Columns

1. XFree86

2. Metro-X

Video Card Types - Rows

ID HD Type/Controller CD ROM type/Controller Ethernet Card
I IDE IDE 3c509
2 (s) AHA-154x Mitsumi 3c59x
3 (s) AHA-294x (s) AHA-154x 3c905
4 (s) Advansys (s) AHA-294x DE435
5 (s) BusLogic (s) Advansys DE500
6 (S) NCR 53C810 “1 (s) BusLogic NE2000
7 (s) NCR 53C810 SMC EtherPower
8 SMC Ultra

Table A.l: Coded Hardware Levels

82

Install Medium
HD Type

I 2 3 4 5 6 7
Bootable CD * Jfr Jfr Jfr Jfr Jfr Jfr

HD Jfr Jfr Jfr Jfr Jfr Jfr Jfr

Zip Drive Jfr Jfr Jfr Jfr Jfr Jfr Jfr

Table A.2: Simple Install Cases

HD Type

CD
ROM
Type

Table A.3: Floppy Based Install

Ethernet Card Type

Table A.4: FTP Based Install.

83

Ethernet Card Type

Table A.5: NFS Based Install

Ethernet Card Type

Table A.6: SMB Based Install.

HD Type
I 2 3 4 5 6

FTP * s f Sf Sf Sf Sf

NFS * Sf Sf Sf Sf Sf

Protocol SMB Sf Sf Sf Sf Sf

Table A.7: FLIP Device Install

1. CirusLogic 542x

2. CirusLogic 543x

3. #9 GXE64 Pro

4. Diamond Stealth 2000

5. ArkLogic PVlOOO

6. S3 Trio64V

7. SS-Virge

8. ATI Mach-32

Sound Tests - Columns

1. Driver Installed

2. Application(s) Work

Sound Card Types - Rows

1. AdLib

2. Ensoniq SoundScape

3. Gravis Ultrasound

4. Gravis Ultrasound Max

5. Microsoft Sound System

6. Pro Audio Spectrum 16

7. Sound Blaster Pro

8. Sound Blaster 16

9. Sound Blaster 16 PnP .

10. Sound Blaster AWE32

11. Turtle Beach Tropez

Mouse Tests - Columns

I. GPM

8 5

Video Card
XServer Type

I 2
I * *
2 * Jf-

3 * sf-

4 * Sf

5 * Sf

6 * Sf

7 * Sf

8 * Sf

Table A.8: Video Card/X Install

Sound Card
Test Type

I 2
I s f Sf

2 s f Sf

3 Sf Sf

4 Sf Sf

5 Sf Sf

6 Sf Sf

7 Sf Sf

8 Sf Sf

Table A.9: Sound Card Install

86

2. XFree86

3. MetroX

Mouse Types - Rows

1. No Mouse

2. Microsoft or Compatible

3. Logitech Mouseman

4. Mouse Systems

5. PS/2 Mouse

6. Microsoft Bus Mouse

7. Logitech Bus Mouse

8. ATI Bus Mouse

Miscellaneous Install Testing
This section describes the various configuration options of the install process that
need to be tested, but do not need to be tested in conjunction with the various
hardware combinations described in the previous section. The primary aim of this
section is to verify that when a component group is selected, then the RPMs in that
component are correctly installed, and that when a package group, like "emacs .el"
is installed it is installed correctly. This testing is based on the bill of materials for
the CD set.

1. Component Choices

(a) Default Install
(b) Everything Install
(c) Individual Components

2. Package Groups

(a) Each Package Group
(b) All Package Groups

8 7

Mouse Type
3 Button 2 Button

I 2

CO I 2

CO

I Sf Sf Sf Sf

2 * Sf Sf Sf Sf Sf

3 * Sf Sf Sf Sf Sf

4 J f Sf Sf Sf Sf Sf

5 Sf Sf Sf Sf Sf Sf

6 Sf Sf Sf Sf Sf Sf

7 Sf Sf Sf Sf Sf Sf

OO Sf Sf Sf Sf Sf Sf

Table A. 10: Mouse Type Install

General Install Testing

This is somewhat a free form testing section, in that we want to cover the unex
pected here. There is really no specific pattern or requisite approach to this kind
of testing, although, as research into problematic install problems as perceived by
the support department progresses, this section may become more structured. Es
sentially, this section involves trying to install without a hard drive or without
root partitions defined; pressing of random keys during the install, keys such as
Control-c, Control-z, and other assorted key combinations, noting the behavior of
the installation software.

Partitioning

The installation process needs to be tested with a multitude of partitioning schemes,
in order to verify that the install software can handle a variety of partition tables.
The following partition setups should be tested:

1. Linux only partitions

• 2 Partitions, one swap and one "/".
• More than 4 partitions
• More than 10 partitions

2. Linux only w / multiple drives

• 2 (E)IDE drives.
• 2 SCSI drives.
• I (E)IDE and I SCSI drive.

8 8

3. Mixture of partition types

• multiple partitions with at least I defined as FATxx

Time-zone/Keyboard/Mouse

Testing in this area involves setting up of several different time zones to ensure that
the time gets set correctly. Keyboard testing is to ensure that foreign and Dvorak
keyboard layouts get mapped correctly. Mouse testing is a bit more complicated
in that we need to test that the install software will correctly set the mouse settings
so that both X and gpm work properly. Testing should also be done to see that
the 3 button emulation works properly, and that both serial and bus mice work
properly. Mouse testing is detailed in Table 10 above.

LILO

Various combinations of testing the installation and operability of LILO need to be
performed. The following ALL need to be checked:

1. Linux only on file system

(a) LILO on MBR
(b) LILO not on MBR, but on bootable partition
(c) LILO on floppy
(d) LILO and a kernel image on a floppy

2. DOS \ Linux with LILO on MBR

3. win95\Linux with LILO on MBR

4. Red Hat rescue mode of boot floppy

Partitions SCSI (E)IDE
I swap, I linux * J f

I swap, 5 linux * J f

I swap, 11 linux * J f

Table A. 11: Partition test, I Hard Drive

89

Networking

Network testing can be broken down into the the following broad categories:

1. Different levels of networking

(a) Loop back only: No testing is required here except that the /etc/hosts
file has only the loop back address and the local host information.

(b) Class C IP network: At this level, the /etc/hosts file should contain the
proper entry resolving the host name to the host IP address. The net
working configuration of the route tables and device assignment should
be properly handled at boot time by the rc.d/init.d scripts.

(c) Class B IP network: Everything as with the class C network setup should
work, and the parameter guessing of the appropriate broadcast and net
mask information should be functional.

(d) PPP only configuration: See application testing in the previous section.

2. bootp setups

(a) Obtain networking information from bootp for install only
(b) Obtain networking information from bootp for install and keep infor-

. mation for running system
(c) Obtain networking information from bootp for install and use bootp for

running system
(d) Use static start-up information, but use bootp for running system

3. DNS configurations

(a) Without DNS: machines on LANs without DNS should function prop
erly. This should be tested with two isolated machines running RH
without any DNS configuration.

i. telnet
ii. FTP

iii. rsh, rep, etc.
iv. samba
v. email

A. standard
B. POP

vi. WWW
A. Arena w /o networking
B. Arena w / networking

90

C. Netscape w / networking
vii. NFS

A. client
B. server

(b) With DNS: A remote DNS server should be used to test that the local
machine can resolve names properly. For further testing of DNS, see the
section regarding bind.

i. telnet
ii. FTP

iii. rsh, rep, etc.
iv. samba
v. email

A. standard
B. POP

vi. WWW
A. Arena w /o networking
B. Arena w / networking
C. Netscape w / networking

. vii. NFS
A. client
B. server

X Configuration

X configuration should be tested for both XFree86 and for Metro-X. The configu
ration needs to occur inline with the install software and should only occur if X
server packages are selected to be installed. The X configuration software should
allow at the very least a minimal X window environment to be established for any
supported video card/monitor combination.

During the various install testing combinations, all testable video cards should
be swapped into the test machines and the success or failure of producing a work
ing X environment documented.

Sound Testing

This section is incomplete due to the lack of a firm plan for implementation of
modular sound support in the RHD. However, the list of sound cards that are
supported by our modular sound patch should be tested in much the same fashion
as the video cards. Sound cards are independent of the install medium and other
components of the computer so they can be tested in any order.

91

Laptops
Currently, the selection of laptop computers available to the test lab is limited.
Based on that, the following test strategy will be applied. We need to test installs
via NFS, FTP, SMB and CD ROM using the PCMCIA interfaces. The same testing
for packages described within the 1386 section applies to laptops so testing can be
limited strictly to install testing.

Alpha-Hardware
Testing the installation of the RHD for the Alpha platform should be considered
a scaled down version of the same plan presented for the 1386 platform. We are
limited on the variety of hardware that can be tested, but the UDB will be the base
machine for the supported Red Hat Alpha platform. The following is the list of
supported and testable hardware:

o N C R 8 1 0 S C S I

o BusLogic SCSI

o A H A 2 9 4 0 S C S I

o NE2000 ethernet

o DE4x5 ethernet

o S3 based video card

o TGA based video card
Because of the limited range of supported hardware, testing on the Alpha should
be very complete and not consume much time.

AIpha(Misc. Install Testing)
All install driven configurations described in the 1386 section need to be tested
as described in that section with the exception of LILO. Obviously this needs to
be replaced with MILO configurations. The testing that should be performed with
respect to MILO at Red Hat should be limited to ensuring that the version of MILO
that we ship works with the current RHD.

SPARC-Hardware
Due to hardware availability limitations, the testing on the SPARC platform will
be limited to testing on the Axil 311 workstations. Installation needs to be tested
via bootable CD ROM, floppy CD ROM, NFS, FTP and serial terminal.

92

SPARC(j\/3isc. install Testing)
Because of the limited spectrum of hardware in use on the SPARC platform, there
is no X window or mouse configuration. Networking configurations should be
tested as described within the i386 section.

Two approaches to package testing need to be implemented. Functionality testing
for some packages can be a part of an automated package testing tool. The remain
der of the more complicated packages and the ones that can not feasibly be tested
by an automated tool need to be tested by hand. Only an outline of the operation
of the testing tool is available now. The tool should have an interface similar to
the install software that will allow the tester to select from a list, the packages that
should be tested. The tool should then grab a module, possibly written in perl,
for each package to be tested. These modules should perform tasks that deter
mine if the software installed properly at install time and is functioning as would
be expected. These modules need to be written to a common standard that logs
all output to stdout, also reports any errors to stderr and returns a error code for
failed testing of the package. Based on that description, the main tool should be
fairly simple in function so that when all packages have been tested, it simply
reports the overall success, or failures, of the tested packages. All information out
put from the modules is logged to a file that can be examined by the tester upon
completion.

The package testing needs to be performed on all three platforms given that
the packages may behave differently across platforms and there is a potential for
mistakes to be made regarding the building of the rpms on different platforms. The
following are some specific packages that need to be thoroughly tested by hand.
These packages have been notorious sources of problems in the past.

Compilers

The proper operability of the various GNU compilers is essential to to function
ality of the RED. Several different packages can be compiled to put the system
compilers through their paces. The first test is to make it successfully through a
complete kernel build. Given the amount of C and C++ code that is now in the
kernel, it is definitely a good test for the compilers and the system libraries. This
test should be done as root. Another test is to compile a package such as ghostview
which compiles against the X libraries. This should be done as a user to make sure
that all routines and commands are accessible as a user. A final test should be to
compile a motif based source tree against the Red Hat motif libraries as both a user
and root.

93

ETeX

Since ET^Xis a very complex package, there is the potential for a great number of
bugs and errors to work their way into the RHD. To test the functionality of the
tetex package included with the RHD, the following steps should be taken:

o Latex the Red Hat Users Guide as a user and then as root. This should ensure
the proper permission bits have been set correctly

o The resulting *.dvi file should be converted to postscript via dvips to check
to functionality of the kpathesa font decompression tools.

o The resulting *.ps file should be viewed with ghtistview to ensure that it has
been correctly processed.

o A document from the linuxdoc-sgml should be processed and viewed.

o A postscript file should be printed to both a postscript printer and a non
postscript printer.

PPP

Using the netcfg tool in the Red Hat control-panel, a complete testing of setting
up and connection using PPP should be performed. The configuration should be
tested as root and users with both dynamic and static IPs. A test dial in user to
the Red Hat modem pool that will allow for both the dynamic and static IP setups
should be used. Although this is a small section of testing, it is very critical as a
large majority of customer complaints are related to configuring PPP

Email package testing

The five mail programs (elm, pine, mh, exmh, and xmh) need to be installed and
tested on systems with DNS configured, without DNS, and with loop back only.
Mail also needs to be tested on machines on a LAN not connected to the internet.
Mail should be send between two machines running clean RHD installs.

News readers and servers

Tin, trn, slrn, and INN need to be tested to ensure that base configuration works
correctly.

UUCP

UUCP needs to be tested based on the included configuration files to ensure that
the default configuration does work correctly.

94

DNS testing

Bind needs to be installed with a simple named.boot file and be used as a test name
server for another machine on a LAN.

Apache

The Apache web server should be installed and tests performed that check that ■
the server starts up at boot time on port 80. CGI scripts should be tested as well as
virtual domains.

FTP

Installation of wu-ftp should allow immediate user logins and anon-ftp should
allow immediate anonymous ftp logins.

Red Hat Applications

All of the Red Hat applications should drop in seamlessly on top of a fresh Red
Hat system install. This needs to be tested, but should be a moot point. The appli
cations are tested completely against RHD's before we ship them, so unless some
thing very major is broken, this should not be a problem.

Integration Testing
This section of testing ensures the ability of the RHD to communicate within a
non-homogeneous OS environment. From the base configurations, the following
testing needs to be performed.

SMB

The smbd and nmbd daemons should be running upon boot after the Samba pack
age is installed. The smbd machine should be "browseable" from other smbclient
machines. We need to test it with both Windows 95 and NT. The test should
include attaching volumes and copying files both to and from the samba server.
Printing should also be tested. Printing should be possible from the SMB clients
to a printer attached to a SMB server. Testing needs to be conducted with smb-
mount and smbclient. The Linux machine should be able to attach to exports from
a Windows based machine using these two. packages. The main test we need to
be concerned with aside from printing is file transfer from SMB server (Linux)
to SMB client (Windows based) and from SMB export (Windows based) to smb-
client/smbmount (Linux).

95

Netware

We should be able to mount Netware volumes from a Linux machine and copy files
both ways. We should be able to print to a Netware printer. We should also be able
to print from a Netware machine to a Linux machine and printer. The Netware
machine should also be able to mount Linux volumes.

UpgradabilIty
The ability to upgrade to the current version of the RHD from a prior version or
from another distribution is of utmost importance. The upgrade not only needs to
be intelligent enough to determine which packages need to be installed and any
associated dependencies, but also needs to preserve any prior configuration files.
On a Red Hat system version 2.1 or greater, this should be handled mostly by
the functionality of RPM. However, each version should be tested in an upgrade
situation. The install tool needs to be designed so that the default options will not
format or delete anything unnecessarily. The upgrade.log file needs to be clear and
direct the user to the locations of every configuration file relocated or renamed by
the install tool.

The releases that we will test for upgradeability from are: 2.1,3.0,3.0.3,4.0,4.1,
and 4.2. This represents 6 test cases.

The other area to be tested in the upgrade stage is that of upgrading other linux
distributions. The lack of a RPM database makes it is impossible to know what is
installed on the system. Based on that fact, the installation tool must cleanly install
any and all software need by Red Hat linux. No assumptions can be made about
what is or is not already on the system. The exception to this would be any Linux
distribution that uses RPM such as Caldera. On those systems, the system's rpm
database should be consulted and any installed packages that follow the Red Hat
packaging conventions should be detected.

Intel
The 1386 version of the RHD needs to he drop in compatible from any previous
RHD v2.1 or greater. All configurations need to be preserved and/or used with
the upgraded system.

Alpha
The Alpha version of the RHD needs to be upgradeable from v4.0 or greater.

96

SPARC
The SPARC version of the RHD needs to be upgradeable from v4.0 or greater.

Documentation of the testing procedure needs to be carefully carried out in or
der to be able to produce repeatable problems and to help the developers correct
problems. A further extension of the documentation effort helps lead to ISO900x
compliant procedures. By slowly adopting these structured methods, the tran
sition to becoming a globally recognized leader in the desktop operating system
community should be smooth.

By properly documenting all testing procedures, it should be easier to replicate
bugs and/or problems with the tested configurations. A standard documentation
scheme is being developed and will be available before 5.0 beta testing begins.
Upon completion of each testing phase, the documentation will be filed in the test
lab and made available to anyone needing that information.

A starting point for documentation is to label each test case to be run. Then a
database of test cases can be kept with their progress, i.e attempted, finished, wait
on fixes, etc. As long as this database is kept up to date, we can know where we
are in the test process, how much is left to do, and measure that against the time
left to test.

A group of beta testers should be assembled and maintained throughout the beta
test period. The size of this group should be kept small for organizational and
cost reasons. However, it should be large enough to produce some value to Red
Hat. The suggested size for this group is approximately 20 people of a technical
background. This group of people should be sent beta copies of the RHD and
asked to install and report back any problems or concerns they encounter.

At the same time, the true strength of the linux development community should
be tapped by making the beta releases available for anonymous ftp download. Al
though some of the reports that filter in from these channels can be less reliable,
the amount of exposure that the beta release gains through these channels far out
weighs the down sides. A corresponding mailing list should be established for
the discussion of the beta release(s) and should be closely monitored by Red Hat
staff. All bug reports need to be explored and treated as potential problems with
the distribution.

97

Intel Test Cases
The number of test cases that must be run to test the installation process and the
RPMs that make up the distribution is based on the hardware tables previously
defined. These cases are specific to the Intel platforms. SPARC and ALPHA plat
forms will be considered separately.

Simple BnstalB
Based on Table 2, there are 21 cases, identified by 2-(row)(column). These cases
are labelled 3-11 through 2-37. These cases all use more than 8 meg of RAM. In
addition, there are three more cases, one for each row of Table 2, which use 8 meg
of RAM. These three cases are labelled 2-40,2-50, and 2-60.

Floppy Based Install
Table 3 contains 7 rows by 6 columns, but is sparsely populated by 22 test cases.
The test case identification scheme is 3-(row)(column) e.g. 3-11 or 3-76. These cases
all use more than 8 meg of RAM. In addition, one additional case, labelled 3-80,
uses 8 meg of RAM.

FTP Based Install
Table 4 contains 6 rows and 8 columns, densely populated, for a total of 48 test
cases, labelled 4-(row)(column) e.g. 4-11 or 4-68. These test cases are all run with
anonymous FTP, using bootp to assign the internet address. All cases use more
than 8 meg of RAM. Two additional cases are 8 meg, 4-70, and more than 8 meg,
non-anonymous FTP, 4-80. This makes a total of 50 cases.

NFS Based Install
Table 5 contains 6 rows and 8 columns, densely populated, for a total of 48 test
cases, labelled 5-(row) (column) for 5-11 through 5-68. In addition, there is test case
5-70 which uses 8 meg of RAM. This totals 49 test cases.

SMB Based Install
Table 6 contains 6 rows and 8 columns, densely populated, for a total of 48 test
cases, labelled 6-(row) (column) for 6-11 through 6-68. These cases all use Windows
NT as the SMB server. In addition, there is test case 6-70 which uses 8 meg of RAM.
There is one more test case, 6-80 which uses Windows 95 as the SMB server.

98

PUP Device Install
Table 7 contains 3 rows by 6 columns, labelling test cases 7-11 through 7-36. The
SMB cases use Windows NT as the server, and all use more than 8 meg of RAM.
In addition, there are two cases, one using 8 meg of RAM, 7-40, and 7-50 using
Windows 95 as the SMB server.

Video Card Install
Table 8 contains 8 rows by 2 columns, labelling testcases 8-11 through 8-26. These
represent 16 test cases.

Sound Card Install
Table 9 contains 8 rows by 2 columns, labelling testcases 9-11 through 9-26. These
represent 16 test cases.

Mouse Install
Table 01 contains 8 rows by 6 columns, two cases not executes, labelling testcases
10-11 through 10-48. These represent 46 test cases.

Hardware Dependent Cases
The total of these hardware dependent test cases is 294. Since there are not enough
machines to set up all these configurations at once, they will need to be scheduled
to minimize the set up time between cases. This task remains to be done.

Miscellaneous Install Testing
These tests deal with the components and package groups that get installed. The
purpose is to verify that the lists which drive the installation program actually do
get installed and produce a working system. Test case 22-00 is a default install.
Case 22-01 is an everything install. Cases 22-10 through 22-xx are to verify the
installation of each component. Cases 22-100. through 22-5xx are to verify that
each individual package is installed. Cases 22-600 and 22-601 verify that the two
choices of XServer are properly installed.

Partitioning
These tests deal with various partitioning schemes. There are 6 cases in Table 11,
labelled P-Il through P-32. There are 3 cases of multiple drives, cases P-40 through

99

P-42 for two SCSI, two (E)IDE, and one SCSI one (E)IDE respectively. There is one
case for multiple partition types, I swap, 4 linux, I FAT, case P-50.

Time zone/Keyboard/Mouse
The time zone tests consist of 8 tests, T-OO through T-07, which test the correctness
of time zone setting for EST, EDT, CST, PST, GMT, CET, East Coast Australia, and
Japanese time. (Note: look up abbreviations for last two). The keyboard tests con
sist of 4 cases, K-OO through K-03, corresponding to US English, Dvorak, French,
and German keyboards.

LILO
The following test cases test the LILO installation. These test are labelled L-OO
through L-06.

1. Linux only on file system

(a) LILO on MBR L-OO
(b) LILO not on MBR, but on bootable partition L-Ol
(c) LILO on floppy L-02
(d) LILO and a kernel image on a floppy L-03

2. DOS \ Linux with LILO on MBR L-04

3. win95\ Linux with LILO on MBR L-05

4. Red Hat rescue mode of boot floppy L-06

Networking
This testing consists of 30 test cases, N-OO through N-03, N-IO through N-13, N-
20 through N-2A, and N-30 through N-3A. N-OO through N-03 correspond to the
different levels of networking. N-IO through N-13 correspond to the bootp setups.
N-20 through N-2A correspond to the different applications used without DNS,
and N-30 through N-3A correspond to the tests with a remote DNS server. The
total is 30 test cases.

X Configuration
X configuration testing with different video cards is detailed in Table 8 and the
count of test cases is in the hardware dependent section above.

I

100

Sound Testing
Sound testing with different sound cards is detailed in Table 9 and the count of test
cases is in the hardware dependent section above.

Laptops
The laptop testing needs four test cases; these are via CD ROM, NFS, FTP, and
SMB. The cases are L-OO through L-03. The only difference between laptops and
workstations is in the PCMCIA attachment of adapters, hence all the replications
above are not needed.

Total Test Cases
The total number of test cases for the Intel platform testing is 357 plus the number
of component and package test cases which are yet to be determined.

The total number of cases then is on the order of 500, which, at 45 minutes per
test case, represents 375 man hours. (There is no justification for the 45 minutes
per test case; it is a guess based on hardware set up and tear down times).

ALPHA Test Cases
There are many fewer configurations of ALPHA hardware than of the Intel, there
fore there are many fewer test cases to be run. There are three SCSI adapters, and
2 (Is this right?) ethernet adapters and only 2 video adapters.

Thus there will be 6 testcases for each of NFS, FTP and CD ROM installs, and
two test cases for the two video cards., which leads to 20 cases. The networking
tests are the same as on the Intel platform, so there are an additional 30 test cases.
This results in 50 test cases plus the install selection test cases which have not been
sized yet.

SPARC Test Cases
There are 5 test cases for testing the SPARC platform, as there is no hardware
choice. The test cases are bootable CD ROM, floppy CD ROMi, NFS, FTP, and serial
terminal. In addition the install selection test cases must be executed.

101

Appendix B

TEST LAB INVENTORY

The following sections detail the exact inventory of Intel based hardware contained
in the test lab during Red Hat Linux 5.0 testing.

Most of the following adapter cards are either ISA bus or PCI bus cards. Those
types of cards both work on Intel and Alpha machines. SPARC machines have a
very small and limited amount of hardware that work on the S-BUS.

Disc controllers
1. non-SCSI

(a) IDE
(b) IDEUDMA

2. SCSI

(a) Adaptec AHA-1542CF
(b) Adaptec AHA-2930A
(c) Adaptec AHA-1522 PnP
(d) Adaptec AHA-1540
(e) Adaptec AHA-2920
(f) Adaptec AHA-2940
(g) Advansys ABP-930/40
(h) Advansys ABP-940UW
(i) Buslogic BT-545C

102

(j) BusLogic BT-548
(k) BusLogic BT-958
(l) Future Domain TMC-885

(m) Future Domain TMC-860
(n) Data Technologies Corp. DTC-3530-A
(o) NCR 53c810
(p) Symbios Logic SYM20401
(q) Tekram NCR 53c875
(r) Trantor T160

Video card
1. ArkLogic PVlOOO

2. ATI Mach 32A VLB

3. CirrusLogic CL-GD5428

4. CirrusLogic CL-GD54M30

5. CirrusLogic CL-GD5446

6. Diamond Stealth 2000

7. Matrox Mystique

8. Matrox Millenium

9. Matrox Millenium II

10. Number Nine GXE64 Pro

11. Number Nine Imagine 128II

12. S3 Trio64V

13. SS-Virge

14. Trident 8900D

103

Ethernet card
1. 3Com Etherlink 11/16

2. 3Com3c509B

3. 3Com 3c589B Etherlink III

4. 3Com 3c595-TX 10/100

5. 3Com 3c950-TX 10/100

6. DEC DE435

7. DEC DE500

8. Intel EtherExpress 16

9. Intel EEProlOO

10. Linksys EthernetCard Type II

11. Microdyne NE2000plus3

12. NetGearFASlOTX

13. Novell, Inc. NE2000

14. SMC DEC21041

15. SMC EtherEZ 16

16. SMC EtherPower II

17. Winbond PCI10

Mouse type
1. Busmouse

'
2. PS/2

3. Serial Microsoft

Intel specific hardware
The following sections detail hardware specific to the Intel architecture.

104

Bnfel motherboards
1. Asus P55/TXP4

2. Asus P55-VX97

3. Asus P55-TX97XE

4. Intel P90/NX-Chipset

5. DIGIS VLB 486

6. Generic ISA 486

Intel based processors
1. Intel 486DX2/66

2. Intel 486DX/33

3. Intel PlOO

4. Intel P133

5. Cyrix 6x86 P166+

Memory categories
1. 8 Megabytes

2. >8 Megabytes

SPARC specific hardware
The following sections detail hardware specific to the SPARC architecture.

Base systems
1. sun4c

2. sun4m

3. IPC

Framebuffers
1. CG3 (Sbit)

2. TGX Plus (Sbit)

106

Appendix C

GNU PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cam
bridge, MA 02139, USA Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to guaran
tee your freedom to share and change free software-to make sure the software is
free for all its users. This General Public License applies to most of the Free Soft
ware Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that you
receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute cppies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure

107

that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (I) copyright the software, and (2) of
fer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author's protection and ours, we want to make certain that ev
eryone understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will
not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not li
censed at all.

The precise terms and conditions for copying, distribution and modification
follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA
TION

0

This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this Gen
eral Public License. The "Program", below, refers to any such program or work,
and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a por
tion of it, either verbatim or with modifications and/or translated into another lan
guage. (Hereinafter, translation is included without limitation in the term "modi
fication".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not re
stricted, and the output from the Program is covered only if its contents constitute
a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

108

You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any war
ranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2

You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section I above, provided that you also meet all of these
conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

c. If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec
tions of that work are not derived from the Program, and can be reasonably, con
sidered independent and separate works in themselves, then this License, and its
terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

1

109

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

3

You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections I and 2 above
provided that you also do one of the following:

a. Accompany it with the complete corresponding machine readable source
code, which must be distributed under the terms of Sections I and 2 above
on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections I and 2 above on a
medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncom
mercial distribution and only if you received the program in object code or
executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for mak
ing modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include any
thing that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

no

4

You may not copy, modify, sublicense, or distribute the Program except as ex
pressly provided under this License. Any attempt otherwise to copy modify sub
license or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5

You are not required to accept this License, since you have not signed it. How
ever, nothing else grants you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

6

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, dis
tribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

7

If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any partic
ular circumstance, the balance of the section is intended to apply and the section
as a whole is intended to apply in other circumstances.

I l l

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made gen
erous contributions to the wide range of software distributed through that system
in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and
a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a con
sequence of the rest of this License.

8

If the distribution and/or use of the Program is restricted in certain countries ei
ther by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribu
tion limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9

The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and "any later version", you
have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does
not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

112

11

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI
CABLE LAW EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS
IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,
BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the
full notice is found.

$<$one line to give the program's name and a brief idea of
what it does.$>$ Copyright (C) 19yy $<$name of author$>$

This program is free software; you can redistribute it

113

and/or modify it under the terms
License as published by the Free
version 2 of the License, or (at
version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

of the GNU General .Public
Software Foundation; either
your option) any later

Gnomovision version 69, Copyright @ 19yy name of
author Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type 'show w'. This is free software, and you are
welcome to redistribute it under certain conditions; type
'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropri
ate parts of the General Public License. Of course, the commands you use may
be called something other than 'show w' and 'show c'; they could even be mouse-
clicks or menu items-whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here
is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest
in the program 'Gnomovision' (which makes passes at compilers)
written by James Hacker.

$<$signature of Ty Coon$>$, I April 1989
Ty Coon, President of Vice

114

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library you may consider
it more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Library General Public License instead of this
License.

MONTANA STATE - BOZEMAN

