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ABSTRACT

We approach manifold topology by examining con�gurations of �nite subsets of
manifolds within the homotopy-theoretic context of∞-categories by way of strati�ed
spaces. Through these higher categorical means, we identify the homotopy types of
such con�guration spaces in the case of the circle and Euclidean space.
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INTRODUCTION

Approach

Broadly, we ask:

Question 1.0.1. To what extent do the homotopy types of con�guration spaces of

a manifold recover that manifold?

In [23], Salvatore and Longoni show, by example of certain Lens spaces, that

the homotopy type of con�guration spaces can distinguish some manifolds that are

homotopy equivalent and yet not homeomorphic. In this thesis, we use the theory

of strati�ed spaces following that of Lurie in [26] and Ayala, Francis, and Tanaka

in [6] to package con�gurations of �nite subsets of manifolds. For a manifold M , the

con�guration space of k points of M is

Confk(M) := {(x1, ..., xk) ∈Mk | xi 6= xj if i 6= j}.

There is an evident action of Σk on Confk(M) given by permuting the order of the

indexing. The resulting quotient space

Confk(M)Σk := {S ⊂M | |S| = k}

is called the unordered con�guration space of �nite subsets of k points of M .

For a �xed manifold M , the collection of Confk(M)Σk for all k ∈ N naturally

organizes as a topological space called the Ran space of M , denoted Ran(M). As

de�ned by Lurie (5.5.1.1 in [26]), given a smooth, non-empty, connected manifold M ,
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we de�ne

Ran(M) := {U ⊂M | U 6= ∅ is �nite}.

Following Beilinson and Drinfeld [9], we endow Ran(M) with the �nest topology

for which the map Mk → Ran(M), given by (m1, ...,mk) 7→ {m1, ...,mk}, is

continuous for each k ≥ 1. Furthermore, Ran(M) naturally emits a strati�cation over

the natural numbers by cardinality, so that each stratum is an unordered con�guration

space of M .

De�nition 1.0.2. A strati�ed space S : X → P is a paracompact, Hausdor�

topological space X together with a poset P and a continuous surjection S such that

for each p ∈ P , the p-stratum S−1(p) is connected. A strati�ed map is a continuous

map between strati�ed spaces that respects the strati�cation.

Here we regard a poset P as a topological space by de�ning U ⊂ P to be open

if and only if it is closed upwards; that is, if a ∈ U , then every b ≥ a is also in U .

Notably, we equip the topological p-simplex

∆p := {(t0, ..., tp) ∈ [0, 1]p+1 |
p∑
i=0

ti = 1 ∀i}

with the standard strati�cation Deltap → [p] over the p-simplex [p] := {0 < · · · < p}

given by (t0, ..., tp) 7→ max{i | ti 6= 0}.

The homotopy types of the unordered con�guration spaces of M form the

underlying ∞-groupoid of Exit(Ran(M)), the exit-path ∞-category of Ran(M); this

composite of constructions de�nes our notion of a con�guration category. A similar

construction is given in [1] and further developed in [11].

More generally, for any strati�ed space X, we de�ne the exit-path ∞-category

of X as the following simplicial set:
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De�nition 1.0.3 (A.6 in [26]). For a strati�ed space X → P , the exit-path ∞-

category of X, Exit(X), is the simplicial set whose value on [p] is the set

{∆p f−→ K | f is a strati�ed map}.

Informally then, an object of Exit(X) is a point in X and a morphism is a path

in X which is allowed to `exit' from a deeper stratum to a less-deep stratum, but not

vice-versa.

In summary, we approach the homotopy types of con�gurations of �nite subsets

of a manifold by examining the exit-path ∞-category of the Ran space of that

manifold. Modifying Question (1.0.1), this thesis broadly asks:

Question 1.0.4. For a manifoldM , to what extent does the∞-category Exit(Ran(M))

recover M?

Motivation: Con�guration spaces and embeddings

It is natural to probe spaces of embeddings with con�guration spaces of points,

since embeddings are, in particular, injective. The broad motivating question for this

thesis is:

Question 1.0.5. How well are embedding spaces approximated by functors between

Exit(Ran(−))?

Speci�cally, we approach embedding spaces between Euclidean spaces and the

embedding space of knots by specializing Question (1.0.4) to the manifolds Rn and

S1.
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Embedding spaces between Euclidean spaces

We consider the categories Θn. This family of categories was introduced by Joyal

in [20] for the purpose of de�ning (∞, n)-categories. Later, Rezk used Θn to de�ne

(∞, n)-categories as a generalization of complete Segal spaces [32]. His work followed

Berger's de�ntion of Θop
n as the n-fold wreath product of ∆op, where Θ1 := ∆ [10].

Following Rezk, Θ2 is the full sub-category of the category of 2-categories, Cat2, in

which an object is denoted [m]([n1], ..., [nm]), where [m], [n1], ..., [nm] ∈ ∆. Such an

object can be described by a `pasting diagram'. For example, the object [3]([1], [0], [2])

corresponds to:

0 1 2 3

In general, Θn is the full sub-category of the category of strict n-categories, Catn, in

which an object is a pasting diagram.

In [7], Ayala and Hepworth show that Θn naturally encodes the homotopy type

of con�guration spaces of ordered points in Rn. Speci�cally, they show a homotopy

equivalence between Confk(Rn) and the classifying space of the �ber over {1, ..., k}+

of the functor Θop
n → Fin∗, which is given by the Yoneda functor Θn(−, cn), which

canonically factors through Fin∗, the category of based �nite sets. The value of this

functor on a pasting diagram is the set of top-dimensional cells therein, adjoined

a disjoint base point. They conjecture that Exit(Ran(Rn)) is a localization of a

subcategory of Θn. Their methods do not extend toward a proof of this conjecture, so

a new idea is required, which is supplied in this thesis. We introduce the subcategory

ΘExit
n of Θn and show that it localizes to Exit(Ran(Rn)). In fact, this result follows

from Theorem (1.0.6) of my thesis, a generalized a�rmation of their conjecture, which

is explained next.
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The work of Ayala, Francis and Rozenblyum in [4] extends the de�nition of

the exit-path ∞-category of a strati�ed space to a de�nition of the exit-path ∞-

category of a presheaf on strati�ed spaces. For a connected manifold M , we consider

Exit(Ranu(M)), the exit-path ∞-category of the unital Ran space of M . The

superscript `u' stands for `unital', which, through Theorem (1.0.6), makes reference to

the role of degeneracy morphisms in Θn. Explicitly, Exit(Ran
u(M)) is the simplicial

space in which an object is a �nite, possibly empty subset S of M , and a morphism

from S ⊂ M to T ⊂ M is a map between sets T → S together with an injection

(S
∐
T×{0}

(T × ∆1)) ↪→ M × ∆1 over ∆1. So the objects of Exit(Ranu(M)) are all

those objects in Exit(Ran(M)) together with the empty subset, and heuristically,

the morphisms of Exit(Ranu(M)) are all those exit-paths in Exit(Ran(M)) together

with morphisms that are not quite exit-paths, in that they allow points in the source

to `disappear'. Note then, that Exit(Ranu(M)) contains Exit(Ran(M)) as a ∞-

subcategory.

Theorem 1.0.6. For each n ≥ 1, there is a localization

Θact
n → Exit(Ranu(Rn))

from the subcategory Θact
n of Θn of active morphisms to the exit-path ∞-category of

the unital Ran space of Rn.

This result is related to, and motivated by, Dunn's additivity [15] which asserts

that the natural map between operads En ⊗ Em → En+m from the Boardman-Vogt

tensor product is an equivalence. In [16], it was shown that the con�guration spaces

of a product of parallelizable manifolds are recovered from the con�guration spaces of

each factor in terms of the Boardman-Vogt tensor product of modules over the little
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cubes operad. The next conjecture, which should follow from Theorem (1.0.6), would

be a similar result, except that it does not require a framing of the manifolds.

Conjecture 1.0.7. For connected smooth manifolds M and N , the wreath product of

the exit-path ∞-category of the Ran space of M with the exit-path ∞-category of the

Ran space of N localizes to the exit-path ∞-category of the Ran space of the product

M ×N

Exit(Ranu(M)) o Exit(Ranu(N)) −→ Exit(Ranu(M ×N)).

Next, we present Corollary (1.0.8) of Theorem (1.0.6) which proves the

aforementioned conjecture from [7]. The categories ΘExit
n are subcategories of Θn

which are de�ned in this thesis. Here, we de�ne this subcategory for the case n = 1:

ΘExit
1 is the subcategory of ∆ in which objects are all those except [0] and morphisms

are all those that are injective and active.

Corollary 1.0.8. For each n ≥ 1, there is a localization

ΘExit
n → Exit(Ran(Rn))

from the subcategory ΘExit
n of Θact

n to the exit-path ∞-category of the unital Ran space

of Rn.

Technique The key idea behind Theorem (1.0.6) is that Exit(−) carries re�ne-

ments of strati�ed spaces to localizations. Though this idea does not directly apply

to the case at hand, since Ranu(Rn) is a presheaf on strati�ed spaces rather than

a strati�ed space, it motivates our method of proof. Namely, we identify an ∞-

category Exit(Ranu(Rn)) that behaves like the exit-path ∞-category of a re�nement

of Ranu(Rn), if such a thing were to exist, and then, we prove an equivalence from

the exit-path ∞-category of that re�nement to Θact
n .
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Finite-type knot invariants

In the case of the embedding space of knots, the application of con�guration

spaces saw progress in the development of con�guration space integrals (Bott-Taubes

integrals). Though the original motivation was to �nd new classical invariants [19],

[8], [12], as it turned out, these integrals are `�nite-type knot invariants' and are in

fact universal in the following sense: All �nite-type invariants are constructed from a

generalization of con�guration space integrals [35].

In this thesis, we bring a direct, novel approach to the application of con�g-

uration spaces in the study of the embedding space of knots via the con�guration

categories Exit(Ran(S1)) and Exit(Ran(R3)). The following theorem, which are

proven in this thesis, yields a purely combinatorial perspective on the homotopy

type of con�guration spaces of the circle, as organized by the exit-path ∞-category.

Theorem 1.0.9. There is equivalence of ∞-categories

Exit(Ran(S1)) ' (∆surj
	 )op

between the exit-path ∞-category of the Ran space of the circle and the opposite of

the subcategory of the parasimplex category consisting of surjective morphisms.

Theorem (1.0.9) together with Corollary (1.0.8) motivates identifying the

relationship between this work and Goodwillie-Weiss embedding calculus as it relates

to knots, which we brie�y explain now. The manifold calculus of functors due to

Goodwillie and Weiss de�nes a notion of `polynomial approximation' of functors

between suitable ∞-categories [38], [18]. Promising connections have been made

between the embedding calculus and the study of �nite-type invariants [37], [36], [13],

[14]. Recently, the strongest evidence to date was established which supports the

conjecture that the nth polynomial approximation of the Goodwillie-Weiss embedding
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tower is a universal type-n knot invariant over the integers [14]. The homotopy-

theoretic context together with the role of the con�guration space of points of the

tower strongly suggest a close connection between it and the functor space arising

from applying Exit(Ran(−)) to the space of knots.

Conjecture 1.0.10. There is an equivalence between the space of functors over N

from Exit(Ran(S1)) to Exit(Ran(R3)) and

MapCat∞/N(Exit(Ran(S1)),Exit(Ran(R3))) ' colimPn(Emb(S1,R3))

the colimit of the nth-polynomial approximation of the Goodwillie-Weiss embedding

calculus tower for knots.

The advantage of Conjecture (1.0.10) is that factorization homology of Ayala and

Francis [3] can then be imported to yield a purely algebraic setting. Theorem (1.0.9)

and Theorem (1.0.8) indicate that every �nite-type knot invariant is captured

through the Hochschild chain complex, the factorization homology which is the global

observables on S1 of a 1-dimensional TQFT,

∫
S1

A = HC•(A) .

Conjecture 1.0.11. For two knots K and K ′ that are distinguished by a �nite-type

knot invariant, there is an E3-algebra A in ModK for a commutative ring K, for which

the associated maps HC•(A)→ A are not equivalent, where HC•(A) is the Hochschild

chain complex of A.

Technique The key tool for showing the equivalence in Theorem (1.0.9) is the

universal cover of S1, R → S1 given by exponentiation. Indeed, to give a brief
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indication of the role of the universal cover in relating the exit-path ∞-category of

the Ran space of S1 and the parasimplex category, observe that the �ber in R over

a �nite subset of points of S1 is a parasimplex, the linear order of which is inherited

from R and the Z-action of which comes from the fact that the quotient space of R

by the natural action of Z is S1.

Use of ∞-category/category theory

In this thesis, we use (∞, 1)-categories to package the homotopy type of

con�guration spaces. In the last decade, the theory of (∞, 1)-categories, which we

refer to simply as ∞-categories, has been greatly developed, notable for the scope of

this thesis is the work of Lurie in [26] on the theory of quasi-categories and the work

of Rezk in [31] on the theory of complete Segal spaces.

Quasi-categories

We use Joyal's quasi-category model of ∞-categories [21]. Namely, a quasi-

category is a called a simplicial set, that is, a functor from the opposite of the simplex

category ∆op (De�nition (3.0.1)) to the category of sets Set, that satsi�es a certain

condition called the inner-horn �lling condition. For the de�nition of this condition,

together with other basic notions regarding quasi-catgeories which are present in the

background of this work, notably ∞-groupoids and geometric realization see Rezk's

friendly exposition [33].

Complete Segal spaces

We use Rezk's complete Segal spaces to model ∞-categories [31]. A complete

Segal space (De�nition (3.0.14)) is a simplicial space, that is, a functor from the

opposite of the simplex category ∆op to the ∞-category of spaces, Spaces.
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De�nition 1.0.12. The ∞-category of spaces, Spaces is the localization of the

category of topological spaces that admit a CW structure and continuous maps

thereof, localized on (weak) homotopy equivalences.

Terminology 1.0.13. We say space to refer to an object in Spaces; that is, a CW

complex.

We refer the reader to [31] for any additional information regarding complete

Segal spaces.

Notation 1.0.14. The value of a complete Segal space C on [1] is the arrow space of

C, denoted Ar(C).

Model independence

In this thesis, we work model independently, which, by the work of Joyal and

Tierney in [22], is a valid approach, since quasi-categories are shown to be equivalent

to complete Segal spaces. Model independence is exercised in this thesis, for example,

in that the hom-∞-groupoid with �xed source and target of a quasi-category is

equivalent to a space, by which we mean a CW-complex, by way of the equivalence

between quasi-categories and complete Segal spaces. Throughout this work, we are

liberal with our use of model independence and typically do not give forewarning of

its implementation.

Category theory

We use fundamental notions of category theory frequently and at leisure in this

thesis. For the reader not familiar with categories, we suggest [34].

The nerve functor

There is a construction which takes an ordinary category C and produces an∞-

category NC called the nerve of C. This construction is explicated by a fully faithful
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functor from the category of categories to the category of simplicial sets, through

which each category is carried to a quasi-category. In light of the fully faithfulness of

this functor, we refer to an ordinary category as an∞-category without any reference

to its nerve, whenever appropriate within the context. For a de�nition of the nerve,

see 3.1 in [33].

Outline

The main result of Chapter 2 is Theorem 1.0.9, wherein we show an equivalence

between the exit-path ∞-category of the Ran space of S1 and the parasimplex

category. The �rst half of the chapter is devoted to de�ning all those notions present

in the statement of the main theorem, notable is a strati�ed space, the Ran space,

and the exit-path ∞-category. Then, we prove Theorem (1.0.9) in two parts: First we

de�ne the functor in Construction (2.0.21) and then we show that this functor is an

equivalence in Lemma (2.0.23).

The main result of Chapter 3 is Theorem (1.0.6), wherein we show that the

category Θact
n localizes to the exit-path ∞-category of the unital Ran space of Rn.

First, we de�ne all those notions present in the statement of the main theorem. We

prove Theorem (1.0.6) in two lemmas (3.0.57) and (3.0.63).

Lemma (3.0.57) states that there is an equivalence between the exit-path ∞-

category of the �ne unital Ran space of Rn and Θact
n . We prove this equivalence in

two parts: First we de�ne the functor in Construction (3.0.58) and then we show that

this functor is an equivalence in Lemma (3.0.59).

The second lemma used for proving Theorem (1.0.6), (3.0.63), states that the

exit-path∞-category of the �ne unital Ran space of Rn localizes to the exit-path∞-

category of the unital Ran space of Rn. The proof of this lemma is largely technical,

rooted in category theory. We build the argument using Theorem (3.0.68) from [27]
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and prove two lemmas, (3.0.71) and (3.0.101), both of which rely on Quillen's Theorem

B and the notion of a Cartesian �bration.

Lastly, we prove one corollary to Theorem (1.0.6), (3.0.103), wherein we show

that a subcategory of Θn localizes to the exit-path ∞-category of the Ran space of

Rn.
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CONFIGURATION SPACES OF THE CIRCLE

In this chapter we focus on understanding an ∞-category that encodes the

topology of �nite subsets of the circle together with paths that witness subdivision

of points on the circle, called the exit-path ∞-category of the Ran space of the circle.

The main result of this chapter identi�es that this ∞-category, which encodes all of

this topological data, has a purely combinatorial description.

Preliminary de�nitions

We begin with the preliminary de�nitions of Ran space, strati�ed space, and the

exit-path ∞-category as de�ned in ( [26]) and the parasimplex category as de�ned in

( [24]).

De�nition 2.0.1. Given a manifold M , the con�guration space of �nite subsets of k

points of M is the topological space

Confk(M) := {(x1, ..., xk) ∈Mk | xi 6= xj if i 6= j}

under the subspace topology.

There is an evident action of Σk on Confk(M) given by permuting the order of

the indexing. The resulting quotient space

Confk(M)Σk := {S ⊂M | |S| = k}

is called the unordered con�guration space of �nite subsets of k points of M .

Intuitively, the con�guration spaces for a �xed manifold naturally organize

together as a topological space. For example, a half-open path in Conf2(M) in
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which the two points approach one another limits to a point in Conf1(M). A similar

procedure intuits that for any two natural numbers k and r, Confk(M) is `nearby'

Confr(M) in some larger space; this larger space is de�ned next.

De�nition 2.0.2. Given a smooth, non-empty, connected manifold M we denote

Ran(M), called the Ran space of M , to be the set of nonempty, �nite subsets of M

Ran(M) := {S ⊂M | S is �nite and non-empty}

with the �nest topology for which the map

Mk Ik−→ Ran(M)

given by (m1, ...,mk) 7→ {m1, ...,mk}, is continuous for each k ≥ 1.

There is a natural �ltration of Ran(M) by Confk(M)Σk for all k ∈ N; such

additional structure is made rigorous by a strati�ed space, which we de�ne next.

Note 2.0.3. We regard a poset P as a topological space by de�ning U ⊂ P to be

open if and only if it is closed upwards; that is, if a ∈ U , then every b ≥ a is also in

U .

De�nition 2.0.4 (2.1.3 in [6]). A strati�ed space S : X → P is a paracompact,

Hausdor� topological space X together with a poset P and a continuous surjection

S such that for each p ∈ P , the p-stratum Xp := S−1(p) is connected.

For strati�ed spaces X
S−→ P and Y

S′−→ P ′, a map X
f−→ Y is a strati�ed map if

f respects the strati�ed structures of X and Y , i.e.,

X Y

P Q

f

S S′
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is a commutative diagram.

Example 2.0.5. We stratify R2 over the poset P , de�ned to be

1+

20 0 2+

10 2− 1−

where the arrows indicate the ordering. The following �gure depicts the strati�cation

R2 → P , where the positioning and coloring of the �gure and P are coordinated as

to indicate the strati�cation.

0

1+

10 1−

2+20

2−

Example 2.0.6. The standard strati�cation of the topological p-simplex

∆p := {(t0, ..., tp) ∈ Rp+1 | Σp
i=0ti = 1, ti ≥ 0 ∀i} → [p] := {0 < · · · < p}

is given by

(t0, ..., tp) 7→ max{i | ti 6= 0}.

In this thesis, we focus on the Ran space of a manifold as a strati�ed space.

Example 2.0.7. Ran(M) naturally emits a strati�cation over the natural numbers

by cardinality, Ran(M)→ N given by S 7→ |S|.
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The k-stratum Ran(M)k is the unordered con�guration space of �nite subsets

of k points of M , Confk(M)Σk .

Notation 2.0.8. Typically, we denote a strati�ed space X
S−→ P by its underlying

topological space X, if we expect S and P to be understood.

We are interested in understanding the homotopy type of the strati�ed space

Ran(S1); the next tool provides a way to do just that. For a manifold M , the

homotopy types of con�guration spaces of M form the underlying ∞-groupoid of

the exit-path ∞-category of Ran(M). In general, for any strati�ed space X, we de�ne

the exit-path ∞-category of X as follows:

De�nition 2.0.9. For a strati�ed space X → P , the exit-path ∞-category of X,

Exit(X), is the simplicial set whose value on [p] is the set

{∆p f−→ X | f is a strati�ed map}.

Informally, then, an object of Exit(X) is a point in X and a morphism is a path

in X which is allowed to `exit' from a deeper stratum to a less-deep stratum, but not

vice-versa.

Remark 2.0.10. De�nition (2.0.4) is not strong enough to guarantee that the

simplicial set de�ning the exit-path ∞-category of a strati�ed space will satsify the

inner-horn �lling condition. Rather, a stronger notion of a strati�ed space, namely

a conically strati�ed space (A.5 in [26]) is needed to guarantee that the exit-path

∞-category construction yields an ∞-category. This is shown in A.6 in [26]. The

de�ning feature of a conically strati�ed space is that locally it is Euclidean space

cross the cone of some strati�ed space of a lower dimension. The di�erence between

De�nition (2.0.4) and this stronger notion of a strati�ed space is technical and would
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distract the reader from the focus of this thesis. Extensive treatment of conically

strati�ed spaces is given in [26] and [6] and we refer the reader to either source.

In 3.7 in [6], it is shown that the Ran space of a manifold is a conically strati�ed

space. Hence, the exit-path ∞-category of the Ran space of a manifold is in fact an

∞-category.

In this chapter, we seek to understand the exit-path ∞-category of the Ran

space of the circle, Exit(Ran(S1)). Heuristically, an object is a �nite subset S of S1

and a morphism is an `exit-path' in Ran(S1) i.e., a morphism S
f−→ T is given by a

strati�ed map ∆1 → Ran(S1) whose value at (1, 0) ∈ ∆1 is S and at (0, 1) is T , and

further, |S| ≤ |T |. The following de�nition equips us to have an alternative de�nition

of a morphism of f .

De�nition 2.0.11 ( [4]). The reversed cylinder of a map between �nite sets T → S

is

cylr(T → S) := S
∐
T×{0}

T ×∆1.

More generally, the reversed cylinder of a composable sequence of maps between �nite

sets Sp → Sp−1 → · · · → S0 is

cylr(Sp → Sp−1 → · · · → S0) := S0

∐
S1×{0}

S1 ×∆1
∐

S2×∆1

...
∐

Sp×∆p−1

Sp ×∆p.

Example 2.0.12. Consider the map of sets T = {t, t′, t′′} → S = {s, s′, s′′} given by

t, t′ 7→ s and t′′ 7→ s′. The reverse cylinder cylr(T → S) over ∆1 is depicted by the

following �gure:
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s

s'
s�

0

t
t'
t�

1

Observation 2.0.13. Given a connected manifold M , a point ∆p → Ran(M) in the

set of [p]-values of Exit(Ran(M)) is an embedding over ∆p

cylr(Sp � · · ·� S0) ↪→M ×∆p

for some sequence of surjective maps of �nite sets Sp � · · ·� S0.

Example 2.0.14. Consider M = R2. An embedding of the reversed cylinder

cylr(T � S) depicted by

s

s'

0

t
t'
t�

1

into R2 × ∆1 is an exit-path in Ran(R2) which starts at (the embedded image of)

S ⊂ R2 and ends at (the embedded image of) T ⊂ R2. The image of the embedding

is the graph of this exit-path in R2.

The parasimplex category and con�guration spaces of S1

The main result of this chapter shows that the homotopy type of con�gurations

of �nite subsets of S1 as organized by the strati�ed space Ran(S1), codi�ed by the exit-

path ∞-category of that strati�ed space, Exit(Ran(S1)) is encoded by the following
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combinatorially de�ned category.

The parasimplex category

De�nition 2.0.15. The parasimplex category ∆	 is the category in which an object

is a parasimplex : A nonempty, linearly ordered set Λ equipped with a Z-action,

+ : Λ× Z→ Λ

that satsi�es two properties

i) for each λ ∈ Λ, λ < λ+ 1

ii) for each λ, λ′ ∈ Λ, {µ ∈ Λ | λ < µ < λ′} is �nite.

A morphism Λ
f−→ Λ′ is a paracyclic map: A nondecreasing and Z-equivariant map of

parasimplicies.

Example 2.0.16. For each n ∈ Z+, the set
1

n
Z :=

{
i

n

∣∣∣∣ i ∈ Z
}

is a parasimplex,

the linear order and Z-action of which is inherited as a subset of R with linear order

given by positive orientation and the natural action of Z by addition.

Observation 2.0.17 (4.2.3. in [24]). Each parasimplex Λ is isomorphic to the

parasimplex
1

n
Z for a unique n ∈ Z+.

De�nition 2.0.18. The category ∆surj
	 is the subcategory of the parasimplex category

whose objects are the same as those of ∆	 and whose morphisms are all those of ∆	

that are surjective.

Identifying the exit-path ∞-category of the Ran space of S1 as ∆surj
	

The next theorem, the main result of this chapter, articulates a sense in which

the homotopy type of con�gurations of unordered points in S1 is encoded by an
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ordinary, combinatorially de�ned category, the opposite of ∆surj
	 . First, we de�ne the

notion of an opposite category.

De�nition 2.0.19. Given a category C, the opposite category Cop of C is the category

whose objects are the same as those of C and in which there is a morphism from d

to c precisely when there is a morphism from c to d in C. Composition is given by

composition in C.

Theorem 2.0.20. There is an equivalence of ∞-categories

Exit(Ran(S1))
'→ (∆surj

	 )op

from the exit-path ∞-category of the Ran space of the circle to the opposite of the

category ∆surj
	 .

While intuitive, this result in particular implies that the exit-path ∞-category

of the Ran space of S1 is, in fact, an ordinary category. We break Theorem (2.0.20)

up into two parts: In Part 1, Construction (2.0.21) de�nes a functor from the exit-

path ∞-catetgory of the Ran space of S1. In Part 2, Lemma (2.0.23) states that the

functor de�ned in Construction (2.0.21) is an equivalence. The main tool we use is

the universal cover R→ S1.

Part 1: De�ning the functor Υ

Construction 2.0.21. There is a functor

Υ : Exit(Ran(S1))→ (∆surj
	 )op

from the exit-path ∞-category of the Ran space of the circle to the opposite of the

category ∆surj
	 .
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Note 2.0.22. A functor from an ∞-category to the nerve of a (small) category is

completely determined by its assignment on objects, morphisms and the requirement

that composition is respected. This is due to the fact that a simplicial set given by the

nerve of a small category is completely determined by its values on [i] for 0 ≤ i ≤ 2.

(See the proof of Lemma 3.5 in [17] for more details.)

Proof. By Note (2.0.22), because the target of Υ is an ordinary category, it su�ces

to name Υ on objects and morphisms and check that composition is preserved.

In de�ning Υ, we make use of the universal cover R exp−−→ S1 given by the

exponentiation map e2πi−. The value of Υ on an object S ⊂ S1 of Exit(Ran(S1))

is the preimage of exp over S, exp−1(S) which, as a subset of R inherits both a

linear structure and an action of Z from R with linear order on R given by positive

orientation and the natural Z-action of addition.

By Observation (2.0.13), a morphism S → T in Exit(Ran(S1)) is an embedding

cylr(T
f−→ S)

E
↪−→ S1 × ∆1 over ∆1. For each λ ∈ exp−1(T ), consider the path given

by the restriction of E to the reverse cylinder of the assignment of the singleton

exp(λ) 7→ f(exp(λ)) under f

E| : cylr(exp(λ) 7→ f(exp(λ))) ↪→ S1 ×∆1.

Denote this path in S1 by γE,λ. Now we are prepared to name the value of Υ on

S → T : The image exp−1(T )
Υ(f)−−→ exp−1(S) is de�ned by

λ 7→ γ̃E,λ(1)
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where γ̃E,λ is the unique path lift of the reverse of γE,λ such that γ̃E,λ(0) = λ:

R

[0, 1] S1

exp

γ̄E,λ

γ̃E,λ

where γ̄E,λ denotes the reverse of the path γE,λ.

It is straightforward to check that Υ(f) is nondecreasing. Z-equivariance of

Υ(f) follows from the bijective correspondance between π1(S1) and the set of deck

transformations of R as the universal cover of S1. Thus, Υ(f) is a paracyclic map.

Furthermore, surjectivity of Υ(f) is straightforward to verify.

Consider a commutative triangle in Exit(Ran(S1))

S

T R

(2.0.1)

given by the embedding

cylr(R
g−→ T

f−→ S)
E
↪−→ S1 ×∆2

over ∆2. Denote the subembeddings of E which de�ne each arrow in (2.0.1) by

cylr(T
f−→ S)

Ef
↪−→ S1×∆1, cylr(R

g−→ T )
Eg
↪−→ S1×∆1 and cylr(R

f◦g−−→ S)
Ef◦g
↪−−→ S1×∆1.

Note that for each λ ∈ R, E restricted to the reverse cylinder of maps of singletons

cylr(exp(λ) 7→ g(exp(λ)) 7→ f(g(exp(λ)))

is a homotopy of paths in S1 between the concatenation γEf ,γ̃Eg,λ(1) ∗γEg ,λ and γEf◦g ,λ.
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The image of (2.0.1) under Υ commutes if this homotopy of paths ∆1 → S1 has a lift

to R under exp for the �xed lift {0} 7→ λ. Indeed, because ∆1 is simply connected,

such a lift is guaranteed by the homotopy lifting property.

We have just constructed a functor from the exit-path ∞-category of the Ran

space of S1 to the opposite of the subcategory ∆surj
	 of ∆	 consisting of only surjective

morphisms. The next lemma states that this functor names an equivalence of ∞-

categories.

Part 2: Showing Υ is an equivalence

Lemma 2.0.23. The functor Υ de�ned in Lemma (2.0.21) is an equivalence

Υ : Exit(Ran(S1))
'−→ (∆surj

	 )op

from the exit-path ∞-category of the Ran space of S1 to the opposite of the category

∆surj
	 .

De�nition 2.0.24. A functor of ∞-categories C F−→ D is

• essentially surjective if for each object in D, there exists an object c in C whose

value under F is canonically isomorphic to d.

• fully faithful if for each pair of objects c and c′ in C, the map induced by F

between hom-spaces HomC(c, c
′)→ HomD(F (c), F (c′)) is a weak equivalence.

• an equivalence of ∞-categories if F is essentially surjective and fully faithful.

Proof. (2.0.23) We will show that Υ is essentially surjective and fully faithful.

Essential surjectivity of Υ follows from (2.0.17). Indeed, given a parasimplex Λ,
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it is isomorphic to
1

n
Z for a unique n ∈ Z. The image of the object S := {e

2πim
n | 0 ≤

m ≤ n− 1} in Exit(Ran(S1)) under Υ is
1

n
Z.

We will show fully faithfulness by showing that the map induced between hom-

spaces with �xed source and target

HomExit(Ran(S1))(S, T )
Υ−→ Hom(∆surj

	 )op(exp−1(S), exp−1(T )) (2.0.2)

is a weak homotopy equivalence of spaces; that is, a surjection on path components

with contractible �bers (contractible �bers because ∆	 as an ordinary cateogry has

discrete hom-spaces). A weak homotopy equivalence implies a homotopy equivalence

in this context because hom-spaces of∞-categories are equivalent to CW-complexes.

Fix a morphism exp−1(T )
f−→ exp−1(S) in the target of (3.0.19). For each

λ ∈ exp−1(T ), let Fλ : [0, 1] −→ R be the straight line path in R from f(λ) to

λ. Postcomposing with exp yields a path gλ in S1 from exp(f(λ)) ∈ S to exp(λ) ∈ T .

Note that gλ = gλ′ whenever λ, λ
′ ∈ exp−1(t) for some t ∈ T . The set of distinct

gλ, which we denote by {gt}t∈T , de�nes a morphism g in Exit(Ran(S1)) from S to T

whose image under Υ is f . Thus, (3.0.19) is a surjection on connected components.

Let α : Sn → Υ−1(f) be continuous and based at the morphism g de�ned

previously. We will show that α is homotopic to the constant map at g. For each

r ∈ Sn, let Eα(r) denote the embedding de�ning the morphism α(r). For each r ∈ Sn

and t ∈ T , consider the set of lifted paths {γ̃Eα(r),λ}λ∈exp−1(t) in R via exp. For each

triple (r, t, λ) such that λ ∈ exp−1(t), de�ne the straight-line homotopy from γ̃Eα(r),λ

to the straight-line path Fλ de�ned previously

[0, 1]× [0, 1]
H′r,t,λ−−−→ R
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by

(v, u) 7→ (1− v)γ̃Eα(r),λ(1− u) + vFλ(u).

Exponentiating yields a straight-line homotopy from γEα(r),λ
to gt in S1. Note that

this homotopy is independent of the choice of λ ∈ exp−1(t). Thus, for each pair

(r, t), de�ne Hr,t := exp ◦ H ′r,t,λ, for any λ ∈ exp−1(t). Now we are equipped to

de�ne a homotopy [0, 1] × Sn H−→ Υ−1(f) from γ to the constant map at g. For

each (v, r) ∈ [0, 1] × Sn, the set of paths in S1 {Hr,t(v,−)}t∈T de�ne a morphism in

Υ−1(f). We de�ne this morphism to be the value of (v, r) under H. Thus, a �ber of

Υ is contractible and hence, Υ is an equivalence.

In summary, we have shown that the exit-path ∞-category of the Ran space

of S1 is equivalent to an ordinary category, the opposite of the subcategory of the

parasimplex category consisting of all the same objects and only surjective morphisms.

In so doing, we establish a sense in which the homotopy type of con�gurations

of unordered points of S1 is encoded by the combinatorially de�ned parasimplex

category.
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CONFIGURATION SPACES OF EUCLIDEAN SPACE

The main result of this chapter generalizes the result in [7] that Θn naturally

encodes the homotopy type of con�guration spaces of ordered points in Rn. We will

show that Θn encodes the homotopy type of con�guration spaces of unordered points

in Rn by showing the subcategory Θact
n of Θn consisting of all those active morphisms

of Θn localizes to the `unital' version of the exit-path ∞-category of the Ran space

of Rn; an∞-category in which an object is a �nite subset of Rn, including the empty

subset, and in which a morphism is an exit-path, including those that allow points to

vanish.

The exit-path ∞-category of the unital Ran Space

In [4], Ayala, Francis and Rozenblyum extend the de�nition of the exit-path

∞-category of a strati�ed space to a de�nition of the exit-path∞-category of a stack

of strati�ed spaces. With this de�nition in hand, we may articulate the sense in

which we encode the homotopy type of unordered con�gurations of points in Rn with

an ∞-category; namely, the `unital' version of the exit-path ∞-category of the Ran

space of Rn, which we de�ne next, after reviewing two important categories and two

important concepts in category theory.

De�nition 3.0.1. The simplex category ∆ is the category in which an object is a

non-empty, �nite, linearly ordered set and in which a morphism is a non-decreasing

map of sets. Composition is composition of maps between sets.

Notation 3.0.2. For each object S of ∆, there is a unique non-negative integer p

such that S is canonically isomorphic to the linearly ordered set [p] := {0 < · · · < p}.

We call [p] the p-simplex and will henceforth refer to the objects of ∆ as p-simplicies.



27

Notation 3.0.3. The category of posets Poset has an evident fully faithfully

embedding into the category of categories Cat. In light of this fully faithful functor,

we refer to [p] as either a linearly ordered set or as the category whose objects are

{0, 1, ..., p} and in which there is a unique morphism from i to j precisely when i ≤ j,

and no morphism otherwise.

De�nition 3.0.4. Fin is the category in which an object is a �nite set and a morphism

is a map of sets; composition is evident.

De�nition 3.0.5. Given a category C, the pullback of the morphisms c → d and

b → d in C is a triple consisting of an object a in C together with two morphisms

a→ c and a→ b in C for which the following diagram in C

a b

c d

commutes and is universal in the following sense: For any triple consisting of an

object a′ ∈ C and morphisms a′ → c and a′ → b in C for which the following diagram

commutes, there is a unique morphism a′ → a in C satsifying:

a′

a b

c d.

∃!

We denote a pullback diagram by

a b

c d.

y
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De�nition 3.0.6. Given a category C over Fin∗ via a functor F and a category D,

the wreath product C o D is the pullback of categories

C o D Fin∗ o D

C Fin∗

y

F

where the vertical arrow on the right is the forgetful functor from Observation (3.0.22).

Observation 3.0.7. The nerve of Finop is a presheaf on ∆; that is,

NFinop : ∆→ Spaces .

Thus, we may de�ne the ∞-category ∆ slice over Finop, ∆/Finop

∆/Finop PShv(∆)/Finop

∆ PShv(∆)

y

Yoneda

as the pullback of ∞-categories.

De�nition 3.0.8. For a smooth, connected manifold M , the exit-path ∞-category

of the unital Ran space of M , Exit(Ranu(M)), is the simplicial space over Finop

representing the presheaf on ∆/Finop whose value on an object

[p]
<σ>−−→ Finop

which selects out a sequence of maps among �nite sets σ : Sp → · · · → S0, is the

space of embeddings

cylr(σ) ↪→M ×∆p
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over ∆p equipped with the compact-open topology; the structure maps are evident.

Remark 3.0.9. The functor that names Exit(Ranu(Rn)) over Finop,

Exit(Ranu(M))
φ−→ Finop

is the evident forgetful functor; its value on an object S ↪→ M is S and its value on

a morphism cylr(J
σ−→ S) ↪→M ×∆1 is σ.

Observation 3.0.10. Explicitly, an object of Exit(Ranu(M)) in the �ber over the

�nite (possibly empty) set S is an embedding,

S ↪→M.

A morphism from S
e
↪−→ M to T

d
↪−→ M over the map of �nite sets T

σ−→ S is an

embedding,

cylr(T
σ−→ S)

E
↪−→M ×∆1

over ∆1 such that E|S = e and E|T×1 = d.

Example 3.0.11. Consider M = R2. An embedding of the reversed cylinder

cylr(T → S) depicted by

s

s'
s�

0

t
t'
t�

1

into R2 ×∆1 is a morphism in Exit(Ranu(R2)) which starts at (the embedded image

of) S ⊂ R2 and ends at (the embedded image of) T ⊂ R2.
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The image of the embedding in Example (3.0.11) is the graph of a set of

paths in R2 that almost name an `exit-path' in Ran(R2), except that they do not

because the point s′′ vanishes. The failure of this embedding to name a morphism in

Exit(Ran(R2)) is that the map of �nite sets T → S is not surjective.

Informally then, we see that the objects of Exit(Ranu(M)) are all those in

Exit(Ran(M)) together with the empty subset, and its morphisms are all those exit-

paths in Exit(Ran(M)) together with morphisms that are not quite exit-paths, in that

they allow points in the source to disappear. This feature explains the he superscript

`u' - it stands for `unital', which, through Theorem (3.0.46), makes reference to the

role of degeneracy morphisms in Θn.

Evidently then, Exit(Ranu(M)) `contains' Exit(Ran(M)) as a sub-simplicial

space. Indeed, our observations in (2.0.13) indicate that Exit(Ran(M)) de�nes a

simplicial space over (Finsurj6=∅ )op, the value of which on [p] over Sp � · · · � S0 is the

space of embeddings of cylr(Sp � · · ·� S0) into M ×∆p over ∆p, equipped with the

compact-open topology. Observation (3.0.12) explicates precisely how Exit(Ran(M))

is a sub-simplicial space of Exit(Ranu(M)).

Observation 3.0.12. The exit-path∞-category of the Ran space of Rn, Exit(Ran(Rn)),

is a sub-simplicial space of the exit-path ∞-category of the unital Ran space of Rn,

Exit(Ranu(Rn)), described as the following pullback of simplicial spaces:

Exit(Ran(Rn)) Exit(Ranu(Rn))

(Finsurj6=∅ )op Finop

y
(3.0.1)

where the downward arrows are given by the forgetful functor φn (3.0.9), which just

remembers the underlying set data.
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Remark 3.0.13. As previously mentioned, an alternative, but equivalent de�nition

of the exit-path ∞-category of the unital Ran space of a manifold M is as the value

of a certain presheaf on strati�ed spaces under the functor Exit(−); this functor is

de�ned in [4]. In this thesis, we choose to not introduce this presheaf as it is not

explicitly used and further, would distract the reader from the core ideas.

The exit-path ∞-category of the unital Ran space of Rn is an ∞-category

Of central, technical importance in this thesis is that, for a smooth, connected

manifoldM , Exit(Ranu(M)) is, in fact, an∞-category. Such a fact, however, does not

follow from [26], as does the case of the exit-path ∞-category of the strati�ed space

Ran(M), because Ranu(M) is not strati�ed space, as discussed in Remark (3.0.13).

This subsection is devoted to proving the technical result that Exit(Ranu(M)) is a

complete Segal space.

De�nition 3.0.14. A simplicial space ∆op F−→ Spaces is a complete Segal space if it

satsi�es the following two conditions:

i) (Segal Condition) For each p > 1, the diagram of spaces

F [p] F{p− 1 < p}

F{0 < · · · < p− 1} F{p− 1}

is a pullback.
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ii) (Completeness Condition) The diagram of spaces

F (∗)

F (∗) F [3] F (∗)

F{0 < 2} F{1 < 3}

is a limit.

Proposition 3.0.15. The simplicial space Exit(Ranu(M)) satis�es the Segal and

completeness conditions.

Corollary 3.0.16. The simplicial space Exit(Ran(M)) satis�es the Segal and com-

pleteness conditions.

Proof. In (3.0.12), we observed the pullback diagram among simplicial spaces

Exit(Ran(Rn)) Exit(Ranu(Rn))

(Finsurj6=∅ )op Finop

y

The result follows because the full ∞-subcategory of simplicial spaces consisting of

the complete Segal spaces is closed under the formation of pullbacks.

We allow ourselves, in this subsection, to freely use notation and results from [4].

The idea for this proof is to witness the simplicial space Exit(Ranu(M)) as one derived

through formal constructions among complete Segal spaces from a complete Segal

space Bun, de�ned in �6 of [4].
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Namely, the simplicial space Bun : ∆op → Spaces is that for which the value on

[p] is the moduli space of constructible bundles over ∆p with its standard strati�cation.

The simplicial structure maps are implemented by base change of constructible

bundles. Section �6 of [4] is devoted to the proof that this simplicial space satis�es

the Segal and completeness conditions, which is to say Bun is an ∞-category.

So the space of objects in Bun is the moduli space of constructible bundles over

∆0 = ∗, which is simply the moduli space of strati�ed spaces. So an object of Bun

is simply a strati�ed space. In particular, a �nite set is an example of an object in

Bun, and a smooth manifold is an example of an object in Bun as well. Lemma 6.3.11

of [4] constructs a fully faithful functor

Finop∗ −→ Bun ,

whose image consists of �nite sets. In particular, there is a composite monomorphism

between ∞-categories:

Finop
(−)+−−−−→ Finop∗ −→ Bun . (3.0.2)

Note that a [p]-point X → ∆p of Bun factors through this monomorphism (3.0.2) if

and only if X → ∆p is a �nite proper constructible bundle.

Lemma 3.31 of [5] constructs, for each dimension k, the k-skeleton functor

skk : Bun −→ Bun .

Explicitly, the value on a strati�ed space X is the proper constructible strati�ed

subspace skk(X) ⊂ X that is the union of the strata whose dimension is at most k.
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The value of skk on a [p]-point X → ∆p of Bun is the constructible bundle

skfib
k (X) −→ ∆p

which is the �berwise k-skeleton of X � it is the union of those strata of X whose

projection to ∆p have �ber-dimension at most k.

Note, then, that sk0 factors through Fin∗:

sk0 : Bun −→ Finop∗ ↪→ Bun .

Consider the ∞-category Stratref underlying the topological category in which

an object is a strati�ed space and the space of morphisms is that of re�nements.

Section �6.6 of [4] constructs the open cylinder functor between ∞-categories

Cylo : Stratref −→ Bun

which is an equivalence on spaces of objects. Theorem 6.6.15 of [4] veri�es that this

functor is a monomorphism. So each re�nement between strati�ed spaces de�nes a

morphism in Bun. As a matter of notation, a morphism in Bun that is in the image

of this functor is called a re�nement ; the ∞-category of re�nement arrows in Bun is

the full ∞-subcategory

Arref(Bun) ⊂ Ar(Bun)

consisting of the re�nements arrows. Evaluation at source-target de�nes a functor

(evs, evt) : Arref(Bun) −→ Bun×Bun .
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Denote the pullback ∞-category:

Ref0(M) //

��

Arref(Bun)

(evs,evt)
��

Bun×Bun

skn−1×Id
��

Finop = // Finop × ∗ (3.0.2)×〈M〉 // Bun×Bun .

Unpacking this de�nition (and using the open cylinder construction of [4] referenced

above) Ref0(M) is a simplicial space whose value on [p] ∈∆ is the moduli space of

• constructible bundles

X −→ ∆p

for which the (n− 1)-skeleton of each �ber of which is a �nite set,

• together with a re�nement

X
refinement−−−−−−−→M ×∆p

over ∆p.

We will denote such a [p]-point of Ref0(M) simply as (X
ref−→M ×∆p).

Remark 3.0.17. Informally, an object in Ref0(M) is a re�nement of M in which

the (n − 1)-skeleton of the domain is a �nite set, and a morphism in Ref 0(M) is a

path of such re�nements of M witnessing anti-collision of strata and disappearences

of strata.

Lemma 3.0.18. There is a canonical equivalence between simplicial spaces over Fin:

Ref0(M) ' Exit(Ranu(M))
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Proof. A rightward morphism is implemented by, for each [p] ∈∆, the assignment,

(
X

ref−→M ×∆p
)
7→
(
skfib
n−1(X) ↪→ X →M ×∆p

)
,

whose value is the embedding over ∆p from the �berwise (n−1)-skeleton, which maps

to ∆p as a �nite proper constructible bundle. A leftward morphism is implemented

by, for each [p] ∈∆, the assignment,

(
Cylr(σ) ↪→M ×∆p

)
7→
((

Cylr(σ) ⊂M ×∆p
) ref−−→M ×∆p

)
,

whose value is the coarsest re�nement of M × ∆p for which the embedding from

Cylr(σ) is a proper and constructible. (Such a re�nement exists because the image of

this embedding is, by de�nition, a properly embedded strati�ed subspace.)

It is straightforward to verify that these two assignments are mutually inverse

to one another.

Proof of Proposition 3.0.107. Being an ∞-category, the simplicial space Ref0(M)

satis�es the Segal and completeness conditions. Through the equivalence of

Lemma 3.0.18, then so does the simplicial space Exit(Ranu(M)).

The category Θn

We use the exit-path ∞-category of the unital Ran space of Rn to codify the

homotopy type of con�gurations of �nite (possibly empty) subsets of Rn. The main

objective of this chapter is to show that the exit-path ∞-category of the unital

Ran space of Rn is a localization of a combinatorially de�ned category; namely, a

subcategory of the category Θn. This section is devoted to de�ning this subcategory.
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We de�ne Joyal's category Θn using Berger's de�nition from [10] as the n-fold

wreath product of the simplex category ∆ with itself. Notation largely follows that

of [7].

Wreath product

De�nition 3.0.19. Fin∗ is the category whose objects are �nite, pointed sets and its

morphisms are pointed maps; composition is evident.

Notation 3.0.20. Given a �nite set S, let S∗ denote the �nite, pointed set S q {∗}.

De�nition 3.0.21. The wreath product Fin∗ o D for an arbitrary category D is the

category de�ned as follows: An object is a symbol S(ds) where S is a �nite set and

(ds)s∈S is a tuple of objects in D indexed by S. A morphism S(ds)→ T (et) consists

of a pair of data:

i) A morphism S∗
δ−→ T∗ in Fin∗

ii) For each pair (s ∈ S, t ∈ T ) such that δ(s) = t, a morphism ds
δst−→ et in D.

Composition is given by composition in Fin∗ and D.

Observation 3.0.22. There is a forgetful functor Fin∗ o D → Fin∗ given by S(ds) 7→

S∗; its value on morphisms is evident.

Observation 3.0.23. A category C is canonically equivalent to the opposite of its

opposite category, C ∼= (Cop)op. Thus, upon taking opposites of a functor Cop F−→ D,

there canonically results a functor C F−→ Dop, which we will also denote by F . With

this fact then, we could just as well de�ned the wreath product of a category C over

Finop∗ .

In the next section, we take advantage of the previous observation and de�ne

Joyal's category Θn over Fin
op
∗ inductively as the n-fold wreath product of the simplex

category ∆ with itself.
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De�nition of Θn

De�nition 3.0.24. The assembly functor

Fin∗ o Fin∗
ν−→ Fin∗

is given by the wedge sum. Explicitly, the value of ν on an object S((Ts)∗) is the

wedge sum
∨
s∈S

(Ts)∗. Its value on a morphism S((Ts)∗)→ S ′((T ′s′)∗) given by

i) A morphism S
δ−→ S ′

ii) For each pair (s, s′) such that δ(s) = s′, a morphism (Ts)∗
δss′−−→ (T ′s)∗, is

∨
s∈S

(Ts)∗ →
∨
s′∈S′

(T ′s′)∗

de�ned by t ∈ Ts 7→ δss′(t) for every pair (s, s′) such that δ(s) = s′.

De�nition 3.0.25. The simplicial circle is the functor

∆
γ−→ Finop∗

the value of which on an object [p] is the quotient morphism set ∆([p], [1])/{{0}, {1}},

where {i} denotes the constant map at i; {0} ∼ {1} is the evident basepoint of the

image. The value of γ on a morphism [p]
f−→ [q] is precomposition with f , (− ◦ f).

Observation 3.0.26. The map induced by γ between each hom-set is injective. This

observation comes down to the fact that on morphisms γ is given by precomposition

and composition is unique in categories.

Observation 3.0.27. There is an evident isomorphism γ([p])
∼=→ {1, ..., p}∗ in Fin∗.

Let νj denote the morphism that assigns each 0 ≤ i ≤ j−1 to 0 and each j ≤ i ≤ p to 1
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(i.e., a unique composite of degeneracy maps). The value of νj under the isomorphism

is j. Its assignment on morphisms then is evident.

Terminology 3.0.28. In light of the previous observation, we will freely refer to a

non-basepoint value in the pointed set γ([p]) by j for some 1 ≤ j ≤ p.

De�nition 3.0.29. For each integer n ≥ 1, the categories Θn are de�ned inductively

by setting

Θ1 := ∆ and Θn := Θ1 oΘn−1

where the assembly functors Θn
γn−→ Finop∗ are also de�ned inductively by setting

γ1 := γ and γn := ν ◦ (γ1 o γn−1).

Example 3.0.30. Following Rezk in [32], the object [3]([1], [3], [0]) in Θ2 corresponds

to

0 1 2 3

Observation 3.0.31. Because the wreath product is associtative, equivalently Θn :=

Θn−1 oΘ1.

Remark 3.0.32. Θn is the full sub-category of the category of strict n-categories,

Catn, in which an object is a pasting diagram ( [32]).

A description of the objects of Θn is given in terms of planar level trees in [7].

We de�ne this notion and present an example next.

De�nition 3.0.33.
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• A level tree is a directed tree with a speci�ed vertex called the root which

induces a direction on each edge such that there is a unique directed path from

each vertex to the root.

• For each vertex, we may equip the set of edges directed toward the vertex with

a linear order. A tree is called a planar level tree if such an order is speci�ed

with respect to each vertex.

• A vertex is at level i if the directed path from the vertex to the root counts i

edges.

• A tree has height n if the maximum level of all the verticies is n.

• A vertex is a leaf if it has no edges directed towards it.

• A planar level tree of height n is healthy if all of its leaves are at level n.

Example 3.0.34. Planar level trees of height n naturally depict the objects of Θn.

For example, the object [3]([1], [3], [0]) in Θ2 corresponds to the following planar level

tree:

Terminology 3.0.35. We will say tree to mean planar level tree.

Informally then, in terms of trees, the functor Θn
γn−→ Finop∗ assigns a tree to its

set of leaves formally unioned with a basepoint.

The category Θact
n

In [7], Ayala and Hepworth show that Θn naturally encodes the homotopy type

of con�guration spaces of ordered points in Rn. Speci�cally, they show a homotopy
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equivalence between Confk(Rn) and the classifying space of the full subcategory of Θn

consisting of all of those objects whose value under γn is {1, ..., k}∗. In this chapter,

we present a generalization of this result to unordered con�gurations of points of Rn,

wherein we show that the following subcategory of Θn, Θact
n encodes the homotopy

type of unordered con�guration of Rn as organized by the exit-path ∞-category of

the unital Ran space of Rn.

De�nition 3.0.36. Given a category C F−→ Fin∗ over based, �nite sets, a morphism

σ in C is active if (F (σ))−1({∗}) = {∗}. The subcategory Cact of C is de�ned to be

the pullback

Cact C

Fin Fin∗.

y
F

Observation 3.0.37. For each category C → Fin∗, the restriction Cact → Fin∗

canonically factors through Fin.

Notation 3.0.38. In light of the previous observation, for a functor C F−→ Fin∗, we

denote Cact F−→ Fin by F as well.

De�nition 3.0.39. For each integer n ≥ 1, the categories Θact
n are the subcategories

of Θn de�ned inductively by setting

Θact
1 := ∆act

and de�ning Θact
n := Θact

1 oΘact
n−1, i.e., the pullback

Θact
n Finop oΘact

n−1

Θact
1 Finop.

y
frgt

γ1

(3.0.3)
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Informally then, in terms of trees, the functor Θact
n

γn−→ Finop assigns a tree

precisely to its set of leaves.

Observation 3.0.40. For each n, there is a natural forgetful functor

Θact
n

tr−→ Θact
n−1.

The value on an object Tn−1([mk]) ∈ Θact
n−1 oΘact

1 =: Θact
n is Tn−1.

Let Tn−1([mk])
σ−→ Wn−1([pl]) be a morphism in Θact

n de�ned by

i) a morphism Tn−1
σ′−→ Wn−1 in Θact

n−1 and,

ii) a morphism [mk]
σk−→ [pl] in Θact

1 for each pair (k, l) such that γn−1(l) = k.

The value of σ under tr is σ′.

Example 3.0.41. Let T be the object of Θ3 depicted as the far left tree in the �gure

below. We depict two iterations of the truncation functor tr on T :

tr tr

Notation 3.0.42. For each 1 ≤ i ≤ n − 1, denote the (n − i)-fold composite of the

truncation functor tr by tri : Θact
n → Θact

i .

Observation 3.0.43. For each 1 ≤ i ≤ n− 1, there is a natural transformation from

Θact
n

γn−→ Finop to the composite γi ◦ tri,

Θact
n

Θact
i Finop.

γn
tri

γi
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For each tree T , the natural transformation ε is given by the natural map γn(T )
εT−→

γi(tri(T )) from the leaves of T to the leaves of the truncation of T to height i, the

assignment of which is the evident one given by the structure of the tree T . It is

straightforward to verify that ε does indeed de�ne a natural transformation.

De�nition 3.0.44. Given a category C, we de�ne Fun({1 < · · · < n}, C) to be the

category in which an object is a functor {1 < · · · < n} → C which selects out a

sequence of composable morphisms in C:

c1 → c2 → · · · → cn

and a morphism from c1 → c2 → · · · → cn to d1 → d2 → · · · → dn is a commutative

diagram in C:
c1 d1

c2 d2

...
...

cn dn.

Composition is evident.

Observation 3.0.45. We use the previous observation (3.0.43) to de�ne the natural

functor

Θact
n

τn−→ Fun({1 < · · · < n},Finop)

the value of which on an object T is the functor which selects out the sequence of

composable maps of sets

γn(T )
εT−→ γn−1(tr(T ))

εtr(T )−−−→ γn−2(trn−2(T ))→ · · · → γ1(tr1(T ))
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and on a morphism T
f−→ S is the diagram of �nite sets

γn(S) γn(T )

γn−1(trn−1(S)) γn−1(trn−1(T ))

...
...

γ1(tr1(S)) γ1(tr1(T ))

γn(f)

εS εT

γn−1(trn−1(f))

γ1(tr1(f))

which is guaranteed to commute in Fin because the downward arrows in the diagram

are given by the natural transformation ε from (3.0.43).

Identifying the exit-path ∞-category of the unital Ran space of Rn

We are now equipped to state the main result of the chapter, Theorem (3.0.46),

which articulates a sense in which the homotopy type of con�gurations of unordered

points in Rn are encoded by (a localization of) the category Θact
n .

Theorem 3.0.46. For n ≥ 1, there is a localization of ∞-categories

Θact
n → Exit(Ranu(Rn))

over Finop from the category Θact
n to the exit-path ∞-category of the unital Ran space

of Rn.

Our procedure for proving Theorem (3.0.46) is motivated by Theorem 3.3.12

in [4] which states that a re�nement of strati�ed spaces is carried by Exit(−) to a

localization of ∞-categories. Heuristically, a re�nement of a strati�ed space Y is a

strati�ed space X whose strati�cation is a �ner version of the strati�cation of Y .
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De�nition 3.0.47. A map of strati�ed spaces X
f−→ Y is a re�nement if f is a

homeomorphism between the underlying topological spaces, and if the restriction of

f on each stratum Xp of X is an embedding into Y .

Generally then, in showing a localization of a category C to the exit-path ∞-

category of a strati�ed space X, one might hope to identify a re�nement of the

strati�ed space X whose exit-path ∞-category is equivalent to C. Then, in light of

the fact that Exit(−) carries re�nements to localizations (3.3.12 in [4]), the desired

localization of C to the exit-path ∞-category of X would be established.

In the situation at hand however, the exit-path ∞-category of the unital Ran

space of Rn is not the exit-path∞-category of a strati�ed space. Rather, recall that it

is the exit-path∞-category of a stack on strati�ed spaces (3.0.13), within the context

of which there is no clear notion of a re�nement; that is, it is not clear how to de�ne a

re�nement of stacks on strati�ed spaces. Thus, we cannot directly apply that Exit(−)

carries re�nements to localizations to prove the localization of Theorem (3.0.46).

Nonetheless, motivated by Theorem 3.3.12 of [4], we de�ne an ∞-category that

behaves like the exit-path ∞-category of a re�nement of the unital Ran space of Rn,

if such a thing were to exist. Suggestively, we name this ∞-category the exit-path

∞-category of the �ne unital Ran space of Rn. Then, in Lemma (3.0.57), we will

show that this ∞-category is equivalent to the category Θact
n ; this is the �rst of two

main lemmas which together imply Theorem (3.0.46). The second lemma, (3.0.63),

shows that this ∞-category localizes to the exit-path ∞-category of the unital Ran

space of Rn.

The exit-path ∞-category of the �ne unital Ran space of Rn

We de�ne the exit-path ∞-category Exit(Ranu(Rn)), the de�ning feature

of which is that its morphisms are exit-paths that are controled by coordinate
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coinsidence in addition to cardinality.

Observation 3.0.48. Similar to Observation (3.0.7), the nerve of

Fun({1 < · · · < n},Finop)

is a presheaf on ∆, and thus, we may de�ne the ∞-category ∆ slice over Fun({1 <

· · · < n},Finop),

∆/Fun({1<···<n},Finop).

De�nition 3.0.49. The exit-path ∞-category of the �ne unital Ran space of Rn

Exit(Ranu(Rn)) is the simplicial space over Fun({1 < · · · < n},Finop) representing

the presheaf on ∆/Fun({1<···<n},Finop) whose value on an object

[p]→ Fun({1 < · · · < n},Finop)

which selects a diagram of �nite sets

σn : Spn · · · S0
n

...
...

...

σ1 : Sp1 · · · S0
1

(3.0.4)

is the space of compatible embeddings
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cylr(σn) Rn ×∆p

cylr(σn−1) Rn−1 ×∆p

...
...

cylr(σ1) R×∆p

En

pr<n×id∆p

En−1

pr<n−1×id∆p

E1

(3.0.5)

where each embedding is over ∆p and the downward arrows on the lefthand side

are induced by the downward arrows of (3.0.4). This embedding space is given the

compact-open topology; the structure maps are evident.

Observation 3.0.50. Explicitly, an object of Exit(Ranu(Rn)) over the sequence of

�nite sets,

Sn
τn−1−−→ Sn−1

τn−2−−→ · · · → S1 (3.0.6)

is a sequence of embeddings,

Sn Rn

Sn−1 Rn−1

...
...

S1 R.

en

τn−1 pr<n

en−1

τn−2 pr<n−1

e1

(3.0.7)

When the context is clear, we denote (3.0.7) by S
e
↪−→ Rn or just e. A morphism from
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S
e
↪−→ Rn to T

d
↪−→ Rn over the diagram of �nite sets,

Tn Sn

Tn−1 Sn−1

...
...

T1 S1

ωn−1

σn

τn−1

ωn−2

σn−1

τn−2

σ1

(3.0.8)

is a sequence of embeddings,

cylr(σn) Rn ×∆1

cylr(σn−1) Rn−1 ×∆1

...
...

cylr(σ1) R×∆1

En

pr<n×id∆1

En−1

pr<n−1×id∆1

E1

(3.0.9)

over ∆1 such that Ei|Si = ei and Ei|Ti×{1} = di, for each 1 ≤ i ≤ n. When the context

is clear, we denote (3.0.9) by cylr(σ)
E
↪−→ Rn ×∆1 or E.

Heuristically, a morphism in the exit-path ∞-category of the �ne unital Ran

space of Rn is a sequence of �nite sets of paths in Ri for each 1 ≤ i ≤ n,

compatible under projection, that are allowed to witness anticollision of points,

including vanishing of points, but are not allowed to witness collision of points. In

particular, this means that for each 2 ≤ j ≤ n and each 0 ≤ i ≤ j − 1, projecting o�
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the last i-coordinates of the �nite set of paths in Rj, given by some �xed morphism

in Exit(Ranu(Rn)), yields a �nite set of paths in Rj−i that, too, witness anticollision

of points, but not collision; this projection is part of, but not necessairly all of the

data of the morphism at the Rj−i level.

Notation 3.0.51. In general, we denote a point in the [p]-space of Exit(Ranu(Rn))

over (3.0.8) by cylr(σ)
E
↪−→ Rn ×∆p.

Observation 3.0.52. The exit-path ∞-category of the �ne unital Ran space of Rn

is an ∞-category for similar technical reasons that the exit-path ∞-category of the

unital Ran space of Rn is an ∞-category, as shown in Proposition (3.0.107).

Observation 3.0.53. There is a natural forgetful functor

Exit(Ranu(Rn))→ Exit(Ranu(Rn))

over Finop induced by the functor from Fun({1 < · · · < n},Finop) to Finop that

evaluates on {n}. The value of a [p]-value cylr(σ)
E
↪−→ Rn ×∆p over (3.0.4) under this

forgetful functor is the embedding of E at the Rn level

cylr(σn)
En
↪−→ Rn ×∆p

over σn : Spn → · · · → S0
n.

Observation 3.0.54. There is a natural forgetful functor

Exit(Ranu(Rn))
ρ−→ Exit(Ranu(R))
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that forgets all but the �rst coordinate data. The image of a [p]-value

cylr(σ)
E
↪−→ Rn ×∆p

over (3.0.4) under ρ is

cylr(σ1)
E1
↪−→ R×∆p

de�ned over σ1 : Sp1 → · · · → S0
1 .

Observation 3.0.55. For each 1 ≤ i ≤ n, there is a natural forgetful functor to

�nite sets

Exit(Ranu(Rn))
φi−→ Finop

that forgets all but the set data at the Ri level. Its value on an object S
e
↪−→ Rn is Si

and on a morphism

cylr(T
σ−→ S)

E
↪−→ Rn ×∆1

from S ↪→ Rn to T ↪→ Rn is the map of �nite sets

Ti
σi−→ Si.

The collection of functors {φi}ni=1 naturally compile to name a functor

Exit(Ranu(Rn))
Φn−→ Fun({1 < · · ·n},Finop)

which just remembers the underlying set data, i.e., its value on an object S ↪→ Rn is

the functor which selects out the composable sequence of maps of �nite sets S and its

value on a morphism cylr(T
σ−→ S)

E
↪−→ Rn ×∆1 is the commutative diagram of �nite

sets T
σ−→ S. In otherwords, Φn is simply the downward arrow in the de�nition of
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Exit(Ranu(Rn)) (3.0.49).

Observation 3.0.56. There is a natural functor

Exit(Ranu(Rn))
π−→ Finop o Exit(Ranu(Rn−1))

the value of which on an object S
e
↪−→ Rn is

S1((S)s
e|(S)s
↪−−−→ Rn−1)

where for each s ∈ S1, (S)s
e|(S)s
↪−−−→ Rn−1 denotes the object of Exit(Ranu(Rn−1))

determined by the compatible sequence of embeddings of pullbacks over s:

(Sn)s Sn Rn

(Sn−1)s Sn−1 Rn−1

...
...

...

(S2)s S2 R2

{s} S1 R.

y

en

τn−1 pr<n

y

en−1

τn−2 pr<n−1

y

e2

τ1 pr<2

e1

(3.0.10)

Note that for each 1 ≤ i ≤ n, each embedding (Si)s ↪→ Si ↪→ Ri agrees on its �rst

coordinate and thus, canonically factors through Ri−1, which in particular means that

(3.0.10) yields an object of Exit(Ranu(Rn−1)).

The value of π on a morphism cylr(σ)
E
↪−→ Rn ×∆1 is:

i. the morphism T1
σ1−→ S1 in Fin
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ii. for each pair r ∈ T1, s ∈ S1 such that σ1(r) = s, the morphism

cylr(σn)|σ1:r 7→s cyl(σn) Rn

cylr(σn−1)|σ1:r 7→s cylr(σn−1) Rn−1

...
...

...

cylr(σ2)|σ1:r 7→s cyl(σ2) R2

cylr(σ1|r) ' ∆1 cyl(σ1) R

y pr<n

y pr<n−1

y
pr<2

(3.0.11)

in Exit(Ranu(Rn−1)), where for each 1 ≤ i ≤ n, each embedding cylr(σi)|σ1:r 7→s ↪→

Ri×∆1 canonically factors through Ri−1×∆1 and thus, diagram (3.0.11) yields

a morphism in Exit(Ranu(Rn−1)).

Identifying the exit-path ∞-category of the �ne unital Ran space of Rn as Θact
n

The next lemma is the �rst of two main lemmas which together prove the main

result of this chapter, Theorem (3.0.46), which states that the category Θact
n localizes

to the exit-path ∞-category of the unital Ran space of Rn. This lemma articulates

a sense in which Θact
n encodes the homotopy type of con�gurations of �nite (possibly

empty) subsets of Rn which are organized according to cardinality and coordinate

coinsidence, heuristically, as a strati�ed space.

Lemma 3.0.57. There is an equivalence of ∞-categories

Exit(Ranu(Rn)) ' Θact
n

over Fun({1 < · · · < n},Finop), between the exit-path ∞-category of the �ne unital
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Ran space of Rn and the category Θact
n .

We prove Lemma (3.0.57) in two parts: In Part 1, we construct a functor Gn in

Construction (3.0.58) from the exit-path ∞-category of the �ne unital Ran space of

Rn to the category Θact
n . In Part 2, Lemma (3.0.59) shows that the functor Gn from

Construction (3.0.58) is an equivalence.

Part 1: The functor Gn

Construction 3.0.58. For n ≥ 1, there is a functor

Gn : Exit(Ranu(Rn))→ ΘAct
n

over Fun({1 < · · · < n},Finop), from the exit-path ∞-category of the �ne unital Ran

space of Rn to the category Θact
n .

Proof. By induction on n.

Basecase. For n = 1, we seek to de�ne a functor G1 over Finop:

Exit(Ranu(R)) ∆act

Finop.

G1

φ1

γ1

∆act is an ordinary category and thus, we employ (2.0.22) and simply de�ne G1

on objects and morphisms and check that composition is respected.

Let S
e
↪→ R be an object in Exit(Ranu(R)). The value of G1 on e is the linearly

ordered set of connected components of the complement of e(S) in R

G1 : e 7→ πo(R− e(S))

the linear order of which is inherited from the linear order on R.
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Let cylr(T
σ−→ S)

E
↪→ R × ∆1 be a morphism from S

e
↪−→ R to T

d
↪−→ R in

Exit(Ranu(R)). Let CE denote the compliment of the image of the embedding of

E,

CE := (R×∆1)− E(cylr(σ)).

Before we name the value of G1 on E, we make three observations:

1. Consider the inclusion ι1 : (R − d(T )) ↪→ CE given by x 7→ (x, {1}). Taking

connected components induces an inclusion of sets

πo(ι1) : πo(R− d(T )) ↪→ πo(CE).

It is easy to see that πo(ι1) is, in particular, a bijection. We denote its inverse

πo(ι1)−1.

2. Taking connected components of the inclusion ι0 : (R − e(S)) ↪→ CE given by

x 7→ (x, {0}) induces a map between sets

πo(ι0) : πo(R− e(S)) ↪→ πo(CE).

Note that πo(ι0) is not necessairly injective nor surjective because σ is not

necessairly injective nor surjective.

3. πo(ι1) determines a linear order on πo(CE) and thus, πo(CE) is an object in ∆.

Then, the value of G1 on cylr(T
σ−→ S)

E
↪→ R×∆1 is the composite

πo(R− e(S)) πo(CE)

πo(R− d(T ))

G1(E)

πo(ι0)

πo(ι1)−1
(3.0.12)
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in ∆act. It must be checked that G1(E) is linear and active. We do this by verifying

that each morphism in the composite is linear and active. πo(ι1)−1 is a linear map

because it de�nes the linear order of πo(CE). Bijectivity of πo(ι1)−1 implies that it is

active. Similarly, it is easy to see that πo(ι0) is order-preserving and sends unbounded

components to unbounded components thereby being active.

Next, we will show that G1 respects composition by showing that the diagram

of ∞-categories (3.0.13) commutes on the level of objects and morphisms:

Exit(Ranu(R)) ∆act

Finop.

G1

φ1

γ1 (3.0.13)

Indeed, if (3.0.13) commutes, then faithfulness of γ1 together with functorality of φ1

guarantee that G1 respects composition. More precisely, let

a b

c

f

h
g (3.0.14)

denote a commutative triangle in Exit(Ranu(R)). We will show that if (3.0.13)

commutes, then G1 carries the composite h in (3.0.14) to G1(g) ◦ G1(f). First, note

that functorality of φ1 implies that φ1(h) = φ1(g) ◦ φ1(f). Commutativity of (3.0.13)

guarantees that the morphisms

γ1(G1(h)), γ1(G1(f)) and γ1(G1(g))

are equivalent (upto composition with canonical isomorphisms) to

φ1(h), φ1(f) and φ1(g)
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respectively, in Fin. Thus,

γ1(G1(h)) = γ1(G1(g)) ◦ γ1(G1(f)) = γ1(G1(g) ◦ G1(f)).

Then, faithfulness of γ1 guarantees that G1(h) = G1(g) ◦ G1(f), as desired.

Now, we verify commutativity of (3.0.13) on objects and morphisms. Let S
e
↪→ R

be an object in Exit(Ranu(R)). There is a canonical bijection of sets

γ1(G1(e))
∼=−→ φ1(e) := S (3.0.15)

in Fin given by

(πo(R− e(S))
α−→ [1]) 7→ inf{x ∈

∐
U∈α−1({1})

U}

verifying commutativity of (3.0.13) on objects.

Let cylr(T
σ→ S)

E
↪→ R × ∆1 be a morphism from S

e
↪−→ R to T

d
↪−→ R in

Exit(Ranu(R)). We consider the canonical bijections of the source and target of

γ1(G1(E)), and the coresponding composite, α, in Fin from T to S :

γ1(G1(d)) γ1(G1(e))

T S.

γ1(G1(E))

∼=∼=

α

(3.0.16)

By de�nition, the value of α on r ∈ T is

α(r) := inf{x ∈
∐
U∈Sr

U},

where Sr := {U ∈ π0(R − e(S))| inf{y ∈ G1(E)(U)} ≥ r}. The composite α agrees
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with φ1(E) := σ, as desired. Indeed, if U ∈ Sr, then

inf{x ∈ U} = σ(r) or inf{x ∈ U} = σ(r′),

for some r′ > r. But σ(r′) ≥ σ(r) whenever r′ > r, which implies

inf{x ∈
∐
U∈Sr

U} = σ(r).

In summary, we have just shown that (3.0.13) commutes on objects and

morphisms, which, as previously argued, implies that G1 respects composition.

Therefore, G1 is a functor, and moreover is de�ned naturally over Finop.

General Case. In the inductive step, we assume the existence of a functor over

Fun({1 < · · · < n− 1},Finop)

Exit(Ranu(Rn−1)) Θact
n−1

Fun({1 < · · · < n− 1},Finop).

Φn−1

Gn−1

τn−1

In particular, this implies that Gn−1 is over Finop for each 1 ≤ i ≤ n − 1; i.e., the

following diagram commutes

Exit(Ranu(Rn−1)) Θact
n−1

Θact
i

Finop

Gn−1

φi

tri

γi

(3.0.17)

for each 1 ≤ i ≤ n−1, where, recall that tri denotes the (n−1− i)-fold self-composite

of the truncation map (3.0.40).
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We de�ne the functor Exit(Ranu(Rn))
Gn−→ Θact

n by de�ning Ψ and Γ such that

Exit(Ranu(Rn))

Θact
n Finop oΘact

n−1

Θact
1 Finop.

Ψ

Γ

Gn

frgt

Γ is de�ned to be the composite of the forgetful functor ρ followed by G1, G1 ◦ ρ,

where ρ was the natural forgetful functor de�ned in (3.0.54).

Ψ is de�ned by the composite of π (de�ned in (3.0.54)) followed by the functor

Finop o Exit(Ranu(Rn−1))→ Finop oΘact
n−1

determined by the identity on Finop and the functor Gn−1 given by the inductive step.

Thus, Gn is a functor.

In unwinding the above de�nition of Gn, an inductive description of Gn is made

available. We explicate this inductive description on objects and morphisms: Let

S
e
↪−→ Rn be an object in Exit(Ranu(Rn)). Its value under Gn is inductively de�ned as

Gn(S
e
↪−→ Rn) := G1(S1

e1
↪−→ R)(Gn−1((S)s

e|(S)s
↪−−−→ Rn−1))

where (S)s
e|(S)s
↪−−−→ Rn−1 denotes the object of Exit(Ranu(Rn−1)) determined by

(3.0.10).

Let cylr(T
σ−→ S)

E
↪−→ Rn × ∆1 be a morphism from S

e
↪−→ Rn to T

d
↪−→ Rn in

Exit(Ranu(Rn)). Its value under Gn is inductively de�ned by:

i) the morphism G1(S1
e1
↪−→ R)

G1(cylr(σ1)
E1
↪−→R×∆1)−−−−−−−−−−−−−→ G1(T1

d1
↪−→ R) in ∆act
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ii) for each pair (t ∈ T1, s ∈ S1) such that σ1(t) = s, the morphism given by the

image of (3.0.11) under Gn−1 in Θact
n−1.

Next, we will show that for each 1 ≤ i ≤ n,

Exit(Ranu(Rn)) Θact
n

Θact
i

Finop.

Gn

φi

tri

γi

(3.0.18)

For the cases 1 ≤ i ≤ n − 1, this diagram follows by the inductive step wherein we

assume commutativity of diagram (3.0.17). For the remaining case, i = n, we use

the inductive de�nitions of Gn and γn in terms of G1 and Gn−1, and γ1 and γn−1,

respectively. Then, indeed, in employing the commutativity of (3.0.13) and (3.0.17)

for i = n−1, we see that for the case i = n, diagram (3.0.18) must commute. Through

Observation (3.0.55) wherein the functor Φn was de�ned in terms of φi for 1 ≤ i ≤ n,

commutativity of this diagram for each 1 ≤ i ≤ n compiles to prove that Gn is over

Fun({1 < · · · < n},Finop),

Exit(Ranu(Rn)) Θact
n

Fun({1 < · · · < n},Finop).

Φn

Gn

τn

We have just de�ned a functor from the exit-path ∞-category of the �ne unital

Ran space of Rn to the category Θact
n . In the next lemma, we show that this functor

is an equivalence by showing that Gn is essentially surjective and fully faithful.
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Part 2: Gn is an equivalence

Lemma 3.0.59. For each n ≥ 1, the functor

Gn : Exit(Ranu(Rn))
'−→ Θact

n

de�ned in (3.0.58) is an equivalence of ∞-categories.

Proof. By induction on n.

Basecase. We will show that G1 is essentially surjective and fully faithful; the

former follows easily: Let [p] ∈ ∆act. De�ne the set Tp := {1, 2, ..., p} together with

the object Tp
d
↪→ R in Exit(Ranu(R)), given by i 7→ i. Then, [p] is isomorphic to

G1(Tp) := πo(R− d(Tp)) in ∆, with the isomorphism given by i 7→ [i+
1

2
].

Fix a pair of objects S
e
↪−→ R and T

d
↪−→ R in Exit(Ranu(R)). Showing

fully faithfulness of G1 amounts to showing that the map induced by G1 between

corresponding hom-spaces

HomExit(Ranu(R))op(d, e)
G1−→ Hom∆act)op(πo(R− d(T )), πo(R− e(S))) (3.0.19)

is a surjection on connected components with contractible �bers.

Fix a morphism π0(R− d(T ))
ϕ−→ π0(R− e(S)) in ∆act,op. Any morphism

cylr(T
γ1(ϕ)−−−→ S)

E
↪−→ R×∆1 (3.0.20)

in HomExit(Ranu(R))(d, e) is in the �ber of G1 over ϕ. Indeed, we observed in (3.0.26)

that γ1 is injective on hom-sets. Thus, commutativity of (3.0.13) guarantees that E

is in the �ber of G1 over ϕ. Hence, (3.0.19) is a surjection on connected components.
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The �ber of (3.0.19) over ϕ is the topological space of embeddings cylr(γ1◦ϕ)
E
↪−→

R×∆1 over ∆1 such that E|S = e and E|T×{1} = d,

G−1
1 (ϕ) ∼= Embe,d/∆1(cylr(γ1(ϕ)),R×∆1)

under the compact-open topology. We will show that this space is contractible. Fix

an embedding Ẽ in the �ber of G1 over ϕ. Let Sk
ψ−→ G−1

1 (ϕ) be continuous and based

at Ẽ. We construct a null-homotopy of ψ. For each z ∈ Sn, denote the image of z

under ψ by ψz. The straight-line homotopy, Hz, from ψz to Ẽ de�ned by

Hz(x, t) = (1− t)ψz(x) + tẼ(x)

names a path from ψz to Ẽ in G−1
1 (ϕ). For each z ∈ Sk, we let each path Hz run

simultaneously to name a null-homotopy of ψ to the constant path at {Ẽ}. Explicitly,

the null-homotopy Sk × [0, 1]→ G−1
1 (ϕ) is given by (z, t) 7→ Hz(−, t).

General Case. We will show that Gn is essentially surjective and fully faithful. Let

[k](Ts) be an object in Θact
n . Because G1 is essentially surjective, we may choose an

object of Exit(Ranu(R)) that is in the �ber of G1 over [k]:

{1, ..., k} e
↪−→ R. (3.0.21)

Likewise, by essential surjectivity of Gn−1, for each s ∈ {1, ..., k}, we may choose an
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object of Exit(Ranu(Rn−1)) that is in the �ber of Gn−1 over Ts:

(Sn−1)s Rn−1

(Sn−2)s Rn−2

...
...

(S1)s R.

(en−1)s

(τn−2)s
pr<n−1

(en−2)s

(τn−3)s
pr<n−2

(e1)s

(3.0.22)

The choices (3.0.21) and (3.0.22) for each s, uniquely determine an object of

Exit(Ranu(Rn)) that is in the �ber of Gn over [k](Ts):

∐
1≤s≤k

(Sn−1)s R× Rn−1

∐
1≤s≤k

(Sn−2)s R× Rn−2

...
...

∐
1≤s≤k

(S1)s R× R

{1, ..., k} R

∐
{e(s)}×(en−1)s

∐
(τn−2)s

pr<n

∐
{e(s)}×(en−2)s

∐
(τn−3)s

pr<n−1

∐
{s}

∐
{e(s)}×(e1)s

pr<2

e

(3.0.23)

where each map de�ned in terms of a coproduct is indexed over 1 ≤ s ≤ k, and {e(s)}

and {s} denote the constant maps at e(s) and s, respectively.

Fix a pair of objects T
d
↪−→ Rn and S

e
↪−→ Rn in Exit(Ranu(Rn)). We will show
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fully faithfulness of Gn by showing that the map induced by Gn between hom-spaces

HomExit(Ranu(Rn))(e, d)
Gn−→ HomΘact

n
(Gn(e),Gn(d)) (3.0.24)

is a surjection on connected components with contractible �bers.

Fix a morphism

Gn(e)
ϕ−→ Gn(d)

in Θact
n . Using the inductive description of Gn, ϕ is given by:

i) a morphism G1(S1
e1
↪−→ R)

ϕ1−→ G1(T1
d1
↪−→ R) in ∆act

ii) for each pair (r ∈ T1, s ∈ S1) such that γ1(ϕ1(r)) = s, a morphism

Gn−1((S)s
e|(S)s
↪−−−→ Rn−1)

ϕr−→ Gn−1((T )r
d|(T )r
↪−−−→ Rn−1)

in Θact
n−1.

Using the basecase and inductive step, we de�ne a morphism that is in the �ber of

Gn over ϕ: By fullness of G1, we may choose a morphism in the �ber of G1 over ϕ1,

cylr(γ1(ϕ1))
E1
↪−→ R×∆1 (3.0.25)

which is de�ned over the map of �nite sets T1
γ1◦ϕ1−−−→ S1.

By fullness of Gn−1 as assumed in the inductive step, for each pair (r ∈ T1, s ∈ S1)

such that γ1(ϕ1(r)) = s, we may choose a morphism in the �ber of Gn−1 over ϕr,
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cylr(γn−1 ◦ ϕr) Rn−1 ×∆1

cylr(γn−2 ◦ trn−2 ◦ ϕr) Rn−2 ×∆1

...
...

cylr(γ1 ◦ tr1 ◦ ϕr) R×∆1

(En)r

pr<n−1×id∆1

(En−1)r

pr<n−2×id∆1

(E2)r

(3.0.26)

Note that diagram (3.0.17) guarantees that (3.0.26) must be de�ned over the diagram

of �nite sets,

(Tn)r (Sn)s

(Tn−1)r (Sn−1)s

...
...

(T2)r (S2)s.

γn−1◦ϕr

ωn−1|• τn−1|•

γn−2◦trn−1◦ϕr

ωn−2|• τn−2|•

γ1◦tr1◦ϕr

(3.0.27)
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Using (3.0.25) and (3.0.26), we de�ne a morphism in the �ber of Gn over ϕ:

cylr(
∐
r∈T1

γn−1 ◦ ϕr) (R× Rn−1)×∆1

cylr(
∐
r∈T1

γn−2 ◦ trn−2 ◦ ϕr) (R× Rn−2)×∆1

...
...

cylr(
∐
r∈T1

γ1 ◦ tr1 ◦ ϕr) (R× R)×∆1

cylr(γ1(ϕ1)) R×∆1

∐
{E1(r)}×(En)r

pr<n×id∆1

∐
{E1(r)}×(En−1)r

pr<n−1×id∆1

∐
{E1(r)}×(E2)r

pr<2×id∆1

E1

(3.0.28)

where {r} and {E1(r)} denote the constant map at r and E1(r), respectively, and

(3.0.28) is de�ned over the diagram of �nite sets,
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Tn =
∐
r∈T1

(Tn)r
∐
s∈S1

(Sn)s = Sn

Tn−1 =
∐
r∈T1

(Tn−1)r
∐
s∈S1

(Sn−1)s = Sn−1

...
...

T2 =
∐
r∈T1

(T2)r
∐
s∈S1

(S2)s = S2

T1 =
∐
r∈T1

r
∐
s∈S1

s = S1.

∐
γn−1◦ϕr

ωn−1 τn−1∐
γn−2◦trn−2◦ϕr

ωn−2 τn−2

∐
γ1◦tr1◦ϕr

ω1=
∐
{r}

∐
{s}=τ1

γ1◦ϕ1

(3.0.29)

Lastly, we will show that each �ber of (3.0.24) is contractible. The �ber of

Gn in (3.0.24) over ϕ is, under the compact-open topology, the topological space of

compatible embeddings

cyl(γn ◦ ϕ) Rn ×∆1

cyl(γ′n−1 ◦ trn−1 ◦ ϕ) Rn−1 ×∆1

...
...

cyl(γ1 ◦ tr1 ◦ ϕ) R×∆1

En

pr<n×id

En−1

pr<n−1×id

E1

(3.0.30)

over ∆1 over ∆1 such that E|Sn = en and E|Tn×{1} = dn. Note that (3.0.30) guarantees



67

that each morphism in G−1
n (ϕ) is de�ned over the diagram of �nite sets

Tn Sn

Tn−1 Sn−1

...
...

T1 S1.

γ′n◦ϕ

ωn−1 τn−1

γ′n−1◦trn−1◦ϕ

ωn−2 τn−2

γ1◦tr1◦ϕ

(3.0.31)

Fix an embedding E in the �ber of Gn over ϕ. Let Sk ψ−→ G−1
n (ϕ) be continuous and

based at E. We construct a null-homotopy of ψ: For each z ∈ Sn, denote the image

of z under ψ by ψz. The straight-line homotopy, Hz, from ψz to E de�ned by

Hz(x, t) = (1− t)ψz(x) + tE(x)

names a path from ψz to E in G−1
n (ϕ). For each z ∈ Sk, we let each path Hz run

simultaneously to name a null-homotopy of ψ to the constant path at {E}. Explicitly,

the null-homotopy Sk × [0, 1]→ G−1
n (ϕ) is given by (z, t) 7→ Hz(−, t).

In summary, we have identi�ed the exit-path ∞-category of the �ne unital Ran

space of Rn as the category Θact
n . This was the �rst of two main lemmas which

together imply the main result of the chapter, Theorem (3.0.46), that Θact
n localizes

to the exit-path∞-category of the unital Ran space of Rn. Next, we prove the second

main lemma, (3.0.63), which identi�es the exit-path ∞-category of the unital Ran

space of Rn as a localization of the exit-path∞-category of the �ne unital Ran space

of Rn.
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Localizing the exit-path∞-category of the �ne unital Ran space of Rn to the exit-path

∞-category of the unital Ran space of Rn

Localization Heuristically, an∞-category C localizes to an∞-categoryD if there

is some collection of morphisms in C such that the ∞-category obtained from C by

formally inverting each morphism in this collection is equivalent to D. We build to

the formal de�nition of a localization next.

De�nition 3.0.60. Given an ∞-category C, the maximal sub ∞-groupoid C∼ of C,

is the ∞-subcategory of C such that for an ∞-groupoid E , any functor F from E to

C uniquely factors through C∼,

E C

C∼.

F

∃!

Informally, C∼ is the ∞-subcategory of C consisting of all the same objects and

only those morphisms that are isomorphisms.

Example 3.0.61. Let [p] denote the category with objects {0, 1, ..., p} and a unique

morphism from i to j if i ≤ j, and no morphism from i to j otherwise. The maximal

sub ∞-groupoid [p]∼ of [p] is the category with the same objects as [p] and only

identity morphisms.

De�nition 3.0.62. Let C be an ∞-category and let W be a ∞-subcategory of C

which contains the maximal sub ∞-groupoid C∼ of C. The localization of C on W is

an ∞-category C[W−1] and a functor C L−→ C[W−1] satsifying the following universal

property: For any∞-category D, any functor F from C to D uniquely factors through

L if and only if F maps each morphism in W to an isomorphism in D; otherwise,
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there is no �ller
C D

C[W−1].

F

∃! or ∅

Statement of Lemma (3.0.63) We state the second of the two main lemmas used

in our procedure for proving Theorem (3.0.46). Heuristically, this lemma articulates

a sense in which the exit-path∞-category of the �ne unital Ran space of Rn behaves

like the exit-path ∞-category of a re�nement of the unital Ran space.

Lemma 3.0.63. The forgetful functor is a localization of ∞-categories

Exit(Ranu(Rn))→ Exit(Ranu(Rn))

over Finop from the exit-path ∞-category of the �ne unital Ran space of Rn to the

exit-path ∞-category of the unital Ran space of Rn.

Our procedure for showing Lemma (3.0.63) is technical. We build the argument

using a result from [27], Theorem (3.0.68) below, and premised on that result, show

two lemmas, (3.0.71) and (3.0.101) which we will use to prove Lemma (3.0.63).

A technical theorem by Aaron Mazel-Gee First, we recall some de�nitions

needed for stating Theorem (3.0.68). We de�ne a construction which associates to

each∞-category C a CW-complex BC called the classifying space of C. Heuristically,

this is a space obtained by taking a vertex for each object of C, attaching a 1-simplex

for each morphism of C, attaching a 2-simplex for each commutative triangle in C,

etc. It makes use of the geometric realization which is denoted | − |; we refer the

reader to 15.18 in [33].
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De�nition 3.0.64. The groupoid completion C' of an∞-catgory C is the localization

of C on C,

C' := C[C−1].

The idea of the groupoid completion is to simply formally invert every morphism.

De�nition 3.0.65. Given an ∞-category C, the classifying space of C BC is the

geometric realization of the groupoid completion of C

BC := |C'|.

We are nearly equipped to state Theorem (3.0.68), the key tool in our argument

for proving Lemma (3.0.63). It establishes a way to identify the localization of an

∞-category in terms of the classifying space of the following ∞-category.

De�nition 3.0.66. Given an ∞-category C and an ∞-subcategory W ↪→ C,

FunW ([p], C)) is de�ned to be the pullback of ∞-categories

FunW ([p], C) Fun([p], C)

Fun([p]',W ) Fun([p]', C).

y

Observation 3.0.67. In the case p = 0, FunW ([0], C) is equivalent to W . Indeed, an

object is a functor [0]→ C selects out an object of W , which is precisely an object of

C; a morphism is a natural transformation between any two such functors, which is

precisely determined by a morphism in W .

A similar examination of the p = 1 case identi�es that FunW ([1], C) is the ∞-

category whose objects are morphisms of C and whose morphisms are all those natural

transformations given by morphisms inW , i.e., a morphism from c→ d in C to c′ → d′
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in C is a commutative square in W

c c′

d d′

such that both horizontal arrows are morphisms in W .

Finally, we state the key theorem used in proving Lemma (3.0.63).

Theorem 3.0.68 (3.8 in [27]). For an ∞-category C and a ∞-subcategory containing

the maximal sub ∞-groupoid of C, C∼ ⊂ W ⊂ C, if the classifying space of

FunW ([•], C) is a complete Segal space, then it is equivalent as a simplicial space

to the localization of C on W ,

BFunW ([•], C) ' C[W−1].

We wish to emply Theorem (3.0.68) to prove that there is a localization of the

exit-path ∞-category of the �ne unital Ran space of Rn to the exit-path ∞-category

of the unital Ran space of Rn (Lemma (3.0.63)). Before we outline our procedure, we

de�ne the sub ∞- category of the exit-path ∞-category of the �ne unital Ran space

of Rn upon which we localize to obtain the exit-path ∞-category of the unital Ran

space.

The localizing ∞-subcategory Wn

De�nition 3.0.69. Wn is the ∞-subcategory of Exit(Ranu(Rn)) de�ned to be the
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pullback

Wn Exit(Ranu(Rn))

Funn-bij({1 < · · · < n},Finop) Fun({1 < · · · < n},Finop)

y
φ

where Funn-bij({1 < · · · < n},Finop) is the subcategory of Fun({1 < · · · < n},Finop)

in which the objects are the same and a morphism must satsify that its value under

evaluation at n is a bijection, and φ is the forgetful functor from (3.0.55) that simply

remembers the underlying data of sets at each level 1 ≤ i ≤ n.

Heuristically, Wn has the same objects as Exit(Ranu(Rn)) and all those mor-

phisms whose values under φn (3.0.55) are bijections. Intuitively then, Exit(Ran
u(Rn))

localizing on Wn to Exit(Ranu(Rn)) is no surprise. Indeed, in formally declaring all

those morphisms in Wn to be isomorphisms, we forget the restriction by coordinate

coincidence which de�nes morphisms in Exit(Ranu(Rn)) and only remember cardi-

nality, which is the de�ning restriction of morphisms in Exit(Ranu(Rn)).

Remark 3.0.70. When convenient, we consider Wn as a subcategory of Θact
n in lieu

of the equivalence Exit(Ranu(Rn)) ' Θact
n proven in Lemma (3.0.59).

We use the following two lemmas, (3.0.71) and (3.0.101), together with

Theorem (3.0.68) to prove that the localization of the exit-path ∞-category of the

�ne unital Ran space of Rn on Wn is equivalent to the exit-path ∞-category of the

unital Ran space of Rn. Recall that in so doing, we prove the second of the two

lemmas, (3.0.57) and (3.0.63), which together imply the main result of the chapter,

Theorem (3.0.46).

The �rst lemma states that the value of BFunWn([•],Exit(Ranu(Rn))) on [0] is

the space of objects of Exit(Ranu(Rn)) and its value on [1] is the space of morphisms
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of Exit(Ranu(Rn)).

Lemma 3.0.71. For p = 0, 1, there is an equivalence of spaces

BFunWn([p],Exit(Ranu(Rn))) ' HomCat∞([p],Exit(Ranu(Rn))) (3.0.32)

between the classifying space of the ∞-category FunWn([p],Exit(Ranu(Rn))) and the

hom-space in ∞-categories from [p] to the exit-path ∞-category of the unital Ran

space of Rn.

Observation 3.0.72. For an ∞-category C, the value of the simplicial space

HomCat∞([•], C) on [0] is the underlying maximal sub∞-groupoid C∼ of C, and on [1]

is the space of morphisms mor(C) of C, both of which are a space, that is, they are

equivalent to a CW complex.

The second lemma veri�es that the hypothesis of Theorem (3.0.68) is satsi�ed

for the situation at hand.

Lemma 3.0.73. The classifying space of FunWn([•],Exit(Ranu(Rn))) is a complete

Segal space.

Proving Lemma (3.0.71) We break Lemma (3.0.71) into two parts; the p = 0

case and the p = 1 case.

[p = 0] In light of Observation (3.0.67), where we identi�ed that for a fully faithful

∞-subcategory W of an ∞-category C, the ∞-category FunW ([0], C) is the ∞-

subcategoryW , and Observation (3.0.72), where we identi�ed that for an∞-category

C, the value of the simplicial space HomCat∞([•], C) on [0] is the maximal sub ∞-

groupoid C∼ of C, we rephrase the p = 0 case of Lemma (3.0.71) as the following

lemma.
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Lemma 3.0.74. There is an equivalence of spaces

BWn ' Exit(Ranu(Rn))∼

from the classifying space of the ∞-subcategory Wn of Exit(Ran
u(Rn)) to the maximal

sub ∞-groupoid of the exit-path ∞-category of the unital Ran space of Rn.

The proof of Lemma (3.0.74) relies on the two results that we will show next,

Lemma (3.0.77) and Corollary (3.0.81). We begin with Lemma (3.0.77), in which we

show that there is an adjunction between W and the subcategory of W consisting

of healthy trees; we de�ne this notion and this subcategory next, and then state the

lemma.

De�nition 3.0.75. A pair of functors

C D
R

L

between ∞-categories is an adjunction if there exists a unit transformation IdD
ε−→

R ◦ L such that for all d ∈ D and c ∈ C, the induced morphism

HomC(L(d), c)
R−→ HomD(R(L(d)), R(c))

HomD(ε,R(c))−−−−−−−−→ HomD(d,R(c))

is an equivalence of ∞-groupoids. The functor R is right adjoint to L and L is left

adjoint to R.

De�nition 3.0.76. W healthy
n is the subcategory of Wn de�ned to be the pullback

W healthy
n Wn

Funn-bij({1 < · · · < n}, (Finsurj)op) Funn-bij({1 < · · · < n},Finop)

y
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of categories.

Informally, the category W healthy
n is the full subcategory of Wn consisting of all

those objects of Θn that are healthy trees.

Lemma 3.0.77. The inclusion functor W healthy
n ↪→ Wn is a right adjoint.

In the proof of Lemma (3.0.77), we make use of the following construction..

Construction 3.0.78 (The Pruning Functor, Pn). For each n ≥ 1, we de�ne a

canonical functor

Pn : Wn → W healthy
n .

For n = 1, P1 := IdW1 since W1 = W healthy
1 .

For n ≥ 2, we de�ne Pn inductively. First, for each object T = [p](Ti) ∈ Wn for

n ≥ 2, de�ne the sub-linearly ordered set

NT :=

0 = i0 < i1 < · · · < ik

∣∣∣∣ ij ∈ {1, ..., p}∀1 ≤ j ≤ k

Ti = ∅ ⇐⇒ ∃1 ≤ j ≤ k s.t. i = ij

 ⊂ [p].

For the case n = 2, we de�ne

P2 : T = [p]([qi]) 7→ NT ([qij ])

on objects; the value of a morphism under P2 is given by restriction of that morphism

to NT . P2 respects composition because restriction respects composition.

For general n, we de�ne

Pn : T = [p](Ti) 7→ NT (Pn−1(Tij))
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on objects; the value of a morphism under Pn is again determined by restriction of

that morphism to NT together with Pn−1. Composition is preserved by Pn because

restriction and Pn−1 both respect composition.

Proof. (Lemma (3.0.77)) We use Lemma 2.17 from [2] which states that for a functor

C F−→ D of ∞-categories, F is a right adjoint if and only if for each object d ∈ D,

the ∞-undercategory Cd/ has an initial object, and verify that for each T ∈ Wn, the

undercategory W healthyT/ has an initial object. To de�ne such an initial object, we

use the canonical morphism de�ned as follows:

For each object T ∈ Wn, we de�ne a morphism T
αT−→ Pn(T ) in Wn such that

any morphism T
f−→ S in W to a healthy tree S uniquely factors through αT . For

n = 1, T = P1(T ) for each T ∈ W1 and thus we de�ne αT := IdT .

To de�ne αT for T ∈ Wn for n ≥ 2, we proceed by induction. Fix an object

T ∈ W2. De�ne αT : T = [p]([qi])→ NT ([qij ]) by

i) [p]→ NT is given by the assignment i 7→


ij, if ∃0 ≤ j ≤ k − 1 s.t. ij ≤ i < ij+1

ik, if i ≥ ik.

ii) For each pair (i, ij) such that i = ij, [qi]
Id−→ [qij ].

For the general case, �x an object T ∈ Wn. De�ne αT : T = [p](Ti) →

NT (Pn−1(Tij) by

i) [p]→ NT is the same as i) for n = 2.

ii) For each pair (i, ij) such that i = ij, Ti
αTi−−→ Pn−1(Tij), where αTi is guaranteed

by the inductive step.

Next, we observe that by design each morphism T
f−→ S in W to a healthy tree

S factors through αT via Pn(f):
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T S

Pn(T ).

f

αT
Pn(f)

(3.0.33)

Further, Pn(f) uniquely �lls (3.0.33).

We have just veri�ed that for each �xed object T ∈ W , the initial object of

W healthyT/ is (Pn(T ), T
αT−→ Pn(T )).

We have just veri�ed that there is an adjunction between W healthy
n and Wn, the

right adjoint of which is the inclusion functor. This was the �rst of two results that

we will use to prove Lemma (3.0.74), the second of which is Corollary (3.0.81).

Corollary (3.0.81) identi�es that the con�guration space of r unordered points

in Rn is homotopy equivalent to the classifying space of the following ∞-category.

De�nition 3.0.79. For r ≥ 0, Exit(Confr(Rn))Σr is the ∞-subcategory of the exit-

path ∞-category of the �ne unital Ran space of Rn de�ned to be the pullback

Exit(Confr(Rn))Σr Exit(Ranu(Rn))

Funr,n({1 < · · · < n},Finsurj,op)) Fun({1 < · · · < n},Finop).

y

where Funr,n({1 < · · · < n},Finsurj,op) is the subcategory of Fun({1 < · · · <

n}, (Finsurj)op) in which the value of an object upon evaluation at n has cardinality

r.

Observation 3.0.80. It follows by de�nition that the colimit of ∞-categories∐
r≥0

Exit(Confr(Rn))Σr is equivalent to the category W healthy
n .
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Corollary 3.0.81. There is a homotopy equivalence

B(Exit(Confr(Rn)Σr)) ' Confr(Rn)Σr

from the classifying space of the ∞-category Exit(Confr(Rn)Σr) to the con�guration

space of r unordered points in Rn.

We explicate the sense in which Corollary (3.0.81) is a corollary to a result in [7]

in which the homotopy type of the con�guration space of r ordered points in Rn

is identi�ed in terms of the classifying space of certain subcategory of Θn. First,

we introduce the following ∞-categories to translate the language of [7] to that of

exit-path ∞-categories.

De�nition 3.0.82. Fix a natural number r and a set S with cardinaltiy r.

• The category Θhealthy,act
n is the full subcategory of Θact

n consisting of all those

objects that are healthy trees.

• The category Θhealthy,r
n is the subcategory of Θhealthy,act

n de�ned to be the

pullback

Θhealthy,r
n Θhealthy,act

n

(Finr)
op Finop

y
γn γn

of categories, where Finr is the full subcategory of Fin consisting of all those

�nite sets with cardinality r.

• The category Θhealthy
n (S) is de�ned to be the pullback

Θhealthy
n (S) Θhealthy,r

n

∗ (Fink)
op

y
γn

〈S〉
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of categories.

• The ∞-category Exit(ConfS(Rn)) is de�ned to be the pullback

Exit(ConfS(Rn)) Exit(Confr(Rn)Σr)

Θhealthy
n (S) Θhealthy,r

n

y

of ∞-categories.

The objects of Θhealthy,r
n are healthy trees whose set of leaves has cardinality r,

whereas the objects of Θhealthy
n (S) are healthy trees whose set of leaves is labeled by

the set S of cardinality r.

Heuristically, an object of Exit(ConfS(Rn)) is an embedding of the set S into Rn

and a morphism is a path in ConfS(Rn) the image of which after projecting o� the

last i coordinates for each 0 ≤ i ≤ n − 1 is an `exit-path' in Conf•(Rn−i) in that it

allows anticolision of points, but does not allow collision of points.

Observation 3.0.83. The category Θhealthy
n (S) is equivalent to the category in [7]

refered to as the poset of n-orderings of S, denoted nOrd(S), in which an object is a

healthy tree of height n whose set of leaves is labeled by the set S, and a morphism

is an active morphism in Θn which satsi�es the branching condition; see De�nition 8

in [7].

To prove Corollary (3.0.81), we need the next result, Corollary (3.0.84) which

is a corollary to Theorem A of [7]. Theorem A, in light of Observation (3.0.83),

gives a homotopy equivalence between the classifying space of Θhealthy
n (S) and the

con�guration space of r points in Rn labeled by a set S with cardinality r, ConfS(Rn).

Our result involves the following ∞-category, which translates the language of [7] to

our language in terms of exit-path ∞-categories.
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Corollary 3.0.84. There is a homotopy equivalence

B(Exit(ConfS(Rn))) ' ConfS(Rn)

between the classifying space of the∞-category Exit(ConfS(Rn)) and the con�guration

space of points in Rn marked by the set S of cardinality r.

.

Proof. First, observe that the following diagram is a pullback of ∞-categories:

Exit(Confr(Rn)Σr) Exit(Ranu(Rn))

Θhealthy,r
n Θact

n

y
Gn (3.0.34)

where Gn was de�ned in Construction (3.0.58).

Combining (3.0.34) with the de�nition of Exit(ConfS(Rn)), we obtain the

following diagram of ∞-categories:

Exit(ConfS(Rn)) Exit(Confr(Rn)Σr) Exit(Ranu(Rn))

Θhealthy
n (S) Θhealthy,r

n Θact
n .

y y
Gn (3.0.35)

Lemma (3.0.59) showed that the functor Gn is an equivalence, which implies

the other two downward vertical arrows in Diagram (3.0.35) are both equivalences

of ∞-categories as well. In particular, we note the equivalence Exit(ConfS(Rn)) '

Θhealthy
n (S). Then, using the homotopy equivalence between the classifying space of

Θhealthy
n (S) and ConfS(Rn) established in Theorem A of [7], we have the desired result,

namely,

B(Exit(ConfS(Rn))) ' B(Θhealthy
n (S)) ' ConfS(Rn).
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Using the previous corollary, we prove Corollary (3.0.81)

Proof. (Corollary 3.0.81) Fix a natural number r and a set S with cardinality r.

Observe that the equivalence in Corollary (3.0.84) is ΣS-equivariant, and thus,

(B(Exit(ConfS(Rn))))ΣS ' ConfS(Rn)ΣS .

In chapter 4 of [25], it is shown that the classifying space of a colimit is equivalent to

the colimit of the classifying space. Thus, since the quotient is a colimit, the quotient

of the classifying space of Exit(ConfS(Rn)) is equivalent to the classifying space of

Exit(ConfS(Rn)ΣS) , which establishes the desired homotopy equivalence

B(Exit(ConfS(Rn)Σr)) ' ConfS(Rn)Σr .

With Lemma (3.0.77) and Corollary (3.0.81) in hand, we are now equipped to

prove Lemma (3.0.74).

Proof. (Lemma 3.0.74) Corollary 2.1.28 in [28] states that an adjunction between∞-

categories yields an equivalence between their classifying spaces. We apply this result

to the adjunction from Lemma (3.0.77) to obtain an equivalence of the classifying

spaces,

BWn ' BW healthy
n .

We observed in (3.0.80) that

BW healthy '
∐
r≥0

BExit(Confr(Rn)Σr).
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By Corollary (3.0.81),

∐
r≥0

BExit(Confr(Rn)Σr) '
∐
r≥0

Confr(Rn)Σr .

Lastly,
∐
r≥0

Confr(Rn)Σr is, by de�nition, equivalent to Exit(Ranu(Rn))∼ the maximal

sub ∞-groupoid of Exit(Ranu(Rn)).

[p = 1] There are three main lemmas, Lemmas (3.0.95), (3.0.96), and (3.0.97), which

together prove the equivalence of Lemma (3.0.71) for p = 1. Our approach involves

some technical developments of category theory, notably Cartesian �brations and

Quillen's Theorem B. These however should not distract the reader from the main

idea of proof: Both the source and target of Equation (3.0.32) in Lemma (3.0.71)

assemble as �brations and we use Lemma (3.0.74) to show that the natural map

between them induces an equivalence of the base spaces and �bers, hence inducing a

weak equivalence of the total spaces, which are CW-complexes:

BFunW ([1],Exit(Ranu(Rn))) mor(Exit(Ranu(Rn)))

BFunW ([0],Exit(Ranu(Rn))) Exit(Ranu(Rn))'

frgt

Bev0 ev0
(3.0.36)

First, we detail the machinery needed to de�ne and identify the �brations Bev0

and ev0. Lemma (3.0.95) identi�es the �bers of ev0 and Lemmas (3.0.96) and (3.0.97)

identify the �bers of Bev0.

De�nition 3.0.85 (∞-Undercategory). Given a functor of∞-categories C F−→ D and
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an object d ∈ D, the ∞-undercategory Cd/ of C under d is the pullback

Cd/ Dd/

C D

y

F

Theorem 3.0.86 (Quillen's Theorem B). Given a functor between∞-categories C F−→

D, if each morphism d
f−→ d′ in D induces a weak equivalence B(Cd′/) '−→ B(Cd/)

between the classifying spaces of the induced ∞-undercategories, then B(Cd/) is the

homotopy �ber of BF over d and thus, B(Cd/) ↪→ BC BF−−→ BD is a �ber sequence.

Remark 3.0.87. Quillen originally proved Theorem B in [29] for categories. Theorem

5.16 in [2] generalizes the result for ∞-categories, which is the statement of Quillen's

Theorem B given above.

De�nition 3.0.88 (2.1 in ( [2])). Let E π−→ B be a functor between ∞-categories. A

morphism c1
〈e

ϕ−→e′〉−−−−→ E is π-Cartesian if the diagram of ∞-overcategories

E/e E/e′

B/π(e) B/π(e′)

φ◦−

π π

π(e)◦−

is a pullback.

π is a Cartesian �bration if for every solid square

∗ E

c1 B

〈t〉 π

there is a π-Cartesian �ller.
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Observation 3.0.89. The functor FunWn([1],Exit(Ranu(Rn)))
ev0−−→ Wn is a Cartesian

�braton. This follows upon application of example 2.5 in [2], wherein they show that

for an ∞-category C, the functor given by evaluation at 0, Fun([1], C) ev0−−→ Fun([0], C)

is a Cartesian �bration, to the following diagram:

FunWn([1],Exit(Ranu(Rn))) mor(Exit(Ranu(Rn)))

FunWn([0],Exit(Ranu(Rn))) Exit(Ranu(Rn))'.

frgt

ev0 ev0

Observation 3.0.90. Let E π−→ B be a Cartesian �bration. For each object b ∈

B there is a canonical inclusion π−1(b) ↪→ Eb/ from the �ber of π over b to the

undercategory of E under b. Its value on an object e ∈ π−1(b) such that b ∼= π(e) is

the equivalence b
∼=−→ π(e). Its value on a morphism e

f−→ e′ is π(f).

De�nition 3.0.91 (Cartesian Monodromy Functor). Let E π−→ B be a Cartesian

�bration. For each morphism b
f−→ b′ in B, the induced Cartesian monodromy functor

f ∗ : π−1(b′) → π−1(b) from the �ber over b′ to the �ber over b is de�ned to be the

threefold composite

π−1(b′) π−1(b)

Eb′/ Eb/

f∗

−◦f

µ

where µ is right adjoint to the inclusion functor E|b ↪→ E
b/.

Observation 3.0.92. Given a pullback of ∞-categories

E E ′

B B′

y
G

π π′

F

(3.0.37)

in which π′ is a Cartesian �bration, for each morphism b
α−→ b′ in B, G carries the
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induced monodromy functor α∗ to the monodromy functor induced by F (α),

π−1(b′) π−1(b)

π′−1(F (b′)) π′−1(F (b)).

'

α∗

'

F (α)∗

Note that the downward vertical arrows are equivalences between �bers precisely

because (3.0.37) is a pullback.

Note 3.0.93. Lemma 2.20 in [2] guarantees that for a Cartesian �bration E π−→ B the

inclusion π−1(b) ↪→ Eb/ is a left adjoint.

Notation 3.0.94. For the remainder of this thesis, we impliment the following

notational changes:

• Exit(Ranu(Rn)): We denote an object S
e
↪−→ Rn by S, by which we mean the

image of S in Rn under the embedding e.

• Exit(Ranu(Rn)): We denote an object S
e
↪−→ Rn by S = Sn → · · · → S1, by

which we mean the images of Si under ei for each 1 ≤ i ≤ n together with

the coordinate projection data given by the sequence of maps of �nite sets

Sn → · · · → S1.

We denote a morphism cylr(S ′
σ−→ S)

E
↪−→ Rn × ∆1 from S to S ′ by simply an

arrow S → S ′.

Lemma 3.0.95. The �ber of the map of spaces

mor(Exit(Ranu(Rn)))
ev0−−→ Exit(Ranu(Rn))∼
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from the space of morphisms of Exit(Ranu(Rn)) to the maximal sub ∞-groupoid of

Exit(Ranu(Rn)) over an object S ⊂ Rn of Exit(Ranu(Rn)) is

∏
s∈S

Exit(Ranu(TsRn))∼

the product space indexed by S of the maximal sub ∞-groupoid of the exit-path ∞-

category of the unital Ran space of the tangent space of Rn at s ∈ S.

Proof. First, recall that the maximal sub∞-groupoid Exit(Ranu(Rn))∼ of Exit(Ranu(Rn))

is equivalent to the disjoint union of con�guration spaces
∐
r≥0

Confr(Rn)Σr .

Next, we de�ne three maps.

1. Fix a continuous map

ε :
∐
r≥0

Confr(Rn)Σr → R>0

such that for each pair of distinct points s 6= s′ in S, the open n-dimentional cubes

Boxε(S)(−) ∼= (−ε(S), ε(S))×n of volume (2ε(S))n, centered at each point do not

intersect,

Boxε(S)(s) ∩ Boxε(S)(s
′) = ∅.

Note that such a continuous map exists because Confr(Rn)Σr is Hausdor�.

2. For each S ∈
∐
r≥0

Confr(Rn)Σr and each s ∈ S, de�ne a homeomorphism

Ds∈S : Rn → Boxε(S)(s)

by the composite

Rn ∼=−→ (−ε(S), ε(S))×n
∼=−→ Boxε(S)(s) (3.0.38)
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the �rst homeomorphism of which is the product η×n where

R η−→ (−ε(S), ε(S))

is the homeomorphism given by 2ε(S)
π

arctan(−); the second homeomorphism of

(3.0.38) is translation by s, that is, (−) + s.

3. For S ∈
∐
r≥0

Confr(Rn)Σr , let

EmbS/∆1(cylr(f), Rn ×∆1)

denote the subspace (with the subspace topology) of Emb/∆1(cylr(f), Rn ×∆1) with

the compact-open topology, consisting of those embeddings E for which the image of

E|S is the given subset S ⊂ Rn.

Then, for each S ∈
∐
r≥0

Confr(Rn)Σr , �x a continuous map

δS : EmbS/∆1(cylr(f), Rn ×∆1)→ (0, 1]

such that for each point cylr(T
f−→ S)

E
↪−→ Rn ×∆1 in the domain,

E(f−1(s)× δ) ⊂ Boxε(S)(s)

for each 0 < δ ≤ δS(E) and for each s ∈ S.

Note that such a continuous map exists because EmbS/∆1(cylr(f), Rn × ∆1) is

Hausdor�.
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Next, �x an object S in
∐
r≥0

Confr(Rn)Σr . We will show that the map

∏
s∈S

(∐
k≥0

Confk(TsRn)Σk

)
→ ev−1

0 (S) (3.0.39)

given by

(Rs ⊂ TsRn)s∈S 7→

(
cylr

(∐
s∈S

Ds(Rs)
index−−−→ S

)
Estraight

↪−−−−→ Rn ×∆1

)
(3.0.40)

is a homotopy equivalence, where index is the map given by assigning r ∈ Ds(Rs) to

its index, s ∈ S, and Estraight is the embedding given by straight-line paths; namely,

for each pair (s ∈ S, r ∈ Ds(Rs)), the embedding Estraight restricted to the segment

cylr(r 7→ s) ' ∆1 into Rn is given by

t ∈ ∆1 7→ r(1− t) + st.

Consider a map in the other direction

ev−1
0 (S)→

∏
s∈S

(∐
k≥0

Confk(TsRn)Σk

)

de�ned by

(cylr(T
f−→ S)

E
↪−→ Rn ×∆1) 7→ (E|T×{1}(f

−1(s)) ⊂ Rn = TsRn)s∈S. (3.0.41)

The homotopy from the identity of the left-hand side of (3.0.39) to the composite

of (3.0.40) followed by (3.0.41) is given by applying the collection of homeomorphisms

{Ds}s∈S.

The homotopy from the identity on the �ber over S to the other composite is
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given by concatenating the following four homotopies together in the speci�ed order.

For each cylr(R
f−→ S)

E
↪−→ Rn ×∆1 in ev−1

0 (S),

1. Simultaneously run the paths of E backwards until t = δS(E)

2. For each s ∈ S, simultaneously run straight-line paths from each r ∈

E(f−1(s)× δS(E)) ⊂ Rn to Ds∈S(r)

3. For each s ∈ S, simultaneously run the paths given by the composite Ds ◦

E|
cylr(f−1(s)→s)

from t = δS(E) to t = 1

4. For each r ∈ R, simultaneously straighten each path by the Alexandar trick.

Lemma 3.0.96. The classifying space of the �ber of

Fun([1],Exit(Ranu(Rn)))
ev0−−→ Fun([0],Exit(Ranu(Rn)))

over an object S := Sn → Sn−1 → · · · → S1 is

∏
s∈Sn

Exit(Ranu(TsRn))∼

the product space indexed by Sn of the maximal sub ∞-groupoid of the exit-path ∞-

category of the unital Ran space of the tangent space of Rn at s ∈ Sn.

Proof. Fix an object S in the base of

txBoxev0. We will show that there exists a re�nement of the strati�ed space

∏
s∈Sn

(∐
k≥0

Confr(TsRn)Σr

)

such that there exists an adjunction between the exit-path ∞-category of that

re�nment and the �ber of ev0 over S. First, we de�ne the desired re�nement. Similar
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to ε and Ds∈S as de�ned in the proof of Lemma (3.0.95), we de�ne two maps:

1. A continuous map

ε : Exit(Ranu(Rn))∼ → R>0

such that for each object S := Sn → · · · → S1 in Exit(Ranu(Rn))∼ and for each pair

of distinct points s 6= s′ in Sn,

Boxε(S)(s) ∩ Boxε(S)(s
′) = ∅.

2. For each object S := Sn → · · · → S1 in Exit(Ranu(Rn))∼ and for each s ∈ Sn,

a homeomorphism

Ds∈Sn : Rn → Boxε(S)(s)

from n-Euclidean space to the box of size (2ε(S))n centered at s de�ned exactly as in

the proof of (3.0.95).

Consider the sub-strati�ed space of
∐
k≥0

Confk(Rn)Σk ,

∐
k≥0

Conf
ε(S)
k (Rn)Σk :=

{
R ⊂

∐
s∈Sn

Boxε(S)(s)

∣∣∣∣ R is �nite

}
.

For each s ∈ Sn, de�ne a continuous map between topological spaces

Φs :
∐
k≥0

Conf
ε(S)
k (Rn)Σk →

∐
r≥0

Confr(TsRn)Σr

by the assignment

R 7→ D−1
s (R ∩ Boxε(S)(s)).

Take the product of the Φs over all s ∈ Sn to de�ne a homeomorphism of topological
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spaces

Φ :
∐
k≥0

Conf
ε(S)
k (Rn)Σk →

∏
s∈Sn

(∐
r≥0

Confr(TsRn)Σr

)

the inverse of which is given by the assignment

(Rs ⊂ TsRn)s∈Sn 7→
∐
s∈Sn

D−1
s (Rs).

Observe that each stratum of
∐
k≥0

Conf
ε(S)
k (Rn)Σk is carried by Φ into a stratum of

the strati�ed space
∏
s∈Sn

(∐
r≥0

Confr(TsRn)Σr

)
, whose strati�cation is given as the

product of the strati�ed spaces
∐
r≥0

Confr(TsRn)Σr . As such, the homeomorphism Φ

is a re�nement of
∐
k≥0

Conf
ε(S)
k (Rn)Σk to

∏
s∈Sn

(∐
r≥0

Confr(TsRn)Σr

)
.

Consider the functor

Exit

(∐
k≥0

Conf
ε(S)
k (Rn)Σk

)
ι
↪−→ ev−1

0 (S)

whose value on object R ⊂
∐
s∈Sn

Boxε(S)(s) is

cylr

(∐
s∈Sn

(R ∩ Boxε(S)(s))→ Sn

)
Estraight

↪−−−−→ Rn ×∆1

where Estraight is the embedding given by straight-line paths. Further, using Lemma

2.17 from [2], showing that ι is a right adjoint follows directly from Lemma (3.0.77).

By 2.1.28 of [28] and Corollary 1.2.7 of [6], therefore,

Bev−1
0 (S) ' BExit

(∐
k≥0

Conf
ε(S)
k (Rn)Σk

)
'
∏
s∈Sn

(∐
r≥0

Confr(TsRn)Σr

)
.
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Lemma 3.0.97. The �ber of the map of spaces

BFun([1],Exit(Ranu(Rn)))
Bev0−−→ BFun([0],Exit(Ranu(Rn)))

over an object S = Sn → · · · → S1 is equivalent to the classifying space of the �ber of

ev0 over S,

(Bev0)−1(S) ' B(ev−1
0 (S)).

Proof. Fix a morphism S
α−→ S ′ in Fun([0],Exit(Ranu(Rn))) ' Wn. Recall the induced

monodromy functor α∗ de�ned as the composite

ev−1
0 (S ′) ev−1

0 (S)

Fun([1],Exit(Ranu(Rn)))S
′
/ Fun([1],Exit(Ranu(Rn)))S/

α∗

−◦α

µ (3.0.42)

where µ is right adjoint to inclusion by Lemma (2.20) of ( [2]). The diagram obtained

after taking classifying spaces of (3.0.109) yields an equivalence of the vertical arrows

by 2.1.28 of ( [28]).

Bev−1
0 (S ′) Bev−1

0 (S)

BFun([1],Exit(Ranu(Rn)))S
′
/ BFun([1],Exit(Ranu(Rn)))S/ .

'

Bα∗

B(−◦α)

' (3.0.43)

Thus, we see that B(− ◦ α) is an equivalence if and only if Bα∗ is an equivalence.

Quillen's Theorem B ( [30]) states that if B(−◦α) is an equivalence for each morphism

α, then the �ber of Bev0 over S is the classifying space of

Fun([1],Exit(Ranu(Rn)))S/ , which, in particular, by (3.0.43), is equivalent to the

classifying space of the �ber of ev0 over S. Thus, we seek to show that Bα∗ is
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an equivalence; for in so doing, we will prove the desired result.

First, consider the diagram

FunWn([1],Exit(Ranu(Rn))) mor(Exit(Ranu(Rn)))

FunWn([0],Exit(Ranu(Rn))) Exit(Ranu(Rn))'

frgt

ev0 ev0

'

(3.0.44)

in which each vertical arrow is a Cartesian �bration. By Observation (3.0.109),

ev−1
0 (S ′) ev−1

0 (S)

ev−1
0 (S ′n) ev−1

0 (Sn).

α∗

frgt frgt

frgt(α)∗

(3.0.45)

Observe that frgt(α)∗ is equivalence precisely because the data of α at n is a

bijection

Sn
αn−→ S ′n.

We apply the universal property of localization to the canonical localization ev−1
0 (S)→

Bev−1
0 (S) to obtain

ev−1
0 (S) ev−1

0 (Sn) '
∏
s∈Sn

Exit(Ranu(TsRn)Σr)
∼

Bev−1
0 (S) '

∏
s∈Sn

Exit(Ranu(TsRn)Σr)
∼

frgt

∃!

(3.0.46)

and observe that such a �ller must be an equivalence. We paste diagram (3.0.45) and
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diagram (3.0.46) for S and S ′ together to see that Bα∗ is an equivalence:

ev−1
0 (S ′) ev−1

0 (S)

Bev−1
0 (S ′) Bev−1

0 (S)

ev−1
0 (S ′n) ev−1

0 (Sn).

loc

α∗

frgt frgt

loc

'

Bα∗

'

'

We are now equipped to prove Lemma (3.0.71) for the case p = 1.

Lemma 3.0.98. There is an equivalence of spaces

BFun([1],Exit(Ranu(Rn))) ' mor(Exit(Ranu(Rn)))

induced by the forgetful functor Exit(Ranu(Rn))→ Exit(Ranu(Rn)) (3.0.53).

Proof. We will show that the long exact sequences in homotopy induced by the natural

diagram of �brations

BFunW ([1],Exit(Ranu(Rn))) mor(Exit(Ranu(Rn)))

BFunW ([0],Exit(Ranu(Rn))) Exit(Ranu(Rn))∼

frgt

Bev0 ev0

'

(3.0.47)

induces a weak equivalence between the total spaces. Indeed, Lemma (3.0.74) yields

the equivalence of the bottom horizontal arrow and Lemmas (3.0.96), (3.0.97) and

(3.0.101) yield an equivalence between �bers.

Proving Lemma (3.0.101) Next, we prove Lemma (3.0.101) which states that

BFunWn([•],Exit(Ranu(Rn))) is a complete Segal space. This section is technical,
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rooted in category theory and thus, we remind the reader that our goal is to apply

Theorem (3.0.68) to prove Lemma (3.0.63); this section checks that the hypothesis of

(3.0.68) is satsi�ed.

Lemma 3.0.99. Given a pullback of ∞-categories

E E ′

B B′

y
π

F

π′

G

in which π′ is a Cartesian �bration, if π′ satsi�es Quillen's Theorem B, then so does

π.

Proof. Let b
f−→ b′ be a morphism in B. The de�nition of the induced monodromy

functor together with Observation (3.0.109) yields

Eb
′
/ Eb/

π−1(b′) π−1(b)

π′−1(G(b′)) π′−1(G(b))

E ′G(b′)/ E ′G(b)/ .

−◦f

f∗

' '

G(f)∗

−◦G(f)

(3.0.48)

By taking the classifying space of (3), we obtain the desired result. Indeed, π′

satsifying Quillen's Theorem B implies B(− ◦ G(f)) is a equivalence and thus, each

horizontal arrow resulting between classifying spaces is an equivalence, which in
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particular means B(− ◦ f) is an equivalence:

BEb
′
/ BEb/

Bπ−1(b′) Bπ−1(b)

Bπ′−1(G(b′)) Bπ′−1(G(b))

BE ′G(b′)/ BE ′G(b)/ .

B(−◦f)

Bf∗

'

'

'

'

BG(f)∗

' '

B(−◦G(f))

Observation 3.0.100. The following diagram of ∞-categories is a pullback:

FunWn([p],Exit(Ranu(Rn))) FunWn({1− p < p},Exit(Ranu(Rn)))

FunWn({0 < · · · < p− 1},Exit(Ranu(Rn))) FunWn({p− 1},Exit(Ranu(Rn))).

y

τ

σ s

t

(3.0.49)

Indeed, for an ∞-category C, Fun([•], C) satsi�es the Segal condition, i.e., for each

p ≥ 2, the diagram obtained by replacing FunWn([p],Exit(Ranu(Rn))) with Fun([p], C)

in (3.0.53) is pullback. Using this, it is straightforward to show (3.0.53) is pullback.

In the next lemma, we verify that the hypothesis of Theorem (3.0.68) is satsi�ed.

Lemma 3.0.101. The classifying space BFunW ([•],Exit(Ranu(Rn))) is a complete

Segal space.

Proof. First, we will show that BFunW ([•],Exit(Ranu(Rn)) satsi�es the Segal con-

dition. Consider the diagram of spaces obtained by taking the classifying spaces of
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diagram (3.0.53)

BFunWn([p],Exit(Ranu(Rn))) BFunWn({p− 1 < p},Exit(Ranu(Rn)))

BFunWn({0 < · · · < p− 1},Exit(Ranu(Rn))) BFunW ({p− 1},Exit(Ranu(Rn))).

Bτ

Bσ Bs

Bt

(3.0.50)

To show that this diagram is a pullback, we will show that the map induced between

�bers of (3.0.50) is an equivalence. By Observation (3.0.89), the functor s in (3.0.53)

is a Cartesian �bration. Further, in the proof of Lemma (3.0.97), we showed that

s satsi�es Quillen's Theorem B. Thus, diagram (3.0.53) satsi�es the hypothesis' of

Lemma (3.0.99) and we identify the �bers of Bσ and Bs over the objects

S0 → · · · → Sp−1 in BFunWn({0 < · · · < p− 1},Exit(Ranu(Rn)))

and

Sp−1 in BFunW ({p− 1},Exit(Ranu(Rn)))

respectively, as the classifying spaces of the �bers of σ and s over S0 → · · · → Sp−1

and Sp−1, respectively:

(Bσ)−1(S0 → · · · → Sp−1) ' B(σ−1(S0 → · · · → Sp−1))

and

(Bs)−1(Sp−1) ' B(s−1(Sp−1)).

Therefore, because diagram (3.0.53) being a pullback implies an equivalence between
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�bers induced by τ

τ| : σ
−1(S0 → · · · → Sp−1)

'−→ s−1(Sp−1)

there results an equivalence between �bers of (3.0.50) given by Bτ|

(Bσ)−1(S0 → · · · → Sp−1) ' Bσ−1(S0 → · · · → Sp−1)
'−→ Bs−1(Sp−1) ' (Bs)−1(Sp−1)

which veri�es that diagram (3.0.50) is a pullback.

Then, Lemma (3.0.71) extends to an equivalence of spaces

BFun([p],Exit(Ranu(Rn))) ' HomCat∞([p],Exit(Ranu(Rn)))

for each p ≥ 0, since BFunW ([•],Exit(Ranu(Rn)) satsifying the Segal condition

means that its values on [0] and [1] determine all of its higher [p] values. This,

in particular, implies that BFun([•],Exit(Ranu(Rn))) is a complete Segal space,

since HomCat∞([•],Exit(Ranu(Rn))) is a complete Segal space precisely because

Exit(Ranu(Rn)) is a complete Segal space.

Finally, we are fully equipped to apply Theorem (3.0.68) to prove Lemma (3.0.63),

which we have set up to follow immediately.

Proof. [Lemma (3.0.63)] In the proof of the previous lemma (3.0.101), we showed

BFunWn([•],Exit(Ranu(Rn))) ' HomCat∞([•],Exit(Ranu(Rn))) (3.0.51)

which, in particular means that the hypothesis of Theorem (3.0.68) is satsi�ed. Thus,
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by (3.0.68),

Exit(Ranu(Rn))[W−1
n ] ' BFunWn([•],Exit(Ranu(Rn))).

Then, by the equivalence (3.0.51), we have an equivalence of simplicial spaces

Exit(Ranu(Rn))[W−1
n ] ' HomCat∞([•],Exit(Ranu(Rn)))

which establishes that Exit(Ranu(Rn)) localizes on Wn to Exit(Ranu(Rn)).

Note that this localization is given by the forgetful functor from Exit(Ranu(Rn))

to Exit(Ranu(Rn)) because our identi�cation of BFunWn([•],Exit(Ranu(Rn)) with

HomCat∞([•],Exit(Ranu(Rn))) was induced by the forgetful functor (recall the p = 1

case (3.0.98)).

Lastly, we will show this localization is over Finop. In (3.0.53), we observed

that the forgetful functor from Exit(Ranu(Rn)) to Exit(Ranu(Rn)) is naturally over

Finop by just remembering the data of underlying sets at the Rn level. Then, by the

universal property of localization, we have:

Exit(Ranu(Rn)) Exit(Ranu(Rn)) Exit(Ranu(Rn))[W−1
n ]

Finop

frgt

φn

'
φ

∃!

The unique existence of such a �ller is guaranteed because each morphism in Wn gets

carried to isomorphisms in Finop under φn. Thus, we see that the forgetful functor

Exit(Ranu(Rn))→ Exit(Ranu(Rn)) yields a localization over Finop.

To summarize, in Lemma (3.0.57) we showed an equivalence of ∞-categories,
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from the exit-path ∞-category of the �ne unital Ran space of Rn and Θact
n . Then,

in Lemma (3.0.63) we showed that the exit-path ∞-category of the �ne unital Ran

space of Rn localizes to the exit-path ∞-category of the Ran space of Rn. These two

lemmas together imply the main result of the chapter Theorem (3.0.46), namely that

Θact
n localizes to the exit-path ∞-category of the unital Ran space of Rn.

A localization of ΘExit
n to Exit(Ran(Rn))

In this section, we establish a consequence of Theorem (3.0.46). Namely, in

Corollary (3.0.103) we show that a subcategory of Θact
n localizes to Exit(Ran(Rn))

the exit-path∞-category of the strati�ed space Ran(Rn). This subcategory is de�ned

next. Heuristically, this subcategory consists of healthy trees as its objects and

morphisms that induce surjections between the sets of leaves.

De�nition 3.0.102. The category ΘExit
n is the subcategory of Θact

n de�ned as the

pullback

ΘExit
n Θact

n

Fun({1 < · · · < n}, (Finsurj6=∅ )op) Fun({1 < · · · < n},Finop)

y
τ

where we recall the functor τ from Observation (3.0.45) (de�ned by the truncation

functor tri and γi).

Corollary 3.0.103. There is a localization

ΘExit
n → Exit(Ran(Rn))

over (Finsurj)op from the category ΘExit
n to the exit-path ∞-category of the Ran space

of Rn.
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First, we will prove two lemmas that we will use in the proof of (3.0.103). The

�rst lemma, (3.0.104), mainly uses previous work of showing the adjunction between

W healthy
n and Wn in Lemma (3.0.77) to show that taking the classifying space of the

inclusion of ∞-categories FunW
healthy
n ([p],Θact,healthy

n ) ↪→ FunWn([p],Θact
n ) induces an

equivalence of spaces.

Lemma 3.0.104. For each p ≥ 0, the inclusion functor between ∞-categories

FunW
healthy
n ([p],Θact,healthy

n ) ↪→ FunWn([p],Θact
n )

induces an between their classifying spaces

BFunW
healthy
n ([p],Θact,healthy

n )
'−→ BFunWn([p],Θact

n ).

Proof. First, observe that we can describe the subcategory W healthy
n of Wn as the

following pullback of categories over Θact,healthy
n :

W healthy
n Wn

Θact,healthy
n Θact

n

y

where we recall that W n consists of all the same objects as Θact
n and all those

morphisms that induce bijections on the sets of leaves, and W healthy
n is the full

subcategory consisting of only those trees that are healthy.

In Lemma (3.0.77), we showed that the inclusion functor W healthy
n ↪→ Wn is

a right adjoint. The reader may observe that no where in the proof did we use

that the morphisms of W h
n and Wn induce bijection between their sets of leaves.

Thus, Lemma (3.0.77) immediately extends to an adjunction between Θact,healthy
n
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and Θact
n whose right adjoint is given by inclusion. Further, observe that the unit

transformation of this adjunction is given by morphisms in Wn. Indeed, for each

tree T ∈ Θact
n , the morphism assigned to T by the unit is T

εT−→ Pn(T ), which, in

particular, induces a bijection on the leaves, and is thus in Wn. In identifying that

the unit of the right adjoint Θact,healthy
n ↪→ Θact

n is given by morphisms in Wn, we

may extend this adjunction to an adjunction between FunW
healthy
n ([p],Θact,healthy

n ) and

FunWn([p],Θact
n ) whose right adjoint is inclusion.

Recall that Corollary 2.1.28 in [28] states that the classifying space of an

adjunction is an equivalence of spaces. Thus, upon taking the classifying space of the

right adjoint FunW
healthy
n ([p],Θact,healthy

n ) ↪→ FunWn([p],Θact
n ), there results the desired

equivalence of between classifyinging spaces.

For the next lemma, we need the following de�nitions, largely taken from [5].

De�nition 3.0.105.

• A monomorphism of spaces is an inclusion of path components, i.e., an injection

induced between connected components and an isomorphism induced between

all higher homotopy groups, π>0(−).

• A monomorphism of∞-categories is functor whose induced map between spaces

of objects is a monomorphism, and whose induced map between spaces of

morphisms is a monomorphism.

• A monomorphism of simplicial spaces is a functor for which the induced map

between spaces for each [p] is a monomorphism of spaces.

De�nition 3.0.106. A functor C → D between ∞-categories is an inclusion of a

cofactor if there is an ∞-category E and an equivalence between ∞-categories under
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C:

C
∐
E ∼= D .

Lemma 3.0.107. A functor C F−→ D is an inclusion of a cofactor if and only if F is

a monomorphism and for each solid commutative square

[0] C

[1] D

ν F
∃ (3.0.52)

for either ν := 〈0〉 or ν := 〈1〉, there exists a �ller.

Proof. First, notice that if F is a monomorphism and diagram (3.0.52) is satsi�ed

(with the two possible lifts), then C F−→ D is fully faithful. Consider the full ∞-

subcategory E ⊂ D consisting of those objects that are not isomorphic to objects in

the image of C → D. Consider the canonical functor

C
∐
E −→ D ,

which is canonically under C. By design, this functor is essentially surjective, and

fully faithful. This established the implication that F being a monomorphism and

satsifying diagram (3.0.52) implies C F−→ D is an inclusion of a cofactor.

We now show the converse. Suppose there is an ∞-category E together with an

equivalence C
∐
E ' D under C. Consider a solid diagram

[0] C

[1] C
∐
E

ν
∃

The functor [0]
ν−→ [1] has the feature that every object in [1] admits a morphism to
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or from an object in the image of ν. It follows that there is a unique �ller, as desired.

The next de�nition introduces the subcategory of ΘExit
n upon which we

localize to obtain Exit(Ran(Rn)). We impliment a slight abuse of notation as

we will denote this subcategory W healthy
n , which is distinct from the subcategory

W healthy
n of Θact,healthy

n (De�nition (3.0.76) after passing through the equivalence

Exit(Ranu(Rn)) ' Θact,healthy
n of Lemma (3.0.57)) consisting of all those healthy trees

and morphisms amongst them that induce bijections on their leaves. We will always

clarify which category W healthy
n we mean by indicating contextually which category it

is a subcategory of, namely, W healthy
n ⊂ ΘExit

n or W healthy
n ⊂ Θact,healthy

n .

De�nition 3.0.108. The subcategory W healthy
n of ΘExit

n is de�ned to be the pullback

W healthy
n W healthy

n

ΘExit
n Θact,healthy

n

y

of categories.

Heuristically then, W healthy
n ⊂ ΘExit

n di�ers from W healthy
n ⊂ Θact,healthy

n only in

that it does not have the empty tree as an object.

The inclusion of the subcategory ΘExit
n ↪→ Θact,healthy

n together with the induced

inclusion of the respective subcategories W healthy
n ↪→ W h

n guarantees that for each

p ≥ 0, the induced map FunW
healthy
n ([p],ΘExit

n ) ↪→ FunWn([p],Θact,healthy
n ) is also an

inclusion of a ∞-subcategory. The next lemma articulates a desired trait of the

induced map between classifying spaces of this inclusion.
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Lemma 3.0.109. For each p ≥ 0, the inclusion functor

FunW
healthy
n ([p],ΘExit

n ) ↪→ FunWn([p],Θact,healthy
n )

induces a monomorphism between classifying spaces

BFunW
healthy
n ([p],ΘExit

n ) ↪→ BFunWn([p],Θact,healthy
n ).

Proof. First, we will vertify that the functor

FunW
healthy
n ([p],ΘExit

n ) ↪→ FunWn([p],Θact,healthy
n )

is an inclusion of a cofactor; that is, we will show that this functor is a monomorphism

and satsi�es diagram (3.0.52).

First, note that because FunW
healthy
n ([p],ΘExit

n ) ↪→ FunWn([p],Θact,healthy
n ) is an

inclusion of ∞-categories, it is in particular a monomorphism.

Similar to Observation (3.0.100), it is straightforward to verify that for each

p ≥ 0 the following diagram of ∞-categories

FunW
healthy
n ([p],ΘExit

n ) FunW
healthy
n ({1− p < p},ΘExit

n )

FunW
healthy
n ({0 < · · · < p− 1},ΘExit

n ) FunW
healthy
n ({p− 1},ΘExit

n ).

y

(3.0.53)

is pullback, as is the diagram obtained by just replacing ΘExit
n with Θact,healthy

n . Thus,
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to show that diagram (3.0.52) for our situation, namely

[0] FunW
healthy
n ([p],ΘExit

n )

[1] FunW
healthy
n ([p],Θact,healthy

n )

ν ∃ (3.0.54)

is satsi�ed for all p ≥ 0, it su�ces to show for the cases for p = 0, 1. Indeed, it is

straightforward to verify that the cases p = 0, 1 imply each p ≥ 0 case upon applying

the universal property of pullback from diagram (3.0.53) and the diagram obtained

by replacing ΘExit
n with Θact,healthy

n in (3.0.53).

Both cases, p = 0, 1, come down to the following observation: Each morphism in

W healthy
n between objects in Θact,healthy

n is a morphism in ΘExit
n . The root reason for this

is that surjections enjoy the `2 out of 3' property; that is, for any commutative triangle

of morphisms among sets in which two of the morphisms are surjections, the third

map is necessairly a surjection as well. For our situation, any morphism T
f−→ T ′ in

W healthy
n yields a bijection between the sets of leaves, γn(f) : γn(T ′)

∼=−→ γn(T ). For any

1 ≤ i ≤ n − 1, in applying the natural transformation ε from Observation (3.0.43),

whose value on T is the natural map between sets of leaves γn(T )
εT−→ γi(tri(T ))

induced by the structure of T , we obtain the following diagram among sets:

γn(T ′) γn(T )

γi(tri(T
′)) γi(tri(T )).

∼=

εT ′ εT

γi(tri(f))

Observe that because T and T ′ are healthy trees, both εT and εT ′ are surjections.

Then, by the `2 out of 3' property, γi(tri(T
′))

γi(tri(f))−−−−−→ γi(tri(T )) is a surjection.

Such a surjection at each i guarantees that the image of f under the functor Θact
n →

Fun({1 < · · · < n},Finop) lands in Fun({1 < · · · < n}, (Finsurj6=∅ )op) and is thus a



107

morphism in ΘExit
n . Using this observation, we now verify diagram (3.0.54) for the

cases p = 0, 1:

For p = 0, the desired lift in

[0] W healthy
n

[1] W healthy
n

〈T 〉

〈0〉 ∃

〈T
f−→T ′〉

is given by selecting out the morphism T
f−→ T ′, which is in ΘExit

n because each

morphism in W healthy
n between objects in Θact,healthy

n is a morphism in ΘExit
n , as

previously discussed. A similar arguement yields a lift for the square whose downward

arrow on the left is 〈1〉.

For p = 1, the desired lift in

[0] FunW
healthy
n ([1],ΘExit

n )

[1] FunW
healthy
n ([1],Θact,healthy

n )

〈0〉 ∃

α

is again given by α, which is straightforward to check upon applying the fact discussed

above, that each morphism in W healthy
n between objects in Θact,healthy

n is a morphism

in ΘExit
n . A similar arguement applies for the square whose downward arrow on the

left is 〈1〉.

Thus, FunW
healthy
n ([p],ΘExit

n ) ↪→ FunWn([p],Θact,healthy
n ) is an inclusion of a

cofactor, meaning the target is equivalent to a coproduct, one term of which is

the source. Thus, because the classifying space respects colimits, the induced map

between classifying spaces BFunW
healthy
n ([p],ΘExit

n ) ↪→ BFunWn([p],Θact,healthy
n ) is, in

particular, still a monomorphism.
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Finally, we are equipped to prove Corollary (3.0.103) by showing that the

category ΘExit
n localizes about W healthy

n to the exit-path ∞-category of the Ran space

of Rn.

Proof. (3.0.103) Similar to the proof of Lemma (3.0.63), we will use Theorem (3.0.68)

that if the classifying space of FunW
healthy
n ([•],ΘExit

n ) is a complete Segal space, then it

is equivalent to the localization ΘExit
n aboutW healthy

n . First, we will show that there is

an equivalence of simplicial spaces from the classifying space of FunW
healthy
n ([•],ΘExit

n )

to HomCat∞([•],Exit(Ran(Rn))). To do this, we use the following diagram of simplicial

spaces

BFunW
healthy
n ([•],ΘExit

n ) BFunW
healthy
n ([•],Θact,healthy

n ) BFunWn([•],Θact
n )

HomCat∞([•],Exit(Ran(Rn))) HomCat∞([•],Exit(Ran(Rn))).

'

'

(3.0.55)

We explain each functor of the diagram next: The top horizontal arrow on the

left is a monomorphism by Lemma (3.0.109), wherein we showed a monomophism for

each space given by evaluation at [p]. We showed the top horizontal arrow on the left

to be an equivalence in Lemma (3.0.104). Because Exit(Ran(Rn)) is a∞-subcategory

of Exit(Ranu(Rn)), the bottom horizontal arrow is a monomorphism. We showed the

downward equivalence in the proof of Lemma (3.0.101).

Lastly, to de�ne the induced downward functor on the left of diagram (3.0.55),

�rst recall Observation (3.0.12), where we witnessed that the exit-path ∞-category

of the Ran space of Rn is naturall a ∞-subcategory of the exit-path ∞-category

of the unital Ran space of Rn, given as a pullback over surjective �nite sets.

Then, the induced downward arrow in (3.0.55) from BFunW
healthy
n ([•],ΘExit

n ) to

HomCat∞([•],Exit(Ran(Rn))) is induced by the unique (up to a contractible space of
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choices) functor given by the universal property of pullback in the following diagram

of ∞-categories:

Θact
n Exit(Ranu(Rn))

ΘExit
n Exit(Ran(Rn))

Fun({1 < · · · < n},Finop) Finop

Fun({1 < · · · < n}, (Finsurj6=∅ )op) (Finsurj6=∅ )op.

∃!

evn

evn

(3.0.56)

where we note that the top, back horizontal functor is the localization from

Theorem (3.0.46), and the square on the right wall is the pullback that we just

observed in diagram (3.0.1). Also note that we apply the universal property

of the classifying space to ensure that the unique functor in diagram (3.0.56)

from ΘExit
n to Exit(Ran(Rn)) induces a functor from BFunW

healthy
n ([•],ΘExit

n ) to

HomCat∞([•],Exit(Ran(Rn))) in diagram (3.0.55).

We wish to show that this induced functor

BFunW
healthy
n ([•],ΘExit

n )
κ−→ HomCat∞([•],Exit(Ran(Rn)))

in diagram (3.0.55) is an equivalence. First, observe that monomorphisms enjoy the

`2 out of 3' property (by 5.4 in [5]) and thus, κ is a monomorphism.

All that remains to be shown then, in showing that κ is an equivalence of

simplicial spaces, is to show that κ induces a surjection on path components between

each space given by the value on [p],

BFunW
healthy
n ([p],ΘExit

n )
κ−→ HomCat∞([p],Exit(Ran(Rn))).
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Recall in the proof of Lemma (3.0.101) where we show that

BFunWn([•],Exit(Ranu(Rn))) satsi�es the Segal condition. Observe that the same

arguement applies to BFunW
healthy
n ([•],ΘExit

n ) to show that it, too, satsi�es the Segal

condition. Thus, to show κ is a surjection on path components, it su�ces to show it

for the cases p = 0, 1.

For the case p = 0, we wish to show that the map of spaces

BW healthy
n

κ−→
∐
r≥1

Confr(Rn)Σr

is a surjection on path components. Indeed, this follows by Corollary (3.0.74), wherein

we showed a homotopy equivalence between the classifying space of the subcategory

W healthy
n of Θact,healthy

n and the coproduct
∐
r≥0

Confr(Rn)Σr ; the only di�erence here is

that r = 0 is allowed.

For the case p = 1, we wish to show that the map of spaces

BFunW
healthy
n ([1],ΘExit

n )
κ−→ mor(Exit(Ran(Rn)))

is a surjection on path components. Let cylr(S
f−→ T )

E
↪−→ Rn × ∆1 be a point in

the target. Recall that by diagram (3.0.56), κ is determined by ΘExit
n ↪→ Θact

n '

Exit(Ranu(Rn)) over Fun({1 < · · · < n}, (Finsurj6=∅ )op). Thus, we will identify a point in

the �ber over E under κ by identifying a morphism in Exit(Ranu(Rn)) over (Finsurj)op.

Such a morphism is precisely obtained by naming the projection data of E, namely:
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cylr(S
f−→ T ) Rn ×∆1

cylr(pr<n(S)→ pr<n(T )) Rn−1 ×∆1

...
...

cylr(pr1(S)→ pr1(T )) R×∆1

pr<n

E

the value of which under the functor Exit(Ranu(Rn)) → Fun({1 < · · · < n},Finop

factors through Fun({1 < · · · < n}, (Finsurj)op) precisely because Exit(Ran(Rn))

is naturally over Fun({1 < · · · < n}, (Finsurj)op) as observed from its pullback

description in diagram (3.0.1). Thus, this morphism in Exit(Ranu(Rn)) de�nes a

morphism in ΘExit
n whose value under κ is E. Thus, κ for the case p = 1 is a surjection

on path components which, as previously argued, implies that κ is an equivalence of

simplicial spaces. The target of κ, HomCat∞([•],Exit(Ran(Rn))) is, in particular, a

complete Segal space, and hence, BFunW
healthy
n ([•],ΘExit

n ) is a complete Segal space.

As such, the hypothesis of Theorem (3.0.68) is satsi�ed and we establish that ΘExit
n

localizes on W healthy
n to the exit-path ∞-category of the Ran space of Rn.

Lastly, to see that this localization is over (Finsurj)op, we recall that the

equivalence BFunW
healthy
n ([•],ΘExit

n ) ' HomCat∞([•],Exit(Ran(Rn))) was induced by

the functor ΘExit
n → Exit(Ran(Rn)) from diagram (3.0.56), which is in particular

over (Finsurj)op, which implies that the localization, too, is over (Finsurj)op.
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