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Abstract:

This thesis is concerned with the development of var unit control strategies to improve the damping of
electromechanical oscillations (0.1 to 2.0 hertz) which commonly occur in power systems. The
objective is to use network information, locally available at the var unit bus, to produce a signal which
determines the appropriate time-varying susceptance of the var unit.

Two strategies, one nonadaptive and one adaptive, are developed. The nonadaptive control strategy is
based on a computer generated linearization of the nonlinear power system model. A fixed controller
design is then obtained using eigenvalue analysis. The adaptive control strategy is based on real-time
identification of reduced-order models of the system. An adaptive, linear quadratic, optimal controller
is then formulated which determines the var unit susceptance values needed to quickly reduce system
oscillations. The effectiveness of each of these control strategies is tested by computer simulation of a
nine-bus power system. A detailed explanation of the methods used to simulate power system
dynamics are also presented.

The simulation results illustrate the potential usefulness of applying these types of controllers to
dampen oscillations of large inter-connected power networks. The robust character of these controllers
is also illustrated.
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- ABSTRACT

This thesis is concerned with the development of var unit control
strategies to improve the damping of electromechanical oscillations
(0.1 to 2.0 hertz) which commonly occur in power systems. The
objective is to use network information, locally available at the var
unit bus, to produce a ‘signal which determines the appropriate time-
varying susceptance of the var unit. '

Two strategies, one nonadaptive and one adaptive, are developed.
The nonadaptive control strategy is based on a computer generated
linearization of the nonlinear power system model. A fixed controller

design is then obtained using eigenvalue' analysis. The adaptive
control strategy is based on real-time identification of reduced-order
models of the systenm. An adaptive, 1linear quadratic, optimal

controller is then formulated which determines the var unit susceptance
values needed to quickly reduce system oscillations. The effectiveness
of each of these control strategies is tested by computer simulation of
a nine-bus power system. A detailed explanation of the methods used to
simulate power system dynamics are also presented.

) The simulation results illustrate the potential usefulness of
applying these types of controllers to dampen oscillations of large
inter-connected power networks. The robust character of these
controllers is also illustrated. -




CHAPTER 1

INTRODUCTION

Problem Description and Background

This thesié is ‘coﬁcerned .with the development of control
strategies which can be applied to .a statié var compensator (SVC) in
order to enhance the damping of electromechanicél oscillations wﬁich
occur among generators in power networks. Thése oscillationé generally
occur in the frequency range from around 0.1 to around 1.5 hertz.
Consideration of different strategies has‘been limited to those control
strategies which will require only local information readily available
at the bus where the var unit is located. This requirement means that
effective controi action will not depend on the measurement and
communication of information  from widely dispersed parts of the
network. The benefit here is that the controller reliability will not
be subject to the reliability of the communication system. This is a
concern in pover systems since the same environmental factors which
cause disturbances gb pover systems may also cause disturbances to
comminication systems.

A static var compensator is one of several devices that can be
utilized to enhance damﬁing in a. pover system. Other devﬁces to
accomplish the same goal include power system stabilizer (PSS) control
on exciters, control of series compensators; and éonfrol of higb

voltage DC (HVDC) converter systems. Static var compensators have an
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advantage over power system stabilizers in that they can be centrally
located in the power network in order to obtain maximum effectiveness.
iAlso they may be more feasible,lto “use fér a utility company that is
'primarily a power transmission company and not a pbwer generation
coﬁpany. Static var compensators are oftén installed primarily for
voltage support in a network, and controlling the device to improve
system damping as a secondary -functiqn adds additional benefit. High
~ voltage DC systems have many of the same advantages as static var
compensators for improving system dynamics. A disadvantage of ﬁsihg
high voltage DC converter control is that' a primary néed of epﬁanced
éystem damping may be when the DC intertie is lost. 1In this.case the
disturbance itself eliminates the HVDC system from being part of the
splufion to the problem. The control of series compensation devices
has not been considered here 'since the continuous control of such
devices is very nevw and their:freliability and economic feasibility in
.the‘power.éystem environment has not been tested. It should be noted
f=hdwevef, thét the .coptrol‘-stféfegies'.deVeloped here'and‘applied to
lsfatic var compensators can.:jﬁst ésr'wéll bé Aappiied to these other

devices. o
The need to improve damping in power systems networks has been
groving over the years [1]. ' Poorly damped oscillations have been
noticed in power systems in many parts of the world. The major factor
‘ c&ntributing to these oscillations. is often the use of long
transmission lines carrying large power flows from one area of a system
to another. In some cases this éituation is due to the development of
generating facilities that are located in remote areas from the major

load centers. Undamped or poorly damped oscillations are often the
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limiting factor encountered in determining. how much power can be
transported from one area of a system to another. This sitﬁétion may
arise when a utility faces the problem‘bf.meetiﬁg groving load demands
on an existing system where expaﬁding transmission capacity is limited
by increasing restrictions and costs of new transmission. lines.
Maximizing poweér transfers over existing lines 1is a major goal of many
“utilities, and system damping is voftgn the obstacle to overcoﬁe.
Damping problems are also sometimes attributed to peculiar load
dynamics or tovthé wvidespread use of fast acting generator excitation
systems. These excitation systems are important to maintain system
integrity in the event of sudden disturbances. Some utility companies
report that their transient stability studies "of projected system
operating conditions"ihdicate that. the poor damping problem will gef
wofse in the years ahead [2].

There are several problems " associated with sustained or poorly
damped oscillations in powver system mnetworks. The presence of the
oscillations themselves indicétesr a lack of stability in the system
operating point which may poténtia}ly ‘worsen causing the system to be
unstable. There is also the pbésibility( that a second disturbance
occurring during the oscillatory period may cause the system fo~go
unstable and separate, whereas the same disturbance occurring in a more
settled situation would not. Large oscillations in voltage and pover
flows threaten the system integrity by causing damage to equipment
belonging to both the utility and the customer. Thére is also the
danger of undamped oscillations initiating 'or aggravating a cascading

outage.
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Pover systems in general present a challenging_.problem for
designers of control systehs wvho want to try to modify the power system
dynamics. There are foor characteristics of power systems which need
special attention. First, a power system is a nonlinear system. $Since
there are very few generally applicoble control tecﬁniques for
nonlinear systems, controller design for a power system usually
involves a linearized representation of the nonlinear system. Second,
the power s&stem is a time-varying system. . Generally there is a slow
continuous change in the operating point of the system with daily as
well as yearly cyclical patterns being _present. This means that the
dyhamics of the system are constantly changing also. These changes are
usually slow and occur over periods of hours but occasionally the
system dynamics can undergo large changes in a period of seconds or
-less. This time-varying nature of the system is often neglected in
designing controllers for powér systems with the result that the
controllers are ﬁsually only effective for certain operating:conditions
and may actually be detrimental to system dynamics under other
operating conditions. Third, a power system is usually a very high—
order system. Even a small utility is often inferconnected with other
utilities so that a thorough representation of the system will involve
hundreds or éven thousands of buses. This charaoteristio of power
systems causes problems for many standard approaches to controller
design. Fourth, power systems are multivariable systems with numerous
inputs and outputs scattered ovef long distances so that coordination

of controllers in different parts of the systeo can be difficult.
| In this thesis two approaches to controllér design are presented.

Both of these abproaches attempt to deal with all four characteristics
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mentioned above with special emphasis on the time-varjing aspect of “the
system. The first approach utilizes a linearized system representetion
and eigenvalue analysis to deéign a controller which ﬁeets the needs of
'the system over a wide range of operating points. The second approach
utilizes an adaptive controller with on-line identification of a

reduced-order transfer function of the power system.

Pover System Damping

A simplified power system model having n generators will have n-1
modes or frequencies of oecillation [3]. These are often referred to
as natural frequencies of oscillation. Normally in a power system all
these modes will be posftively damped. Occasionally some of these
_medes may have enly slight positive damping in which case oscillations
will persist for a long time after a disturbance before they die out.
If a mode becomes negatively' damped then oscillations will arise
spontaneously. \An oscillation or mode that 1is poorly damﬁed may
involve only one or two machines or it may involve 1arge groups of
machines. In general oscillations involving only a few machines occur
in the frequency range from 1 to 2 hertz. Oscillations involving large
groups of machines.generally occur at frequencies below 1 hertz [3].
Oscillations involving large numbers - of machines are usually difficult
to analyze because of the amount of detail required in the computer

representation to reproduce the oscillations in simulations. There are

a fev papers which have appeared in the literature which report on
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efforts to analyze the causes and factors affecting the occurrence of

-cértain modes vhich have been recorded in pover systems [4], [5] and

[6].

There are two basic -approaches to understanding powver system
damping which often are mentioned in 'the literature. One approach is
based on the concepts of synchronizing and damping torques which were
developed by deMello and Concordia [7] in order to gain insight into
the design of power system stabilizers. The second involves the

concepts of eigenvalue analysis which have been utilized by many

"authors for both the analysis of factors causing poor damping and the
:design of controllers to improve 'syétem, damping. Whilé the’
'synchronizing and daﬁping-:torques' concept 1is based on a one-machine

" infinite-bus system it has proven .vefy insightful and useful even in

multimachine systems and has been used with very good success in the

design of power system stabilizers. Many authors have béen attempting

to extend the use of these concepts for designing other types of

damping control also. Recently eigenvalue analysis programs have been

developed which are capable of .finding eigenvalues of very large power
éystgms [8] and [9].  Eigenvalue analysis has been used to design
stabilizing controllers for many different types of control approaches
including, HVDC converters, SVC systems and power system stabilizers.
The concept of damping torques gnd synchronizing torques was
developed based on the one-machine infinite-bus power system. These
concepts illustrate how machine stability is affected by the excitation
system as well as by.lnetwork parameters and operating conditions.
Equations (1.1) and (1.2) below are- the swing equations written in

state equation form where M is machine inertia constant, ® is the rotor
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'torque. These tvo torque components have a 90 degree phasé shift
between them. Any torque in phase with rotor velocity is referred to
as a damping torque and those - in phase wvith rotor angle are
synchronizing torques. An arbitrary mechanical torque input will
require a combination of both counteracting torques inAordér to reach a
steady-state operating point again. The synchronizing torque acts to
prevent the machine from“ 1bsﬁng synchronism with the rest of the
network and is strongly dependent-on network parameters as well as the
ﬁachine excitation system. The damping torque is affected by factors
such as rotor amortisseur windings and the excitation system. The

torque-angle characteristic equation of this block diagram is

2 4 (D/M)s + (K;377/4) = O (1.3)

which has an undamped natural frequency of ® =./377K1/M‘andya damping

ratio of (¢ = O.SD//377K1M . With these ideas establighed it.can be
shown, [7], tha§ under certain commonly encountered conditions the
voltage regulator can have a beneficial effect on synchronizing torques
while simultaneously reducing the damping torque of the machine.
Eigenvalue techniques haQe been used in some. cases td‘analyzé the
factors con;ributing to well ddcumented oscillations that;have occurred
in power systems. The Ludington Pumped Storage Plant 1ocated.in.
" Michigan experienced undamped oscillatiOns early in the‘mdrniné'of
December 28,1973. System qoﬁditions ana operating parameters at the_
time vere well documented. [4].  The plant contaiﬁs six reversible
generator/pump units. Water 'is pumped up. to a reservior and later

released to generate electricity with an electrical efficiency of 70%.

The oscillations occurred at a frequency of about 0.77 hertz when the
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sixth unit was put.oﬁ line .fo start pumping. 'The authors ‘report that
eigenvalue analysis indicated that a lack of damping of normal
mechanical oscillations is what was causing the sustained oscillations.

The factors affecting the damping were found to include the
external system equivalent reactance. Higher values of external
equivalent reactance due to transmission lines being out of service
caused negative damping of the system. Increasiﬁg the pumping power
being consumed at the plant also contributed to negative damping.
.Damping was found to be improved slightly by increasing voltage levels
in the system. The most significant factors related to changes in
damping were found to be changes in excitation system parameters. The
authors also report that neglecting. amortisseur windings on the
machines had: only a slight effect on eigenvalues while neglecting
stator resistance in the machine models had ho siénificaht effect on
eigenvalues.

It is interesting to note that these oscillations occurred in a
tightly connected and lightly loaded transmissions system. Damping in
this study was found to be most strongly affected by machine loading
and excitation system parameter settings.

A detailed analysis of an instability that occurred in Illinois at
the Poverton Generating Station is described in [5]). This situation,
in vhich a large generator is being operated at the end of a long
transmission 1line, is well known to have stability and damping
problems. An oscillation frequency of ~ about 1.0 hertz was observed to
occur whenever the generation from the facility exceeded a cértain
- limit. It was noticed that tﬁe oscillation§ could alvays be eliminated

by reducing the power output or by ‘disconnecting the automatic voltage
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regulator. After further investigation it was established that
adjustment of excitation system parameters could also restore
stability. All of these observations were reproduced by similation and
verified by eigenvalue analysis. It was found that the largést effect
on critical eigenvalues came from forward loop gain and the feedback
gain on the excitation system. Stability could also be affected in

this case by raising the terminal voltage.

Review of Literature on SVC Control for System Damping

This section will review some controller designs for SVC’s which
have appeared in the literature for the purpose of improving system
damping and stability. Ohyama,et al., [10] have proposed a method of
SVC control to enhance system damping using a so-called "reset filter".
The purpose of the reset filtér is to allow SVC utilization for steady-
state voltage control along with damping control. The controller is
designed for a one-machine infinite-bus systém. Using this system the
authors derive éxpressions relating‘ the SVC reactance to the méchine
synchronizing torque coefficient. A relationship is also derived
relating SVC setting to machine osciliation frequency. By increasing
the oscillating frequency it is argued that the machine damping torque
is increased slightly. An eigenvalue study on a large system shdws
that Eontrolling the SVC increases system damping of the main modé but
no details of the particular control system are provided. The'resef
filter basically prevents the damping ﬁortion oﬁ the SVC control from

reacting to voltage level adjustments of the SVC.
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Hammad [11],[12], has given a reviev of some SVC control
techniques as-well as proposing an optimal control strategy. The
system proposed here has damping control as a sepafate loop. from
voltage regulation control. The damping control proposed is of the
"bang-bang" type. Arguments are presented, based on a one-machine
infinite-bus system, that pure voltage control alone_ will provide
machine synchronizing torque but not damping torque. . It is fhen shown
that SVC control based on rotor speed or change in power will providg'
damping. For velocity feedback, the increased synchronizing torque is
proportional to the gain of the controller which then 1leads to a
justification for the use of bang-bang control. The author uses
Pontryagin’s maximum principle to derive an optimal'bang—bang control
strategy for the one-machine case.

Olwegard, et al., [13] also have looked at the application of
SVC’s to enhance system damﬂing. The authors are interested in the
Nordel pover system which covers Sweden, Finland, Norway, and Denmark;
Damping has been a factor of critical concern for this system since the
1960’s. The authors use a one-machine system to develop a simple
scheme of switching in SVC reactance based on power transfer
fluctuations. The control scheme comes into effect only when power
oscillations exceed a certain threshold value but also are less than a
certain maximum value. Computer simulations ' of the Nordei system
indicate undamped oscillations will' occur vwhen a certain tiefline is
lost which can be stabilized by the SVC control. The application of
SVC control enables higher power transfers in the system wvhich
translates into an SVC -effectiveness measure of so many MV of power

transfer increase per MVAR of SVC capability. The authors briefly
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discuss the control of thyristor controlled series capacitors but
report that a suitable control scheme has not been found. Théy feel
that series capacitors are more readily suited for enhancément of first
swving transient stability than is a shunt device.

Hamouda, Iravani, and Hackam [14] have considered coordinating SVC
control with PSS contgol in order to damp machine inertial 6scillations
as well as torsional shaft oscillations. The main application of the
SVC is voltage control with an auxiliary input voltage signal to damp
oscillations obtained from generator speed .deviation. Their work
describes an SVC application for a one-machine system. ‘Their emphasis
is mainly on subsynchronous resonance with a reported improvement in
system damping of around 3% for some modes. '

. Larsen and Chow [15] have given some insights for SVC control
applied fo both voltage level control and system damping. They rebort
that the transient response of their voltage control loop used'in
voltage. level control has a 1limit to its speed.of response which is
determined by the tendency of the loop to undergo oscillations at
around 20 hertz. The approach they use toward enhancing system damping
is to look at each system mode independently and apply the concepts of
synchronizing and damping torques to the machinés; For each modal
frequency, a diagram is developed representing the effects of the SVC
control on synchronizing and damping torques for‘a machine. Transfer
functions are developed relating SVC voltage 1level to modal speed and
angle. The torque components due to the SVC, in phase with modal speed
and angle, are’identified. Since the torque component in‘phasé with
modal speed is usually very émall, a supplementary control function is.

developed to utilize another controller input signal to modulate SVC
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voltage to increase this torque component.. Three basic system signals
are considered as inputs to the damping controller: ac voltage
frequency, current~or pover flov on a tieline, and voltage magnituée.
The issues of swing mode controllability and observability for each of
these control}ef inpﬁts is qdiécussea.- Because the authors 'are
cohfrdlliﬁg.tﬁe voltage level of .the SVC as‘the contrdller oufput and
using anofher system signal as the controller input, they have an
"inner loop" in their control lsystem -where the'controller output is-
affecting the controller input signal without affecting system damping.
The gain of this inner loop ié an imporfant factor in the selection of
a suitable controller input signal.  The problem of designing a
controller involves minimizing the gain of this inner 1loop while
providing purely positive damping from the controller ~output. The
amouﬁt of damping obtained will vary with power system operating
condition as will the inner 1loop 'éensitivity. The authors note that
using active current as the controller - input signai has the advantage
of low innef-loop sensiti&ity wheréaé voltage magnitudg is dropped from
consideration because of high inner léop sensitivity. Both.acfive
current and power change sign as a function of operating condition and
so the authors report that an adaptive control scheme would be
necessary to‘utilize these signals effectively. Current magnitude is -
‘reported as having the best . attributes ovgrall -as an inpuf signal to
the controller. Controller design also has to incorporate washout and
high frequency filtering- stages to"isoléte the sving mode of interest.
Improved system damping uéing-this control scheme is simulated on ‘two-
area aqd- ;hree—area systems. in- these_.simulations each area is

represented by an equivalent machine. .
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Martin [16] proposes an SVC control strategy for combining both
voltage control and system damping. In this case the damping sigggl is
an auxiliary‘input into the SVC regulator. He proposes.using only
bang-bang type controi for system damping with the SVC at eitﬁer'its
maximum or minimum reactive power output. Some inputs thaé are
considered are: rate of change of angle between two system areas, rate
of change of power on the tieline, .and systenm frequency or machine
rotor speed in one of the areas. A three-area system (with each area
represented by one equivalent machine) was simulated to test the
controller design. The author reports that using rate of change of
angle between two areas is not a practical signal and rate of change of
power, though easy to measure, was not an effective signal. Frequency
of one of the areas proved to be the most effective choice. The final
design used frequency of area one with proper filtering to limit the
SVC response to the frequencies of interest. The author also develops
the performance measure of. MW/MVAR which. indica%es the amount of
increased allovable tieline power flbw per MVAR of SVC capacity that is

required to obtain acceptable system damping.

Addptive Controllers in Power Systems

The time-varying nature of power system dynamics makes the
industry an inviting area for the application of adgptive controllers.
Powver system dynamics are constantly chaﬁging' Qith load levels and
generation pattern adjustments both on a daily and seasonal cycle.

This characteristic means that a fixed type of controller designed by

[P -
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conventional means can be expected to perform with high effectiveness
during only.a small bart of its opgrating time. In some cifcumstances
or.operating conditions the fixed controller mayhactually have adverse
effects on system dynamics. An adaptive controller wvhich continually
_updates or "tunes" itself to. the current operating conditions is one
.way to solve this problem.

Many adaptive controllérs.fof pover system applications have been
proposed in the literature, but Athe actual implementation of adaptive
controllers in power systems is nonexistent or at least very rare [17].
Most of these .proposed applications have been applied to genérator
excitation systems and load-frequency contrgllers, with a few proposed
for HVDC systems and, until recently, only one for SVC control. This
;eview of adaptive controllers in power systems will be limited. to a
series of papers on a pole-shifting type of adaptive controller'applied
to PSS syStemsland to a brief .mention of the one SVC adaptive control
strategy. . A more thorough review of adaptive 'control strategies
préposed‘fof power systems can ‘bé " found in‘[17]_or [18]. Backgféund
relevant to an enhanced .LQ adaptive controller is given in the
introductory section of Chapter IV.

Cheng, Malik, and Hope with several other coauthors have written
several papers [19}], [20], [21], deséribing‘ a self-tuning adaptive
controller based on a pole-shifting strategy and applied to PSS control
in order to enhance system damping. ‘The authors have designed their
coﬁtroller using a dual-rate sampling scheme in order to keep the
sampling interval small aﬁd yet still have enough time to perférm the
necessary computations between samples. “The computations are done

using multiple microprocessors. Their controller uses a self-adjusting
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pole shifting strategy, which attempts to shift the poles of the
controlled system toward the origin of the z plane by a factor «. This
factor, o, varies between zero and one to produce a control effort that
results in maximum dampiné of the éystem oscillations, yet does not
exceed contrﬁller limits. The controller is basically a feedback
compensator which is tuned to shift the- poles of thé closed-loop
system. The desired control 1law for the machine 1is obtained as a
function of: the system parameter vector obtained from an identifier, a
vector contgining the present and past system outputs, and a vector of
past inpﬁté.

The basic assumption made 1in this controller and in many self-
tuning controllers is that a very high-order system can be modeled as a
much lower order system and an effective coptrol law can be calculated
based on this low-order model. It is also implied that the essential
time-varying parameters of the. system can be identified and tracked
over periods of time and the control law adjusted to maintain maximum
effectiveness. Thé identifier used by the authors is of:the recursive
least squares (RLS) type with a varying forgetting factor to enhance
its tracking\ability.. |

‘The authors report that using the pole-shifting adaptive coh;rol
strategy has the advantages of 'being applicable to nonminimum phase
systems as Qell as the "desirable characteristic of always producing a
smooth control action. The parameters of the feedback compensator are
found by solving a system of linear equations of size 2n-1 where n is

the order of the identified model. It is reported that a third-order -

‘model gives good results in their studies and a fifth-order model is

impractical for real-time implementation using 8086 microprocessors.
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The authors have obtained very promising simulation results using
this control scheme. In reference [19] they have tested the method on
a one-machine system. In [20] they have demonstrated its effectiveness
in a three-machine system which hasl twvo lightly damped modes of
bscillatién. Their latest paper [21] illustrates the’effectiVeness of
having this controller on one, ;wolpr all thrge machines in the éystemw

It is interesting to note that Wu and Hsu [22] have used the pole
shifting method also to adaptively adjust the parameters of a PID
"~ controller for a PSS system. . They have reported successful simulation
results using a second-order identified model. Their cohtroller vas
tested by siﬁulation on a niné—bus system which is a variation of the
same nine bus system to be used later in this thesis.

Other than the adaptive strategies proposed —by this author and
associates [23], [24], [25], the only adaptive strategy proposed so far
for application to an SVC is given in reference [26]. In [26] the SVCH
is designed to increase damping on a one-machine system. The SVC
contrbller uses machine rotor velocity as the feedback variable, and
the gain settings of the PI feedback cohpensa£or are adjusted according
to a table lookup method by reference to the machine real and reactive
pover loading. Off-line eigenvalue analysis is used to determine the
gain settings for each operating condi;ibn and to form the lookup
table. The SVC iﬁ this system 1is located at the machine terminal bus

and can be used in lieu of a PSS.
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Robust Fixed Controllers in Power Systems

It is well accepted that when system conditions are accurately
known -then successful pover syétem controllers can Be designed for
those conditions. When damping enhaﬁcement is desired for several
different operating conditions then contfoller design techniques are
less established and the problem is often categorized as a robustness
problem. Robustness 1is generally regarded as a quality of the
controller that enables it to be effective despite some modeling errors
in the initial design and despite éome amount of parameter drift in the
system., Therpéwer system environment in some cases may require an
extreme degreé of robustness in controller design. There have been a
few recent papers concerning the design of robust controllers fér‘power
system applications.

Chow and Sanchez-Gasca [27] have used frequehcy response analysis
to évaluate PSS controllers at different operating points and to
combine them- into a single robust controller. - In their paper a PSS
controller is'designed for a one-machine infinite-bus system. The
controller is designed to provide macﬁine damping under two operating
conditions. One condition has a large line impedance which is referred
to as the weak coupling case. ThertEer condition is the same except
for with a sﬁall line impedance or a strong coupling case. A second-
order controller is designed for both of these cases and then they are
multiplied by a.weighting factor and combined to get a fourth-order
controller. Since both controllers have similé? frequency responses it

is possible to reduce the combined controller to second-order using a
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techniqué called the Hankél Norm algorithm. The frequency response of
the resulting controller is approximately ‘the average of the frequency
responses of the original two controllers. The authors report that the
method does not guarantee stability but is simple to use and provides
adequate results vhen used with good judgement.

A paper by Petrovski and Athans [28] considers the robustness
properties of controllers used - in a multiterminal DC/AC power'éys;em.
The authors are interested in using a multiterminal DC system imbedded
“in an Aé pover systém to enhance overall system damping. A five
terminal DC system is used to .analyze different control str;tegies in
terms of robustness. The authors are looking at suitable robustness to
tolerate actuator and sensor failurés, unmodeled dynamics, and changes
in system parameters. The authors evaluate robustness by use of two
approaches. One way 1is to introduce errors into the system input
transducers and then evaluate the system stability by Lyapunov methods.
The size of the error that can be tolerated before instability results
is one measure of robustness. In another test the linearized
representation of tﬁe system is perturbed by a scalar multiplicative
factor and also by an additive perturbation matrix, and again stability
is assessed by Lyapunov methods. The matrix norm of the perturbapion
that can be tolerated before instability results is a measure of the
robustness of the system. Three decentralized controller designs all
involving linear quadratic optimal control strategies are evaluated

using these methods, and their relative strengths and weaknesses are

tabulated.
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Scope and Organization of Remaining Chapters

The following pages are organized into four main parts or
chapters. The first part (Chapter 2) contains a detailed description
of the program used to carry out the computer simulatiqn of power
system dynémics. The second part (Chapter 3) describes‘the prgéess of
controller design using .eigenvalue analyéis of the linearized system
and presents simulation results. The third part (Chapter 4) describes
the adaptive controller design and simulation results. The fourth part
(Chapter 5) is the conclusion and discussion of aspects warranting
further sfudy. The contribution of this work to engineering literature
lies primarily in the areas ‘of' adaptive control, robust controi, and

damping control of electrical power systems.
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CHAPTER 2

SIMULATION OF POVER SYSTEM DYNAMICS
Introduction

The purpose of this chapter is to describe the methods used for
computer simulation of electromechanical oscillations or swing
transients of power systems. The méjor goal of the computer program is
to provide a flexible means - for simulation of power system dynamics
with the same level of detail of modeling that is generally used in the
pover industry. Computational efficiency, while desirable, is a
secondary consideration to pfogram clarity and flexibility in the
implementation of control strategies. Modifying an existing code to
implement these ideas would seem to be the most efficient course of
action. Most commerciail& available programs however are prohibitively
expensive in addition to being cumbersome becaﬁse of the exteﬂsive
options that are included. Bonneville Power has é very good swing
program that is readily available to the_ public but its size and lack
of documentation make it very difficult to modify. Under these
circumstances it was decided to :wrife a program around an available
Runge-Kutta integration package cailed INTEG [29], even fhough it is
generally recognized that trapezoidél | integration is"-more
computationally efficient for this type of problem [30],[31].

In general nearly all variables of a ApOWef‘system require some -

time to respond to a change in the system so that a detailed model of
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even a small power. systeh would contain an enormous number -of
differentiél equations. The main problem of simulating such a detailea
model is the very large range of time cénstants present or the so-
called "stiffness" of the system. To make the simulation practical to
implement it is usually necessary to select a time frame of the network
behavior which is of ‘interest to study and then make simplifying
assumptions for variables which change very rapidly or very slowly
compared to‘this time period. Very small time cbnstants can be chénged‘
to zero which transforms the associated differential equation into an
algebraic equation. Longér time constants can be made to approach
infinity‘which then turns the variable being simulated into a constant.
Time constaﬁts associated with the network are very small compared to
-the electromechanical periods of oscillations, and so it is the usual
practice [30],{31] and [32], to assume that network variable changes
occur instantaneously; Thus the network variables are treated as
algebraic constraints coupled to the differential equations without. any
significant loss of accuracy. The result of these assumptions is the
"quasi—stéady—state" netwvork solution utilized in sving programs.
Since the system frequency deviation from 60 hertz is very small the
network reactances can all be expressed at this frequency with
insignificant loss of accuracy. This enables the network variables to
be represented as phasor quantities wi;h an implied'freQUency of 60
hertz. This phasor or steady-state solution of the network variables
is updated after changes in ' the machine state variables are calculated
from the integration procedure.

. The problem is now formulated as a differential-algebraic initial

value problem. The differential equations are solved by Runge-Kutta -
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integration, and the algebraic constraints on the system are resolved
by an iterative;proqedure at each step of the Runge-Kutta integration.
The machine rotor angles relative to the network phasor reference frame
are alloved to vary according to differential equations which describg
machine rotor speed deviations ' from the 60 hertz-synchronous speed.
The resulting network phasor voltages are assumed to always be in
steady-state equilibrfum with the voltagés produced by the machines.
.Once ‘machine rotor angles - and ‘internal voltage magnitudes are
detérmined ffom the differeqtial ;quations, the machine and network
algebraic relations are solved to determine the voltages and pover
flows in the network. These - network variables then become the forcing

functions for the next step in the solution of the differential

equations.

Differential Equations

In describing the differentiél equations used in this swing
progfam the notations and reference frame conventions of [31] are
adopted. - A more thorough description " of machine modeling is given in
[33], but the referenéew frame - convention adopted'there is different
from that in [31]. As mentiéned previously this program is written
around a kunge—Kutta integration package called INTEG. The INTEG
progrém calls two subroutines, one called SIDE and the other called
STATE. The STATE subroutine contains the first-order differential
equations or state equations which are ‘integrated by the Runge-Kutta

algorithm. The SIDE subroutine contains algebraic constraints on the
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differential equations or in our case the machine and network algebraic
equations. Both the STATE and SIDE subr&utineé afe contained in a file
called 2MIED.FOR vhich is 1listed in Appendix A at the end of the
thesis. -

The majority of the.differeﬁtial equations used inAa éwing program
are of three types: machine mechanical equations; machine electrical
equations; and exciter equations. Machine mechanical differential -
equations‘describe‘the motion-of the méchine rotor angle, rélative to
‘its 60 hertz synchronous speed, due to imbalances between mechanical
pover input to the machine and electrical pover output; The rotor

angle of each machine in the network is assigned a value based on

reference frame conventions vhich are described in more detail in
section 2.3.‘ If & represents the rotor angle of a machine? then thej
expression for machine rotor acceleration is

aZssae? - (/M) Py - By - D(d8/dt)). (2.1)
vhere Pm is mechanical inpdt pover, Pe is electrical output power, and
Mg is the angular momentum. The constant D is a damping term which is
often used to account for damping contributions in ;he system which'are
not accurately modeléd by other means such aé‘amortisseur.windings and
nonlinear loads. Rewriting this equation as two first-order
differential equations or state equations. and neglecting pﬁe damping

term gives

dw/dt

(1/Mg)(Ph - Pe) _ (2.2)

dd/dt

w - 2nfo +(2.3)

where fé is the system base frequency . (60 hertz in our case) and w is -
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the rotor frequency in radians pér second. Another form [32] of this
equation utilizes w as a per-unit quantity. in which case the right-hand
side of equation (2.3) is replaced by the product of ® and 2nf0. In
this case the steady-state value of ® is gzero. Both forms of this
equation are widely used‘and they give the same result in simulations
>EX6ept for a difference iﬂ the units being useéd to represent macﬁine
rotor speed. Thé, form.'showhf.in kZ.S)A is wused in this wvork. The
electrical power being ‘produced by the machine is a function of
voltages and admittances throughout the netvork to which the machiﬁe is
connected. ‘

The machine electrical differential equations describe how changes
in the machine stator or field currents cause the internal machine
voltages to vary. The voltage variations are also influenced by how
the machine rotor angle is affecting the path of magnetic fields
between the rotor and stator. These differential equations are based
on Park’s transformation [32], [33]. This mathematical treatment of
machine modeling transforms machine impedance values from time-varying,
three-phase quantities which depend on machine rotor angle, to constant
,value parameters in equivalent circuits which lie directly in line with
the rotor main axis (the d-axis) or in quadrature with it (the g-axis).
This d-q reference frame is fixed to the rotor and moves with the rotor
relative to network variables. Different numbers of d and q—axié
circuits represent different levels of detailed modeling from slower to
very fast time constants. Reference [34] gives a detailed. diagram
illustrating the interaction between different modeling levels and the
machine torques that are developed. The level of modeling used in this

program will incorporate slow transient voltages inside the machine as
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is usually deemed adequate for this type of study [31]. The

differential equations are

dEg/dt = (Bg — B)/T/y0 = (B + (Rg-XDTy - BD/Ty - (2.4)
dBy/dt = By/Ty = (= (X - XTI - EQ/T; (2.5)

and the associated algebraic equations are

‘E‘& - Vq = Ran - ¥4Iy (2.6)
and
Ej - Vg = RTIy+ xan (2.7)

In these equations -the subscripts d and q represent direct and
quadrature axis quantities respectively. The constant Ra is the
armature resistance, Ef is the field voltage, and fhe time constants
Téonand Tao are transient open-circuit time constants. ’An explanation
of these equations based on heuristic arguments of machine behavior
will be given [33]. .

The machine reactances are the most important parameters for
modeling machine behavior, and resistances are often negleéted. To
determine reactances consider the rotor circuits as closed loop
circuits which are not excited; _Also the rotor is being turned at
synchronous speed, and current of the proper sequence is applied to the
armature windings. The voltages measured at the armature terminals can
then be used to determine the reactance which is just the measured
voltage divided by the applied current. The different reactance values
in-the equations above are obtained using different rotor positioné and
either a steady-state current or a suddenly applied current.

Positive sequence, steady-state currents flowing in the armature

windings produce a rotating magnetic field inside the machine. If the
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main axis or direct axis of the rotor is in line wvith this rotating
flux wvave then the flux wave will have itsvmaximum value for a given
amount of armature current, énd the armature indugtive‘reactance will
be at its maximum. This reactance is the direct-axis synchronous
reactance. The flux linkage of each armature winding ‘varies
sinusoidally with time, and the armatufe, phase voltage induced by the
change in this flux wave as it sweeps by the winding is in quadratﬁre
with the applied current. The ratio of this voltage to the current is
the directiaxis synchronous reactance, Xd.

Now if the rotor is made to rotate at synchronous speed with its
interpolar axis or q-axis in'line with the rotating flux wave, then the
rotating flux vave will have a minimqm value. .In this case the ratio
of the armature voltage component in quadrature with the current,
divided by the armature current is tHe quadrature-axis synchronous
reactance Xq. . |

The conditions under which the transient reactances are defined
are the saﬁe except that a' transient armature current is used rather
than a steady-state current. In this case the armature currents are
suddenly applied and the voltages are measured immediately after the
application of the currents. In the case of the direct-axis transient

reactance, X&, the rotor is rotated with its d-axis in line with the

crest of the flux wave. The voltage measured immediately after the
application of the armature current is Ea = XéId and this eventually
decays down to the steady-state value Eq = 'XdId. The time constant

associated with this decay is' the direct-axis open-circuit time
constant T&o' In an .analogous way the quadrature-axis open-circuit

time constant and transient reactance are defined. In this case
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hovever, the q-axis of the rotor is in line with the armature flux
wvave. The measured voltage is E& = X&Iq vhich in the steady state
becomes E. = X I . | '
q q4 . . :
When the field winding is excited, the voltage E& + jEé is the
voltage behind the transient reactance of the machine. The difference

between E’ and E_is
q q

By - B, = (%] - XPI (2.8)
and similarly the difference between Eé and Ed is

Ef - E, = (X' - X)I 2.

b Byo= (X - X)I | (2.9)

In the steady state Ed is zero because thé rotor d-axis will be in
line with the armature flux wave and no voltage component ip phase with
the armature gurrent'is indupedu Eé' howeVér, is not zero but is equal
) to (X&A- Xq)Iq providgd that 2%& ié~;not'équ§1 to Xq’(they are ﬁsua;ly
equal iq salient pole machinés);-‘ » ‘

If a sudden change in “armatu;e 'currents occurs theg Eé and Eé
undergo slow changes according to the differential equations (2.4)‘and
(2.5). The values of Eq and ’Ed however, undergo immediate chanées

according to the relations

AE = (X

q a - X, (2.10)

By = (X, - X)L (2.11)

wvhich can be seen in the right-hand sides of equations (2.4) and (2.5)
respectively. Thus the transient voltages will change according to
their time constants until they reach steady state vhere Eq is equal to

the field voltage Ef and Ed is zero.
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For the forward amplifier in Figure 2, the state equation is

dv_/dt = ((v 5 - |Vt| - VepdKy - V)T, (2.11)

and for the next linear block it is

dEf/dt = (va - Ve - KEEf)/TE (2.12)

while for the feedback block it is

dv

fb/dt = (KF(dEf/dt) - Vfb)/TF (2.13)

The above three equations are the differeﬁtial equations used in each
machine to represent changes in the field voltage which then affect the
machine internal voltage via equation (2.4) and ultimafely the méchine
terminal voltage magnitude and angle.

The saturation function of Figure 2 is represented as suggested in

[31].

Ve = (k‘]_Ef _ kZ)Ef (2.14)
vhere k, = (48 )/ (3E )

1 0.75max fmax b if E. < .75E

| , £ = fmax

k2 = 0.0
or

k1 = 4(Semax - Se.75max)/E

fmax
= 48 _3g othervise
“e.75max “emax

=
N
|

where Semax and S are constants vhich describe the nonlinearity

e./5max

due to saturation for a particular exciter.
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Algebraic Constraints

As mentioned above the algebraic constraints of the system consist
mainly of the network equations but also include the machine algebraic
relations of equations (2.6) and (2.7). The network behavior is

described by the matrix equation
I=1V ' (2.15)

where I is a vector of complex current injections, Y is the complex
nodal admittance matrix and V is the vector of phasor node voltages.
The problem here is to solve this equation for the vector V given the
current injections of the generators. The solution of these equations
involves an iterative.pr0cedure because the current injeétions depend

on the machine internal voltages as well as the node voltages that are

‘being solved for. The solution procedure in this program consists of

alterﬁately solving for the node voltages and current injections until
the values converge to within-some error tolerance. For fhe small time
steps necessitated by the stiffness of the system the algebraic
relations will wusually converge in less 'than 10 iterations and
sometimes may only take 2 or 3 iterations.

The differential and algebraip equations of the machine are
written using the d-q referencé.ffémé which'needs to be reconciled with
the real and imaginary- reference frame of fhe network: The d-q
reference frame moves with tﬁe rotor deviation from its synchronous
speed. The real and imaginary reference frame is fixed by choosing a

slack bus or reference bus in the network vhere the voltage angle is
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v, cos(8) -sin($8) v 1
J _ [ _ } [ q ] (2.16)
Vi ‘ L sin($) - cos(9) Vd : '

or in the reverse direction
vV 1 cos(8) sin($8) ] \Y
Ll I
Vd -gin(8) cos(8) Vi

The § used here is the same & used as the rotor angle in the
electromechanical equations (2.3). Also the transformations used here
‘are the same if currents are substituted for voltages.

The solution of the algebraic constraints starts once the machine
rotor angles, &’s, have been computed from the differential equations
along with the machine interpal transient voltages Eé gnd Eé. The
first step of the solution procedure then is to solve for the machine .
internal d and q axis currents as a function of the above variables and
then find the injecfion currents so that the network admitfance matfix

equations can be solved. Axis transformations from the machine

reference frame to network and back are performed at the appropriate |

.places. The entire process is iterated until the machine voltages and
currents converge. The sequence of the equations is shown belovw. In
these equations only one machine is represented. In a multimachine

system each set of equations is repeated once for each machine.

V =V

. . cos(8) + v, sin(8) o , (2.18a) .

real imag
—VT sin(8) + VT cos(4) (2.18b)

real _ imag

[=¥
fl
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Ra(Eé - Vd) - X&(Eé -V)

I, = d | (2.18¢)
(R? & X'X! )
a  ‘qd
R (E' -V ) + Xi(El - V)
=29 d*d - d (2.18d)
7
(RS + X&Xd-)'_
I = I cos(8) - I,sin(8) ' ' (2.18e)
T d
real :
IT = I sin(8) + Idcos(é) . (2.18f)
imag - . ‘ ‘ C
I, =1 + jI (2.18g)
T Treal Timag
Vo = Vp + Vg (2.18h)
real imag

solve for the vector V

I =71V (2.181i)

This loop is iterated until the values being calculated on the
left-hand side of these equations have converged to within some error
tolerance. Once this occurs then the electrical power out of the

machine is calculated from

Po = Vglg+ Vgly _ (2.19)

This value of machine electrical powef' then goes into determining the
machine accelerating power in the differential equation (2.2).
Equation (2.15) (which is the same equation as (2.18i)) is not

actually solved in matrix form; instead the equations are written out
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individually in terms of nonzero elements of the admittance matrix and
then rearranged to obtain the bus voltages. As an example the nine-bus
system used here has the generator current injection at bus #1

expressed as

I = Y11VT1 + Y.,V (2.20)

which is then rearranged to

V. = (L. -
1 T

Y14VT4)/Y11 (2.21)
Taking bus #4 as an example of a non generator bus, the admittance

matrix equation has the form

0 = Y,V + Y, Vo + Y, .V + Y46VT6 (2.22)

which is rearranged to

V., = (Y

T Y,V

4577 (2.23)

41VT + .

+ Y, V., )/Y
4 1 46°1,7" T44

5

There are two techqiques which have been implemented into the
program to help speed up the convergence rate of the solution of the
algebraic equations.- One technique is to iterate the nongenerétor
network equations as represented by (2.23) within the‘larger_loopw In
this program the nongenerator bus voltages afe iterated k times where k
is equal te the number of nongenerator buses., - Tﬂis significantly
improves the convergence rate of the overall loop. In many industrial
programs the admittance matrix is reduced by partiticning the Y matrix
and substituting variables so that equation (2.18i) haslonly‘generator
buses being represented in the V véctor; This has been reported to

help increase the rate of convergence [30]. The procedure used here of




36
iterating the nongehératof buses has the same effect but avoids having
to recompute the reduéed Y matrix whenever the SVC susceptance value is
changed. Although this procedure forms an inner 1loop within the
overall iterative solution scheme, it has been found that the total
amount of computing needed is significantly reduced. The chdice of

iterating these equations k times is based on trial and error analysis;

it is possible that even fewer iterations would give satisfactory

results.

The other method used to improve convergence entails extrapolating
the angle change of the generator bus voltages before the solution of
the algebréic‘equatibns is started as suggested in [36]. In this
procedure the change in the machine rotor angle from the value at the
previous time step is used to estimate the bus voltage angle solution
before the iterative solution is begun. This procedure has been found
to decrease the total number' of iterations needed before convérgence
but not as significantly as the previously described procedure.

There are two different criteria used to determine when
convergence is reached. If the variable has an absolute value less
than 0.0001, the criterion for convergence is to have an absolute
change from the previbus iteration of 1less than 0.0001. If the

variable has an absolute value greater than 0.0001 then a relative

change of less than 0.0001 (or a change of less than 0.01%) from the

previous iteration is wused as the criterion. The entire loop is
iterated until all the variables have passed one or the other"of‘these
convergence criteria.

Besides the equations contained in the main loop (2.18a-i) of the

SIDE subroutine described above, there are other calculations performed
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thch include saturation functions for the excitation systems and
timing functions for wuse in calling the identification and control
subroutines which will be discussed in later chaptefs. There is also
some logic implemented to simulate disturbances in the system network.

There are two typesvof disturbances which can be simulated in this
program. One type is ‘the.'usual shért circuit or swvitching fault
commonly represented in swing programs by changing one or more elements
in the network admiftance matrix. There is wusually some logic
associated with changing thé entries of the admittance matrix to
correspond to the time period when the short circuit is applied, the
time when the transmission line is opéned, and the time when the line
is reclosed.

‘The second type of “diétﬁfbance fhat can be simulated is often
referred to as an exogenous -disturbance input or noncontrollaﬁle input
disturbance. This type of disturbance is used to test the
effectiveness of control strafegies in damping oécillations which
cannot be completely eliminéted from the system. The disturbance can
be simulated by modulation of the infinite-bus voltage maénitude. In
this program, a sinusoid of some selected frequency (e.g. 0.3 hertz)
with a magnitude of around 10 per cent of thé normal voltage magnitude

can be-added to the infinite-bus voltage.

Initial Conditions

Before a simulation of power system electromechanical oscillations

can begin it is necessary to establish the system initial conditions
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generator. Given this information it is necessary to solve for the
steady-state values of Eé, Eé, Ef and § for each machine. First the

steady-state current injected into each bus.is found from the relation

I, = (P - jd)/V; -1

_, + jI (2.24)

Treal Timag

where P and Q are the real ;nd reactive power injections and V; is the
conjugate of the generator bus terminal voltage. The rotor anglé 8 can
be found using Figure 4, which illusfrateé the relation

\Y + X T + R.I
Timag qd Treal a’T

tan(8) imag (2.25)

v + R_I - . XT

T a Treal q Timag

real
This equation results from the féct that at steady state, the voltage
drop of the terminal current flowing through the armature resistance
and the q—akis reactance, when "added to the terminal voltage, produces
a voltage vector which lies on the machine g-axis. This relationship
is not obvious and to explain why it is true, consider the steady-state
equation

By = Vg + R I, + XTI+ 3XgTy ' (2.26)
This equation is true since Ed is zero at steady state so the internal
machine voltage must lie entirely along the g-axis. . If Xd in (2.26) is

replaced with Xq then the result is a vector, Eq, which is colinear

with Eq but has a different magnitude.

E = Vo, + R.I
a

q T 7+ I (2.27)
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.This equation is the relation vhich gives equation (2.25).
Verification that this vector falls on the g-axis is based on the fact
that both jXqu and deid are vectors which are parallel to the g-axis,
but‘differ in length. Subétituting jXqu for deId in (2.26) results
in (2.27) and produces a vector. whigh lies on the g-axis, but has a
difﬁerent length than Eq, and qo physical interpretation other than
being a‘usefull‘conétruct. The objective here is to find the angle §.
‘Equation (2.26) cannot‘ bé uéed because Id and Iq cangot be found
without first knowing 8. It is possible however to use (2.27) to
locate the g-axis, given only the real and imaginary comboﬁents of
machine terminal voltage and current, then find the angle § via (2.25).
Once § is determined then the. d and q-axis components of the terminal
‘voltage and current can be found. Verification of (2.25) can be fpund
in [30], [32] or [33].

The machine terminal,varigbles can nov be projected onto the d and

qfaxes by the relations

'B) (2.28)

Vy = - Vg |sin(s -

_ vq = |VT|cos(s - B) (2.29)
Iy = -|Iplsin(8 - B+ ¢) (2.30)
I, = |Tplcos(8 - B + ) - (2.31)

The value of Eé is then found by setting the differential equation
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of (2.5) to zero to obtain

Ef = (X' - X I 2.

d (q.q)q‘ (2.32)
The steady-state value of E& is.found;ffom the algebraic relations of

equation (2.6) to give:

By = -XgTy + R+ Vg . " (2.33)

Finally the steady-state value of the field voltage Ef is found by
setting the differential eqﬁation (2.4) to zero to obtain

Ef = Eé - (Xd - X(’i)Id (2.34)

The steady-state electrical power out of the machine is the same as
that calculated by equation (2.19).

These calculations are performed by a program called ICFIND.FOR

" .which is listed in Appendix B at the end of the thesis. The initial

conditions calculated by this program are printed out to a file in a
format which can be read b& -the INTEG program at the beginning of its .

execution. Also supplied by the program are other initial conditions

" which are zero or need no calculation, such as the steady-state rotor

angular velocity (376.99 radians/sec).
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CHAPTER 3

FIXED COMPENSATOR DESIGN PROCEDURE
intfbducfion

This chapter presents an approach to developing control strategies
for SVC control to enhance system damping. The approach taken is to
develop a nonadapfive or fixed control strategy based on a computer
generated 1linearization 'of the nonlinear powver system gmbdel.
Eigenvalue analysis of the linearized system is used to desigh a
feedback compensator. An effort is ﬁade to incorporate robustness in
controller design so that system damping can be improved at more than
one system operating point.

The controller design is. developéd and evaluated on a nine-bus
power system which is based on . data presented in [32]. A one-line
diagram of the system is illustrated in Figure 5, and the machiné and
network data are listed in Table 1. This power system is essentially
the same as that listed in the reference with the addition of exciter
models at machines #2 and #3 and the addition of the SVC at bus 8.
Also géneratot #1 is being modeled as an infinite bus in order to
provide a stationary reference for the evaluation of rotor oscillations
of the other two machines. The SVC is modeled as a variable shunt
susceptance which is added to the system admittance matrix before the

solution of the network equations.
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Table 1. Machine and network data -
Exciter énd AVR Data
Parameters Gen #2 Gen #3
KA 25.0 25.0
TA 0.20 0.20
KF 0.091 0.105
TF 0.35 0.35
KE -0.0505 -0.0582
TE 0.5685 0.6544
EFmax 3.96 : i§.438
SEmaX 0.303’ 0.349
SE.?Smax 0.0778 0.0895
Machine Data (100 MVA base) _
Parameters Gen #2 Gen #3 Gen #1
X4 0.8958 1.3125 (Inf bus)
xé 0.1198 0.1813
xq 0.8645 1.2578 0.0969
x& 0.1969 0.25
TéO 6.00 5.89
T’ 0.535 0.60
q0
H 6.40 3.01 _
Transmission Line and Transformer Data
bus # R X B/2
4-5 0.010 0.085 0.088
5-7 0.032 0.161 0.153
7-8 0.0085 0.072 0.0745
8-9 0.0119 0.1008 0.1045
9-6 0.039 0.170 0.179
6~4 0.017 0.092 0.079
1-4 0.0576
2-7 0.0625
3-9 0.0586
Steady-State Conditions
bus # P(gen) Q(gen) |V]| = delta(®)
1 0.716 0.27 1.04 0.0
2 1.63 0.067 1.025 9.3
3 0.85 -0.109 1.025 4.7
4 000 OOO 1.026 "‘2.2
5 -1.25 -0.50 0.996 -4.0
6 ~-0.90 -0.30 1.013 -3.7
7 ’ 0.0 0.0 1.026 . 3.7
8 - -1.00 ~0.35 1.016 - 0.7
9 0.0 .1.032 2.0

O'O
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machine rotor angle velocity is positive, then the machine is building
up kinetic energy which can be reduced by increasing the line voltage,
thus incréasing the electrical power out of the machine. Similarly,
vhen the machine rotor angle-‘velocity is negative, the size of the
oscillation can be reduced Ly ioweping the,line‘voltage and decreasing
the electrical power out of the machine. Thus to daﬁpeh‘machine
oscillations'the‘var unit suscebtance presented to the system can be
calculated by multipiying the state variable representing machine
velocity times some suitable gain. 1In a'multimachine case the var unit
can be controlled by wusing the local bus frequency deviation rather
than the rotor velocity of a particular machine. While this type of
strategy may work well under- certain circumstances, it often happens
‘that dampinﬁ will be increased in.thé.main critical modes but decreased
in other critical modes. Anofﬁer' consideration ' in practical
applications is that there will be some time delay and phase shift
associated with the instrumgnxatiqn that measures the local bus
frequency deviation. Thus it is very 1fkely‘that a compeﬁsator will be
needed in the feedback loop in order to obtain improved system damping
although some damping may be obtainable without such a’ compensator.

Some of the papers feviewed in Chapter 1 rebort on results using
various system signals for feedback without a compensator with some
success. The problem of  designing confrol -compensatof; for‘power
systems is difficult because of the nonlipear'and time varying nature
of such systems. Most design procedures for controllers are based on
linear system models, so that to use these techniques it is necessary

to linearize the power system model.
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The Linearization Procedure

The previous chapter discusses in detail how the power system is
modeled as a set of differential equations with algebraic constraints.
The set of "nonlinear .differential equations representing system

dynamics can be expressed as
% = £(x,2) (3.1)

vhere x is a vector of state variables and z represents the side
variablés such as network. bué voltages and currents, madﬁine
accelerating power, machine currents, etc. The vector f consists of
functions of ‘the state and side variables. The side equations
represent algebraic conditions, such as Ohms law for the network
variables,.that‘must be vsatisfied at" each inteération step and these

conditions are expressed as
g(x,2z) =0 (3.2)

In order to design a nhonadaptive feedback compensator for var unit
control using well established control concepts, a computerized method
-was developed to linearize the system into a linear state-space

representation of the form

0% = Abx ' : (3.3)

vhere A is the Jacobian matrix.  This set of equations contains the
states of each machine and also accounts for the effects of the var

unit, the network interconnections, and the feedback compensator. The
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linearization is done by applying small perturbations to each of tﬁe
states (one at a time) and evaluating the resulting derivatives. The
ratio ofvthe derivative to the perturbation size then determines the
coefficients of the A matrix. As én'example cbnsidef the linear state-

Space representation shown below.

- 1 B ™ I
% a4 _a12 . oay X
% a a ... a X, |
- 21 22 ‘- 2n 2 : (3.4)
| *n |  %n1 - %n2 v 0 ¢ 3y i | *n |

The linearization procedure is perforﬁed,.at a ‘Steady-state
operating point. At steady state, each of the derivatives is equal to
zero. VWhen state variable one is perturbed away from equilibrium, then

the state derivatives are calculated from

%y = a;q(xg + Axl) + aiéx2 toeee + oAy X (3.5)

or

*il = 839X + @40%g F eo. ALK+ ailel | (3.6)
The second subscript on‘>'<il is used to emphasize the fact tﬁat this
value results from the displacementiAxl,

Theoretically each state variable in (3.6) is at its equilibrium
‘value, in which case the first n terms of (3.6) will sum to zero.‘ In
practice however the equilibrium values may only be known to three or
four places; this results in a small but nonzero contribution.which ve

will call the offset, ki:




k, = ailxl + 8yoKg + oees + @5 X 3.7)

where all x’s are at or very5néar their equilibrium values. When X4 is

perturbed avay from its equilibrium value the coefficients in the first

column of the A matrix are.found from the relation
ajq = (iil - ki)/Ax1 | (3.8)
Similarly the coefficients of the second column are found from
ag, = (xiz'— ki)/ﬂx2 ' (3.9)
and in general the relation is

aij = (kij - ki)/Axj ‘ (3.10)

“To,f;nd the linear modei coefficients from the nonlinear s&stem
model, the nonlinear. functions, fi’s, are each evaluate@ at the
approximate equilibrium point to determine the offsets, ki's. Then one
state is perturbed away from equilibrium while all ‘the others remain at
their steady-state Yalﬁesu Lét”-gj represegt the values of x that
results‘yhen the jth component Eof §~ is: perturbed by the amount'ij.
Also, let Ej be'the"éérfegpondiﬁg.-yélﬁe- oﬁzg that safigfies the side

equations; that is,
g(xyy 2;) = 0 (3.11)

The vector pair Ej’ Ej are used to evaluate the derivatives as follows:

%oo o= £ (x4, 23) O (3.12)
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Once the derivatives are evaluated, the coefficientg for the linear
system'are calculated as shown in (3.10). o

For the system studied here, . the value of ij was determined as
follows. A moderate system ' disturbance was simulated, and the maximum
deviation of the jth variable away from equilibrium was recorded. Ten
percent of the absolute value of this deviation was then used to define
ij. In this power system the coefficients being calculated vere not
very sensitive to the size of. the perturbafions used.

Using this linearization procedure, one can obtain an A matrix for
different feedback settings and cbmpensator designs using the same
subroutines that are used to carry out the time response simulations.
Each different A matrix has a set of eigenvalues which will move as the
parameters of the system are adjusted. Computer codes, such as the
NASA (National Aeronautics and Space Administration) ORACLS program
[38] used here, are widely available for calculating'the eigenvalues.
By varying the gain for a particular compensator, a root locus type of
plot of the system eigenvalues can be obtained.

The subroutine EIGEN in the ORACLS package computes all the
eigenvalues of a two-dimensional A matrix. The matrix is passed in the
argument list of the subroutine which balances it and reducés it to
upper Hessenberg form. All of the 'eigenvalues are then found by the
double shift QR algorithm [38]. |

In developing this 1linearized ﬁodel for controller design
purposes, it is necessary to select a system output signal for feedback
which will be easy to compute in the .linearization process. Since time'
is not a variablé represented in the linearization process, it is not

convenient to use frequency deviation calculated as change in bus angle
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divided by change in time. Consequently the simulations presented in
this chapter use local bus angle deviation from the steady-state value

as the signal that is fed back through the compensator.

Fixed Compensator Design

The fixed compensator design was initiafed by linearizing the 9-
bus system so that a 16th-order A matrix was obtained. Each machine was
represented by seven states and the compensator by two states. The
input to the compensator is 1local bus voltage angle deviation and its
output is the value of var unit susceptance to be presented to the
network,

A circuit diagram -of the compensator used in this program is given
in Figure 6. The two state 'equations describing the behavio; of this

circuit are

de/dt

kl(V1 - VZ) (3.13)

dV3/dt

de/dt - V3k2 (3.14)

where k1 = 1/(R202) and‘_k2

1/(R303). The overall transfer function

of the compensator is

3 kls

V1 (s + kl) (s + k2)

(3.15)

As is indicated by (3.15) the compensator structure contains a zero at

the origin in the s plane in order to filter out any DC component in
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the feedback signal. It also has'.two poles, which give it a bandpass
‘éharacteristic; and whosellocatipns a;e  adjustésle.'. In the computer
 'program theﬁoutputxof‘this fiiter, V3, is mgltiplied by a cqnstant? G,
whicﬁ determines the suséépfance value‘ of the SVC fhat goes into the
admittance matrix before. the network solution is calculated. This
constant-serves as a- gain vhich enablés the gain. of the overall

compensator to be adjusted'independently of kl.'

Figure 6. Diagram of compensator circuit.’

By iteratively adjusting theée‘ thFee parameters, kl, ‘kz, and G, and
vatching the location of the three or four eigenvalues closest to the
jw axis, it is possible to find a set of compensator parameters that
provide the maximum amount of 'damping fbr thét particular operating
point. 1In order to incorporate robustness in the controller design it
is necessary to map out acceptablé paramefer fggions for different
operating points to identify the égt of parameter value§ vhich provides

the maximum amount ofrdamping"fqr.:éachf‘pf_the,opérating points being
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considered. In this pafticulér, case the same controller structure is
capaﬁle of prOVidiné a significant‘amounf of damping for both operating
points which are being considered. | | |
- The program writtén to perform this linearization and eigénvalue
 ana1ysis is called LAD and is 1isted iﬁ Appendix C. This program
calls the same subroutines STATE’and SIDE wused by INTEG and listed in
Appendix A, When the program is run it first réadS'the initial
condition information used_by-INfEG, and this data contains the steady-
sfate‘values of the state variables. Another file.called_MAXX.OUT also
is read which contains the infdrmation -to be used for perturbingleach
of the states. The user is ‘prombted to -enter the gain, G, and the
corner frequenqieé ~of the compensator, ‘kl and kz.“ With this
information the system is linearized with the feedback loop in place
and the eigenvalues are calculated. The eigenvalues are then searched
and any of them having real parts greater than -0.4 are displayed on
the screen. ' The program agaip prohpts for new values of G,rkl, and kz{
so the user can watch what effect "changing each of these values has on
.the eigenvalues of the system. With'G set at zero, the feedback loop is
open and there are four eigenvalues that appear on the screen. These
are listed in Table 2 along with the eigenvalues that appear on the
screen ﬁor some other sets qf paramefers. After some experimentation
with the three‘compehsator parameters an approximately optimal set of
parameters can be fand._ The eigenvalues which appear on the screen
for this case also are listed in. Table 2. The table lists some
eigenvalues for two different_system operating points. Operating point
~ A is the steady-state condition illustrated by the diagram in Figure 5

~and listed in Table 1. Operafing point B is the same network except
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line 4-5 1is disconnected and the resulting system steady-state
condition is’ calculated from a load-flow solution and the ICFIND

program.

~Simulation Results

Figure 7 illustrates generator rotor angle responses to a three-
phase fault on line 5-7 which begins at t=0.1 seconds and lasts for
three cycles. The line is then opened for six_cycles and reclosed
again with the fault removed. In this case (Figure 7) there is no var
unit control to dampen oscillations. The systém exhibits two lightly
. damped modes, one at about 1.1 hertz and the other at about 0.15 hertz.
This case corresponds to the first entry in Table 2 where four critical
sets of eigenvalues are identified;

Figure'8 illustrates the same disturbance but now the var unit is
being -controlled by feedback through the compensator. For this
simulation the compensator has corner frequencies at 5.5 and Q.l hertz
and the output is then‘ multiplied by a gain of 4.6. A signifiéant
improvement in system damping is obtained. Table 2 indicates only one
critical system mode for this set of parameters and this mode does not
involve the machine rotor angles to a great degree. This mode is also
not.effected very much by any changes in the compensator parameters.

Figure 9 illustrates another disturbance with no var unit control.
This disturbance is caused by disconnecting line 4-5 with no reclosing,
thus forcing the system to find a new operéting point. As the figure

indicates the higher frequency mode appears to be unstable. This case
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is listed as the 1last entry in Table 2 which indicates the higher
frequency mode is stable but with very slight damping. Two other

critical modes are also present.

Table 2. Compensator parameters and resulting critical eigenvalues
of the system.

Ky - K, ' G . - ‘ EIGENVALUES

OPERATING POINT A —- SEE FIG 3.1

§2n0.00

-0.0314 2
| ~0.1319 :+ 3210.0807
2110.0 210.005 0.0 -0.1347 + 3210.1496
- ~0.1126 "+ 32n1.1088
2n5.5 2n0.1 4.0 -0.1366 + 32n0.0809
, . -0.1342 + §210.0807
215.5 © 2n0.1 2.0 . ' -0.2548 + 3j2m0.1755
: -0.3360 + j2m0.9554

OPERATING POINT B —- LINE 4-5 OPENED

2n5.5 2n0.1 4.0 . -0.1469 + 3§21n0.0831
+1.9220 + 32n0.2626
2n5.5 2n0.1 2.0 ~0.1512 + 32n0.0838
-0.3123 ¥ 321m0.6678
-0.1550 1 32n0.0844
215.5 2n0.1 0.0 _ -0.1801 + 32n0.1519
' -0.0064 + 3210.9637
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Figure 10 illustrates the machine. response to this open-line
disturbance with the éame-var unit control design as used in Figufe 8.
The illustration shows that ‘the system is unstable bﬁt n&w with
different dOminant‘modesu‘ The point to be made here is that é fixed
compensator that enhances system damping under one set of conditions
ﬁay not be appropriate for a differeni set of system conditions. This

case is listed in Table 2 where an unstable eigenvalue is indicated

~along with another critical mode'which‘ is stable. It is evident from

the values listed 'in the Table -that the control strategy is very

effective under one set of‘ conditions but actually detrimental to

- system performance under another set of system conditions.

There are undoubtedly other compensator structures and settings
that are more robust in térms of providing increased system damping for
a variéty'of system operating points and disturbances. It has been
found that a compensator with corner frequencies of 5.5 and 0.1 hertz

and a gain of 2.0 will reshl; in a stable system for the open-line

" disturbance but with some decreased effectiveness for the three-phase

fault disturbance. Figures 11 and 12 illustrate the time domain
effectiveness of this compensator for the two different disturbances.
The two cases are also presented in Table 2 where it is evident that

the newv settings improve the eigenvalues of the open-line system while

" the eigenvalues of the original} system are not as good but still

acceptable. The difficulty in finding the best controller will

undoubtedly involve a -compromise between effectiveness and robustness

as well as determining how much robustness is necessary. An efficient

ﬁeans of approaching the problem especially for a large'bower_system

has yet to be developed.
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CHAPTER 4

AN ENBANCED LQ ADAPTIVE CONTROLLER
Introduction

The purpose of this chapter - is to describe an adaptive linear-
quadratic-Gaussian (LQG) control_strategy.which is used to control the
susceptance that a static var compensator (SVC) presents to a power
system network so as to improve ~the damping of machine oscillations in
the system. Computer ' simulation results are presenteé to illustrate
the effectiveness of the controller in damping machine oscillations
which occur due to power system disturbances.’

The application of an adabtive LQG controller to control var-unit
susceptance in order to enhance overall system damping has several
advantages. The controller is tolerant of nonminimum phaée systems; it
does not reqﬁire knowledge of the order of the system being controlled;
and it can tolerate cases where the identified model of the plant
contains common-factors in its numerétor and denominator polynomials.
The algorithm presented here is patterned after those presented in
references [39], [40], [41], ‘énd [42] wvith some modifications [23].
The modifications reduce the high-frequency gain of the controller and
thereby decrease the possibility of subsynchronous mode excitation.

The overall system to be considered here combines an adaptive
controller and the power system (or plant), as shown in Figure 13. The

adaptive controller has three components: 1) an on-line identifier, 2)
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an adaptive observer, and 3) ah adaptivg LQG controller. Control is
calculated on the basis of a reduced-order model of the power system.
The reduced-order model 1is produced on-line by a legst—équares
identification procedure.. |

The on—line‘identifier identifies the discrete transfer function
coefficients of a linear approximation“to the actual system. The order
of the model required depends on the nature of the system being
controlled. A low-order model is desirable from the standpoint of the -
number of computations required for identification and control. 1In
maﬁy cases a third—ordéf model is sufficient; successful controller
operation has been obtained using é third-order model with simulated
pover systems of sixteenth ordér. However in 'thé case of one five-
machine system, in which no natﬁral damping was included in anj of the
five machines, a fifth-order model was required to obtain effective
damping‘[ZB]. |

The identifier uses var-unit susceptance as the input signal. The
low-order model is recursively fitted wusing the local bﬁs frequency
deviation (deviation from 60 hertz) as the output signal. As the
model parameters are identified they are sent along with the latest
values of input susceptance and system output to the adaptive observer
and the LQG controllef. A more detailed‘description of the controller
is contained in the‘following sections.

Simulation results are presented.for the nine bus network used in
‘the previous chapter. Thg controller is shown to be effective in
damping oscillations caused by faults. In one case, with no SVC
control:applied, a disturbance produces instability in the system; but

vith the controller in place, stability is restored.
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2 2
R A R OR Muo-ue-D1? ) (4.1)
wvhere the summation is over future sampling instants. The parameter Xl
> 0 serves as an inverse gain constant. When Xl is small, there is

little penélty~for exerting control, and the gains of the control
éystem tend to be large. Convgrsely,. when' Al is large, there is
significarit penalty for exerting cqntrol; and the gains of - the control
systeh are émall. * The péraméfér Xz > 0 serves to témper the ?ate at
which the control can chénge. When Az is small, liftle penalty is
imposed on erratic swings in the control; but when Xz is largé, rapid
changes in the control are penalized. Standard LQG controllers contain
terms corresponding to Xl. With the addition of the Xz term, the
controller is an enhanced LQ contfoller, or an ELQ controller.

The systeﬁ model used in the ELQ controller is of lower order than‘
the actual system for reasons of decreased computational requirements.
The reduced-order system modei for the control system is represented as

a linear discrete-time transfer function:

1o, -1 |
y = z Bz ) u (4.2)
1 + 2z aED :
where
Az =y + ey e o vz ™ (4.3)
B(z_l) = bi + béz_1+ + bnz_n+l (4.4)
and

2y = y(k-1) | _ (4.5)
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In regard to the model (4.2), the ELQ adapfive controlier is very
tolerant and is insensitive to the following: 1) nonminimum phase
Zeros and.poles; 2) common roots in the numerator ana denominator
polynomials; and 3) zero values of leading bi coefficients; It is
assumed, however, that unstable modes of the system are observable and
controllable, " |

Equation (4.2) also can be written as

yk) = ¢ (k-1) 0 - (4.6)
vhere
ol - [ay +.. @) by o b ] (4.7)
and
$T(k-1) = [-y(k-1) ... -y(k-n) u(k-1) ... u(k-n)] (4.8)

or, in an observable-canonical state form [43], [44],

x(k+1) = Ax(k) + Bu(k) (4.9)
y(k) = C x(k) . (4.10)
with
A =S+ KC ; Bl [ b1 oo b 15 KT=.[ ~8y ... —an'];
Cc =[10... 0] and
001 0 ... 07
00 1 ... 0
s = : L0 : (41D
1
| O 0 |
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so that

[ -2, 1 oo 07
-a, 0 1 :
A = t. 0 (4.12)
. 1
L -a e e 0 |

It is this observable—caﬁonical state form that is used in the
subsequent development.

As indicated in Figure 13 the three parts of the adaptive control
are the identification, the adaptive observer, and the calculation of

control. Each of these components .of control is discussed below.

Parameter Identification

Let O(R).denote the estimation of the parameter vector at time k.
To identify 0, recursive identification is used because it is easily
implemented.on computers. The fecursive algorithm used in this paper
is discussed in moré detail in another section. Continuous estimation
of the paraﬁeter vector is required. because of the va;iation of power
system parameters with system conditions and because a low-order model
is being used to represent a high-order system. The power system
parameters that are identified are wused in both the adaptive observer

and in the calculation of control.
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Adaptive Observer

The objective of an observer is the estimation or reconstruction
Qf inaccessible states of a sysfem. Usually states are inaccessible
because they cannot be measured by transducers for one reason or
another. 1In the case of a reduced-order observer, the observer states
do not have a one-to-one correspondence to actual system states. Witﬁ
‘the observer, fictitious states are creatéd that can be used to form
the control wu(k) and to produce an.‘observér output‘ thét is an
approximation to the real, measured output of the system.' Control of
the system is formulated as coptrol of the observer, which is normal
for observer-based systems. To estimate these fictitious states, a
lov-order adaptive observer is used. It 'is directly based on the
observable~canonical equations (4.9)—(4.12) of the system. It receives

parameters from the identifier, which makes it adaptive. The equations

are
X(k+1) = Ax(k) -+ Bu(k) + K(k)(y(k) - 9(k)) (4.13)
¥(k) = C &(k) (4.14)

where A = A(B,k); B =B(8,k); C=1[10 ... 0];
and %(k) is the reduced-order state vector. The matrices A and B are

formed using the outputs of the parameter identification procedure, as
is indicated below equation (4.10). The gain veétor K(k) is the same
as that given below (4.10) 'for the special case of a finite-settling-

time observer.
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The error between the system and the observer is given by

e(k) = y(k) - y(k) (4.15)

The objective of the observer is‘ to drive the error (4.15) between the
system and the observer to zero,. so that controlling the observer will
be equivalent to controlling the power system. |

In the coding of the observer, the observable-canonical form of
equations is taken'advantage of, to réduée the number of calculations

required.

Calculation of Control

A cost function ‘similar to that of (4.1), but for a finite-time

problem, is

) N-1
J = xT(N)Qx(N) + Azuz(N—l)-+ Z {xT(k)Qx(k) - 2u(k)k2u(k—1)
k=i
2 2, ‘
+ u (k—1)>\2 + U (k)[k1‘+ AZ]] (4.16)
where Q = CTC because y = Cx. By considering a new state, v(k+l) =

u(k), and augmenting the state vector apd the state equations
accordingly, the state-space representation of the system becomes
x(ksl) | s oo x(k) B

x(kel) = | = = = = = == A ww G
Cv(k+1) 0 | 0 (k) 1

The cost function (4.16) now can be rewritten in the form
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N-1
J =X SK(N) + T (X ()ex(K) + 2% (IOMuk) + uP(ON  (4.18)
k=i .
~ Q|o ~ Q|0 ~ 0
where © S = —-—— Q = - - M = —
O|O 0|)\2 _)\2‘
and X o= ( Al + AZ )

This cost function fits a standard form for the LQ control problem
{451, [46], for. wvhich the _calculation of optimal control inputs
involves the solution of a discrete Ricatti equation.

Another approach [23] which is essentially equivalént, utilizes
dynamic programing to minimize a cost function of thé form

N

wyrs L OB + AuP) + Mlud) - (1))
kei ' |

- xT(i)Rix(i) N siuz(i—l) + 2u(1-1)xT(1)qi (4.19)

- where the nxn matrix Ri’ the nx1 vector q and the scalar 4 satisfy
discrete Riccati equations. Bellman'’s -principle of optimality is
applied using (4.9) and (4.19), to obtain the optimal feedback controli

law

u(k) = gu(k-1) - Gix(k) (4.20)

vhere e and Gk are computed iteratively using the appropriate Riccati

equations. The Riccati terms R, -q, and s, are solved backwards in k
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starting with initial values at k = N of

Ry = H = clc : (4.21)
T
ag =100 0] (4.22)
and
sy = AN /0N + 0 ) (4.23) -

New values of s Gk’ Rk, qk{ and Sy along with an auxiliary vector Vk
and auxiliary vector Bk, are computed using the following sequenced

equations starting with k = N-1 and continuing back to k = i :

Ve = R 1B+ a4 (4.24)
Be= M+ g S, + BY(V, + G, 1) " (4.25)
G, = A v/8 . (4.26)
o0 = N/B | (4.27)
. T, T T,
"R, =CC + AR A - BGG, | B (4.28)
sp= (=N, . o (4.29)
and - '
9 = )\sz ‘ (4.30)

The matrices A, B, and C are the same as those used in the observer.
These parameters are transmitted from the identification routine and

vary as the power system varies. If this were not the case the
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" calculation of the gains derived from the Riccati equations could be
done off-line.

The performance measure (4.1) is for an infinite horizon problem;
the appropriate Riccati solution in that case is the steady;state
Riccatiﬂsolution which can be obtained from (4.24) ‘to (4.305 by
allowing i to approach -», or by iterating the equations until steady-
state values of « and G are obtained. For adaptive control, another
approach is required in order to 1limit the number of calculations
performed during each control period. A typical adaptive approach is
as follows. After initial parameter estimates have been obtained, but
before adaptive‘control is applied, equations (4.24) through (4.30). are
iterated once per control period for a set number of control periods,
say 30 such periods. Next, édaptive control actions are calculated
using the most recent values of oo and G, and the resulting control is
applied'while (4.24) through (4.30) continue to be iterated just once
per control period; Also, because the actual x(k) state of the system
isAnot available for use in (4.20), it is replaced by the state ; of
the observer. The observer calculations can be executed in parallel
with the Riccati calculations. |

The resulting adaptive control signal that is found is suboptimal
because:

(1) The:model of the system is a linearized model of a nonlinear

system. |

(2) The model of the system is of 1lower order than the actual

systeml

(3) The Riccati equations (4(24)l through (4.30) are iterated only

once during each sample period.
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and
(4) The observer state x is used in place of the actual state x(k) 
in calculating the feedback control.
Recursive Parameter Identification
In the last several years numerous algorithms for system parameter
identification have been developed. Among these algorithms the

recursive least squares (RLS) and its extensions are the most popular.
Improving computational efficienpy, enhancing numerical stability, and
avoiding unnecessary storage are key factors influencing the design and
impleméntation of real-time recursive least squares identification
algorithms. One can improve both accuracy and computational efficiency
by applying UD factorization techniques in the wupdating of the
covariance matrix [471,[481.

The basic assumption inherent in the use of this identification
algorithm is that a mathematical model of the dynamic, time-invariant,
single-input/single-output process can be described by a.generalized

linear regression equation of the form

y(k) = —aly(k—l) - azy(k—2) - e —anay(k—na)
+ biu(k-1) + bzu(k_z)' + +vo + b u(k-nb)
+ n(k) . (4.31)

vhere u is the plant input variable, y is the plant output variable and

n represents the error term (n is a combination of noise, bias, and
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- plant modeling error). The above equation can be represented as a

vector equation,

oy = 67 e(ki1) + n(k) " - (4.32)

vhere the parameter vector 6 is defined in equation (4.7) and the data

or regressor vector ¢ is defined in‘equafion (4.8). The objective of

identification is to determine - the parametef vector, 9(k), from the
sequence of inputs and outputs which form the data vector.

In order to avoid unneccesary storage space the one-dimensional
version of the UD algorithm is used. This algorithm is included in
reference [48]. '

Two comﬁonly encountered problems with RLS type algorithms both
involve the covariance matrix; The problems with the covariance matrix
are:

(1) The trace.of the covariance matrix can become too large vwhen ‘
there is not enough excitation or richness in the in-coming data.
This can.occur vhenever a constant value for the forgetting factor
is used.

(2) The trace of the covariance matrix can become very small making
the identifier insensitive to changes in the system being
identified. This can occur when a good fit of the data has been
obtained but then the system beiﬁg identified suddenly changes.
Then becausé of the low value-of covariance, the identifier gives
little weight to incoming information, 'and.parémeter updates are

too slov.
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These problems cah.be overcome by making two modifications to the
standard UD algorithm. The first modification 'is to reset the
covariance matrix whgnéver the trace goes above or bélow some specified
liﬁits f49]. The reset value of the covariance matrix typically equals
106’ times the identity matrix. The second modification fs to
recalculate the forgetting factor at each time step to maintain an
almost constént trace for the covariance:  matrix as suggested in [50].
These modifications have botﬂ been implemented to obtaiﬁ the results

presented in this thesis.

Powver System Simulation and Modeling

The effectiveness of - the above controller has been tested by
computer simulation of different power systéms. The power systems are
the same as described in Chapter 3. Exciters are modeled but not
governors; Loads are represented as constant admittances. Results are
presented for the nine-bus network with two generators and an infinite
bus. Data for this power system is contained'in Table 1.

Each machine is represented by seven state variables. Four of
- these stafe variables represent machine parameters: rotor angle, time
derivative of rotor angle, direct-axis transient vol;age, and
quadrature—aiis transient voltage. Three more state variables
‘represent parameters of the IEEE type .I exciter model [35]: output
voltage of the forwvard amplifier, applied - field voltage, and output

voltage of the feedback compenéator,
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The system output used for control is a filtered version of local

bus frequency. The filter is a bandpass filter which blocks the DC
component of the local bus frequency and also attenuates frequenéy
components above the common swing modes. This minimizes any
subsynchronous resonance interaction. and also provides a relatively
smoothly varying signal suitable for fitting to a linear transfer
function. The circuit diagram- ana' transfer function for this filter
have been presented in Chapter 3. ‘The corner frequencies of this
filter are set at 0.05 énd 5.0‘ hertz. The measurement of local bus
frequency deviation is simulated by measurement of the.bus voltage
relative angle at the beginning of the sample period (but after the
control or var-unit susceptance has been changed) and again at the end
of the sample period. The change in this angle divided by the elapsed.
‘time period is then. passed through the bandpass filter to become the
output signall of the sysfem. Two state variableé are used in

simulating the baﬁdpass filter. |

In order to facilitaté the identification of the paraheters of the
transfer function in (4.2) a probing signal is used. The probing
signal is a preselected” sequence of var-unit susceptance values that
are chosen to excite the presumed natural modes of the power system.
The probing signal used in these simulations is a pseudo—fandom
telégraph wave. This means ’that the var-unit éuscepfance will switch
back and forth between a positive and negative value at pseudo-random
time intervals. The magnitude of the probing signal is-kept as small
és possible so as not to over-excite modes that may have been already

excited by a disturbance. .- The probing signal is used whenever some




74

disturbance or. change in the pover system has occurred and the reduced-
order model needs to be updated before any control action is taken.

A éummary of the way the program éxecutes is as follows; Every
0.1 seconds during the simulation (the sampling period) the identifier
receives a value of the output y and the input u which has been gbplied
to the system for the past sample periodﬁ It then calculates a new set
of coefficients for the reduced-order ‘transfer'function model. These
coefficients are passed to the adaptive observer and the adaptive ELQ
controller._ The.observer calcﬁ}ates a nev state vector estimate, and
the controller calcu}afes a ﬁew éet of feedback gains. The gains ére
calculated by iterating tﬁe Riccati equations once during each sample
period. The control action is then compﬁted to give the next
susceptance value of the var unit. The network algebréic equations are
solved using this value of susceptance over the next sample period.
This results in an approximate solution to the minimization of a
quadratic cost functionl The controller and identifier are both
executed at a sampling period of 0.1 seconds vhile the Runge-Kutta
integration proceeds at a time step of .01 to .001 seconds. Whenever a
disturbance or other change in the poﬁer system has occurred, a probing
signal is used to faciliiate pafameter identification before the ELQ
control is applied to the system. The computer code used to simulate
the adaptive controller, including the Riccati calculations and the

adaptive observer, is contained in Appendix D.
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Simulation Results

A three-phase to grdund fault -has been simulated at the midpoint
of transmission line 5-7 to creéte, a disturbance. The fault lasts for
three cycles beginning at t = 0.1 seconds. The 1line 1is then
disconnected at both ends for 6 cycles before reclosing back in. The
netvork is then back to its origiﬁal state at t = 0.25 seconds.

The system response to this .disturbance with the var unit dynamic
control disabled is presented in ﬂFigures 14 and 15. The input and
output signals (var-unit susceptance and filteréd bus frequency
deviation) are shown in Figure 14, while the machine rotor angles are
shown in Figure 15. The machines both experience poorly damped
oscillations at two frequencies. One is near 1.1 Hz and the other is
near 0.14 Hz. The existence of both modes has been verified by
eigenvalue analysis. The higher £frequency oscillation occurs vhen the
damping coefficients in the swing équations.are.set to zero. The lower
frequency mode appears when the exciter models are included in the
simulation.

The system response with the var-unit dynamic control enabled is

illustrated in Figures 16 and 17. In this simulation the probing

signal starts as soon as the 1line is reclosed at 0.25 seconds and it

continues until t = 1.5 seconds at which time the ELQ control is
applied to the system. When the probing signal begins the parameter

vector and observer state vector are both zero so the controller is not
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.starting with any” information about the system prior to the
disturbance.

The weights being used in this simulation are X, = 2.0 and A

1 2 -
2.0. The figures illustrate that the var unit dampens the 1.1 Hz
oscillation very rapidly wﬁile-driving the output signal to zero. The.
two maéhineé, howvever, are still oscillating at the lower frequency.
The output signal, frequency deviation,b approximates a derivative qf
the voltage angle ' signal which tends to de-emphasize the lower
frequency signal components compéred to the higher ones. This, along
with the smaller magnitude of the 1lower mode, causes no -discernable
deviation to appear in the outpuf signal for the lower mode.

To illustrate the effect of changing the weighting factors, the
same disturbance is simulated agéin but with Xl = 2,000.0 and Xz = 2.0.
The results are illustrated invFigurés 18 and 19. Although the results
are similar to those in Figures 16 and 17 in many ways, a close
inspection of the curves will show a differénce in the var-unit
susceptance and in the time it takes to dampen the oscillations in the
output signal. Increasing the value of Xl causes the control signal to
not vary as much away from éero so that the var unit does not reach its
maximum or minimum values, and the oscillation takes longer to démpen
out. |

In Figures 20 and 21 the same disturbance is simulated with
weighting factors of Xl = 2.0 and Xz = 5,000.6. It can be seen that
the major effect of increasing-)\2 is to produce a smoother variation in
the var-unit susceptance along with a decrease in the overall size of

the control action.
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In order to study the effectiveness of the var unit in‘damping out
more than one oscillatory mode, a different disturbance is used. This
diéturbance consists of disconnecting line 4-5 from the network with no
reclosing, thus forcing fo system to seek a new equilibrium point. The .
system response to this disturbance with the var unit disabled is shown
in Figures 22 and 23. This diéturbance also causes two oscillatory
modes to appear, but this time both frequenciés are présent-in the
output signal. It is also interesting to note that the system seems to
be unstqble at this new operating point. Line disconnection takes
place at t = 0.1 seconds and probing stafts at 0.25 seconds and
continues until t=1.5 seconds. The results with‘the var unit enabled
are shown in Figures 24 and 25, using a third-order identifier model
and weiéhts of Xl = 2.0 and AZ = 200.0. fhe figﬁres illustrate that
the controller quickly dampens the higher frequency mode first and then :

the lower frequency mode, However as the 1lower frequency mode is

dampened the higher frequency oscillation (which is unstable) begins to

appear again. This seems to indicate that a third-order model will
only be able to work on one oscillatory mode at a time. It also
appears that the process of damping the higher freqﬁency oscillation is
exciting the lower frequency oscillation and vice versa.

For the sake of comparison the same open line disturbance is run
again with the same controller weights but wusing a {fifth-order
identifier model. The results of this simulation are presented in
Figutes 26 and 27. 1In this simulation the controller is able to dampen
both modes simultaneously. It is interesting to note that.on the first
disturbance with reclééing, successful -performance of the controller

was very insensitive to the weights used. On this second disturbance -
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with no reclosing however, varying the weighting factors resulted in
significantly different controiler,responses.-

Figures. 28 through 30 are from the same simﬁlation illustrated by
Figures 16 and 17 where a third-order .model‘is being used to damp out
osciliations caused by the short éircuit disturbance with réclosing.
The identified model parametefs are shown in Figures 28 and 29 as they
vere obtained during the simulation. The estimated value of the output
obtained by the observer and the actual output value are shown in

Figure 30 to illustrate the tracking of the adaptive observer.
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CHAPTER 5

. CONCLUSION AND FUTURE WORK

General Comments

Two .separate approaches to the problem of improving pover system
démping by designing robust controliers for SVC’s have been presented.
Both of these methods require only locally measured system signals to
control the var unit susceptance in order to.dampeﬁ machine and system
oscillations. .The effectiveness of both approaches has been tested by
simulation on a nine-bus power system. These simulations illustrate
the usefulness and relative strengths of each type of controller, and
also the potential for application to very large power systems.

Much work remains to be done however, on either design approach,
before it can be concluded that such a controller is suitable to
implement on a large power system. An important step among remaining
tasks is the need to implement these controllers in computer
simulations of power systems contéining thousands of buses and hundreds
of generators. Simulations of this scale are needed to assess the
effectiveness and robustness of the controllers in a realistic system.
Software capaﬁle of simulating large-scale power systems and accepting
flexible and complex control routines-has yet to be developed.

Another area warranting further research is the coordination of
SvC coﬁtrol with other power system devices ‘such as powver system

stabilizers or HVDC systems. A logical extension of the work presented
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"here 1is to‘ enhance system damping by controlling' several SVC’s

throughout the power network.

The Fixed Controller

In Chapter 3 a nonadaptive controller design strategy has been
presented vhich is based on a coﬁputer generafed linearized model.of
the nonlinear system used for simulation of power system dynamics. The
linearized model is used to design a fixed feedback controller based on
eigenvalue analysis of the closed-loop éystem. 4 Robustness 1is
incorporated into the design By. readjusting controller parameters in
consideration.of different sys;ém operating conditions. ‘The main
advantage of this appr&ach is that the controller aétQIVery'quickly '
with no need to adapt and with no problems arising from a failure to
adapt. The disadvantages include the need to foresee ahead of time all
the possible different oberating conditions under which the controller
will be acting, and td make sure that the controller functions
appropriately for each of these conditions.

It is possible that a large range of operating conditions will
result in a very similar set of system eigenvalues, in which case the
selection of the proper qonfroller structure may simplify the process
of tuning the controlleriparametgrs; In general there seems to be a
trade-off between robustness and effectiveness for the fixed
controller. Proper selection of the controller structure in terms of
the number of poles and zeros may help to minimize this trade-off. " It

is also possible that this type of controller could be made adaptive,
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at least in a rudimentary sense, by establishing several different
operating regions of the powver system and designing a feedback
compensator for each. The adaptive strategy would then involve
identifyng which operating region the system is currently in and using
‘a table look-up method to determine the pfoper controller parameters
for the fixed compensator. This approach could be feasible if only a
few parameters require adjustment, and if the controller is implemented

in digital form rather than in the analog form presented in Chapter 3.

The Adaptive Controller

In Chapter 4 a self-tuning adaptive contfol strategy is presented
which has the inheren; capability of being'more.;obust than the fixed
controller. The adaptive ELQ controller adjusts its control based upon
on-line identification of a reduced-order transfer function of the
system. The advantage of this type of controller is that the control
action is automatically tuned as the éystem operating condipions
change. There is no reduiremeﬁt for off-line gnalysis of each of the
* system operating points before the conditions actually occur.

There are still some aspects of the controller that warrant
further investigation. One of these aspects is the sensitivity of some
operating conditions to the selected values of weighting parametgrs, Xl
and Xz. It was pointed out prevjéusly that under some conditions a
wvide range of parameter settings will result in successful control

action vhile in another case only a very narrow range of parameters
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will give acceptable control action. It is possible that this
situation may be resolved by calculating the weighting parameters on-
"line ffom a measurement of the sensitivity of the system output to
changes in var unit susceptance. Another possible solution is to set
the parameters at some relatively high value and accept the decreased
effectiveness that may result in some operating envirohments.

Another aspect that warraﬁts some further investigation is the
selection of the proper order of the controller thqt is needed to
achieve acceptable performance. The simulations presented here suggest
that a system with more lightly dampeﬂ modes Iwill~require.a higher
order adaptive controller in order to enhance damping of all the modes
simultaneously. It has not been demonstrated that the highest-order
computationally feasiblg .gpntroller will always give' appfopriate
control actions. In-'ofﬁef words if a third-order controller will.
provide sufficient damping in a certain case, then will a fifth or a
seventh-order controller also work? It ié possible tﬁat the
identification of the number of critical system modes can be done in
real time with the order of the controller adjusted accordingly.

Also, a thorough investigation into which type of identification
routine is best suited for pover system applications is needed. The UD
routine used here seems to perform very well under most of the
conditions tested and it has ' the advantage of being very
computationally efficient. One drawback of this method however is the-
inherent assumption that allldisturbances present in the system output
signal can be modeled as vhite noise. In the pover system environment
an important situation which ﬁeeds accurate identificatioﬁ is

immediately after a large disturbance. In this situation there is a
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large component of the output sighal due to the disturbance which is
deterministic (a decaying sinsusoid)' and not stochastic in nature.
Although the UD algorithm seems to converge quite well despite this
condition, a better estimate of the reduced-order transfer-function
parameters probably could be obtained by a routine that is capable of
sepafating the disturbance component of the output'signal‘from that
part of the output which is due to the var unit input. Algorithms
which have been developed for this situation are often sensitive to the
degree of correlation between the desired output 'signal and the
disturbance signal, and this correlation causes them to be ineffective
for power system applications.: |

The flexibility of being able to change; the  cost function to .
tailor the control action of an LQG type of controller for a particular
type of applicationv is ahbtﬁer advantage of " this approach. One
potentially useful strategy is to use a multivafiable approéch where
there is one system input and twd system outputs so that the cost
function contains two output terms. Both outputs are locally measured
network signals which are éelected to enhance the control effectiveness
of the var unit. The ELQ controller is readily modified for the two
output case which then requires~ parallel identifiers and parallel
observers, one for each output signal. - Preliminary Qork [51] in this
area indicates some benefits in improving the effectiveness of the

control action.
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SUBROUTINES FOR SIMULATION OF POWER SYSTEM DYNAMICS
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Both subroutines in this append1x are called by INTEG, A Runge-
Kutta integration package. STATE is called four times for each
integration step while SIDE is called only once at the end of each
integration step

R T 2 L R R S R R S RS R IR R
SUBROUTINE STATE(X,DX,T,DT,N)
IMPLICIT NONE
INTEGER FLAG,N,I,J,K
REAL*8 DX(1), X(l) T DT,EF1,EF2, XDl XD2,¥DP1,XDP2,XQ1, XQ2
REAL*8 XQP1,XQP2, TDOPl TDOP2 TQOPl TQOPZ MGl MG2,RA1,RA2
REAL*8 KAl,KAZ,TAl,TA2,KFl,KFZ,TFl,TF2,KE1,KE2,TE1;TE2
REAL*8 RA3,XD3,XDP3,XQ3,XQP3,TDOP3,TQOP3,MG3,KA3,TA3
REAL*8 KF3,TF3,KE3,TE3
. REAL*8 WO, YR,YM,PI

COMMON/IMPED/XQ1,X0Q2,X0Q3,X0P1,XQP2,XQP3,XD1,XD2,XD3,
& XDP1,XDP2,XDP3,RA1,RA2,RA3

Chkkickiokkhkhkhhkhhhhrhkhkhhhhhhhhhhhhhihhhbhhhhhhhhhrrhrhhhhrhrhhhdhhhhiik

c STATE VARIABLES OF THE SYSTEM:
C  X(1) = W-—— ROTOR VELOCITY

C  X(2) = DELTA —-- ROTOR ANGLE

C  X(3) = EQP Q AXIS INTERNAL VOLTAGE

C  X(4) = EDP D AXIS INTERNAL VOLTAGE ,

C  X(5) = VA —— OUTPUT OF FORWARD PATH BLOCK ON EXCITER MODEL

C  X(6) = EF —- EXCITER FIELD VOLTAGE

C  X(7) = VF —-FEEDBACK LOOP ON EXCITER

C  X(8) --- LIST STARTS OVER —- ROTOR VELOCITY MACHINE '#2

C .

C SIDE VARIABLES OF THE SYSTEM

p | .

C  X(N+1) = PE-—ELEC PWR X(N+10) = PM--MECH PWR

C  X(N+2) = ID X(N+11) =SEF1--SAT FACTOR(NOT USED)
C  X(N+3) = I0 " X(N+12) =SEV1--SAT FEEDBACK VOLT

C  X(N+4) = VQ X(N+13) = VREF1--EXITER SET POINT
C  X(N+5) = VD X(N+14) = MAG OF VT .

C  X(N+6) = VR —-RE(VT) X(N+15) = (UNUSED)

C  X(N+7) = VIM—-IM(VT) X(N+16) = LIST STARTS OVER- PE2

C  X(N+8) = IR --TERM CURR X(N+17) = ID (MACHINE #2 ETC)

C  X(N+9) = IIM X(N+18) = '
Chhkkhkkhhkhhhhhhhhhhhhhhhhhdrdhhhhrhhhrhrhrddhhhrrhhhrrrhhrhbrhibhbhihri ik

DATA XQl1 ,XQP1/0.0969,0.0969/XD1,XDP1/0.1460,0.0608/
& TDOP1,TQOP1/8.96,0.001/RA1/0.00/KA1,TA1/40.,.06/
& KF1,TF1/.04,.715/KE1,TE1/-.05,.5/

Figure 31. Subroutines for simulation of power system dynamics.
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DATA XQ2,XQP2/0.8645,0.1969/XD2,XDP2/0.8958,0.1198/
& TDOP2,TQOP2/6.00,0.53/RA2/0.00/KA2,TA2/25.0,0.2/
& KF2,TF2/.091,.35/KE2,TE2/-.0505, .5685/
DATA XQ3,XQP3/1.2578,0.25/XD3,%XDP3/1.3125,0.1813/
&TDOP3,TQOP3/5.89,0.600/RA3/0.00/KA3,TA3/25.,.2/
& KF3,TF3/.105,.350/KE3,TE3/-.0582, .6544/

= 4. OO*DATAN(I 00D+OO)
WO = 2.0%60.0*PI

MGl = 23.64/(PI*60.0)
MG2 = 6.40/(PI*60.0)
MG3 = 3.01/(PI*60.0)
IF (T .EQ. 0.0D00) THEN
X(N+46) = 180.0%X(2)/PI
X(N+47) = 180.0%X(9)/PI
X(N+48) = 180.0%X(16)/PI
ENDIF
C ***_****************jk************************‘k
C  NOTE THAT THE STATE EQUATIONS FOR MACHINE #1 HAVE BEEN SET TO ZERO
C  IN ORDER TO REPRESENT IT AS AN INIFINITE BUS.
C khkddhkkkkkkrkhkhkhkhrrrrrkrrrhkrdhkhhkhkhhhihkhhhkkkkk
C  DX(1) = (1.DO/(MG1))*(X(N+10) - X(N+1))
DX(1) = 0.DO
C  DX(2) = X(1)-WO
DX(2) = 0.DO0
C  DX(3) = (X(6) + (XDI - XDP1)*X(N+2) - X(3))/TDOPL
DX(3) = 0.0
C  DX(4) = (-(XQl - XQP1)*X(N+3) - X(4))/TQOP1
DX(4) = 0.0
C  DX(5) = (X(N+13)*KA1 - X(N+14)*KAl - X(7)*KAl - X(5))/TAl
DX(5) = 0.0
C  DX(6) = (X(5) - X(N+12) - X(6)*KE1)/TE1
DX(6) = 0.0
C  DX(7) = (KF1/(TF1*TE1))*(X(5) - X(N+12) - X(6)*KE1) - X(7)/TF1
DX(7) = 0.0
C *****J(c*i)c*******************************

DX(8) = (1.D0/(MG2))*(X(N+25) - X(N+16))

DX(9) = X(8)-WO0

DX(10) = (X(13) + (XD2 — XDP2)*X(N+17) - X(10))/TDOP2

DX(11) = (-(XQ2 - XQP2)*X(N+18) - X(11))/TQOP2

DX(12) = (X(N+28)*KA2 - X(N+29)*KA2 - X(14)*KA2 - X(12))/TA2
DX(13) = (X(12) - X(N127) - X(13)*KE2)/TE2

DX(14) = (KF2/(TF2*TE2))*(X(12)-X(N+27)-X(13)*KE2)-X(14)/TF2

O Fkkkkkdokhkhtkkthhkhhkkhrhhhidkkhhirkirk
DX(15) = (1.DO/(MG3))*(X(N+40) - X(N+31))
DX(16) = X(15)-WO0
DX(17) (X(20) + (XD3 - XDP3)*X(N+32) - X(17))/TDOP3
DX(18) (-(XQ3 - XQP3)*X(N+33) - X(18))/TQOP3

Figure 31 - continued.
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(X(N+43)*KA3 - X(N+44)*KA3 - X(21)*KA3 - X(19))/TA3

DX(19) =
DX(20) = (X(19) - X(N+42) - X(20)*KE3)/TE3
DX(21) = (KF3/(TF3*TE3))*(X(19)-X(N+42)-X(20)*KE3)-X(21)/TF3

B R Rt e e s e L T R R T e s b ]

C

c NOTE THAT THESE LAST TWO STATE EQUATIONS REPRESENT THE FILTER

c IN THE CASE OF THE ADAPTIVE CONTROLLER OR THE COMPENSATOR IN THE
C CASE OF THE FIXED CONTROLLER

DX(22) = 10.0%PI*(X(N+50)-X(22))
DX(23) = (10.0%PI*(X(N+50)-X(22))) - X(23)*0.01*PI
RETURN
END
c

SUBROUTINE SIDE(X,DX,T,DT,N)

IMPLICIT NONE

INTEGER ITR,I,J,K,FLAG,N,NA,NB,IGO,ISTART,m

INTEGER FFLG,NAV,TICK,TICK2,nc,nd

REAL*8 X(1),DX(1),T,DT,RA1,RA2,XD1,XD2,XDP1,XDP2,XQ1,X02,%QP1,XQP2
REAL*8 XOLD(100),DIFF(100),K12,K22,K13,K23,EPS,ALPHA, SLOPE,ERR
REAL*8 EFMX2,EFMX3

REAL*8 RA3,XD3,XDP3,XQ3,XQP3

REAL*8 SE75MX2,SEMX2,SE75MX3, SEMX3,CSIG,VW0,VINFMAG,XSS(50),G(10)
REAL*8 TIMER,MARK,VWTF,WTP,FREQ,TC,0LDANG2,FREQ2

REAL*8 XLAMBDA,QUAL,THETA(100),TRACE,ERROR, UDUM, PI

REAL*8 CON,PDIAG,TMARK1,UNEXT,THAV(100),THDAT(100,100)

REAL*8 DFAC,DELD1,DELD2,DELD3,ANG1,ANG2,ANG3,ANGS,0LDANGS
REAL*8 OLDDEL1,O0LDDEL2,0LDDEL3,MARK2,TIMER2,TOTITR, TOTCYC
REAL*8 AVGITR,FREQ8,ANGDIFF,SSANG8

REAL*8 trace_ab,trace cd,estv

COMPLEX*16 VOLT1,VOLTZ,VOLT3,CUR1,CUR3,Y11,Y14,Y22,Y27,Y33
COMPLEX*16 VOLT4,VOLT5,VOLT6,VOLT7,VOLT8,VOLT9,CUR2 -
COMPLEX*16 Y39,Y44,Y45,Y46,Y55,Y57,Y66,Y69,Y77,Y78,Y88,Y89,Y99
COMPLEX*16 EINF,EINFSS,IMPED1

COMMON/IMPED/XQ1,X02,X03,XQP1,XQP2,XQP3,XD1,XD2,XD3,
& XDP1,XDP2,XDP3,RA1,RA2,RA3

DATA SE75MX2,SEMX2/0.0778,0.303/,EFMX2/3.96/
DATA SE75MX3,SEMX3/0.0895,0.349/,EFMX3/3.438/

4 .00*DATAN(1.00D+00)
2.0*60.0*PI

PI
WO

L]

DATA Y11,Y14/(0.0,-17.361113),(0.0,17.361113)/
& - Y22,Y27/(0.0,-16.000), (0.0,16.000)/

Figure 31 - continued.
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" Y77,Y78/(2.804727,-35.445614),
Y88,Y89/(3.741186,-23.642391),
Y99/(2.437097,—32.153862)/
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¥33,Y39/(0.0,-17.064846),(0.0,17.064846)/

Y44,Y45,Y46/(3.307379,-39.308891), (-1.365188,11.604095),
(-1.942191,10.510682)/

-1.187604,5.975134)/

-1.282009,5.588245)/

-1.617123,13.697979)/

-1. 155087,9.784270)/

¥55,Y57/(3.813787,-17.842628),
Y66,Y69/(4.101848,-16.133476),

AA"\A

c THE FOLLOVING SECTION INITIALIZES THE NETWORK VOLTAGE VALUES
IF (T .EQ. DT) THEN

VOLT1
VOLT2
VOLT3
VOLT4
VOLTS5
VOLT6
VOLT?7
VOLT8
VOLT9

DCMPLX(1.04,0.0)
DCMPLX(1.011527109317,.1656439116)
DCMPLX(1.0215533214885, .083986971345)
DCMPLX(1.025,-.03938)
DCMPLX(.9936,-.06948)
DCMPLX(1.0108,-.06537)
DCMPLX(1.02386,.06621)
DCMPLX(1.015924,.0124125)
DCMPLX(1.03137,.036016)

LI O | | | Y I [ I ||

SSANG8 = DATAN2(DIMAG(VOLT8),DREAL(VOLT8))

Q

IMPED
EINFS

ENDIF

Y55FA

aaaQaaaaa

kK
IF ((T

Y77
Y55
Y57
ELSELIF

A~ 11

Y77
Y55
Y57

(U | |

ELSE

Figure 31 -

THESE STATEMENTS INITTALIZE THE INFINITE BUS VALUES
CUR1 =

DCMPLX(0.68846153846,-0.2596153846)
1 = DCMPLX(0.0D0,XQl)
S = VOLT1 + CUR1*IMPED1

*%% CODE FOR STMULATING DISTURBANCES-- 3 PHASE FAULT W/ RECLOSING
*%*% THE ADMITTANCE MATRIX CHANGES ARE CALCULATED AS FOLLOWS
Y77FAULTED = Y77 - Y57
Y770PEN = Y77 + Y57

ULTED = Y55 - Y57

Y770PEN = Y77 + Y57

.GE. 0.10D0) .AND. (T .LE. 0.150D0)) THEN

DCMPLX(2.804727,-35.445614) -DCMPLX(~1.187604,5.975134)
DCMPLX(3.813787,-17.842628)-DCMPLX(-1.187604,5.975134)
DCMPLX(0.0,0.0)

(T .GT. 0.15) .AND. (T .TE. 0.25D0)) THEN

DCMPLX(2.804727,-35.445614)+DCMPLX(-1.187604,5.975134)

DCMPLX(3.813787,-17.842628)+DCMPLX(-1.187604,5. 975134)
DCMPLX(0.0,0.0)

continued.
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Y57
Y77
Y55

DCMPLX(-1.187604,5.975134)
DCMPLX(2.804727,-35.445614)
DCMPLX(3.813787,-17.842628) '

o

ENDIF

IF (T .EQ. DT) THEN .
open(unit=14,file="iden.out’,status="new’)
open(unit=15,file="obs.out’,status='nevw’)
open(unit=16, file="LQG.out’,status="nev’)

C open(unit=17,file="CONT.out’,status='new’)
OPEN(UNIT=17,FILE='MISC.INF’,STATUS='NEV’)
C OPEN(UNIT=20,FILE='',STATUS='NEW’)

write(14,790) 6
790 format(/,’ identifier coef ’,/,2x,i2)

write(15,792) 6
792 format(/,’ observer data ’,/,2x,12)

write(16,794) 6
794 format(/,’ LQG DATA ’,/,2x,i2)

write(17,796) 5 ‘
796 format(/,’ CONTROL DATA--pdiag, tr-ab,tr-cd,estv,
& csig’,/,2x,1i2)

WRITE(17,798) 5
798 FORMAT(/, ' FILT-IN,OUT,MAG,ANG8 ’,/2X,12)

write(20,799) 6 .
799 format(/,’ THAV coef ',/,2x,i2)

aaoaaan

Q

CSIG

qual

FLAG
ENDIF

0.0
0.0
0

*%% CODE TO DERIVE A FEQUENCY SIGNAL (POVER IS NOT BEING USED)
*%% YWTP AND VTF ARE WEIGHT FACTORS TO WEIGHT POWER AND FREQIENCY
*%% SIGNALS WHICH COULD BE ADDED AND USED AS THE OUTPUT SIGNAL
WTP = 0.0 -
WTF = 10.0

eEeoXe!

C *%%% SET COUNTERS AND CALL IDENTIFICATION AND CONTROL ROUTINES
TICK = 0

Figure 31 - continued.
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TICK2 0
TIMER = T-MARK
TIMER2 = T-MARK2 -

It H

IF ((FFLG .EQ. 1) .AND. (TIMER .GE. .05DO )) THEN
TMARK1 = T
FFLG = 0

ENDIF

C **%* CODE FOR A POWER AND FREQ SIGNAL .
IF (TIMER .GE. 0.1D0) THEN

- MARK =

TICK =

FFLG =

TC = T-

FREQ8 = (ANG8 - OLDANGS8)/(TC-DT)

X(N+50) = WIF*(FREQ8) + WIP*(x(10)-XSS(10))

OLDANG8 = ANG8

ENDIF .
IF (TIMER2 .GE. 1.0D0O) THEN
MARK2 = T
TICK2 = 1
ENDIF

ANGDIFF = ANGB-SSANGS -

C *%%% END OF COUNTER AND TIMER AND FREQ SECTION AND

C *%*%% BEGINNING OF CONTROL SECTION TO FIND A VALUE FOR VAR UNIT C #**%¥%

SUSCEPTANCE

C **** THE FOLLOWING LINE IF USED WILL BYPASS ALL CONTROL ACTIONS
C *%*% don’t worry this is the only ’go to’ in the whole program !!!!

c IF (T .GT. DT) GO TO 810

IF ((TICK .EQ. 1) .AND. (T .GT. 0.25D0)) THEN
NA = 5 )
NB = NA
XLAMBDA = 0.97
ISTART =1
IF (FLAG .EQ. 0) THEN
ISTART = O
FLAG = 1
ENDIF

C *%% THIS 'IF’ STATEMENT CONTAINS THE SECTION WHICH CALLS THE
C %% IDENTIFIER -- IT CAN BE USED TO SKIP CALLING THE IDENTIFIER

) Figure.31 = continued.
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C %% BUT STILL CALL THE CONTROL SECTION THUS FREEZING THE C *%%
COEFFICIENTS OF THE IDENTIFIED TRANSFER FUNCTION

IF (T .LE. 50.D0O) THEN
CSIG = UNEXT

C *%*% ANY OF A NUMBER OF IDENTIFICATION ROUTINES CAN BE USED HERE BY
C *%% UNCOMMENTING THE APPROPRIATE LINE. THE UD IDENTIFIER WORKS MUCH
C #**% BETTER THAN THE OTHERS IN SIMULATIONS DONE SO FAR (6/88).
PDIAG = 1.0D6
CALL UUD(CSIG,X(23),XLAMBDA, NA+NB NA,NB,
&  ISTART,QUAL,THETA,TRACE, PDIAG)
C nc = na-1
C nd = na .
C pdiag = 100.0
C call ivaml(theta,x(23),c¢sig,na,nb,nc,nd,xlambda,
Cc & trace_ab,trace cd,pdiag,istart,estv,igo)
cC PDIAG ='1.0
- CC " CON = 1700.0
cc CALL ILS(CSIG,X(23),XLAMBDA, (NA+NB),NA,NB,
cC & ISTART,QUAL,THETA,TRACE, CON,PDIAG)
cc CALL RLS(T,THETA,X(23),CSIG,NA,NB, (NA+NB),
cC & XLAMBDA, ISTART)
ENDIF
C %%k THIS ENDS THE SECTION OF CODE CALLING THE IDENTIFIER
C *%% /IGO0’ IS A FLAG USED TQ SIGNAL THE CONTROL ROUTINE TO RETURN A
C *%%x PROBING SIGNAL(IGO=1) OR A.CONTROL SIGNAL (IG0=2). IT ALSO CAN
C **%x BE USED TO RETURN A PROBING SIGNAL WITHOUT ITERATING THE RICCATI
C #%% EQUATIONS OR CALCULATING THE OBSERVER STATES (IG0=0).
IF ( T .LT. 1.0) THEN
I1Go = 1
'ELSEIF ((T .GE. 1.0) .AND. (T .LT. 5.0D0)) THEN
IGO = 1
ELSEIF (T .GE. 5.0D0 ) THEN
I1GO = 2 '
ENDIF

CALL CONTROL(THETA, 0UAL,X(?3) CSTIG,NA,IGO,UNEXT,T)
WRLTE(L4,802) 7, (THETA(L),L=1,6)
802 FORMAT(7(1X, 1PE10 3))
WRITE(17,803) T,pdiag,trace ab,trace_ cd estv,CSIG
803 FORMAT(6(1X,1PE10.3))
C WRITE(20,804) T, (THAV(I),I=1,6)
C 804 FORMAT(7(1X,1PE10.3))

Figure 31 - continued.
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C *** THIS STATEMENT IS COMMENTED OUT SO THAT THE SIMULATION WILL HAVE
C *** A DELAY IN IT CORRESPONDING TO AN ACTUAL IMPLEMENTATION
c CSIG = UNEXT
C *%% 'QUAL’ IS A QUALITY FACTOR WHICH WAS ORIGINALLY BEING USED TO
C *%* TRY TO DETERMINE WHEN THE IDENTIFIER HAD CONVERGED -- IT IS NO
C %% LONGER AN ESSENTIAL CALCULATION BUT PERHAPS OF SOME VALUE.

IF ( DABS(X(23)) .LT. 1.0E-02) THEN

QUAL = 1.0
ELSE
QUAL = 1.0 - DABS(ERROR/X(23))

ENDIF ‘

IF (QUAL .LT. 0.0) QUAL = 0.0
C **%% THE FOLLOWING STATEMENTS LIMIT THE VAR UNIT TO +- 0.4

. IF (CSIG .LT. -0.4D0) CSIG = -0.4

IF (CSIG .GT. 0.4D0) CSIG = 0.4
C *%%x THIS STATEMENT INCORPORATES . THE VAR UNIT SUSCEPTANCE
C *%% INTO THE NETWORK ADMITTANCE MATRIX
810 Y88 = DCMPLX(3.741186,-23.642391) + DCMPLX(0.DO,CSIG)
C %% rCSIG’ IS THE VAR UNIT SUSCEPTANCE AND IS ASSIGNED TO AN ARRAY
C *%%x FOR OUTPUTTING IN THE INTEG PROGRAM.

X(N+49) = CSIG

ENDIF

C *%%x THIS IS THE END OF THE CONTROL SECTION WHICH DETERMINES THE
C **%x THE VAR UNIT SUSCEPTANCE
C **% CODE TO IMPROVE CONVERGENCE BY ESTIMATING THE CHANGE
C **%% IN GENERATOR TERMINAL BUS VOLTAGE ANGLE
C **%%x IT SEEMS TO SAVE A FEW ITERATIONS

IF (T .EQ. DT) THEN

OLDDEL1 = X(2)
OLDDEL2 = X(9)
OLDDEL3 = X(16)
ENDIF
DELD1 = (X(2) - OLDDEL1)*(180.D0/PI)

DELD2

(X(9) - OLDDEL2)*(180.D0/PI)

DELD3 = (X(16) - OLDPEL3)#(180.D0O/PI)

ANG1 = DATAN2D(X(N+7),X(N+6)) + DELD1
ANG2 = DATAN2D(X(N+22),X(N+21)) + DELD2
ANG3 = DATAN2D(X(N+37),X(N+36)) + DELD3

X(N+6) = CDABS(VOLT1)*DCOSD(ANG1)
X(N+7) = CDABS(VOLT1)*DSIND(ANG1)
X(N+21) = CDABS(VOLTZ2)*DCOSD(ANG2)

Figure 31 - continued.
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X(N+22) = CDABS(VOLT2)*DSIND(ANG2)
X(N+36) = CDABS(VOLT3)*DCOSD(ANG3)
X(N+37) = CDABS(VOLT3)*DSIND(ANG3)
VOLT1 = DCMPLX(X(N+6),X(N+7)) .
VOLT2 = DCMPLX(X(N+21),X(N+22))
VOLT3 = DCMPLX(X(N+36),X(N+37))
OLDDEL1 = X(2)-

OLDDEL2 = X(9)

OLDDEL3 = X(16)

*%% INFINITE BUS MODULATION CODE

EINF
EINF

= EINFSS + O.1DO*EINFSS*DSIN((4.33/2. 0)*T)

= EINFSS

*%% TTERATIVE LOOP TO SOLVE ALGEBRAIC EQUATIONS

**%x THIS IS WHERE THE SOLUTION OF THE SIDE VARTIABLES ACTUALLY BEGINS

ERR = 1.0

ITR = 0 '

DO WHILE((ERR .GT. 1.D-04) .AND. (ITR .LT. 150))-
DO I=1,40
XOLD(I) = X(N+I)
ENDDO

kkhkkkkhhhhhhhhhkddhhrhhhhbrhrrrhbrrhrhbrhhhhhhrihrhhrdhhihkik

THE FOLLOWING EQUATIONS HAVE THE FORM:
VQ = VT REAL*COS(DELTA) + VT IMAG*SIN(DELTA)

VD = —VT REAL*SIN(DELTA) + VT IMAG*COS(DELTA)
*********;********************;*************************ﬁ*****

X(N+6)*DCOS(X(2)) + X(N;7)*DSIN(X(2))

X(N+4) =

X(N+5) = -X(N+6)*DSIN(X(2)) + X(N+7)*DCOS(X(2))
X(N+19) = X(N+21)*DCOS(X(9)) + X(N+22)*DSIN(X(9))
X(N+20) = -X(N+21)*DSIN(X(9)) + X(N+22)*DCOS(X(9))
X(N+34) = X(N+36)*DCOS(X(16)) + X(N+37)*DSIN(X(16))
X(N+35) = -X(N+36)*DSIN(X(16)) + X(N+37)*DCOS(X(16))

*%%%% MACHINE IV ALGEBRAIC RELATIONS = #*%kkkkkkkkkkiiik
THE FOLLOWING ARE EQUATIONS OF THE FORM:
ID =( RA(EDP-VD) - XQP(EQP-VQ) )/(RA**2 + XQP*XDP)
IQ =( RA(EQP-VQ) + XDP(EDP-VD) )/(RA**2 + XQP*XDP)
e T
NOTE THAT EQUATIONS FOR MACHINE #1 HAVE BEEN COMMENTED OUT AS IT
IS BEING REPRESENTED AS AN INIFINTE BUS

X(N+2) = (RA1*(X(4)—XQN+5))-XQPI*(X(3)—X(N+4)))/
& " ((RAI**2.0)+XDP1*XQP1)

Figure 31 - continued.




110

c X(N+3) = (RALI*(X(3)-X(N+4))+XDP1*(X(4)-X(N+5)))/
& ((RA1%%2.0)+XDP1*XQP1)

X(N+17) = (RA2*(X(11)-X(N+20))-XQP2*(X(10)-X(N+19)))/
& ((RA2%*2.,0)+XDP2*XQP2)
X(N+18) = (RA2%(X(10)-X(N+19))+XDP2%(X(11)-X(N+20)))/
& ((RA2%%2.0) +XDP2*XQP2)
X(N+32) = (RA3%(X(18)-X(N+35))-XQP3*(X(17)-X(N+34)))/
& ( (RA3*%2.0)+XDP3*XQP3)
X(N+33) = (RA3*(X(17)-X(N+34))+XDP3*(X(18)-X(N+35)))/
& ( (RA3*%2.0)+XDP3%XQP3)

C *kkkkkkkkhkhkikk AXIS ’TRANSFORMATION kkkkhkkkhhkhkhhkibkkkk
C ID AND IQ TO REAL AND IMAGINARY TERMINAL CURRENTS
C  X(N+8) = X(N+3)*DCOS(X(2)) - X(N+2)*DSIN(X(2))

C  X(N+9) = X(N+3)*DSIN(X(2)) + X(N+2)*DCOS(X(2))
X(N+23) = X(N+18)*DCOS(X(9)) - X(N+17)*DSIN(X(9))
X(N+24) = X(N+18)*DSIN(X(9)) + X(N+17)*DCOS(X(9))
X(N+38) = X(N+33)*DCOS(X(16)) - X(N+32)*DSIN(X(16))
X(N+39) = X(N+33)*DSIN(X(16)) + X(N+32)*DCOS(X(16))

[ I (|

CURL = DCMPLX(X(N+8),X(N+9))
*%%%% FOR INFINITE BUS SIMULATION ###kx*

CURLl = (EINF - VOLT1)/IMPED1

CUR2 = DCMPLX(X(N+23),X(N+24))

CUR3 = DCMPLX(X(N+38),X(N+39))

Q0
Il

~ %%% THIS INNER LOOP REDUCES THE OVERALL NUMBER OF ITERATIONS
*%% REQUIRED BY APPROXIMATELY ONE HALF
DO K =1,6

QQ

VOLT4
VOLTS
VOLT6
VOLT?7
VOLT8
VOLT9

—(Y14*VOLT1-
~(Y45*VOLT4
~(Y46*VOLT4
~(Y27*VOLT2
~(Y78*VOLT7
~(Y39*VOLT3

Y45*VOLT5 + Y46*VOLT6)/Y44
Y57%VOLT7) /Y55
Y69*VOLT9)/Y66

Y57*VOLT5 + Y78*%VOLT8)/Y77
Y89*VOLT9)/Y88 .
Y69*VOLT6 + ¥YB9*VOLT8)/Y99

o nnun

o+ o+ o+ o+

ENDDO
C *** THIS IS THE END OF THE ‘INNER’ LOOP #*%*

VOLT1
VOLT2
VOLT3

(CUR1
(CUR2
(CUR3

Y14*VOLT4)/Y11
Y27%VOLT7)/Y22
Y39%VOLT9)/Y33

nn

C *#%* SEPARATE REAL AND IMAGINARY VOLTAGE COMPONENTS **+#%
X(N+6) = DREAL(VOLT1)
X(N+7) = DIMAG(VOLT1)
X(N+21) = DREAL(VOLT2)
X(N+22) = DIMAG(VOLT2)
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X(N+36) = DREAL(VOLT3)
X(N+37) = DIMAG(VOLT3)

*%**%%% MACHINE ELECTRICAL POWER OQUT #¥*%kkkkkkkkkkkkkkkhkkkik
EQUATIONS FOR ELECTRICAL POWER GENERATED
PE = VD*ID. + VQ*IQ
R T T T s s s
X(N+1) = X(N+5)*X(N+2) + X(N+4)*X(N+3)
X(N+16) = X(N+20)*X(N+17) + X(N+19)*X(N+18)
X(N+31) = X(N+35)*X(N+32) + X(N+34)*X(N+33)

aaaa

C %%* THIS SECTION CALCULATES ERRORS,COUNTS ITERATIONS
C *%% AND DETERMINES WHEN THE MAIN LOOP IS EXITED.

ERR = 0.00
ITR = ITR + 1
IF (ITR .GT. 149) PRINT#*, VARNING 11! %% NOT CONVERGING 111 six !
DO I=1,40
IF (ABS(X(N+I)) .GT. 1.D-04) THEN
DIFF(I) = ABS(XOLD(I) - X(N+I))/ABS(X(N+I))
ELSE
DIFF(I) = ABS(XOLD(I) ~ X(N+I))
ENDIF
IF (DIFF(I) .GT. ERR) THEN
: ERR = DIFF(I)
c . PRINT *,’ITR =',ITR,’ ERR=',ERR,’ NO =',N+I
ENDIF
ENDDO
ENDDO

C- *%% END OF MAIN LOOP TO SOLVE ALGEBRAIC RELATIONS #%**

C *%% EXCITER SATURATION EQUATIONS (VT,V1,SE)
C *%% MACHINE 2
X(N+29) = (X(N+19)*%2 4+ X(N+20)**2)**.5
IF (X(13) .LE. 0.75*EFMX2) THEN

K12 = 4.0%SE75MX2/(3. O*EFMXZ)
K22 = 0.0. .
ELSE
- K12 = 4,0*(SEMX2 - SE75MX2)/EFMX2
K22 = 4.0%SE75MX2 - 3.0*SEMX2
ENDIF

X(N+27) = X(13)*(R12*X(13) - K22)

C #%* MACHINE 3
X(N+44) = (X(N+34)**2 + X(N+35)%*2)**.5
IF (X(20) .LE. 0.75%EFMX3) THEN
K13 = 4.0%SE75MX3/(3.0*EFMX3)
K23 = 0.0
ELSE

n
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K13 = 4.0%(SEMX3 - SE75MX3)/EFMX3
K23 = 4.0*SE75MX3 - 3.0*SEMX3
ENDIF .

X(N+35) = X(20)*(K13+*X(20) - K23)

*%% AMPLIFIER SATURATION
*%% MACHINE 2

IF(X(12).GT.1.0)THEN
X(12) = 1.0

ELSEIF(X(12).LT.-1.0)THEN
X(12) = -1.0

ENDIF

*%% MACHINE 3

IF(X(19).GT.1.0)THEN
X(19) = 1.0
ELSEIF(X(19).LT.-1.0)THEN
X(19) = -1.0 '
ENDIF

*kFkkxkkkkkk*k END OF EXCITER SECTION skksdkkkkkikkidkihkkk

PRINT*,'T =',T,' ITR = ',ITR,'ERR =',ERR
*%kkkk***x CALCULATE ROTOR ANGLES IN RADIANS
ANGS8. = DATAN2(DIMAG(VOLT8),DREAL(VOLT8))
X(N+46) = 180.0*X(2)/PI
X(N+47) 180.0*%X(9)/P1
X(N+48) = 180.0*X(16)/PI
IF (X(N+48) .GT. 150.0) THEN '
PRINT *,’ SYSTEM UNSTABLE --- RUN ABORTED 2MIED '
. STOP
ENDIF

WRITE(*,809) T,ATAN2D(X(N+22),X(N+21)),ITR
809 FORMAT( ’ ACT ’,PE11.4,1PE14.7,’PRE ITR=',I4)

IF( DT .GT. 0.DO) THEN
TOTCYC = TOTCYC + 1.0
TOTITR = TOTITR + ITR

ENDIF

IF(TICK2 .EQ. 1) THEN
AVGITR = TOTITR/TOTCYC
TOTITR = 0.DO
TOTCYC = 0.DO
WRITE(*,990) T,AVGITR-

o

990 FORMAT(’ TIME =',1PE11.4,2X,’ AVG ITR =',1PE11.4)
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ENDIF

C *%% THIS IS SOME CODE WHICH CAN BE USED TO LOOK AT VOLTAGE MAGNITUDES
C *%% IN THE NETWORK AS THE SIMULATION IS GOING ON

IF (TICK .EQ. 1) THEN
c WRITE(17,900) T,CDABS(VOLT2),CDABS(VOLT3), CDABS(VOLT7),
Cc & " CDABS(VOLT8),CDABS(VOLT9)
c WRITE(17,900) T,X(N+50),X(23),CDABS(VOLT8),ANG8
C 900 FORMAT(6(1X 1PE11.4)) -
ENDIF

RETURN
END

Figure 31 - continued.
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APPENDIX B

PROGRAM FOR CALCULATING INITIAL CONDITIONS























































