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ABSTRACT

Ecologists and environmental scientists employ increasingly complicated sampling
designs to address research questions that can help explain the impacts of climate change,
disease, and other emerging threats. To understand these impacts, statistical methodology
must be developed to address the nuance of the sampling design and provide inferences about
the quantities of interest; this methodology must also be accessible and easily implemented
by scientists. Recently, hierarchical latent variable modeling has emerged as a comprehensive
framework for modeling a variety of ecological data types. In this dissertation, we discuss
hierarchical modeling of multi-scale occupancy data and multi-species abundance data.
Within the multi-scale occupancy framework, we propose new methodology to improve
computational performance of existing modeling approaches, resulting in a 98% decrease in
computation time. This methodology is implemented in anRpackage developed to encourage
community uptake of our method. Additionally, we propose a new modeling framework
capable of simultaneous clustering and ordination of ecological abundance data that allows
for estimation of the number of clusters present in the latent ordination space. This modeling
framework is also extended to accommodate hierarchical sampling designs. The proposed
modeling framework is applied to two data sets and code to �t our model is provided. The
software and statistical methodology proposed in this dissertation illustrate the 
exibility of
hierarchical latent variable modeling to accommodate a variety of data types.
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CHAPTER ONE

INTRODUCTION

As ecological change continues to grow in complexity and pace, ecologists and

environmental scientists must employ increasingly complicated sampling designs in order

to address research questions that investigate the impacts of climate change, wild�res, and

other emerging threats to ecosystems of interest. To understand these impacts, researchers

often seek to make inferences about quantities that are not directly observed, including

the occupancy status of multiple species at sample locations or the relationships between

entire species assemblages at various sample locations. To estimate these latent quantities,

ecologists and environmental scientists often employ hierarchical sampling designs that

provide spatial replication by sampling secondary sampling units within primary sampling

units (Eiler et al. 2018; Erickson, Merkes, and Mize 2019; Hunter et al. 2019; Yeo et al.

2009).

Statistical methodology must be developed that can appropriately address the hierarchi-

cal sampling designs that are commonly used in ecological applications, while simultaneously

providing inferences about the quantities of interest. Additionally, this methodology must

be accessible and easily implemented by scientists, if it is to be impactful. Recently,

hierarchical latent variable models have emerged as a statistical technique capable of both

accounting for the hierarchical sampling designs that are common in ecological applications

and allowing inferences on important, yet often unobserved, quantities (Jain and Dubes

1988). This dissertation is the compilation of three manuscripts that use hierarchical latent

variable models to make inferences about species distributions and draw comparisons between

ecological communities. Additionally, the manuscripts herein focus on making models
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accessible to practicing scientists. Below, additional background information is provided

for each manuscript.

1.0.1 Primer for Chapter 2

Chapter 2, \msocc: Fit and analyze computationally e�cient multi-scale occupancy

models inR," describes the development of anRpackage that �ts computationally expedient

multi-scale occupancy models. Multi-scale occupancy models have recently gained traction

as the primary analytical framework for environmental DNA (eDNA) surveys. These surveys

rely on detection of DNA associated with target organisms to claim presence of those

organisms at a survey location, but presence of an organism at a survey location does not

imply that its DNA will be present in every sample taken from that survey location (Dorazio

and Erickson 2018). To account for potential false-negative detections (when a species is

truly present but not detected) at the sample level, multiple samples are taken from each

survey location. Then, each sample is tested for presence of the target organism's DNA

using polymerase chain-reaction (PCR) chemistry on multiple replicates from each sample.

This second level of detection is also prone to false-negative detections, as presence of DNA

in a sample does not imply presence of DNA in a replicate from that sample (Dorazio and

Erickson 2018).

The sampling design used in eDNA surveys induces a hierarchical dependence structure

in the occupancy state of the target organism at the survey location, sample, and replicate

level that must be appropriately modeled. Dorazio and Erickson (2018) describe a

hierarchical model in which the occupancy states at the survey location and sample levels

are treated as latent Bernoulli random variables; they also provide anRpackage to �t their

proposed model from a Bayesian perspective. Their package relies on a Markov chain Monte

Carlo (MCMC) technique known as Metropolis-Hastings (Hastings 1970) to sample from

the posterior distribution of their proposed model. This technique can be slow to converge
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to the posterior distribution, requires time-consuming tuning, and is not well-suited to

estimate parameters on vastly di�erent scales (Robert 2015; Roberts and Rosenthal 2001).

However Gibbs sampling, a more computationally e�cient posterior sampling technique,

is not directly available for their model as there is no known closed-form full conditional

posterior distribution for Bernoulli sampling models parameterized by log-odds.

Our novel contribution is the development of anR package that leverages a data

augmentation strategy to a�ord Gibbs sampling of all parameters in the multi-scale

occupancy model proposed by Dorazio and Erickson (2018). This augmentation strategy,

developed by Polson, Scott, and Windle (2013), relies on introducing P�olya-gamma

distributed random variables within the MCMC routine, resulting in a conditionally Gaussian

likelihood for which Gibbs sampling techniques are well de�ned. Below, we brie
y outline

the data augmentation strategy, but full details are provided in Polson, Scott, and Windle

(2013).

Consider the standard logistic regression model, whereyi represents the number of

successes,ni represents the number of trials, andx i represents the vector of regressors for

observationi (i = 1; 2; : : : ; N ), and

yi � Binomial
�

ni ;
exp(x0

i � )
1 + exp(x0

i � )

�
: (1.1)

The P�olya-gamma distribution is constructed such that the following is true:

(e� )a

(1 + e� )b
= 2 � be��

Z 1

0
e� !� 2=2p(! )d! (1.2)

where� = a � b=2 and ! � P�olya-gamma(b;0). Using equation 1.2, we write the likelihood
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contribution of observation i as

L i (� ) /
�

exp(x0
i � )

1 + exp(x0
i � )

� yi
�

1 �
exp(x0

i � )
1 + exp(x0

i � )

� n i � yi

=
(exp(x0

i � ))yi

(1 + exp(x0
i � ))n i

/ e� i x0
i �

Z 1

0
e� ! i (x0

i � )2=2p(! i )d! i ;

(1.3)

where� i = yi � ni =2. To derive the full conditional posterior distribution of � , we consider

all observations and condition on! = ( ! 1; : : : ; ! n ):

p(� j! ; y ) / p(� )
NY

i =1

L i (� j! i )

= p(� )
NY

i =1

exp
�
� i x0

i � � ! i (x0
i � )2=2

�

/ p(� )
NY

i =1

exp

 
! i (x0

i � )2

2
� � i x0

i � +
! i

2

�
� i

! i

� 2
!

/ p(� )
NY

i =1

exp
� ! i

2
(x0

i � � � i ! i )2
�

/ p(� ) exp
�

�
1
2

(z � X� )0
 (z � X� )
�

;

(1.4)

where z = ( � 1=! 1; : : : ; � n=! n ) and 
 = diag( ! 1; : : : ; ! n ). In equation 1.4, we recognize

the kernel of a N (X� ; 
 � 1) distribution with working responsesz. If the prior on � is

chosen to beN (� 0; � 0), then � jy ; ! � N (m ; V ), where V = ( X 0
 X + � � 1
0 )� 1 and

m = V (X 0
 z + � � 1
0 � 0).

This data augmentation strategy is implemented within theR package described in

Chapter 2 at multiple levels to allow for Gibbs sampling of all parameters in the multi-

scale occupancy model. Additionally, Chapter 2 fully details the computational advantage

a�orded through data augmentation and showcases an example analysis using the package.

Finally, Chapter 2 describes a supplemental web application that leverages the computational
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expediency a�orded by the data augmentation strategy to conduct simulation-based precision

analyses for multi-scale occupancy models.

1.0.2 Primer for Chapter 3

Chapter 3, \Assessing spatial and temporal patterns in sagebrush steppe vegetation

communities, 2012-2018," describes a collaborative e�ort to assess sample size requirements

for the monitoring of sagebrush steppe vegetation communities in Grand Teton National

Park. Between 2012 and 2018, cover class data were collected on over 80 species across 30

sampling frames in Grand Teton National Park. Within each sample frame, approximately

50 one-square-meter quadrats were randomly selected and visual cover class estimates,

de�ned as the proportion of the quadrat obstructed by the canopy associated with each

species, were provided for all plant species present within each quadrat. The analytical

goal for this work was to use this existing data pipeline to assess the similarity in species

composition between sample frames over both time and space. Then, based on those

assessments, recommendations regarding whether a reduction in sampling e�ort was possible

were provided.

At the direction of our collaborators, distance-based ordination techniques were used

to assess similarity in species composition between sample frames over both time and space.

These techniques rely on �rst constructing a dissimilarity matrix describing the dissimilarity

in sample locations based on species composition. Then, that matrix is projected into a

lower dimensional space that can be used to visualize the similarity in sample locations

based on species composition by assessing each sample locations' proximity to one another

in the lower dimensional space. Finally, sample locations are clustered based on species

composition by applying algorithm-based clustering techniques, such as k-means clustering,

in the lower dimensional space (Roberts 2020).

A large part of the work described in Chapter 3 focuses on developing simulation studies
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to assess the impact of choices built into the distance-based ordination framework, including

the choice of dissimilarity index. Using simulation, we investigated how the choice of

dissimilarity index impacted the resulting ordination, and which dissimilarity index was best

suited to correctly identify dissimilar communities. Based on these simulations, ordination

results for the Grand Teton data were provided and summarized in a supplemental web

application. The ordination results were then used to provide recommendations regarding a

reduction in sampling e�ort for the monitoring program.

Through this work, we identi�ed a number of potential shortcomings associated with

distance-based ordination techniques. Among those shortcomings is the inability of distance-

based techniques to appropriately account for the hierarchical sampling design that was used

in Grand Teton National Park. Consequently, distance-based techniques result in ordination

of species composition at the quadrat level, rather than the sample frame level, which was

the primary inferential unit of interest to managers. Therefore, to make inferences at the

sample frame level, ordination results must be aggregatedpost-hoc. Additionally, it can

be di�cult to cluster ordination results in the lower dimensional space, as the number

of clusters present is seldom knowna priori , yet this value is required for all algorithm-

based clustering techniques. And �nally, the distance-based framework does not provide a

likelihood. Without a likelihood, it is not possible to formally assess the choice of distance

measure, projection method, clustering technique, or number of clusters present in the

latent space. The culmination of these observations motivated us to consider alternatives to

distance-based ordination techniques, which is the subject of Chapter 4.

1.0.3 Primer for Chapter 4

Chapter 4, \Clustering and unconstrained ordination with Dirichlet process mixture

models," describes the development of a hierarchical ordination model capable of simultane-

ous clustering and ordination that allows for estimation of the number of distinct ecological
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communities present in a monitored region. This modeling framework builds on the model-

based ordination framework developed by Hui (2016), which uses latent variables drawn

from a �nite mixture model to cluster sample locations along a latent ecological gradient

based on species composition. The Hui (2016) model-based approach provides a number of

advantages over the distance-based approach described in Section 1.0.2, including a likelihood

with which to assess model �t. Additionally, by drawing the latent variables representing

each sample locations' position along the underlying ecological gradient from a �nite mixture

distribution, Hui (2016) provide a model-based approach to assigning sample units to clusters

in the latent space. However, their method still requires prior speci�cation of the number of

clusters present in the latent space, and does not explicitly discuss a way to account for the

hierarchical sampling design that was present in the Grand Teton data described in Section

1.0.2.

Our novel contribution with this work is two-fold. First, we extend the model-based

ordination framework developed by Hui (2016) to draw latent variables representing each

sample locations' position in the underlying ecological gradient from anin�nite mixture

distribution, allowing for estimation of the number of clusters present in the latent space. As

a result, researchers are able to make probabilistic statements about the number of clusters

present in the latent space, rather than relying on expert knowledge or information criterion

to make that determination. Second, we extend our model to accommodate hierarchical

sampling designs by including random e�ects for each secondary sampling unit. As a result,

ordination results are aligned with the primary sampling unit. In the context of the Grand

Teton data described in Section 1.0.2, our proposed model results in ordination of the 30

sampling frames, rather than the approximately 1500 quadrat locations, allowing researchers

to make inferences regarding the primary sampling unit without aggregation of ordination

results post-hoc.

Chapter 4 fully details this modeling framework and showcases its implementation on
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two example data sets. The �rst data set concerns presence-absence records of �sh in the

Doubs river in Eastern France, and the second data set describes presence-absence records

of plant species in Craters of the Moon National Monument and Preserve (CRMO) in Idaho,

USA. The former data set is used as a historical benchmark for ordination techniques, and

the latter is used to showcase how the proposed model accomodates hierarchical sampling

designs. Tools to summarize the posterior distribution and visualize model results are also

provided for each data set. Code to �t our proposed model is provided in Appendix B.
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CHAPTER TWO

MSOCC: FIT AND ANALYZE COMPUTATIONALLY EFFICIENT MULTI-SCALE

OCCUPANCY MODELS IN R

2.1 Contribution of Authors and Co-Authors

Manuscript in Chapter 2

Author: Christian Stratton

Contributions: Responsible for writing of manuscript and submission, authoredmsocc
package and supplemental web application, led data analysis.

Author: Adam Sepulveda

Contributions: Provided motivation for conceptualization of work and feedback on manuscript
draft, assisted in response to reviewer comments.

Author: Andrew Hoegh

Contributions: Provided general guidance and feedback on manuscript draft, contributed to
code used inmsoccpackage, contributed to development of modeling framework, assisted in
response to reviewer comments.
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Status of Manuscript:
Prepared for submission to a peer-reviewed journal
O�cially submitted to a peer-reviewed journal
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X Published in a peer-reviewed journal; this chapter is presented as the manuscript
appears in the journal

British Ecological Society
Submitted 21 February 2020
Published 02 July 2020
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DOI: 10.1111/2041-210X.13442



11

Abstract

1. Environmental DNA (eDNA) sampling is a promising tool for the detection of rare and

cryptic taxa, such as aquatic pathogens, parasites, and invasive species. Environmental

DNA sampling work
ows commonly rely on multi-stage hierarchical sampling designs

that induce complicated dependencies within the data. This complex dependence

structure can be intuitively modeled with Bayesian multi-scale occupancy models.

However, current software for such models are computationally demanding, impeding

their use.

2. We present an R package,msocc, that implements a data augmentation strategy to

�t fully Bayesian, computationally e�cient multi-scale occupancy models. Themsocc

package allows users to �t multi-scale occupancy models, to estimate and visualize

posterior summaries of site, sample, and replicate level occupancy, and to compare

di�erent models using Bayesian information criterion. Additionally, we provide a

supplemental web application that allows users to investigate study design for multi-

scale occupancy models and acts as a graphical user interface to themsoccpackage.

3. The utility of the msocc package is illustrated on a published data set and the

functions in msocc are compared to the primary Bayesian toolkit for multi-scale

occupancy modeling,eDNAoccupancy, using various computational benchmarks. These

benchmarks indicate that msocc is capable of �tting models 50 times faster than

eDNAoccupancy.

4. We hope that access to software that e�ciently �ts, analyzes, and conducts study

design investigations for multi-scale occupancy models facilitates their implementation

by the research and wildlife management communities.
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2.3 Introduction

Environmental DNA (eDNA) surveys continue to gain popularity for detecting invasive,

cryptic, and rare species (Klymus et al. 2015; Lodge et al. 2012; Schmelzle and Kinziger

2016; Sepulveda et al. 2019), as these techniques are often easier, less expensive, and more

sensitive than non-molecular detection tools (Eiler et al. 2018; Hunter et al. 2019; Sengupta

et al. 2019; Sepulveda et al. 2019; Williams et al. 2018). These surveys rely on hierarchical

sampling techniques to accommodate spatial heterogeneity in the occurrence of DNA within

a study region. This hierarchical design is necessary, as presence of a species within a site

does not imply that its DNA will be present in every sample taken from that site (Dorazio

and Erickson 2018). Therefore, multiple samples are typically taken from each site. These

samples are then assessed for the presence of DNA using polymerase chain reaction (PCR)

chemistry on multiple replicates from each sample. However, even if DNA is present in the

sample, it may not be present in all PCR replicates (Dorazio and Erickson 2018).

This sampling design induces a hierarchical dependence structure in the occupancy

state of the target species at the site, sample, and replicate levels that must be appropriately

modeled. Following Nichols et al. (2008) and Mordecai et al. (2011), Dorazio and Erickson

(2018) proposed a hierarchical model of latent state variables to handle this dependence

structure. The resulting multi-scale occupancy model provides a 
exible platform for

modeling multiple levels of uncertainty in the detection of the target species by accounting

for false negatives at the site, sample, and replicate levels while simultaneously respecting

the hierarchical dependence.

Dorazio and Erickson (2018) provide an R package,eDNAoccupancy, for �tting their

model from a Bayesian perspective. Bayesian techniques provide a natural way to quantify

the uncertainty in the estimated occupancy parameters, and are valuable tools for hierar-

chical modeling of ecological data (Dorazio 2015). While Bayesian hierarchical techniques
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are valuable for understanding complex data structures, �tting hierarchical models can be

computationally demanding. Fitting such models for binary data, with a logistic link, has

historically required the use of a Markov chain Monte Carlo (MCMC) technique known

as Metropolis-Hastings; this sampling technique is implemented ineDNAoccupancy. This

technique can be slow to converge to the target posterior distribution and also requires time-

consuming tuning (Robert 2015). Additionally, the algorithm is not well suited to estimate

parameters on vastly di�erent scales (Roberts and Rosenthal 2001), which often forces users

to center and scale their continuous predictors, resulting in cumbersome interpretations. Due

to these limitations, software packages that rely on this technique can be time-consuming

to use, especially when �tting multiple models with the intent of model comparison. The

msoccpackage provides an alternative to these packages, implementing a Gibbs sampler

that quickly converges to the posterior distribution and features a web application capable

of investigating study design, �tting models, and analyzing the results.

The msoccpackage implements the data augmentation strategy described by Polson,

Scott, and Windle (2013) to �t the hierarchical model described by Dorazio and Erickson

(2018) using a Gibbs sampler; this procedure requires no tuning, easily handles covariates on

di�ering scales, and quickly converges to the posterior distribution. The remainder of this

article is organized as follows: Section 2.4 contains a description of our package's features,

including an example analysis on published data. Section 2.5 describes the supplemental web

application developed to conduct precision analyses and act as a graphical user interface to

the msoccpackage. Section 2.6 illustrates the computational advantage of themsoccpackage

over eDNAoccupancyby comparing computational benchmarks.

2.4 PackageOverview

The main function in the msoccpackage ismsoccmod(), which �ts the multi-scale

occupancy model described by Dorazio and Erickson (2018); for complete model notation,
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readers are referred to Dorazio and Erickson (2018). The syntax ofmsoccmod() is as follows:

> msocc_mod(wide_data, num.mcmc = 1000,
+ site = list(model = ~1, cov_tbl),
+ sample = list(model = ~1, cov_tbl),
+ rep = list(model = ~1, cov_tbl),
+ priors = list(
+ site = list(mu0 = 0, Sigma0 = 9),
+ sample = list(mu0 = 0, Sigma0 = 9),
+ rep = list(mu0 = 0, Sigma0 = 9),
+ a0 = 1, b0 = 1
+ ),
+ progress = T, print = NULL, seed = NULL, beta_bin = T
+ )

The site , sample, and rep arguments each take lists containing items namedmodel and

cov tbl , respectively. Themodel item is used to specify the formula which determines the

model frame for each level of the hierarchy; thecov tbl item is used to specify the data frame

containing the covariates used inmodel at each level. This design allows users to specify

models using familiarlm and glm syntax, resulting in a function that is widely accessible.

The remaining arguments ofmsoccmod() are the number of iterations in the Gibbs

sampler (num.mcmc), the detection data (wide data), whether progress should be printed

(progress ), how often progress should be printed (print ), whether a faster beta-binomial

sampler should be used when applicable (beta bin ), speci�cation of priors (priors ), and an

optional seed to set for reproducibility (seed). The msoccmod() function returns a list (of

classmsocc) with the following elements:

ˆ beta = matrix of posterior samples of the regression coe�cients at the site level

ˆ psi = vector of posterior samples of the site level occupancy probability parameter;

only returned if beta bin = TRUEand site $model = � 1

ˆ alpha = matrix of posterior samples of the regression coe�cients at the sample level
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ˆ theta = matrix of posterior samples of the sample level occupancy probability param-

eter; only returned if beta bin = TRUEand sample$model = � 1 or sample$model =

� site

ˆ delta = matrix of posterior samples of the regression coe�cients at the replicate level

ˆ p = vector of posterior samples of the replicate level occupancy probability parameter;

only returned if beta bin = TRUEand rep$model = � 1

ˆ model.info = list of model information, including the design matrices for each level

of the hierarchy, the number of sites, the number of samples per site, and the number

of replicates per sample.

2.4.1 Posterior summary tools

The msoccpackage is equipped with multiple functions to summarize the joint posterior

distribution of the derived probability parameters. The posterior summary() function

provides a numerical summary table of the derived probability parameters at each level

of the hierarchy. The syntax ofposterior summary() is as follows:

> posterior_summary(
+ msocc_mod, burnin = 0, level = "overall",
+ quantiles = c(0.025, 0.975), unique = T
+ )

The arguments of this function include a �tted model of classmsocc(msoccmod), the number

of samples to discard as warm-up (burnin ), the level of the model to summarize which may

be one of \overall ," \ site ," \ sample," or \ rep" ( level ), quantiles de�ning the credibility

intervals to be provided (quantiles ), and whether only unique rows of the summary table

should be printed (unique).
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The cred plot() function provides a graphical summary of credibility intervals for each

of the derived probability parameters at each level of the hierarchy. The syntax ofcred plot

is as follows:

> cred_plot(
+ msocc_mod, level = "site", truth = NULL, n = "all",
+ quantiles = c(0.025, 0.975), burnin = 0
+ )

The arguments of this function include a �tted model of classmsocc(msoccmod), the level

of the model to visualize which may be one of \site ," \ sample," or \ rep" ( level ), the

true values of the probability parameters which may be used during simulation (truth ),

the number of credibility intervals to plot at a time (n), quantiles de�ning the credibility

intervals to be provided (quantiles ), and the number of samples to discard as warm-up

(burnin ).

2.4.2 Example analysis

The functions in the msoccpackage are demonstrated on an eDNA survey of tidewater

goby, found along the coast of California, USA (Schmelzle and Kinziger 2016). In this

survey, water samples were collected from 39 sites along the California coast. The number

of samples collected at each site ranged from 2 to 23, and six PCR replicates were tested for

the presence of goby DNA from each sample. In addition to detection data, environmental

covariates were collected at all 39 sites; the �rst �ve rows of the data are provided in Table

2.1.

In these data,twg represents an index of goby density (catch-per-e�ort),sal represents

the salinity in parts per thousand, turb represents the turbidity in �ltration time, fish

represents an index of non-goby �sh density (catch-per-e�ort), andveg is a logical indicator

for the presence of vegetation. Schmelzle and Kinziger (2016) originally �t a suite of models

to these data using theWINBUGSpackage, and Dorazio and Erickson (2018) recreated those
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site sample pcr1 pcr2 pcr3 pcr4 pcr5 pcr6 twg sal turb �sh veg

Big Lagoon 1 1 1 1 1 1 1 26.63 1.75 132.00 80.00 1

Big River 1 0 0 0 0 0 0 0.00 26.00 78.80 17.20 0

Caspar Creek 1 0 0 0 0 0 0 0.00 20.70 413.00 1.20 0

Elk Creek 1 0 0 0 0 0 0 0.00 30.00 144.67 19.30 0

Garcia River 1 0 0 0 0 0 0 0.00 23.50 41.00 0.00 0

Table 2.1: First �ve rows of tidewater goby data.

results using their eDNAoccupancypackage. Those results are again recreated here for

comparative purposes.

> # prep data frames

> site.df <- goby %>%

+ distinct(site, .keep_all = TRUE)

> sample.df <- goby

> detect.df <- goby %>%

+ select(-c(twg:veg))

> # fit model

> goby_mod <- msocc_mod(

+ detect.df, num.mcmc = 11000,

+ site = list(model = ~ veg, cov_tbl = site.df),

+ sample = list(model = ~ sal + twg, cov_tbl = sample.df),

+ rep = list(model = ~ sal + fish + turb, cov_tbl = sample.df)

+ )

Iteration 11000 of 11000; 100% done. Current runtime of 0.66 minutes.

|===================================================================| 100%

An overall summary of occupancy at all three levels is provided usingposterior summary();
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the �rst six sites are presented below. Note that by default,posterior summary() returns

only unique combinations of site, sample, and replicate probabilities.

> # numerical summary

> head(posterior_summary(goby_mod, level = "overall", burnin = 1000))

site sample rep psi theta p

1 Big_Lagoon 1 1 0.7706495 0.8845290 0.8669207

2 Big_River 1 1 0.2231190 0.6650525 0.5446235

3 Caspar_Creek 1 1 0.2231190 0.7222719 0.8575822

4 Davis_Lake 1 1 0.7706495 0.8920972 0.8278296

5 Dead_Mouse_Marsh 1 1 0.2231190 0.7242514 0.8292023

6 Eel_River_Estuary_Preserve 1 1 0.7706495 0.6399665 0.6679964

These results match those provided by theeDNAoccupancypackage. Credibility intervals

are available for each estimate by specifying a particular level of the model using thelevel

argument. These intervals can also be visualized using thecred plot() function; credibility

intervals for the sample level occupancy parameter for the �rst six sites are provided in

Figure 2.1.

2.4.3 Additional tools

In addition to the functions described in Sections 2.4.1 and 2.4.2, themsoccpackage

contains tools to calculate Bayesian information criterion and simulate data from multi-

scale occupancy models. Thewaic() function can be used to calculate the Watanabe-Akaike

information criterion (WAIC) on a suite of models (Gelman, Hwang, and Vehtari 2013), while

the msoccsim() function is used to simulate data from a multi-scale occupancy model. For

details on each functions' use, please see the GitHub page formsoccor the R help page for

either function.
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Figure 2.1: Plot of 95% credibility intervals for the sample level occupancy probability
parameters of the �rst six sites of the tidewater goby data.

2.5 SupplementalWeb Application

The msoccpackage is also equipped with an R Shiny web application capable of �tting

models, visualizing the results from �tted models, and conducting precision analyses. The

web application accommodates the �rst two tasks by providing a point-and-click interface

into the msoccmod(), posterior summary(), and cred plot() functions. To �t a multi-

scale occupancy model with themsoccweb application, users must upload the detection and

covariate data frames in either .Rdata or .csv format. Once uploaded, the web application

allows the user to visualize each data frame and specify the model to be �t (Figure 2.2).

The application also allows the user to download the �tted model in .Rdata format.

To analyze a �tted model, the user must upload the model in .Rdata format. Once
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Figure 2.2: Model �tting tab of the msoccweb application.

uploaded, the application provides a review of the �tted model and prompts the user to

view table summaries of the occupancy parameters or visualize credibility intervals for the

occupancy parameters (Figure 2.3). Users are also able to visualize traceplots for each

parameter, though more formal assessments of convergence are available through thecoda

package (Plummer et al. 2006).

The web application conducts precision analyses by repeatedly callingmsoccsim() in

the background for varying sample sizes and �tting a model to each simulated data set; the

user determines at which level of the model to vary the sample size. Credibility intervals are

then calculated for each of the parameters in these models and the widths are stored. These

credibility interval widths are then plotted for each level of the model (Figure 2.4). This

process allows users of the web application to assess the value of increasing the sample size

at any level of the model in terms of precision, which is an important aspect of eDNA-based
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Figure 2.3: Table summaries for the �tted goby model from themsoccweb application.
Convergence diagnostics and graphical summaries of the posterior distribution are also
available.

work (Erickson, Merkes, and Mize 2019). Figure 2.4 suggests little to no additional precision

is gained by collecting more than �ve replicates from each sample for the speci�ed design.

2.6 Comparisonto eDNAoccupancy

The msocc package is designed to be more expedient thaneDNAoccupancy. The

msoccmod() function relies on a Gibbs sampler, and therefore converges to the posterior

distribution much quicker than occModel() , the model �tting function from eDNAoccupancy.

Additionally, it is not necessary to center and scale covariates before �tting a model with

msoccmod(), thereby allowing users to interpret results on the original scale of the data.

Gradient-based sampling frameworks, such as Stan or Greta, also generally provide quicker

convergence to the posterior distribution (Carpenter et al. 2017). However, many of these
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Figure 2.4: Credibility width analysis from themsoccweb application. This analysis assumes
seven sites are surveyed and �ve samples are taken from each site. The number of replicates
taken varies from 1 to 10.

frameworks, including Stan and Greta, do not allow sampling of discrete parameters or

latent variables (Golding 2019; Stan Development Team 2018). Consequently, to �t multi-

scale occupancy models within these frameworks, practitioners must integrate out the latent

variables prior to de�ning the likelihood (for example, see Mize et al. (2019)). In a

hierarchical modeling framework with three levels, this task is non-trivial and not likely

to be widely accessible to wildlife managers and other eDNA practitioners. Therefore, we

have not included these techniques for comparison, as they lack the convenience and ease-

of-implementation associated with cannedRpackages.

To compare these functions, we provide the amount of time taken to draw 11000 samples

from the joint posterior of the goby model de�ned above, and the e�ective sample size

for the msoccmod() and occModel() functions per minute using both scaled and unscaled

covariates. The e�ective sample size represents the number of uncorrelated posterior samples
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to which an MCMC chain is equivalent, and therefore describes the degree of autocorrelation

present in that chain; the effectiveSize() function in the coda package (Plummer et al.

2006) was used to calculate this value. This function provides e�ective sample sizes for each

parameter in the model; the minimum e�ective sample size across all parameters for each

model was chosen to summarize the �t. This process was repeated 10 times for each model

and the results are summarized in Table 2.2. These models were �t on a Surface Book 2

laptop running Windows 10 with an i7-8650U CPU and 16GB of RAM.

Package Data Average time Average ESS Average ESS/min

msocc Unscaled 36.41 seconds 4029.61 6640.39

msocc Scaled 36.07 seconds 4161.01 6921.56

eDNAoccupancy Unscaled 2198.72 seconds 2958.19 80.71

eDNAoccupancy Scaled 1839.45 seconds 2908.97 94.87

Table 2.2: Summary of the e�ective sample size comparison. The values in this table describe
the results from drawing 11000 samples from the the joint posterior distribution of the goby
model 10 times.

Table 2.2 suggests thatmsoccis far more e�cient than eDNAoccupancy, allowing models

to be �t in seconds as opposed to half-hours. Additionally, models �t usingmsocctend to

have larger e�ective sample sizes than those �t byeDNAoccupancy. Consequently, users are

required to take fewer samples from the posterior distribution when usingmsocc, and can

do so much quicker than when usingeDNAoccupancy.

2.7 Discussion

As eDNA surveys continue to gain popularity as a sensitive monitoring strategy for

rare and cryptic species, the need for e�cient modeling techniques of multi-scale occupancy

data increases; themsoccpackage provides an e�cient alternative to existing methods of
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�tting Bayesian multi-scale occupancy models. This computational advantage allows the

research and wildlife management communities the 
exibility to �t multiple models when

investigating scienti�c hypotheses, an otherwise time-consuming task. Additionally,msocc

requires no tuning when �tting models, easily handles covariates on non-standardized scales,

and is equipped with a web application capable of conducting precision analyses, �tting

models, and exploring model results. The culmination of these factors eases the burden of

ecologists working with eDNA data, thereby improving their ability to assess their research

questions and disseminate that information. Moreover,in situ eDNA work
ows continue to

gain traction. Such analyses require computationally expedient techniques to understand

these data structures in real-time; the ability to do so results in up-to-date information that

can be used to minimize negative outcomes and improve management decision-making.

The msoccpackage continues to be developed. In the future, we hope to add a coherent

dynamic modeling framework that accommodates longitudinal eDNA surveys. Continued

research into dynamic multi-scale occupancy models is essential as longitudinal eDNA

monitoring programs gain popularity (B�alint et al. 2018; Hutchins et al. 2019; Pilliod et al.

2019; Uchii et al. 2017). Once these methods have been developed, we intend to add them

to msocc.
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Abstract

Visual cover class data were collected on over 80 species across 30 permanent sampling

frames in sagebrush steppe vegetation communities in Grand Teton National Park from

2012 to 2018. In this report, temporal and spatial patterns in species composition were

assessed and used to inform potential sampling strategies for future monitoring. Speci�cally,

the viability of a reduction in sampling e�ort was evaluated based on the similarity in

species composition within each frame over time and among frames within each year.

Using distance based ordination techniques, we found little to no evidence of di�erences

in species composition within each frame over time. Furthermore, there was little evidence

of heterogeneity in species composition among frames within each year, though there was

some evidence of di�erences in composition between the two principle sagebrush community

types (sagebrush dryland shrub and sagebrush-bitterbrush) aggregated across frames. Based

on these results, we propose that a reduction in sampling e�ort is viable and suggest a new

monitoring schedule.

3.3 Introduction

In 2010, the National Park Service (NPS) selected indicators in high elevation parks

to monitor in the face of a changing global climate (Bingham et al. 2011). Sagebrush

vegetation communities was one of the indicators selected as it is considered one of the

most threatened ecosystems in the United States and home to sensitive wildlife species, such

as sage grouse (Centrocercusspp.). In 2012, the NPS implemented a long-term, sagebrush

steppe monitoring program in Grand Teton National Park. This program was adapted

from the Upper Columbia Basin Network sagebrush steppe monitoring protocol (Yeo et al.

2009). Details of the monitoring and standard operating procedures speci�c to Grand Teton

National Park are described by Yeo and Rodhouse (2013), with key features of the sampling
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design summarized in Section 3.4 of this report. This program also aligns with the upland

vegetation monitoring implemented by the Greater Yellowstone Network (Tercek et al. 2015).

The overall intent of this monitoring program is to evaluate the composition and abundance

of both native and invasive plant species over time in sagebrush communities as well as

provide reference conditions to assess restoration e�orts in former agricultural �elds in Grand

Teton National Park.

The goals of this report are to assess the temporal and spatial changes in composition

and abundance of principal sagebrush steppe plant species in Grand Teton National Park

based on data collected from 2012 to 2018 (National Park Service 2018) and determine if

future sampling e�ort can be reduced while maintaining the ability to identify future changes.

Speci�cally, we explored evidence of whether temporal and/or spatial heterogeneity existed

in species composition. Answers to these questions informed sampling frequency moving

forward. For example, a lack of spatial heterogeneity in species composition and abundance

suggests that the number of sampling frames visited yearly can be reduced; where sampling

frames exhibit similar community composition, there is not much information to be gained

by sampling a greater spatial area. Our exploratory analysis focused on addressing these

questions. Consequently, we present alternative sampling strategies to guide future data

collection in an e�ort to ensure a sustainable monitoring program while still maintaining the

ability to measure change in species composition and abundance over time.

The report is organized as follows: in Section 3.4, we include a description of the

sampling design; in Section 3.5, we �rst summarize and then visualize the data; in Section

3.6, we present the statistical methods used in this analysis; in Section 3.7, we discuss our

results with respect to temporal and spatial patterns; and in Section 3.8, we conclude with

a discussion of these results and propose a reduction in sampling e�ort moving forward.
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3.4 SamplingDesign

Since 2012, 30 permanent sampling frames have been monitored in Grand Teton

National Park. Of these 30 frames, 10 were identi�ed as priority sampling frames (Figure 3.1).

Five of these 10 frames were sampled annually (14, 22, 25, 29, and 30), and the remaining

25 frames were sampled at yearly intervals in order to support regular status and trend

assessments to address management objectives (Table 3.1; Yeo and Rodhouse 2013). The

frame locations were based on their spatial representation within two underlying principle

sagebrush steppe community types: sagebrush dry shrubland and sagebrush-bitterbrush.

Sagebrush dry shrubland accounts for approximately 75% of the sagebrush steppe in the

park, with the remaining 25% comprised largely of sagebrush-bitterbrush. To account for

the di�erences between these communities, 21 of the 30 frames (70%) were selected in the

sagebrush dry shrubland and nine frames were selected in the sagebrush-bitterbrush habitat.

All frames are located on the Snake River plains east of the Teton Range.

The number of frames sampled annually varied from 12 to 14, with the exception of

2013, when �eld crews surveyed 22 frames. Within each permanent frame, a spatially-

balanced sample of non-permanent locations was selected every year using the generalized

random tessellation strati�ed (GRTS) design described by Stevens and Olsen (2004). With

this design, between �fty and �fty-�ve 1- m2 quadrats were sampled from each of the targeted

frames.

Field technicians visually estimated the canopy cover class of live or current year foliage

for principal sagebrush steppe plant species in all quadrats. Canopy cover is de�ned as the

percentage of the ground covered by a vertical projection of the outermost perimeter of the

natural spread of foliage of plants (Society of Range Management 1999). The cover class

scheme used is a modi�ed Daubenmire scale (Daubenmire 1959), provided in Table 3.2.

Appendix A contains a list of all species monitored, the year they were �rst monitored, and
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the species group to which they belong.

Figure 3.1: Sampling frame locations from Yeo and Rodhouse (2013); priority frames are
denoted by red squares.
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Plot 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
1 1 - 2 - - 3 - - 4 - -
2 - 1 - 2 - - 3 - - 4 -
3 1 - 2 - - 3 - - 4 - -
4 - 1 - - 2 - - 3 - - 4
5 - 1 - - 2 - - 3 - - 4
6 - 1 - 2 - - 3 - - 4 -
7 1 - 2 - - 3 - - 4 - -
8 1 - 2 - - 3 - - 4 - -
9 - 1 - 2 - - 3 - - 4 -
10 1 - 2 - - 3 - - 4 - -
11 - 1 - - 2 - - 3 - - 4
12 - 1 - 2 - - 3 - - 4 -
13 - 1 - - 2 - - 3 - - 4
14 E E E E E E E E E E E
15 - 1 - - 2 - - 3 - - 4
16 - 1 - - 2 - - 3 - - 4
17 1 - 2 - - 3 - - 4 - -
18 1 - 2 - - 3 - - 4 - -
19 - 1 - - 2 - - 3 - - 4
20 1 - 2 - - 3 - - 4 - -
21 - 1 2 - - 3 - - 4 - -
22 E E E E E E E E E E E
23 - 1 - 2 - - 3 - - 4 -
24 - 1 - 2 - - 3 - - 4 -
25 E E E E E E E E E E E
26 - 1 - 2 - - 3 - - 4 -
27 - 1 - - 2 - - 3 - - 4
28 - 1 - - 2 - - 3 - - 4
29 E E E E E E E E E E E
30 E E E E E E E E E E E

Table 3.1: Current monitoring schedule. The numbers denote how many times the frame
has been sampled since the start of the study; frames labeled \E" are sampled every year.

To understand community composition, visual estimation of plant cover classes is widely

recommended (Beck, Connelly, and Reese 2009; Mitchell, Bartling, and O'Brien 1988; Peet,

Wentworth, and White 1998). Furthermore, visual coverage is easily interpreted by managers

and assessed rapidly in the �eld. These factors motivated the use of visual estimations of
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plant cover in this study, despite its sensitivity to seasonal variation in precipitation and

plant phenology (Elzinga et al. 2001). To limit impacts in plant phenology, frames were

sampled approximately the same time (late June, early July) every year.

This sampling design and response type are robust to many of the challenges posed

by vegetation monitoring across vast, rugged landscapes. For example, it allows for rapid

assessment of coverage and thus permits large sample sizes, which are necessary to describe

the status of plant species across large areas. For a more detailed discussion of this design

and its advantages, see Yeo and Rodhouse (2013).

Cover Class Range
1 > 0-5%
2 > 5-25%
3 > 25-50%
4 > 50-75%
5 > 75-95%
6 > 95%

Table 3.2: Daubenmire coverage classes and their implied percent coverage.

3.5 Exploratory Data Summary and Analysis

Visualizing a multivariate response (80 species cover classes) over seven years and across

30 frames was challenging. Furthermore, this analysis required summarizing spatial and

temporal patterns on each individual species, as well as aggregated at the species group

level (Appendix A). Consequently, there were hundreds of graphics of interest. To aid in

this endeavor, an internal collaborative web-tool was developed to compare the distribution

of coverage classes within frames over time and within a year across frames, for both

individual species and aggregated at the species group level. Due to the inherent complexity

of this analysis, a subset of plots predominantly focused on sagebrush and invasive forbs are
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presented in this report, though all of the graphical comparisons were provided to the agency

partners via a desktop web tool. For access to the web app, the reader is asked to contact

the Greater Yellowstone Monitoring Network.

To visually assess patterns in species composition in these data, each Daubenmire

coverage class was aggregated at either the species or species group level to obtain the

relative frequency of occurrence. To calculate these relative frequencies, the total count of

each coverage class for the target species (or species group) within a frame and year was

divided by the total number of measurement occasions for the target species (or species

group). For example, in priority Frame 30 (monitored on an annual basis), 50 quadrats were

sampled in 2012. Across those 50 quadrats, up to �ve species of sagebrush could be observed

for a potential total of 250 observations of sagebrush species. Of these 250 observations, 180

had a coverage class of zero, yielding a relative frequency for the zero coverage class of 0.72

(see Figure 3.2 for an example).

In addition to assessing spatial and temporal patterns of native plant species, these

relative frequencies are useful in measuring the abundance of invasive plant species. Figure

3.3 displays the distribution of coverage classes for the invasive forbs species group over time

in Frame 30. This �gure suggests that invasive forbs are seldom observed in this frame over

the course of the study. This relationship holds for most other frames, as 96% of the coverage

measurements on members of the invasive forbs species group were in the zero class.

3.5.1 Assessingtemporal patterns

Species composition and abundance within each frame were examined to identify

temporal heterogeneity. To visualize the temporal patterns in the sagebrush-steppe

vegetation community, plots were created for each species group within a frame across time.

For example, Figure 3.2 depicts the distribution of coverage class over time for the sagebrush

species group in Frame 30. Based on this �gure, there is little evidence of heterogeneity in
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Figure 3.2: Relative frequencies of coverage classes by year for the sagebrush species group
in Frame 30. This �gure suggests little heterogeneity in coverage for this species group in
Frame 30 over time.

coverage among the sagebrush species group over time in this frame; a similar relationship

is present in the other 29 frames (plots available on the internal web-tool). Furthermore,

this lack of temporal trend across frames held for six of the seven remaining species groups

provided in Appendix A. The exception to this was the species group named \other" that

contains bare ground, cryptobiotic soil crust, litter, moss, and rock.

The distribution of coverage classes for the \other" species group in Frame 30 over time
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Figure 3.3: Relative frequencies of coverage classes by year for the invasive forbs group
in Frame 30. Based on this �gure, we see little heterogeneity in coverage over time for this
species group in this frame. Furthermore, this �gure highlights the low abundance of invasive
forbs in this frame over time.

is illustrated in Figure 3.4. Here there is evidence of a signi�cant shift in coverage beginning

in 2016, which is ubiquitous across all frames during this time (not plotted). This large

shift coincides with an adaptation in the monitoring protocol where coverage of rocks (in

2016) and moss and cryptobiotic crust (in 2017) were incorporated. Therefore, the 2016 shift

in composition in the \other" species group (Figure 3.4) is likely due to the change in the
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monitoring protocol, as opposed to a major shift in the biological community. As such, our

analysis excluded the \other" species group. However, once an adequate data record exists,

comparisons that include the \other" species group would be appropriate.

Patterns in individual species were also examined. Figure 3.5 shows the distribution of

coverage class forArtemisia tridentata in Frame 30 over time. Again, there is little evidence

of any meaningful change in coverage. This holds for most monitored species and re
ects the

evidence of little change present at the species group level. Additional plots to support these

conclusions are available on the internal web-tool. Excluding the \other" species group, our

exploratory data analysis suggested that there was little to no change in composition or

abundance across the 30 frames between 2012 and 2018.

3.5.1.1 Assessingspatial patterns To visualize the spatial patterns in species composi-

tion, the relative frequency of each coverage class across the 30 frames within a year for each

species and species group were plotted. Figure 3.6 provides little to no evidence of spatial

heterogeneity among the sagebrush species group in 2013. A very similar relationship exists

for the remaining years in the data set and this lack of trend holds for the remaining species

groups.

Species level patterns were also considered and there was weak evidence of trends. As

an example, the relative frequency of each coverage class across frames in 2013 forArtemesia

tridentata are displayed in Figure 3.7. While there is more variability in this set of plots than

in those depicted in Figure 3.6, there is no indication of large, systematic di�erences among

the frames. In general, across all seven years and most species, there was little to no support

for shifts in species composition and abundance among frames. Based on the exploratory

analysis, there was little evidence of temporal or spatial heterogeneity in species composition.

These patterns, or lack thereof, are evaluated using more formal tools in Section 3.6.
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