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result of 108 iterates of the Hénon map and was obtained by computing
the Legendre transform of the Dq spectrum (see Section 2.3.5.1). ........... 84

4.8 A neural network with ten cells. Inhibitory cells (I) are represented
by blue squares, excitatory cells (E) by red ellipses. The subgraph of
I cells is completely connected. E → I and I → E edges are created
with probability lnN

N
. E → E edges are not allowed. .............................. 86

4.9 (a) Time series for a simulation run for 15000 “seconds” (units are
arbitrary). (b) The DFA curve exhibits two trends: at short scales
we observe autocorrelation effects due to deterministic ODE solver,
at longer scales we find a scaling exponent of β = 1.063, similar to
physiological systems, though over a shorter range. The relatively
short time series produces more variability in the higher window sizes
since the number of data points used to calculate the DFA becomes
small. (c) Sample entropy SE(τ) = SE(m, δ,N, τ) is calculated for
τ = 1, 5, . . . , 37, m = 7, and δ = 0.2. The length, N , of the coarse-
grained time series depends on τ . The MSE curve has an average of
SE = 0.35. The variance of V ar(SE) = 0.003 is larger than in longer
simulations. As in (b), this greater variability is due to the relatively
small number of data points in the original time series........................... 88

4.10 DFA curve from an initial ε distribution (solid blue), and the DFA
curve obtained by dividing each ε by 10 (dashed purple)........................ 89

4.11 (a) Time series from simulating N for 100000. (b) The region of phys-
iological complexity for the DFA curve extends from w = 101.3 to
w = 103.5. For windows larger than 103.5 we observe a new, flat trend
indicating that the time series generated by N is devoid of long range
correlations for these larger windows. (c) The MSE curve is relatively
constant over a large number of scales indicating physiological com-
plexity in the time series. The average sample entropy for τ ≥ 5 is
SE = 0.34, with a variance of V ar(SE) = 0.0007. ................................. 91



xiii

LIST OF FIGURES – CONTINUED
Figure Page

4.12 The DFA curve after simulating N for N = 400000. The region of
complexity remains unchanged from that seen in Figure 4.11(b). This
implies that N has an inherent limit for generating long range correlations.94

4.13 (a) Time series resulting from choosing a different initial condition for
the excitatory cell e1 compared to Figure 4.11 and simulating N for
N = 100000. (b) The DFA curve exhibits a nearly identical scaling ex-
ponent β = 1.10 over the middle region as the curve in Figure 4.11(b).
Long range correlations are unaffected by initial conditions. (c) The
MSE curve has slightly different values at the various scales, but the
average entropy for τ ≥ 5 is SE = 0.34 which is identical to that
produced by N in Figure 4.11. The variance V ar(SE) = 0.0003 is
similar as well. .................................................................................... 95

4.14 Comparison of MSE curves for the initial condition used in the simu-
lation in Figures 4.9 and 4.11 and a randomly chosen initial condition
for the excitatory cell e1. For τ ≥ 5, SE(τ) = 0.34 for both curves.
The original initial condition is −0.5; the randomly initial condition is
0.7957. .............................................................................................. 97

4.15 (a) The times series g(t) generated by the average excitatory voltage
of the network of neurons in Figure 4.8. (b) The multifractal spectrum
for the density of g(t) computed using the simplicial measure................. 98

4.16 (a) and (b) show snapshots of inter-beat interval time series recorded
for a patient with congestive heart failure and a healthy individual,
respectively. ........................................................................................ 99

4.17 Multifractal spectra for a distribution derived from the time series in
Figure 4.16 computed using the simplicial measure. The spectrum from
a healthy individual (blue circles) produces a wider range of scaling
exponents than the spectrum for the CHF patient (green squares),
indicating greater complexity in the time series. .................................. 101



xiv

ABSTRACT

Complex dynamical systems occur on many scales in the natural world, and serve
as rich subjects of study. Examples include ecosystems, physiological systems, and
financial markets. Simplified versions of these system can be described by dynami-
cal systems. As such, understanding the qualitative behavior of dynamical systems
provides an important window into real-world phenomena.

In this manuscript we focus on the qualitative behavior described by the measure
concentrated on the attractor of a dynamical system. A common way to study such
complicated measures is through their multifractal spectra. We will describe a new
method, developed to approximate the Sinai-Bowen-Ruelle measure on an attractor,
that is based on the Vietoris-Rips complex. We use it to approximate various measures
concentrated on a number of example sets, and demonstrate its efficacy by computing
the corresponding multifractal spectra.
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CHAPTER 1

INTRODUCTION

Understanding complex systems in the natural world is an increasingly important

scientific problem. Mathematics once thought too abstract for use outside of the field

has increasingly been harnessed to analyze and solve such real-world problems. Ques-

tions about genetics found their answers in combinatorics; number theory encrypts

our online transactions; and algebraic topology has been enlisted to help researchers

in fields from cardiology to fluid dynamics [51, 54, 71].

A two-pronged approach is used by the scientific community in a steady drive

towards a better understanding of the physical world. On one side, measurements

taken of real-world phenomena provide raw data with which to gain insight into the

system under study. Often, real-world data come in the form of time series in which

a single variable in a multi-dimensional system, say temperature, is measured over

time. On the other side of the coin are large, complex, mathematical models of real-

world systems. From a mathematical perspective these are often dynamical systems.

Such models are invariably simplifications of real-world phenomena, yet they provide

a controlled environment from which one can gain a deeper understanding of the

system.

1.1 Dynamical Systems and Fractals

The study of dynamical systems focuses on the long-term behavior of trajectories

in phase space. The field originated with H. Poincaré’s study of celestial mechanics

in the 1890’s. In his investigations of planetary motion and the stability of the solar

system he found the first indications that even a small system with three moving
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bodies is not structurally stable. ∗ This implies that deterministic nonlinear systems

can exhibit very complex long term behavior.

Numerous methods have been developed to understand, in a qualitative manner,

the complex behavior of dynamical systems. A qualitative feature of a mathemati-

cal object is a value associated to that object that distinguishes it from other objects

based on a notion of “type”. Topology provides an intuitive example. The fundamen-

tal group of the circle has a single generator, a fact which we denote by π(S1) ∼= Z [60].

Contrast this with the fundamental group of the torus, T2, which has two generators,

or equivalently π(T2) ∼= Z × Z [60]. The fundamental groups are the same for any

objects homeomorphic to the circle and torus. That is, by reducing the description of

an object to a description by its fundamental group we are able to quickly distinguish

it from others. Hence, we neglect a precise geometric description of the object in favor

of one that gives its principle characteristics. Such characterizations are inherently

qualitative and serve to differentiate topological objects.

Similarly, in seeking to understand real-world or modeled dynamical systems we

do not look for precise solutions. Rather, we ask more “global”, qualitative questions

about the topological characterization of the global attractor, and what properties an

invariant measure on that attractor might possess. Implicit in these questions is how

the parameters of a model affect the dynamics, and therefore the attractor. Another

important question is how we bridge the divide between experimental observations

of a dynamical system and the theory that describes these systems. Our window

into the behavior of the system is through the dimension of the support of a certain

invariant probability measure, which is termed a Sinai-Bowen-Ruelle (SBR) measure.

∗A system of differential equations (or a map) is structurally stable if small perturbations do not

cause a qualitative change in the behavior of the system.
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It describes how frequently certain regions of the attractor are visited by the orbit of

the dynamical system.

Figure 1.1: The Sierpinski gasket. It has a self-similar structure and a fractal dimen-
sion of log 3/ log 2.

Focusing on the dimension of the attractor leads directly to the notion of a fractal.

The word “fractal” is not well-defined, in either the linguistic or the mathematical

sense. Therefore, when we say that X is a “fractal” we imply that X is an object

i. whose Hausdorff dimension strictly exceeds its topological dimension;

ii. that has a structure that has detail at arbitrary scales (this may be due to

self-similarity properties).

Such sets are not just mathematical curiosities. Highly irregular sets exist in

nature. One of the classic examples comes from B. Mandelbrot in his seminal paper,
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How Long Is the Coast of Britain? Statistical Self-Similarity and Fractal Dimen-

sion [57]. He argued that physical curves such as coastlines are so complex as to

be, if not infinitely long, then at least undefinable as functions. He approached the

problem through the lens of fractal geometry and characterized such curves by their

fractal dimensions.

The intuitive definition of dimension is known more properly as topological di-

mension and can be defined as the number of independent parameters necessary to

describe a point in a space. Hence, it is always an integer. Familiar spaces from

mathematics and the physical world–circles, tori, R2–all have integral dimensions.

The Hausdorff dimension generalizes the notion of dimension to values in [0,∞).

For the regular sets with integral dimensions mentioned above, the topological and

Hausdorff dimensions agree. However, this is not always the case, as a classic example

of a fractal, the Sierpinski gasket in Figure 1.1, shows. The self-similarity property is

clearly visible. The Sierpinski gasket can be described by an iterated function system

whose attractor has Lebesgue measure zero and Hausdorff dimension log 3/ log 2. The

implication here is that there is another, more natural measure supported entirely on

the attractor. The main thrust of this manuscript is aimed at understanding through

experimental means measures supported on fractal sets.

1.2 Contributions

“Topology! The stratosphere of human thought! In the twenty-fourth century it

might possibly be of use to someone...”

The First Circle, A. Solzhenitsyn

Data collection from the real-world as well as data generated by mathematical

models present a formidable challenge to mathematicians and scientists. Understand-
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ing how parameters of a dynamical system can affect changes in that system has

important implications for many scientific fields, from climate science to physiology.

In this thesis we are concerned primarily with the invariant SBR measure on an

attractor and ways in which such a measure can be approximated. We develop a new

method of approximation, which we term the simplicial measure, in order to study

such measures. The simplicial measure is constructed from the maximal simplices

in Vietoris-Rips complexes, which are shown to give an accurate representation of

the density of points in a finite data set near the attractor of a dynamical system.

Approximation of measures typically proceeds by considering a sequence of covers

of decreasing resolutions of a fractal attractor. Each cover contains a collection a

minimal “balls” (which merely need to be simply connected regions) intersecting

points in the attractor [36]. We do not deviate from this basic notion. Where we

diverge is in the formation of the covers. Traditional methods consider covers using

grids of side-length r. Thus, a cover is not sensitive to the distribution of points in the

attractor. By contrast, a cover of a set using maximal simplices places each element

of the collection directly over the regions of highest density.

We apply these techniques to a number of examples by studying their multifractal

spectra. Using the mathematical examples of the Cantor set and the Hénon attrac-

tor we show that the simplicial measure accurately and efficiently approximates the

natural SBR measure concentrated on the respective attractors. In particular, our

method uses orders of magnitude fewer points than the existing methods to estimate

the multifractal spectrum of the SBR measure. This is an important consideration

in experimental situations where there is a non-trivial cost associated with acquiring

each data point. In addition to these examples, which can be seen as theoretical in

nature, we study a computational model of a neural network, as well as heart beat

data from healthy and compromised individuals.
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The time series produced by the model neural network has previously been shown

to exhibit characteristics of a healthy physiological system [17]. The results in Chap-

ter 4 confirm this conclusion. Our results agree very well with previous multifractal

spectra computed from the time series of healthy individuals. Additionally, we ana-

lyze heart beat time series data for both healthy and compromised patients using the

simplicial measure to compute the multifractal spectra. As has been shown previ-

ously [49], the range of scales seen in the plots of the multifractal spectra vary greatly

depending on the health of the individual. Computing the multifractal spectra using

our methods, we show that our results agree extremely well with previous results.
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CHAPTER 2

BACKGROUND THEORY

Below we provide an overview of the background necessary to develop the theory

and results in the subsequent chapters. We outline the concepts from dynamical

systems and dimension theory first. These ideas form the foundation of the results

in Chapters 3 and 4. Related to these ideas on the “experimental” side is time series

analysis, which we briefly summarize. Finally, we provide a an overview of wavelet

theory and point out its application to fractal analysis. Results on fractal analysis

derived for wavelets can be applied to the simplicial measure defined in Chapter 3.

2.1 Analysis of Dynamical Systems

Let f be a continuous map from Rn to itself and suppose that the subset A ⊂ Rn

is an attractor of f . assume that we do We seek to understand f by studying a

particular invariant measure supported on A.

Definition 2.1. An invariant measure µ on Rn is a Borel measure such that

µ(f−1(E)) = µ(E)

holds whenever E is a Borel subset of Rn.

Suppose that A is compact. By the Krylov-Bogolyubov theorem [52] f admits an

invariant probability measure supported on A. This result guarantees that we can

find at least one invariant probability measure, but does not tell us anything about

such a measure. Not all invariant measures admitted by f are relevant. For example,

suppose that x0 is an unstable fixed point of f . The atomic measure δx0 concentrated
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at x0 is invariant under f . Such a measure tells us little about the attractor or about

f [33, 76].

As stated above, we want to understand f through an invariant measure. We

require that this measure describes, in a physical sense, the global behavior of f . One

way of accomplishing this for a certain class of dynamical systems is by considering

a Sinai-Bowen-Ruelle (SBR) measure [70]. Experimentally, an SBR measure is often

realized by considering the weak-∗ limit of time averages of the orbit of an initial

point x,

µ = lim
N→∞

1

N

N−1∑
i=0

δf i(x) (2.1)

where x ∈ Rn and δy denotes the unit mass at y. For certain classes of dynamical

systems, (2.1) holds for Lebesgue a.e. initial condition x near the attractor of the

system.

This definition opens up the possibility to approximate such measure µ by a finite

data set. This data takes the form Y = {x, f(x), . . . , fN−1(x)} in the phase space of

f . This can be thought of as experimental measurements obtained either from a real-

world system or a mathematical model. We assume that N is large enough that the

time averages give an accurate picture of the attractor, regardless of any transients.

Experimentally, we approximate the measure on A to study the underlying dynamical

system f .

2.2 Time Series

Time series occur across a wide variety of fields. They serve as one of the primary

windows into the function of a majority of complex dynamical systems around us.

Examples include the Dow Jones Industrial Average, average monthly temperatures
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in Bozeman, MT, as well as physiological measurements such as inter-beat heart beat

intervals [29, 65]. In general, a sequence of measurements taken at equally-spaced∗

points in time yields a time series. The most familiar quantities computed for a given

time series process are its mean, variance about the mean, linear regression line,

autocorrelation, and various spectral properties [55]. Standard statistical analysis

techniques are used to quantify properties of data measurements of real-world systems,

as well as to validate models of those systems.

1974 1976 1978 1980 1982 1984 1986 1988
year
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Figure 2.1: A sample time series showing monthly mean CO2 concentration (mixing
ratio in dry air) at the Mauna Loa Observatory in Hawaii, during the period from
1974 to 1987. The best fit linear trend line is plotted, showing the rate of increase to
be approximately 1.4. (Source: NOAA, [75])

An example time series is plotted in Figure 2.1. The triangles show the monthly

mean CO2 concentrations measured at Mauna Loa Observatory in Hawaii between

1974 and 1987 are shown Figure 2.1. The rising linear trend is plotted along with

∗Time series with measurements obtained at unequally-spaced points in time are allowable, yet

a vast majority of the statistical theory surrounding time series assumes equispaced measurements.
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the monthly means. Often, real-world time series result from dynamical systems. In

such cases, a one-dimensional time series may represent the measurement over time

of a single variable (such as temperature), and can afford a window into the larger

system [73].

Time series often exhibit fractal behavior over a wide range of scales (see Sec-

tion 2.3.2). Since time series are typically finite sets, results concerning their fractal

properties are necessarily approximations. The analysis of the fractal behavior of

time series using wavelets (Section 2.4) was developed extensively during the 1990’s

by a number of mathematicians and scientists in different fields [2, 10, 38, 56, 61].

Wavelets have a short, but rich history, having been applied to image analysis, data

compression, as well as time series analysis. In fractal applications they operate by

determining the local Hölder exponents of a function or time series in a given, moving

window. By adapting this concept for measures, in Chapter 3 we show how one can

analyze the fractal behavior of time series, and more general dynamical systems in

higher dimensions, using techniques borrowed from wavelet theory as well as compu-

tational topology.

2.3 Measure Theoretic Tools

In what follows we assume familiarity with the basics of measure theory. Appro-

priate background can be found in [15, 36, 76]. We focus in this section on the aspects

specific to the multifractal formalism and dimension theory.
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2.3.1 Hausdorff Dimension of a Set

Central to the study of fractals is the concept of the dimension of a set. The

definition of dimension most commonly used in dimension theory is the Hausdorff

dimension. The exposition herein is based on that of Falconer [36].

Definition 2.2. We list a couple of definitions.

i. Let X ⊂ Rn and δ > 0. The diameter of a set U is

|U | := sup{d(x, y) | x, y ∈ U},

where d is the Euclidean metric on Rn.

ii. A δ-cover of X is a countable collection of sets {Ui | 0 ≤ |Ui| ≤ δ} for which

X ⊂
⋃
i

Ui.

For s ≥ 0, consider the following family of functions on X,

Hs
δ(X) = inf

C∈Gδ

{∑
i

|U |s
∣∣∣U ∈ C} , (2.2)

where Gδ is the collection of all δ-covers of X. For any sequence δ → 0, the possible

collections available to cover X decrease in number, hence the sequence Hs
δ(X) is

non-decreasing and the limit exists. The s-dimensional Hausdorff (outer) measure of

X is defined as

Hs(X) := lim
δ→0
Hs
δ(X).

Remark 2.3. It can be shown [34, 36] that if X is a Borel subset of Rn then

Hn(X) = cnvol(X), (2.3)

where cn is the inverse of the volume of a unit ball in Rn and vol(·) is the volume of

X determined using the standard n-dimensional Lebesgue measure. Thus, Hs agrees

with the standard notion of volume, up to a constant factor.
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Example 2.4. We show that a continuous, simple curve g : [a, b]→ Rn has Hausdorff

measure L, where L is the arc length of g. Recall that

L := sup

{
N∑
i=1

|g(ti)− g(ti−1)|

}
, (2.4)

where the supremum is taken over all possible partitions of [a, b], eg., a = t0 < t1 <

· · · < tN = b, and N is any natural number. We need the following result whose proof

can be found in Falconer [36].

Proposition 2.5. Let E ⊂ Rn and f : E → Rm be Hölder continuous such that

∀x, y ∈ E

|f(x)− f(y)| ≤ c|x− y|α.

Then for each s,

Hs/α(f(E)) ≤ cs/αHs(E).

If f is Lipschitz, then α = 1 and we get that

Hs(f(E)) ≤ csHs(E). (2.5)

We demonstrate first that the Hausdorff measure of H1(g([a, b])) ≥ L. Denote a

linear segment in Rn by [x, y]. It can be shown easily that H1([x, y]) = |y − x|. Let

t1, t2 ∈ Rn such that a < t1 < t2 < b, and define an orthogonal projection π of g onto

the linear segment between g(t1) and g(t2) by

π(g([t1, t2]) = [g(t1), g(t2)].

Note that π is Lipschitz, with c = 1. It follows from 2.5 that

|g(t2)− g(t1)| = H1([g(t1), g(t2)]) = H1(π ◦ g([t1, t2])) ≤ H1(g([t1, t2])).
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Extending this to any partition of [a, b] gives

N∑
i=1

|g(ti)− g(ti−1)| =
N∑
i=1

H1([g(ti−1), g(ti)]) (2.6)

≤
N∑
i=1

H1 (g([ti−1, ti]))

≤ H1g([a, b]).

Taking the supremum of the left hand side of 2.6 gives the desired lower bound

H1 (g([a, b])) ≥ L. (2.7)

In order to turn the inequality in 2.7 around, consider a parameterization of the

arc length s : [a, b]→ [0, L] defined by

s(t) = sup

{
N∑
i=1

|g(ti)− g(ti−1)
∣∣∣ a = t0 < t1 < · · · < tN = t ≤ b

}
.

The assumption that g is simple implies that s is strictly increasing, and hence that

s−1 : [0, L]→ [a, b] exists and is continuous. Now, consider g◦s−1 : [0, L]→ Rn which

parameterizes g by its arc length. This is Lipschitz, so we can apply Proposition 2.5

to get

H1(g([a, b])) = H1(g ◦ s−1([0, L])) ≤ H1([0, L]) = L.

We continue with our overview of the Hausdorff measure. Consider two parameters

t > t′ and choose a δ-cover {Ui} of X. Then we get that

∑
i

|U |t ≤
∑
i

|U |t−t′ |U |t′ ≤ δt−t
′∑

i

|U |t′ .

Taking infima for the above gives Ht
δ(X) ≤ δt−t

′Ht′

δ (X). It follows that, after taking

δ → 0, if Ht′(X) <∞ then Ht(X) must be zero. Thus, in a graph of Hs vs. s, at the

point Hs is finite the graph must make a discontinuous jump. The point at which

this jump occurs is called the Hausdorff dimension of X.
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Figure 2.2: A typical graph of Hs.

Definition 2.6. The Hausdorff dimension of X is defined as

dimH(X) := sup{s | Hs(X) =∞} = inf{s | Hs(X) = 0}.

A typical graph of Hs is shown in Figure 2.2. It is gratifying to confirm that

the Hausdorff dimension agrees with our traditional notion of dimension when we

consider “normal” sets.

The power of the Hausdorff dimension in analyzing attractors of dynamical sys-

tems is that s need not be an integer. The drawback to the Hausdorff dimension is

that it can be difficult to compute numerically. We discuss ways around this difficulty

in the sections below.

2.3.2 Fractals

As mentioned in the introduction, the word “fractal” does not refer to a single

object or even a single category of objects. Therefore, we begin our overview of
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fractals with a class of straightforward examples, sets that possesses what is known

as self-similarity on all scales.

The study of fractal sets hinges on a fundamental axiom of power-law scaling

behavior [36]. This quality manifests itself in the following relationship between a

“measurement” of X at a given scale and that scale r. If Mr is some measurement of

X at scale r, then a power-law relationship asserts that there exists some α ≥ 0 such

that

Mr(X) ∼ rα ⇐⇒ α = lim r → 0
logMr

log r
(2.8)

On a log-log plot of log r vs. logMr the scaling behavior in (2.8) is linear, from

which value the critical exponent α is estimated. The best way to expand on (2.8)

is with an example using the Cantor set, E. We show that in this case the scaling

exponent α agrees with the Hausdorff dimension dimH(E) = log 2/ log 3.

0 1/3 2/3 1S4

S3

S2

S1

S0

Figure 2.3: The first four iterations in the construction of the ternary Cantor set.

For the set X ⊂ Rn, define Nδ(X) to be the number of sets of diameter at most

δ necessary to cover X. Thus, Nδ serves as the “measurement” at scale δ.

Example 2.7. We show first that dimH(E) = log 2/ log 3. Let E be the ternary

Cantor set [36, 52]. The first four stages of the construction have been reproduced in
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Figure 2.3. Let Ek be the intervals that make up the k stage. There are 2k intervals

of length δk = 3−k in Ek. The collection Ek is a δk-cover of E. Putting this together

for the s-dimensional Hausdorff measure, we see that if s′ = log 2/ log 3,

Hs′

δk
(E) ≤ 2k · 3−ks′ = 1.

Thus, taking k →∞ we get that Hs′(E) ≤ 1. With a little extra work (see [36]) we

get that Hs′

δ (E) ≥ 3s
′
= 1/2. Therefore

dimH(E) = log 2/ log 3. (2.9)

Now, a path to (2.9) that is more amenable to computation is the following.

Consider Equation (2.8) in the current context. For r = δk = 3−k, there are

Nδk(E) = 2k = δ
log 2/ log 3
k ,

intervals necessary to cover E. Taking logs, we get the scaling behavior shown in

the log-log plot of Figure 2.4, with slope α = log 2/ log 3. Hence, for the Cantor set,

α = dimH(E) = log 2/ log 3.

What we just computed is the box-counting dimension of the Cantor set. The

box-counting dimension is defined for the set X ∈ Rn by

dimBX = lim
δ→0

logNδ(X)

− log δ
, (2.10)

when this limit exists. Experimentally, boxes or grids are typically utilized. Given the

power law assumption (2.8), the scaling behavior can be approximated by computing

the slope of the linear regression line to the graph of− log δ vs. logNδ, as in Figure 2.4.

For the Cantor set, and many other “regular” fractals such as the Koch curve or

Sierpinski gasket, the box counting dimension is equal to the Hausdorff dimension
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as shown above. In general, we have the following inequality relating Hausdorff and

box-counting dimensions [36],

dimH X ≤ dimBX. (2.11)

2 0 2 4 6 8 10 12
−logδ

1

0

1

2

3

4
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6

7

8

lo
g
N
δ

Linear fit (slope=log(2)/log(3))

Figure 2.4: The box counting dimension of the Cantor set can be estimated empirically
using the slope of a line fit to the set of points.

As we will see in Subsection 2.3.4, the partition function provides another way

to access the dimension of a set. As with the box counting dimension, it utilizes

observable measurements and so is better-suited to experimental data.

2.3.3 Self-Similar Systems

The dimensions of a few classes of fractals are both analytically and experimentally

computable. As we will see, analytically tractable fractals possess a common self-

similar structure. These systems are often called multiplicative processes. Because

we need to compare our algorithms in later chapters with known results, we review a

couple of these fractals below.
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2.3.3.1 Iterated Function Systems: One of the simplest and most familiar ways

to construct a fractal is to define an iterated function system (IFS). The Cantor set

is the canonical example of an IFS.

An IFS is a set of similarity transformations {S1, . . . , Sm} where for each i ∈

{1, . . . ,m},

d(Si(x), Si(y)) = cid(x, y), (2.12)

where 0 < ci < 1 and x, y ∈ Rn. Define S to be the union of images of the contractions

acting on a set so that

S(E) =
m⋃
i=1

Si(E),

where E is compact in Rn. Then we can define F ⊂ E to be the unique, nonempty,

compact attractor of the IFS [36, 52]:

F =
∞⋂
i=0

Si(E), (2.13)

Example 2.8. The Cantor set can be constructed in this manner. The specific

contractions necessary to arrive at the ternary Cantor set are

S1 =
x

3
and S2 =

x

3
+

2

3
, (2.14)

where the contraction ratio are c1 = c2 = 1/3.

2.3.3.2 Mass Distributions: A mass distribution provides a specific realization

of a measure that is simple to construct both theoretically and experimentally. We

provide an overview of the key concepts below. In Chapter 3 we utilize mass distribu-

tions to arrive at theoretical results concerning the simplicial measure. In Chapter 4

we compute experimental results using approximates of mass distributions.
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The general idea of a mass distribution (MD) is simple and involves repeatedly

subdividing a mass amongst parts of a (bounded) Borel set E [36]. They are related

the IFS’s above. For instance, one can imagine an IFS as providing the “shell” into

which we place the subdivided mass.

Without loss of generality, take a bounded set E0 ⊂ Rm and a Borel measure µ

such that µ(E0) = 1. Let E0 = {E0} be the collection containing the single set E0.

For k ∈ N, define Ek to be a collection of disjoint Borel sets E ⊂ E0 such that for

every E ∈ Ek,

i. E is contained in one of the set in Ek−1;

ii. E contains a finite number of sets from Ek+1.

We assume that the diameters of the sets in Ek tend to zero as k →∞. Additionally,

the mass is split amongst the sets E ∈ Ek in the following manner. Proceeding from

the zeroth to the first level, let E1 = {E1, . . . , En1}. Then,

n1∑
i=1

µ(Ei) = µ(E0).

In general, if {E1, . . . , Enk+1
} ⊂ Ek+1 which are contained in the set E ∈ Ek, then

nk+1∑
i=1

µ(Ei) = µ(E).

Let Bk =
⋃nk
i=1Ei ,where Ei ∈ Ek, and define µ(U) = 0 whenever U ∩ Bk = ∅.

Then there exists a unique measure µ with these properties that is supported on⋂∞
i=0Bi [36]. Figure 2.5 shows this process for a subdivision consisting of two subsets

at each stage. The top ellipse is E0 = E0, the middle contains E1 = {E1, E2}, with

the next level E2 consisting of E11, E12 ⊂ E1 and E21, E22 ⊂ E2. For instance,

µ(E1) + µ(E2) = p1 + p2 = µ(E0).
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Figure 2.5: The mass (shaded/green) is conserved as it is recursively distributed to a
nested collection of sets Ek.

The following example constructs the Cantor set in the context of a mass distri-

bution and will serve as a canonical construction in the theory and applications that

follow in Chapters 3 and 4.

Example 2.9. The ternary Cantor set is a special case of the above construction

on the unit interval. At the kth stage of the construction the contractions splits

the preceding interval is split into two subintervals 1/3 the length of the original.

Canonically, the mass is split evenly between the two subintervals.

We may also construct the Cantor set by splitting a mass unevenly at each stage,

while leaving the contractions of the intervals unchanged. This results in a measure

on the Cantor set whose mass distribution is nonuniform. An example with mass

ratios p0 = 0.2 and p1 = 0.8 is shown in the histogram in Figure 2.6. We define mass

ratios in Equation 2.16.
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Figure 2.6: The Cantor set, approximated to the 4th level (S4). The mass ratios are
p1 = 0.2 and p2 = 0.8. The figure shows a histogram of 5000 points distributed across
the 24 intervals according the mass ratios.

2.3.3.3 Binomial Measures: In this subsection we focus on a special case of

mass distributions known as binomial measures. Many fruitful examples in dimension

theory arise from these objects. The study of binomial measures, sometimes referred

to as binomial cascades, has ranged from theoretical examples found in [13, 36, 58, 67],

to models of fully developed turbulence [59] and human heartbeat analysis [50]. The

binomial measure is fundamental to the result in Chapter 3 concerning the existence

of a wavelet transform whose coefficients are approximated by the simplicial measure.

In particular, the scaling of the intervals aligns with the traditional dyadic scaling of

the analyzing wavelets.

A binomial measure is a special case of a general mass distribution by specifically

dividing the mass into two portions at each step. In order to construct a mass

distribution we recursively distribute mass at each stage of the construction to a
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nested sequence of decreasing intervals. The first few steps of constructing a binomial

measure are shown in Figure 2.5.

We construct a deterministic binomial measure on [0, 1] from nested dyadic inter-

vals,

Inkn = [kn2−n, (kn + 1)2−n), (2.15)

where n ∈ N and kn ∈ {0, 1, . . . , 2n− 1}. The following assumptions on the measures

are stronger than for general mass distributions:

i. p0 + p1 = 1

ii. The mass ratios are identical at all levels:

pk =


p0, if k odd

p1, if k even,

(2.16)

for all n and k.

The dyadic tree in (2.18) shows the first few levels of the partitioning of [0, 1] from

a schematic point of view. In general, the node Inkn is connected to the two nodes

{In+1
2kn

, In+1
2kn+1} which are located one level “lower”. We track the distribution of mass

in a parallel manner. As in the general case of a mass distribution, we define the

measure µ to be the mass supported on the intervals Inkn . Thus, if Inkn is an interval

at the n stage of the construction,

µ(Inkn) = pkn · · · pk1

and

µ(Inkn) = µ(In+1
2kn

) + µ(In+1
2kn+1) (2.17)

In Figure 2.7 we have plotted the first, second, and fifth levels in the construction

of a binomial measure with fixed (deterministic) mass ratios of p0 = 0.3 and p1 = 0.7.
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(a) Level 1 (b) Level 2 (c) Level 5

Figure 2.7: The levels 1,2, and 5 of the construction of the binomial measure on [0, 1].
Constant mass ratios were used. (The vertical axis has been exaggerated in (b) and
(c) to highlight the dyadic structure.)

The height of the horizontal line over each interval represents the relative measure of

that interval.
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Remark 2.10. The process used to construct a binomial measure is identical to that

mentioned in Example 2.9 to construct an uneven mass distribution on a Cantor

set, except that the contraction maps are S0 = x
2

and S1 = x+1
2

. Therefore, we can

transform each interval Inkn into a corresponding interval in the ternary Cantor set by

composing the respective contractions with the transformations

T0 =
2x

3
and T1 =

2

3
x+

1

3
. (2.19)

By applying 2.19 to the left and right intervals at each stage of the construction of a

binomial measure we can transform the set that supports the measure.
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2.3.4 Multifractal Measures

A multifractal measure µ on a set X is a measure whose mass distribution is

spread over X is a highly nonuniform manner. In this case, we can decompose X into

level sets, parametrized by a scaling exponent parameter α. In particular, let µ be a

positive, finite measure on Rn and define the local dimension of µ at x ∈ Rn,

dimloc µ(x) = lim
ε→0

log µ(B(x, ε))

log ε
, (2.20)

when it exists. This is sometimes referred to as the Hölder exponent at x. (We

will return to Hölder exponents in the context of wavelet in Section 2.4.) Using

Equation (2.20) define the decomposition of X into the level sets

Xα = {x | dimloc µ(x) = α},

where α ∈ [αmin, αmax] ⊂ R. When for every x ∈ X, dimloc µ(x) = α then µ is

called monofractal. An example is an IFS with equal mass distributions and equal

contractions. We will sometimes say that X is a “multifractal set”, by which we mean

that the experimental SBR measure determined by analyzing the ergodic averages on

X is multifractal. The multifractal analysis of µ proceeds by computing the Hausdorff

dimension Xα for each α:

f(α) := dimH Xα. (2.21)

The dimensions f(α) over α ∈ [αmin, αmax] comprises the multifractal spectrum,

sometimes called the singularity spectrum, of the measure on X. In Figure 2.8 we

plot the multifractal spectra for a Cantor set with a measure constructed from mass

ratios p0 = 0.2 and p1 = 0.8, as well as the canonical Cantor set with monofrac-

tal mass distribution given by p0 = p1 = 0.5. The familiar dimension of the
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monofractal measure on Cantor set is recovered in the blue circle located at the point

(log 2/ log 3, log 2/ log 3). The multifractal Cantor set, with a multifractal measure

constructed from the mass ratios p0 = 0.2 and p1 = 0.8, shows the wider range of

scaling expected. When q = 0 the apex of the curve reaches f(α(0)) = log 2/ log 3,

where the scaling exponent is α(0) ≈ 0.83. the

0.2 0.4 0.6 0.8 1.0 1.2 1.4
α
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0.6

f(
α
)

Figure 2.8: The multifractal spectrum for the Cantor set constructed with mass ratios
p0 = 0.2 and p1 = 0.8. The dashed line is at a value of log 2/ log 3.

2.3.5 Computing the Multifractal Spectrum

For the purpose of analyzing data from the invariant measure on dynamical sys-

tem, Equations (2.20) and (2.21) provide limited traction. We summarize two princi-

ple methods developed to tackle the problem of computing the multifractal spectrum

of multifractal sets. They are closely related. We utilize both methods in Chapter 4

and so review them both below.

As far as we are aware, the only rigorous results connecting theoretical and nu-

merical predictions of multifractal spectra concern multiplicative processes such as



26

binomial measures and iterated function systems [36, 67]. For the case of wavelets,

summarized in Section 2.4, rigorous results seem to be limited to the one-dimensional

case for recursively-defined structures [62]. Nevertheless, it is standard practice to

apply the techniques below to more complex, higher-dimensional sets such as the

Henon attractor and various real-world data [3, 7, 42, 48, 69].
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(a) Analytically-determined Partition Functions
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Figure 2.9: (a) Partition functions Z(q, ε) for q ∈ {−2,−1, . . . , 10}. (b) The β(q)
curve determined by computing the linear regression slope to each Z(q, ε) line.

2.3.5.1 The β(q) curve: Let X be a compact set in R that arises through a

multiplicative process such as an IFS or mass distribution. We begin by reviewing

the moment sum method [36]. Let ε > 0 and fix q ∈ R. Suppose that Bε is a disjoint

cover of X by balls of radius ε. Experimentally, this is often taken to be a set of grid

elements of side-length ε. Define the partition function

Z(q, ε) =
∑
B∈Bε

µq(B). (2.22)

The parameter q, related to temperature in the thermodynamic version of the

partition function, acts to highlight regions of X of intense measure. It is assumed
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that Z(q, ε) also exhibits power-law behavior with respect to ε. Therefore, we write

Z(q, ε) ∼ ε−β(q),

and examine the scaling properties in the familiar way, by taking logarithms of both

sides. For each q, assuming the limit exists, we consider,

β(q) = lim
ε→0

logZ(q, ε)

− log ε
. (2.23)

The approximation of β(q) is determined by computing the log-log linear regression

to the Z(q, ε) curve in Figure 2.9(a). We find that monofractal measures on a set yield

β(q) curves that are linear, while multifractal measures yield nonlinear β(q) curve.

The β(q) for a multifractal measure on the Cantor set E is plotted in Figure 2.9(b).

Mass ratios of p0 = 0.2 = 1−p1 were used to construct E. Since the mass distribution

can be determined analytically in this case, the values of Z(q, ε) curves at each ε are

exact. Note that when q = 0 the computation of the partition function reduces to

the box counting dimension of the set. As the annotation in Figure 2.9(b) points out,

β(0) = log(2)/ log(3) ≈ 0.631, the fractal dimension of the monofractal measure on

the Cantor set.

Falconer [36] shows that the Legendre transform of β(q) is equivalent to the multi-

fractal spectrum f(α). If one desires to compute the f(α) singularity spectrum from

experimental data, then explicit smoothing of the β curve is necessary. This requires

fitting an nth-degree polynomial to the β curve prior to computing the Legendre

transform. The method we describe below provides a way around this annoyance.

2.3.5.2 Implicit determination of f(α): There is an alternative method for

computing the f(α) spectrum, first reported by Chhabra [23]. The method computes

the curve f(α) from the two curves, α(q) and f(q). Let ν be a measure on R. Suppose
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that we are interested in a compact set X ⊂ R constructed through a multiplicative

process.

The methods detailed here rely on a theorem of Billingsley [18] that, to our knowl-

edge, holds only for sets in R. Billingsley showed that for a multiplicative process the

Hausdorff dimension of the measure-theoretic support of ν, say A, is directly related

to the entropy of the measure. Let Bε be a finite, disjoint ε-cover of A, then

dimH A = lim
ε→0

1

log ε

∑
B∈Bε

ν(B) log ν(B). (2.24)

We will utilize this result below. For now, let q ∈ R and fix a resolution ε. Then

we consider the Gibbs measure

µi(q, ε) =
νq(Bi)
n∑
i

νq(Bi)

=
νq(Bi)

Z(q, ε)
, (2.25)

where we have enumerated the B ∈ Bε from i = 1, . . . , N , and Z(q, ε) is the partition

function. This is essentially the Gibbs measure at different “temperatures”, where q is

analogous to the Boltzmann temperature 1/kT , and k is the Boltzmann constant [2,

23]. The thermodynamic interpretation provides a nice way to connect (2.25) to the

singularity strength α. Suppose that given a resolution ε, the ith “state” of the

dynamical system is given by the ith ball in Bε. Define the random variable

Xε : Ω→ R,

by

X(i) = αi(ε)−
log ν(Bi)

log 1/ε
,
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where Ωε = {1, 2, . . .} and Bi ∈ Bε. For q ∈ R, the probability of observing the ith

state is given by the normalized Gibbs measure µi(q, ε) [23, 67]. Furthermore, if we

continue the thermodynamic analogy and suppose that the random variable takes on

a value that is identified with the energy per unit volume, then we can define the

energy of the ith state as [2, 23].

Ei = αi(ε). (2.26)

Equation (2.26) can be interpreted as the expected energy of the ith configuration

at Boltzmann temperature q. See [19, 35] for a summary of the connection between

thermodynamics, dynamics, and multifractal analysis.

For each q we can consider the average singularity strength, or average energy per

unit volume, 〈α〉,

〈α〉(q) = lim
ε→0

∑
i

µi(q, ε)αi(ε) = lim
ε→0

∑
i

µi(q, ε)
log ν(Bi)

log ε
. (2.27)

Remark 2.11. Notice that 2.27 is related to β(q) through its derivative as follows.

Assume that the limit exists; the smoothness of β(q) is proved in Pesin [67]:

∂β

∂q
= lim

ε→0

1∑
i ν(Bi)q

∑
i

ν(Bi)
q log ν(Bi)

log ε

= lim
ε→0

∑
i

µi(q, ε)
log ν(Bi)

log ε
.

Using (2.24) allows us to determine the Hausdorff dimension of the support of the

measure µ(q). By (2.24) and (2.25) this is equivalent [23] to the following

f(q) = dimH Aq = lim
ε→0

1

log ε

#Bε∑
i=1

µi(q, ε) log µi(q, ε), (2.28)
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where Aq is the measure-theoretic support of µ(q). Thus, by combining Equa-

tions (2.27) and (2.28) we are able to obtain f(α) as an implicit function of q. The

spectra in Figure 2.8 were determined in this way.

2.4 Wavelets

The purpose of this section is two-fold. First, we aim to define wavelets in general.

Since the use of wavelets to analyze fractal signals and time series is likely the most

successful technique to date it is important to understand what wavelets are and the

information they extract from functions. Second, wavelet analysis can be applied to

measures. This forms a bridge between the simplicial measures described in Chapter 3

and previous results for wavelets concerning multifractal analysis [62].

We start by giving a general overview of wavelets. For a more detailed development

see Daubechies [31].

Definition 2.12. A wavelet is a function, ψ, with the following properties:

i. ψ ∈ L1(R) ∩ L2(R).

ii.

∫
R

ψ(x)dx = 0

iii.

∫
R

|ψ(x)|2dx = 1.

The term wavelet (ondelette, or small wave in French) is an apt phrase since ψ

is both localized in space and of finite energy. An assumption of compact support

for ψ would be desirable, it is more convenient to weaken this to property (i) [31].

Wavelets are typically built from a prototypical function, or mother wavelet. Let ψ

be a mother wavelet for which properties (i)-(iii) hold. The daughter wavelets of ψ,



31

for all a ∈ R+ and b ∈ R, are

ψa,b(x) =
1√
a
ψ

(
x− b
a

)
. (2.29)

A complete, orthonormal basis for L2(R) can be constructed through the process of

translation and dilation of the mother wavelet [31]. Similarly to the Fourier transform,

the wavelet transform of a function f ∈ L2(R) is defined as,

Wψf(a, b) =

∫
R

f(x)ψ̄a,b(x)dx,

where ψ̄ signifies complex conjugation.

Since the wavelets are localized in space, the decomposition of a function f ∈

L2(R) takes place over the scale-space half-plane R+ × R,

f(x) =
1

Cψ

∞∫
0

∞∫
−∞

Wψf(a, b)ψa,b(x)db
da

a2
, (2.30)

where Cψ is a normalization constant that depends on the particular wavelet ψ.

2.4.1 Multiresolution Analysis

We turn now to the decomposition of functions using discrete wavelets. Discrete

wavelets are analogous to the continuous wavelets defined in (2.29), except that trans-

lation and dilation are performed using discrete (usually dyadic) factors.

A multiresolution analysis serves as a method for constructing discrete wavelets

using a convenient, recursive structure. These form the analyzing functions in a

discrete analogue of the wavelet transform, and by extension we obtain a discrete

version of the decomposition of f in 2.30.
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Figure 2.10: The second derivative of a Gaussian used for the mother wavelet ψ (solid,
blue line). The dashed functions show two versions of scaled and shifted daughter
wavelets.

Formally, multiresolution approximation consists of a sequence {Vj}j∈Z of closed

subspaces of L2(R) such that

{0} · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · (2.31a)⋃
j∈Z

Vj = L2(R)

⋂
j∈Z

Vj = {0}

∀(j, k) ∈ Z2, φ(x) ∈ Vj ⇐⇒ φ(x− 2jk) ∈ Vj (translation)

∀j ∈ Z, φ(x) ∈ Vj ⇐⇒ φ
(x

2

)
∈ Vj+1 (scaling).

The purpose of the approximation spaces Vj is to represent a data set (in general, a

collection of vectors in Rn) as a one-parameter family of “smoothed” data. Typically,

in applications such as image processing, local maxima or minima that occur on a
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scale less than
√

2−j are averaged out when analyzed with a wavelet from Vj. This

has the effect of not only smoothing the image but also downsampling it. An example

of such smoothing is shown in Figure 2.11. The original image in Figure 2.11(a) has

been approximated in Figure 2.11(b) by a Haar scaling function φ1,k ∈ V1. Notice

that the smallest features below the resolution of the wavelet (strands of hair, small

tree branches, the ridge line) have been “averaged out” into the surrounding, lighter

background.

(a) Original Image (b) Approximation Image

Figure 2.11: (a) Original greyscale image. (b) Approximation using the Haar scaling
functions φ ∈ V−1 with scaling 2−1 smooths the edges and produces an image of half
the size of the original (240× 180 pixels versus 480× 360 pixels).

In what follows we will focus on the Haar multiresolution analysis, since we make

use specifically of the Haar scaling and wavelet functions in Chapter 3. The Haar

wavelet is the oldest orthogonal wavelet, created by Alfréd Haar in 1910 to serve

as a countable system of orthogonal basis functions for the L2(R) [44]. In addi-

tion to the traditional Haar system, whose elements are synonymous with the Haar

wavelets defined below, there exists the corresponding system of Haar scaling func-

tions. Together, the scaling functions and wavelets constitute a simple, yet powerful

multiresolution analysis [31].
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In the case of a Haar multiresolution analysis we begin with the 0th level scaling

functions. (These are also referred to as “father wavelets” by Daubechies [31].)

V0 = {g ∈ L2(R) | g|[k,k+1) = constant, k ∈ Z},

The orthonormal basis of V0 is composed of the scaling functions

{φ0,k | k ∈ Z},

where the φ0,k are shifted indicator functions,

φ0,k(x) = φ(x− k) =


1 if k ≤ x < k + 1

0 otherwise.

(2.32)

For all j ∈ Z, the corresponding orthonormal approximation spaces are

Vj = {g ∈ L2(R) | g|[k2j ,(k+1)2j) = constant, k ∈ Z},

and the orthonormal basis functions for Vj are

φj,k(x) = 2j/2φ(2jx− k), (2.33)

where φ := φ0,0 and k ∈ Z.

Now we describe how the Haar mother wavelet, ψ = ψ0,0, is derived from the

scaling functions. (Further details can be found in Daubechies [31].) The ladder of

subspaces in (2.31a) allows the definition of the wavelet space Wj, which is a subspace

of Vj+1 that satisfies

Vj+1 = Vj ⊕Wj. (2.34)

For f ∈ L2(R) define

Dj,k =

∫
fφj,k.
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Figure 2.12: The basic Haar scaling function φ0,0 (solid). The Haar mother wave-
let ψ0,0 (dashed) is the linear combination of the two Haar basis functions for the
approximation space V−1.

From (2.31a), it is clear that for any φ̃ ∈ V0,

φ̃ =
∑
k

D1,kφ1,k, (2.35)

where
∑

k |D1,k|2 = 1 and

D1,k =

∫
φ1,kφ̃.

In fact, if we restrict our attention to [0, 1] it follows that V1 consists of just two

scaling functions, and we get

φ = D1,0φ1,0 +D1,1φ1,1

= D1,0

[
21/2φ(2x)

]
+D1,1

[
21/2φ(2x+ 1)

]
. (2.36)

It is easy to see that D1,0 = D1,1 = 21/2. Extending this to all j we see that Dj,k = 2j/2.

Equation (2.34) implies that the approximation spaces at level j+1 yield the wavelet
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spaces at level j [31]. Indeed, if ψ ∈ W0, then

ψ(x) =
∑
k

(−1)kD1,kφ1,k(x)

=
√

2 φ1,0(x)−
√

2 φ1,1(x)

=
√

2 φ(2x)−
√

2 φ(2x− 1). (2.37)

The function ψ is the Haar mother wavelet; it is synonymous with the Haar function.

In Figure 2.12 the 0th level Haar scaling function φ0,0 is shown (solid line). The

dashed line shows the Haar mother wavelet as a linear combination of the two scaling

functions at level j = 1, normalized in amplitude by 21/2 as in (2.37).

From our perspective, the most important aspect of the construction of a wavelet

from the scaling functions is that we can now write the wavelet coefficients, Cj,k,

as linear combinations of the scaling coefficients Dj,k [31]. We have the following

identity, which is a cornerstone of the multiresolution analysis,

Cj,k =
1√
2

(Dj+1,2k −Dj+1,2k+1), (2.38)

where

Cj,k =

∫
fψj,k (2.39a)

Dj,k =

∫
fφj,k. (2.39b)

We will make use of these facts in Section 3.5.

2.4.2 Fractal Analysis With Wavelets

Consider a real-valued function f(x). To illustrate the particular way in which

wavelets connect to multifractal analysis, suppose that f is n+ 1-times continuously

differentiable on the open interval I = (x0 − ε, x0 + ε), for ε > 0. Then for every
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x ∈ I, Taylor’s Theorem allows us to expand f as a Taylor series,

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ an(x− x0)n +Rn,x0(x),

where

Rn,x0(x) =

∫ x

x0

fn+1

(n+ 1)!
(u− x0)n+1du.

It often happens that the polynomial approximation of f fails at a particular non-

integral exponent. Suppose that at x0 we can best approximate the behavior of f in

the neighborhood |x− x0| by

f(x) ≈ a0 + a1(x− x0) + · · ·+ an(x− x0)n + c(x− x0)hn , (2.40)

where n < hn < n + 1. Such “singularities” hn, or Hölder exponents, can be

Figure 2.13: The top figure shows a function f with a variety of singularities. The
three lower figures that show the wavelet transform of f in order of decreasing reso-
lution.

characterized by the position in space at which they occur as well as the resolution



38

|x−x0|, since the singularities will appear stronger at different resolutions. Intuitively,

if we are able to “kill off” all polynomial behavior of an order less than hn, we can

uncover the particular singularity of order hn. This is the point at which f becomes

a poorly behaved function. In terms of differentiability, if f is n times differentiable,

the Hölder exponent hn indicates that f will fail to be n + 1 times differentiable.

Specifically, in (2.40) the largest integral exponent n such that hn ∈ (n, n+ 1) is the

cutoff for “regular” behavior. It is the ability to detect singularities such as Hölder

exponents that led to the use of wavelets for fractal analysis of time series [4].

Definition 2.13. Given a function g, suppose that there exists an n-degree polyno-

mial Pn such that

|g(x)− Pn(x− x0)| ≤ C|x− x0|h (2.41)

for all x in an open neighborhood of x0. Then the supremum of all h such that (2.41)

holds is termed the (local) Hölder exponent at x0. We denote the supremum by h(x0).

If a wavelet ψ is chosen to be orthogonal to polynomials of order n, that is,∫
R

xnψ(x)dx = 0, (2.42)

we say that ψ has n vanishing moments. Assuming condition 2.42 for ψ, then the

wavelet transform of a signal f will scale as

Wψf(a, x) ∼ ah(x) (2.43)

as a → 0+ [2, 31]. Figure 2.13 provides an example of how the wavelet transform

differs over a small range of scales. A sample function f is plotted in the top row. The

wavelet transform of f has been computed at different scales (a = 2−j) in the bottom

three graphs. The expression in (2.43) can be thought of as computing the density
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(a) Devil’s Staircase (b) D(h) Spectrum for (a)

Figure 2.14: (a) The Devil’s Staircase is the cumulative distribution of a measure
concentrated on the Cantor set. (b) Numerical estimation of the D(h) spectrum
using wavelets.

of points in the wavelet within the wavelet’s “window”. Thus, Wψf(a, x) acts as a

variable-resolution microscope for f . Figure 2.13 shows the varying density witnessed

by Wψf(a, x) at three resolutions.

In a time series there may be many points x that have the same Hölder exponent

h. Define

D(h) := dimH{x | h(x) = h}

to be the Hausdorff dimension of the set where the Hölder exponent is h. This is

reminiscent of the scaling exponent in the definitions of the Hausdorff dimension in

Equation 2.21. Arneodo, et al., showed in a series of papers [2, 5, 10, 62] that the

wavelet transform 2.43 can be used to study the singularity spectrum D(h). The

wavelet transform acts as a measure at scale a. Thus, the partition function becomes

Z(q, a) =

∫
|Wψf(x, a)|qdx. (2.44)
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In practice, discrete wavelets [31] are used, in which case Z becomes a sum over

discrete points in the domain of f . Analogously to Section 2.3.2, the partition func-

tion is used to characterize the fractal properties of a fractal signal through β or by

implicitly computing D(h) as in 2.3.5.2 [2, 62].

Figure 2.15: Maxima lines for a portion of the space-scale half-plane for the Devil’s
Staircase. The dyadic structure of the underlying Cantor set is clearly visible.

Arneodo, et al., developed an important variation on this technique. It has allowed

the multifractal wavelet analysis to effectively compute the singularity spectrum using

negative values of q in the partition function. Historically, negative q have been

plagued by divergence issues when balls of small measure, or wavelet transforms

of small moduli, are encountered. In practice, this can occur when computing the

box-counting dimension and a grid element clips the edge of the set of points. To

circumvent this problem, Arneodo, et al., consider an adaptive scheme. Consider

the scale a. Instead of computing the partition function for all |Wψf(x, a)| at a,

choose the wavelet transform |Wψf(x′, a′)| of maximum modulus along a collection
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of maxima lines descending in scale from the location (x, a). We follow Muzy [62] in

defining the set of maxima lines at scale a.

Definition 2.14. The set L(a) consists of all connected curves ` satisfying the fol-

lowing:

i. (x, a′) ∈ ` =⇒ a′ ≤ a;

ii. for every a′ ≤ a, there exists (x, a′) ∈ `.

For a certain class of functions resulting from multiplicative processes, Muzy, et

al. [62] showed that the modified partition function

Z(q, a) =
∑
`∈L(a)

(
sup

(x,a′)∈`
{|Wψf(x, a′)|}

)q

,

behaves the same in the limit as (2.44). This is known as the wavelet transform

modulus maxima method (WTMM). Note that the reuse of Z above is an abuse of

notation that is standard practice, even though it conflicts with the original definition

of the partition function in (2.22) and (2.44). This modified Z maintains the desirable

scaling property [62]:

Z(q, a) ∼ a−β(q),

enabling its use in multifractal analysis. A portion of the set of maxima lines for the

Devil’s Staircase in Figure 2.14(a) are displayed in Figure 2.15. This type of plot is

sometimes referred to as a wavelet skeleton. The local maxima at each scale a are

followed (connected) to the local maximum or maxima at scale a′ < a. The maxima

lines can be seen to follow the dyadic structure of the underlying Cantor set measure

in Figure 2.15.

The simplicial measure developed in Chapter 3 also possesses a localized, adaptive

scaling property. In Section 3.5 we show that the simplicial measure on an attractor
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can be aligned with the Haar wavelet transform. Hence, by connecting the simplicial

measure to the mature field of wavelet analysis, we can utilize the maxima lines

approach to study the dimension spectrum.

We present an example showing the agreement between wavelet analysis of mul-

tifractal measures on sets and the more traditional analysis in Section 2.3.2.
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CHAPTER 3

SIMPLICIAL MEASURES

We develop the concept of a simplicial measure. The primary goal is to produce a

cover of a fractal set that is sensitive to the distribution of points. Recall that we seek

to approximate the fractal or multifractal measure of the attractor of a dynamical

system by studying the way in which a unit mass is distributed over the attractor. In

Section 3.1 we describe some basic topological structures and related homology theory

that we utilize in our development further on. We narrow our focus to a particular

topological construction on a metric space, the Vietoris-Rips (VR) complex [47].

The simplices contained in VR complexes are well suited to our task of computing

the mass distribution of points in n-dimensional space as they are constructed in a

local manner by considering the mutual distances between points. This construction

leads directly to an approximation of the local density of mass in the attractor, and

when performed at different resolutions allows us to approximate the multifractal

properties of the “natural measure” on an attractor. In Section 3.4, we show that the

VR complex on a data set is equivalent to the ideal, minimal covering of a Cantor set

by balls of a certain radius (in a manner that we make precise below for finite data

points).

3.1 Simplices and Simplicial Complexes

A simplex is a geometric object that generalizes the notion of a triangle. A triangle

is formed from three vertices all of which are connected to form a 2-dimensional convex

hull. In general, an n-dimensional simplex is a polytope formed from the convex hull of

n+1 vertices. A simplex σ can be denoted by its ordered set of vertices [v0, v1, . . . , vn]
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v0

v1

v2

Figure 3.1: A triangle is a 2-dimensional simplex represented by the oriented set of
vertices [v0, v1, v2].

or simply v0v1 . . . vn for brevity [60]. The dimension of σ we denote by dim(σ). For

instance, in Figure 3.1, the 2-simplex is defined by the three vertices v0, v1, and v2. A

face τ of an n-dimensional simplex σ is also a simplex and is defined as the convex

hull formed by a (non-empty) subset of the n + 1 vertices of σ. In Figure 3.1, the

1-simplices [v0, v1], [v1, v2], [v2, v0] are faces along with the three vertices. A simplicial

complex is a collection ∆ of simplices such that for each σ1, σ2 ∈ K, σ1∩σ2 is a face of

both or empty; and any face of a simplex in ∆ is also a simplex in ∆. The complement

of a face in a given simplex is known as a coface. A simplex σ is maximal if it has no

proper coface in ∆. That is, σ is maximal if it is a face of itself and no other simplex

in ∆.

Lastly, a k-skeleton of a simplicial complex ∆ is the subcomplex of ∆ having faces

of dimension no larger than k. In particular, the 1-skeleton of ∆, the collection of 0-

and 1-simplices, form the vertices and edges of a graph. Recall that a clique is a set

of nodes in a graph that include a complete subgraph. If a clique cannot be made

any larger then it is termed maximal.
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3.2 The Vietoris-Rips Complex

We now describe the Vietoris-Rips complex (VR complex). The setting is Rm with

a given metric d. We begin by defining the neighborhood graph.

Definition 3.1. Given a finite set of points Y ⊂ Rm and a real value ε > 0, the

neighborhood graph is the undirected graph defined by

Nε(Y ) := 〈V,E〉,

where V = Y and E = {(x, y) ∈ Y × Y | d(x, y) < ε, x 6= y}.

We work with the Euclidean metric in what follows.∗ Note that Nε(Y ) can be

viewed as the 1-skeleton of a simplicial complex. Hence, we can expand Nε(Y ) by

adding higher dimensional simplices simplices to the set of vertices and edges. We

append to V and E a potential simplex σ whenever all edges of σ, e(σ) are in E.

This is known as a Vietoris-Rips complex [21, 47].

Definition 3.2. Let Y be a finite subset of Rm and ε > 0. The Vietoris-Rips complex

of Y at scale ε is the abstract simplicial complex consisting of the vertex set Y , and

simplices such that a subset {v0, . . . , vk} ⊂ Y is a simplex iff diam(σ) < ε, where

diam(σ) = max
vi,vj∈σ

{d(vi, vj)}. We denote this by

Rε(Y ) := V ∪ E ∪ {σ | diam(σ) < ε} . (3.1)

Notice that the maximal cliques in a neighborhood graph are exactly the maximal

simplices of the VR complex. The VR complex possesses other useful properties,

∗Any metric would suffice, though in general the neighborhood graphs formed from two different

metrics are different. In what follows this would yield a different approximation of of the density of

points, and ultimately a different multifractal spectrum.



46

which we shall detail shortly. However, the VR complex has a close topological

relative. The construction of the Čech complex, is based on intersections, similar to a

VR complex [32, 47]. We first state the general definition, then consider a modified

definition useful for finite data sets.

Definition 3.3. Let X ⊂ Rm and let U = {Uα} be an open covering of X. A Čech

complex on X is an abstract simplicial complex in which

i. Each open set in U is a vertex;

ii. A subcollection {Uα0 , . . . , Uαk} of k + 1 vertices spans a k-simplex iff

k⋂
i=0

Uαi 6= ∅.

Our goals are of a measure-theoretic nature within a metric space, hence it will

be useful to formulate Čech complexes in terms of balls of radius ε, which we denote

by B(x, ε) for x ∈ Rm.

Definition 3.4. Let Y be a finite point set in Rm and ε > 0. Let

B = {B(v, ε) | v ∈ Y }

be an open cover of Y . The Čech complex on Y utilizing ε-balls in B is the abstract

simplicial complex for which

i. Each v ∈ Y is a vertex;

ii. A subcollection of k + 1 vertices spans a k-simplex iff

k⋂
i=0

B(vi, ε) 6= ∅. (3.2)

We indicate a Čech complex of the cover of Y by ε-balls by Cε(Y ).
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Define a cover of a finite set Y to be the union over x ∈ Y of balls of radius

ε centered at x. If a Čech complex is defined using balls of radius ε, then we will

denote the corresponding cover a Čech cover. Topologically, cech covers are quite

nice. Define a good cover U to be one for which all sets and all finite intersection of

sets in U are contractible. Then it happens that the Čech complex of a good cover

has the same homotopy type as the union of the cover sets [45, 47].

Computationally, the necessity of confirming the nonempty intersection in Equa-

tion 3.2 above is highly nontrivial. Hence, the VR complex has proved to be a critical

tool for computational topologists as it can be used, in conjunction with Lemma 3.5,

to represent the topology of a point set and is relatively fast to compute [77]. This

computational tractability is one of the major factors motivating our use of the VR

complex in the study of multifractal spectra.

v0

v1

v2

(a)

v0

v1

v2

(b)

Figure 3.2: (a) The balls forming the complex have radius ε. The VR complex con-
tains the 2-simplex [v0, v1, v2] while the Čech would not. (b) The result of considering
balls of radius 2√

3
ε (see Lemma 3.5). Both VR and Čech now contain the same

simplices.

Figure 3.2 shows some of the differences between VR and Čech complexes resulting

from identical neighborhood graphs formed using slightly difference radii. In the case
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of Figure 3.2(a), the Čech complex is composed of the vertices {v0, v1, v2} and the

three 1-simplices [v0, v1], [v1, v2], [v2, v0]. Since all possible edges of the 2-simplex

σ = [v0, v1, v2] are in the neighborhood graph, the VR complex in Figure 3.2(a)

contains σ as well. In Figure 3.2(b), since

B

(
v0,

2√
3
ε

)
∩B

(
v1,

2√
3
ε

)
∩B

(
v2,

2√
3
ε

)
6= ∅,

both the VR and Čech complexes contain the same simplices.

This highlights the topological differences one encounters when comparing VR

and Čech complexes. What would appear to be a 1-cycle in Figure 3.2(a) because of

the hole in the center is actually the boundary of a 2-simplex σ in the VR complex.

That is, the VR complex views σ as contractible. While this difference can prove

problematic, especially from the viewpoint of persistent homology [32, 39], it is less

so for us, as we are interested primarily in the relationship between VR and Čech

complexes as sets and what the simplices in each tell us about the local mass density

of an attractor.

We now state Lemma 3.5. Proved by De Silva and Ghrist in [32], it provides

an important relationship between VR complexes and Čech complexes, by squeezing

a Čech complex formed from the cover of Y by ε-balls between two VR complexes

forming slightly different covers of Y .

Lemma 3.5. For a finite set of points Y in Rd, the Čech complex Cε(Y ) is bounded

by VR complexes as follows:

Rε′(Y ) ⊂ Cε(Y ) ⊂ Rε(Y ) (3.3)

whenever ε ≥ ε′
√

2d
d+1

.

We prove results in Theorem 3.9 using Čech complexes from Cε(Y ). Yet all compu-

tation must be performed using VR complexes. Thus, Lemma 3.5 provides a bridge
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between the experimental and theoretical sides. We conclude that given any VR

complex Rε(Y ) there exists a corresponding simplex in Cε(Y ).

For instance, in Figure 3.2(a) the vertices of the VR complex are each less than

a distance ε′ from one another. The centroid falls inside the open neighborhood

determined by the intersecting balls in the Čech complex, as in Figure 3.2(b). Thus,

if the radius of the balls in Figure 3.2(a) is ε′, then a radius of 2√
3
ε′ suffices to obtain

the Čech complex in Figure 3.2(b)

The centroid of a simplex is unique, therefore, for each simplex σ ∈ Rε′(Y ) and

each fixed ε′′ ∈ [ε′, ε] there exists a unique ball centered at y = φ(σ) with radius ε′′

that contains all of the vertices in σ. Denote the set of centroids in Cε(Y ) by

Mε(Y ) := {y ∈ X | φ(σ) = y; σ ∈ Rε(Y )}. (3.4)

3.3 Simplicial Measures

Our goal is the characterization of dynamical systems from real world data or

mathematical models simulating real world processes. We are limited by the finite

nature of computation–both in terms of scale and time. A standard tool to analyze

such systems in a measure-theoretic context is the residence measure described below.

A special case of this is the simplicial measure defined in Subsection 3.3.2.

3.3.1 Residence Measures

Let f : Rn → Rn be an ergodic, measure-preserving map on the measure space

(X,Σ, λ), where Σ are the Borel-measurable sets in Rn. Suppose that A is an attractor

for f . Let Y be a finite set of iterates of f .



50

A common method for studying such ergodic dynamical systems within the sphere

of measure and dimension theory is to define the residence (probability) measure on

a set U ⊂ X similarly to (2.1) by

µ(U) = lim
m→∞

1

m
#{k | 0 ≤ k ≤ m− 1, fk(x) ∈ U} (3.5)

for λ a.e. x ∈ X. If we assume that λ is an SBR measure, then for certain f the

limit exists in (3.5) for Lebesgue a.e. x in a basin of attraction of positive Lebesgue

measure [33]. The measure computes the proportion of time that iterates of f spend

in U . In the real-world and modeled systems studied only finite data sets are available,

denoted as above by the set Y = {xi}Ni=1. We approximate the infinite time residence

measure from Equation (3.5) on Y by removing the limit. Thus, for a subset U ⊂ Y ,

let

ν(U) =
1

N
#{k | 1 ≤ k ≤ N, fk(x) ∈ U} (3.6)

=
1

N
#{x | x ∈ U} (3.7)

Figure 3.3: A simplex with an associated circumscribing ball B. The centroid is
denoted with an ×. The ball has a residence measure of 3/N .
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Note that ν(Y ) = 1, so it is still a probability measure.

3.3.2 Simplicial Measures

We now define a residence measure based on the simplices in a VR complex. We

are interested in using the maximal simplices in a VR complex to understand the

density of points in an attractor. First, we abuse notation and define the centroids

of Rε(Y ) by Mε(Y ).

For each y = φ(σ) in Mε(Y ), for some σ ∈ Rε(Y ), there is a radius δ ∈ [ε′, ε]

such that

ν(B(y, δ)) =
k + 1

N
,

where k = dim(σ) and N is the cardinality of the data set Y . Therefore, we obtain

a probability measure on Y that is determined experimentally by the simplices in a

VR complex. We will abuse notation, and talk about the “measure of a simplex” by

defining the simplicial measure on simplices σ ∈ Rε(Y ) as

ν(σ) = ν [B(φ(σ), δ)] . (3.8)

Remark 3.6. The key objects of study are the maximal simplices in the VR complex

Rε(Y ). These are formed from the maximal cliques in neighborhood graphs at scale

ε. As such, we will neglect much of the algebraic machinery associated to the VR

complexes themselves. Nevertheless, we use the notion of maximal simplces as a

shorthand based on their construction and equivalence (in the ambient dimension of

the data) to maximal cliques.

3.3.3 Trimming Simplicial Complexes

Given a VR complex Rε(Y ) and a simplex σ in the complex, Rε(Y ) also contains

all faces and cofaces of σ. An enumeration of the simplices in Rε(Y ) thus contains
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far more information than necessary for the purposes of estimating density since all

faces of σ contain their own centroids. As such, measures of balls around centroids

in Mε(Y ) would grossly overestimate the density of a region of space according to

the simplicial measure. For example, consider the complex in Figure 3.4. It consists

of one 2-simplex (labeled σ in green) and one 3-simplex (also green), as well as

a connecting 1-simplex. In addition, each simplex above also contains numerous

faces. For instance, σ contains three 0-simplices and three 1-simplices. We would like

to avoid enumerating such faces when considering density. Hence, we trim Rε(Y ),

maintaining only the subset of maximal simplices, Sε(Y ). In general, the set of

maximal simplices will not be disjoint either. Thus, even with Sε(Y ) in hand, we

must implement a second round of pruning.

Recall that a collection of sets {Vα}α∈J indexed by J is said to cover a set Z if

⋃
α

Vα ⊃ Z. (3.9)

The set of maximal simplices Sε(Y ) covers Y . These are the maximal cliques in

Nε(Y ), hence all vertices of Y are indeed covered. We further trim Sε(Y ) to produce a

minimal set cover, which is a subcollection of Sε(Y ) of minimal cardinality necessary

to cover Y . We term such a cover a tidy cover. For the time being we will assume

that we are working with a tidy cover of maximal simplices chosen from Rε(Y ). We

detail the algorithmic process in Section 3.6.2.

3.4 Approximation of Fractal Measures

Having defined the simplicial measure we continue by showing that the approxi-

mation of scaling properties of measures on fractal sets is possible using the maximal

simplices of VR complexes. We focus on mass distributions and binomial measures.
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σ

τ

(a) VR complex

σ

τ

(b) Covering with balls of radius ≤ ε

Figure 3.4: In this small simplicial complex, the two maximal simplices are the filled
(green) 2-simplex and 3-simplex on the left and right, respectively. Since dim(σ) >
dim(τ), σ will be retained during the trimming process. Similar reasoning causes the
3-simplex on the right to be retained.

We demonstrate that the simplicial measure captures the scaling properties of basic

multifractal measures. We connect our results in this context to the robust theory

of multifractal wavelet analysis by showing that the simplicial measure and the Haar

wavelet coefficients on binomial measures and mass distributions are equivalent.

Recall that an iterated function system (IFS) is an alternative way to construct

such measures. As in Equation 2.13, let F be the attractor of an IFS,

F =
m−1⋃
i=0

Si(F ),

where {S0, . . . , Sm−1} is a finite family of contractions on [0, 1]. Below we consider

approximations to F , where Fn denotes the nth level of the construction of F . Trun-

cating the construction of F at the nth level we get the prefractal composed of mn

regions,

Fn =
mn−1⋃
j=0

F
(n)
j .

There is a large body of work dealing with binomial measures and mass distri-

butions described using two contractions in the context of fractals and multifractal
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spectra [1, 2, 10, 36, 43, 62, 67]. In order to align the simplicial measure with this

work we will consider the class of IFS’s constructed with contractions {S0, S1} such

that Si : [0, 1]→ [0, 1], with a common contraction ratio c. For the remainder of the

section we will assume that m = 2. Each contraction is associated with a conserved

split in the mass at each level such that at level n

pkn(l) 7→ {pkn(l)p0, pkn(l)p1},

where kn(l) ∈ {0, 1}n, l ∈ {0, 1, . . . , 2n − 1}, and pkn(l) =
∏l

j=1 pij , with ij ∈ {0, 1}.

Let µ be a mass distribution on F . Given n ∈ N and the IFS {S0, S1} with

common contraction ratio c, then µ
(
F

(n)
j

)
= pkn(j), and each F

(n)
j ∈ Fn is equivalent

to an interval of I
(n)
j of diameter cn.

We define the minimum gap between intervals as

γ = γn := min
j=0,...,mn−2

d
(
F

(n)
j , F

(n)
j+1

)
,

where d(A,B) = infx∈A d(x,B). (Strictly speaking, this is more general than nec-

essary since with contractions S0 and S1 each gap is of the same size at each level

n.)

The simplicial measure deals with finite data sets. Given n ∈ N, let Yn =

{x1, . . . , xN} ⊂ Fn, where N is chosen so that for each j ∈ {0, . . . ,mn − 1}∣∣∣µ(F
(n)
j )− µN(F

(n)
j )
∣∣∣ ≤ 1

N
, (3.10)

where

µN =
1

N

N∑
i=1

δxi ,

with δx(A) defined in Equation (2.1). In particular, we assume that the points in Y

faithfully approximate µ so that as N →∞,

µN → µ. (3.11)
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In addition, assume that for each j the points in Yn are distributed uniformly across

F
(n)
j according to the measure pkn(j). If Yn is a sequence of points in the trajec-

tory of a dynamical system, then we say that the ergodic averages converge to µ

whenever (3.11) holds. Condition 3.10 is a fairly natural assumption, and occurs by

construction when one experimentally approximates the attractor of an IFS.

In general, simplices may exist in a higher dimension than Yn. We define a pro-

jection from this higher-dimensional space to the ambient space in which Yn resides.

Definition 3.7. Suppose Yn ⊂ Rb is given, and σ ∈ Rdimσ is a simplex formed from

vertices in Yn. (I.e., σ is in a Čech or VR complex formed on the points in Yn.)

Consider a point x ∈ σ, then x =
∑dimσ

i=0 tivi, where vi ∈ Rdimσ are the vertices of σ

and
∑dimσ

i=0 ti = 1. Define the projection map back to Yn by π : Rdimσ → Rb by

π(x, Yn) = π(x) =
dimσ∑
i=0

tiπ(vi) =
dimσ∑
i=0

tiui,

where ui is the corresponding vertex in Yn. By π(σ) we will also denote the set that

is the projection of all x ∈ σ into Yn.

Recall that Sε(Yn) denotes the trimmed set of maximal simplices in Rε(Yn).

Definition 3.8. Let E be a Borel set in Rb, where b is the dimension of the data in

Yn. Suppose Yn is given for n ∈ N, and let ε > 0. Then we define

νn(E) =
∑

σ∈Sε(Yn):π(σ)⊂E

ν(σ), (3.12)

where ν is the simplicial measure associated to Yn and ε.

We now state our main result. We examine the case when the radius of balls about

points in Yn allows a straightforward division of the intervals in Fn. For such a case,

there are two requirements to create a disjoint cover of the points in Yn ⊂ Fn. First,
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the radius chosen to form the VR complex must be small enough to avoid overlap

with maximal simplices from neighboring intervals in F . Second, the simplices must

evenly divide the intervals. We describe this below.

Theorem 3.9. For all n ∈ N, suppose N ∈ N and Yn ⊂ Fn are chosen so that (3.10)

holds. Let r, s ∈ N and α = 1
rs

be such that ε = εn = αcn < γ
2
. If r is divisible by

2, then there exists a disjoint cover of Yn of maximal simplices in Sε(Yn) such that

∀F (n)
j ∈ Fn,

νn

(
F

(n)
j

)
→ µ

(
F

(n)
j

)
.

Remark 3.10. The choice of ε guarantees that the cover of each F
(n)
j is disjoint from

F
(n)
j′ , for j 6= j′ ∈ {0. . . . ,mn − 1}.

We prove Theorem 3.9 in the technical lemmas that follow. Given Yn with cardi-

nality N , let Y
(n)
j =

(
Yn ∩ F (n)

j

)
and mj = m

(n)
j = #Y

(n)
j .

cn

2αcn αcn

Figure 3.5: Example of a covering of F
(n)
j by disjoint maximal cliques (simplices in

Sε(Yn)) of diameter 2αcn. The case where r is not divisible by 2 leaves a portion on
the right-hand side uncovered my maximal simplices.

Lemma 3.11. Suppose n, N , Yn, and α are as in Theorem 3.9. Then there exists a

subcollection of disjoint maximal cliques in Sε(Yn) whose projected vertices cover Yn.

Proof. Consider the subcollection of maximal simplices in Sε(Yn) whose vertices are

projected onto Yn ∩ F (n)
j , which we define by C

(n)
j = {σ ∈ Sε(Yn) | π(σ) ∩ Y (n)

j 6= ∅}.

Choose σ0 ∈ C(n)
j for which there exists x ∈ π(σ0) such that x ≤ y for all y ∈ Y (n)

j .
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That is, choose the left-most simplex in C
(n)
j . Form the collection A

(n)
j = {σ0}. We

will collect disjoint maximal simplices in A
(n)
j to obtain a cover of Y

(n)
j . Consider the

subset of C
(n)
j of simplices disjoint from that in A

(n)
j ,

D = D(A
(n)
j ) =

{
σ ∈ C(n)

j | σ ∩ τ = ∅, ∀τ ∈ A(n)
j

}
.

In the same manner as above, choose σ1 in D to be the left-most element in D

and append σ1 to A
(n)
j . Repeat this process until no more simplices can be added

disjointly, obtaining the collection A
(n)
j = {σ0, . . . , σt}. It remains to determine t and

to show that the simplices in A
(n)
j cover Y

(n)
j .

Each σ ∈ A(n)
j has a diameter in Yn of

|π(σ)| = 2αcn = 2 · (2q)−scn =
cn

2s−1qs
,

where r = 2q, by the assumption on the divisibility of r. We can partition F
(n)
j into

t = 21−sqs intervals of length |π(σ)|. By construction, for each i 6= i′, the vertices of

π(σi) are disjoint from π(σi′). Hence, A
(n)
j forms a corresponding disjoint partition of

the points in Y
(n)
j . The choice of α gaurantees that the cover of Y

(n)
j is disjoint from

other Y
(n)
j′ . Thus,

2n−1⋃
j=0

A
(n)
j

covers Yn disjointly.

We examine the case where r is not divisible by two. This is direct results of the

geometry of the vertices of simplices in the intervals of Fn.

Lemma 3.12. Let n,N, Y
(n)
j , F

(n)
j be as above. If r ∈ N, α = r−s and r is not

divisible by 2, then a disjoint collection A
(n)
j of maximal simplices in Sε(Yn) will not

cover Y
(n)
j . The number of points not covered by simplices in A

(n)
j is αmj.
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Proof. Suppose that A
(n)
j is a disjoint collection of simplices constructed as in

Lemma 3.11. For each σ ∈ A(n)
j ,

|π(σ)| = 2

(
cn

rs

)
.

Since r
2

is not integral, division of F
(n)
j from left to right into intervals of length 2

(
cn

rs

)
results in an extra interval Eα of length cn

rs
on the right side of F

(n)
j . Each σ ∈ A(n)

j

has a projected diameter of 2
(
cn

rs

)
. Thus, the construction of A

(n)
j will not cover this

final segment of length cn

rs
, since no maximal simplex in Sε(Yn) can cover Eα without

intersecting an element of A
(n)
j . Given the uniform distribution of points in Y

(n)
j , the

simplices in A
(n)
j will cover (1− α)mj points in Y

(n)
j , leaving αmj uncovered.

Proof of Theorem 3.9 Let j ∈ {0, . . . , 2n − 1} and set E = F
(n)
j . Then by (3.12)

νn(E) = µN(E) =
#(Yn ∩ F (n)

j )

N
. (3.13)

Hence, by (3.10), νn(E)→ µ(E) as N →∞. Theorem 3.9 follows.

3.5 Equivalence of Simplicial Measures and Wavelet Methods

For finite data the construction of maximal simplices and the corresponding sim-

plicial measure allows for the approximation of the local intensity of a measure. We

turn now to an analysis of certain measures using wavelet theory. The wavelet trans-

form multifractal formalism [10] is a mature theory developed for the application of

wavelets to singular measures such as those studied in Section 3.4 and fractal signals.

We show that the simplicial measure can be viewed as an approximation of the Haar

wavelet transform on such singular measures, thereby linking the two techniques.
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3.5.1 The Setting

Let µ be a self-similar mass distribution or binomial probability measure as in

Section 3.4. Define the dyadic intervals Innk := Fnk to be those used in the construction

of µ as above as well, where nk ∈ {0, 1, . . . , 2n − 1}. Assume that

µ([0, 1]) = µ(I00 ) = p00 = 1.

Recall from Section 2.3.3 on page 17 that

µ(Innk) = p00p
1
k1
· · · pnnk , (3.14)

where we retain p00 for consistency. Let g be a measurable function. We write the

integral of g with respect to the measure µ as

lim
n→∞

2n−1∑
j=0

g(j2−n)µ(Inj ) =

∫
g(t)µ(dt). (3.15)

3.5.2 The Haar Wavelet

Recall from Section 2.4 that a multiresolution analysis consists of sequences of

discrete scaling and wavelet functions. Together these functions partition L2(R) into

orthogonal scaling and wavelet subspaces that fit together in a nested, dyadic manner.

The following relationship between the scaling and wavelet transforms from the

multiresolution analysis in Subsection 2.4.1 holds. For

Cj,k =

∫
fψj,k (3.16a)

and

Dj,k =

∫
fφj,k, (3.16b)

with φj,k ∈ Vj and ψj,k ∈ Wj, we have that
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Cj,k =
1√
2

(Dj+1,2k −Dj+1,2k+1). (3.17)

Thus, for certain fractal measures, Equation 3.17 allows us to connect the wavelet

transform with the simplicial measure.

3.5.3 Wavelet Analysis of µ

Mass distributions and binomial measures in Sections 2.3.3 are defined on very

regular partitions of the unit interval. Such constructions are ideally suited to a

multiresolution analysis using Haar scaling and wavelet functions. We consider the

binomial measure µ and analyze it using the scaling functions in order to derive

appropriate wavelet coefficients. In the wavelet transform multifractal formalism,

these are used to obtain the multifractal spectrum of µ. (See Section 2.4 and [62].)

Using (3.14) and (3.15), along with the fact that each φj,k is a suitably-scaled

indicator function, we write that the scaling coefficients with respect to the measure

µ as

Dj,kj =

∫
φj,kjµ(dt)

= 2j/2

(kj+1)2−j∫
kj2−j

µ(dt)

= 2j/2µ
(
Ijkj

)
. (3.18)

Thus, using (3.17) and (3.18), we can rewrite the wavelet coefficients in terms of the

measure,

Cj,k =
1√
2

(
2j/2µ

(
Ij+1
2k

)
− 2j/2µ

(
Ij+1
2k+1

))
(3.19)
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Rearranging (3.19) gives the wavelet coefficients at scale j entirely in terms of the

measures of intervals at scale j + 1,

Cj,k
√

2(1−j) =
(
µ
(
Ij+1
2k

)
− µ

(
Ij+1
2k+1

))
. (3.20)

From Section 3.4 we know that the simplicial measure ν approximates µ. Hence,

it follows that at each resolution the Haar wavelet can be approximated by ν if we

replace µ with ν in 3.20. Furthermore, by Theorem 3.9, given an arbitrarily large

number of data points, we can replace we can replace µ with ν in (3.20).

3.6 Algorithms

Up to this point we have not discussed the way in which the simplices used for

the simplicial measures are constructed. The task of computing the multifractal

spectrum from a finite number of iterates of a dynamical system is, at its heart, an

approximation problem. Given a finite set of iterates, Y = {x1, . . . , xn} ⊂ Rd, of a

dynamical system f , we seek to group these into sets at different scales in such as

way as to estimate the density of points in the attractor of f . A number of methods

have been developed to do this. As described in Section 3.3, we use the trimmed set

of maximal simplices to estimate of the density of points at various resolutions. In

the remainder of this section we consider the computational and algorithmic factors

involved in this approach.

All of the software developed for this dissertation is located in a central repository

at [16].

3.6.1 Neighborhood Graphs and Maximal Simplex Construction

The problem of finding the nearest neighbors of a point set is fundamental in

computational geometry and search algorithms in general Arya, et al. [9]. Let Y be
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a set of n points in d-dimensional space. Given a query point z ∈ Y , its nearest

neighbor is the point

x∗ = min
x 6=z
‖z − x‖,

where ‖ · ‖ is typically Euclidean distance. Extending this problem, we require sets of

neighbors within ε of all points in Y . The simplest approach is to compare all pairs

of points by constructing an n × n distance matrix. Of course, the O(n2) time and

space requirements of this approach are prohibitive.

Actually, it is not necessary to compare all pairs, and search algorithms exist that

utilize kd-trees to organize and partition the data prior to assembling a list of nearest

neighbors [24]. A significant improvement in performance is gained, yielding O(log n)

query time and O(n) space requirements. If dimension of the data is relatively high

(> 20), then prioritized searches such as kd-trees lose their advantage over brute force

queries. An approximate nearest neighbor algorithm can be employed [8, 77]. Given

the query point z with a true nearest neighbor x∗, an approximate nearest neighbor

x is one for which

d(z, x) ≤ (1 + δ)d(z, x∗),

where δ > 0 is some small, allowable error. We note the existence of the approximate

nearest neighbor algorithm to emphasize that the algorithms used to construct VR

complexes are scalable to higher dimensions, if one is willing to accept a small amount

of error. In experiments comparing exact and approximate distance algorithms, there

is no difference seen in the results for multifractal spectra. This is likely because the

magnitude of maximal simplices are changed only slightly in the VR complex by the

addition of δ, and hence the partition function is also little changed.

The results reported in Chapter 4 use the exact distance algorithm. Either algo-

rithm stores the output in the form of a hash table [24] keyed by the points in Y .
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The ith point, xi, is mapped to its k nearest neighbors in the table, eg.,

xi 7→ (yi1 , . . . , yik), (3.21)

In our approach, no bound is put on k, since we are interested in the collection of

points within ε > 0 of a point in Y . This query also yields a hash table as in 3.21,

except that each key xi now maps to a variable number of neighbors, say Ni. This

data structure yields the desired neighborhood graph Nε(Y ) = 〈V,E〉, with nodes

V = Y , and the edge set E formed from all sets of pairs {(xi, yij)}
Ni
j=1 in the hash

table of neighbors.

Given ε > 0, a finite data set Y , and the neighborhood graph Nε(Y ), we know

from Section 3.2 that Nε(Y ) can be expanded to a VR complex Rε(Y ). This is a

combinatorial problem that is now independent of the geometry of the underlying

space. We focus our attention on a partial expansion, constructing only the maximal

simplices of Rε(Y ).

(a) Clique complex (b) Simplices in S(Y )

σ

τ

(c) Simplices in T (Y )

Figure 3.6: (a) A neighborhood graph composed of 5 nodes. (b) The circumscribing
balls of the maximal simplices in S(Y ). The left and right balls (yellow with hatching)
indicate over counting. (c) The subset T (Y ) of maximal simplices after trimming.
The circumscribing balls are centered at the centroids of σ and τ .
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Let G = 〈V,E〉 be an undirected graph without self-loops, where V = V (G) is

the set of vertices and E = E(G) is the edge set. Recall that a clique is a subset

of vertices A ⊂ V such that there is an edge between each pair of vertices u, v ∈ A.

A maximal clique is a subset of vertices that cannot be expanded by the addition of

one more vertex. Given an arbitrary graph G the clique complex is an abstract sim-

plicial complex whose vertex set is V (G) and whose simplices consist of all complete

subgraphs in G [53]. The VR complex C for a neighborhood graph G is the maximal

clique complex for G. Hence, the maximal simplices in C are exactly the maximal

cliques in G.

The algorithm for finding maximal cliques is based on the one described in the

classic paper on the subject by Bron and Kerbosch in 1973 [20]. To give an idea

of how one constructs maximal cliques from a graph G, Algorithm BK reviews the

basic recursive algorithm developed by Bron and Kerbosch. Note that R and X are

initialized to the empty set when BK(V, ∅, ∅) is called. On recursive calls (line 10)

they are passed in non-empty. Neighbors of a vertex u are referred to by N(u). (The

algorithm in the form presented is from Cazals and Karnade [22].)
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BK(V,R,X)

1 if V = ∅ and X = ∅

2 Return R as maximal clique

3 else

4 Assume V = {u1, . . . , un}

5 for i = 1 to n

6

7 Rnew = R ∪ ui

8 Vnew = V ∩N(ui) // Nodes connected to nodes in R

9 Xnew = X ∩N(ui)

10 BK(Vnew, Rnew, Xnew) // Backtrack WRT ui

11 V = V − {ui}

12 X = X ∪ {ui} // Nodes already processed

The three sets in the BK algorithm are disjoint. Once a vertex u ∈ V has been

chosen, then within the recursive call on line 10, V and X are restricted to neighbors of

u. The recursion backtracks through these neighbors to guarantee that only mutually-

connected vertices are appended to R. Only when this subset of vertices has been

exhausted does the algorithm move on to the next vertex in V .

The BK algorithm can only discern that a clique is maximal or non-maximal after

all possible cliques have been formed. Therefore, all cliques are formed in BK. Signif-

icant reductions to the size of the recursion tree are possible through the introduction

of a pivot which truncates the tree and avoids repeating subtrees [22].

3.6.2 Trimming the Collection of Maximal Simplices

Let Sε(Y ) ⊂ Rε(Y ) be the set of maximal cliques in the neighborhood graph

Nε(Y ) at resolution ε. The example in Figure 3.6(b) shows the drawback inherent in
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Sε(Y ) with respect to an accurate analysis of an attractor using a data set Y . When

Nε(Y ) is expanded to a VR complex there are five 1-vertex cliques, six 2-vertex

cliques, and three 3-vertex clique. The 3-vertex clique is maximal as are the three

2-vertex cliques that include the two lower vertices. The vertices in the 1-simplices on

the left and right (yellow, hatched balls) are included in the two simplices highlighted

in Figure 3.6(c). The maximal simplices in Sε(Y ) are used to measure the number

of data points in a ball whose center is located at the centroid of the simplex. As

Figure 3.6(b) shows, without any modification the collection of maximal simplices

will, in general, measure points residing in different circumscribing balls multiple

times. We seek, therefore, to select an optimal subcollection of maximal simplices

that accurately approximates the density of points in an attractor. This problem is

an example of another classic problem in computer science, the set cover problem [24].

A

B

Figure 3.7: A set of nine points with six subsets. The optimal cover contains only
the two sets A and B.
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The set cover problem is defined as follows [24]: Given a “universe” X and a

family S of subsets of X, define a cover of X to be

C ⊂ S such that X ⊂
⋃
A∈C

A. (3.22)

A minimal set cover is a cover Ĉ such that the cardinality of C, denoted #C, is

minimal. The problem of finding the optimal set cover is NP-hard [24]. Figure 3.7 is

a basic example of consisting of a universe X of nine points. Each of the six rectangles

represents a set in S containing those points falling within its boundary. The minimal

cover consists of the subcollection {A,B}.

In the context of dynamical systems and simplicial measures, the universe is the

finite data set Y , the family S is, in general, the set of all possible simplices, and

the cover C is a subset of those simplices such that for all x ∈ Y there exists a

simplex σ ∈ C with x ∈ [v0, . . . , vn] = σ. If we restrict S to simplices in Sε(Y ),

then the minimal cover contains the least number of maximal simplices necessary to

cover Y . We term this the min-max cover. We use a greedy heuristic to obtain a

“good” minimal set cover using the greedy algorithm. It provides an approximation

(in polynomial time) of the true minimal cover. Because the algorithm is greedy it will

choose the sets A ∈ S that maximize |A∩ Y |. We describe this algorithm below [24]:

Set-Cover(X,S)

1 U = X

2 C = ∅

3 while U 6= ∅

4 Choose A ∈ S that maximizes |A ∩X|

5 U = U − A

6 C = C ∪ A

7 return C
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Each iteration of the while loop greedily chooses the largest set A ∈ S that has

not been considered yet to add to the cover C until all elements of U are covered.

On line 5, A is removed from U ; and on line 6 A is added to the cover C. The Set-

Cover heuristic exits the while loop and returns C precisely when Equation 3.22 is

satisfied.

The drawback of the Set-Cover heuristic is that nothing prevents it from re-

turning a cover composed of many overlapping sets, as long as those sets are greedily

chosen by line 4. Therefore, we implement a variant of the Set-Cover heuristic that

replaces line 4 to create a set C ′ that is a disjoint collection of sets:

Choose A ∈ S that maximizes |A ∩X| and A ∩ C ′ = ∅

In general,
⋃
A∈C′ A 6= X, so the above introduces an infinite loop into Set-cover

since, in general, it will never happen that U = ∅. There are ways to circumvent this

problem, which we detail below. In terms of understanding the natural measure on

the attractor of a dynamical system, though, C ′ presents us with the densest disjoint

regions in the finite approximation.

As mentioned, the while loop between lines 3 and 6 may never exit. We consider

an alternative way to check whether we have considered all sets in the family of sets

S.
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Disjoint-Set-Cover(X,S)

1 U = X

2 N = #X // Number of points in the “universe”

3 C = ∅

4 K = ∅ // Unique points checked

5 while S 6= ∅

6 Choose A ∈ S

7 K = K ∪ A // Add points in A to points checked

8 if |A ∩X| and A ∩ C ′ = ∅

9 S = S − A

10 C = C ∪ A

11 if #K = N : // Short-circuit if we’ve checked all points

12 return C

13 return C

There is a possible increase in complexity since Disjoint-Set-Cover may per-

form more loops in its search since it discards overlapping sets that otherwise would

have been chosen by Set-Cover. Yet, in practice Disjoint-Set-Cover the short-

circuit in line 11. Thus, even though Disjoint-Set-Cover does not cover every

point in the universe X, the sets of points that it does (greedily) cover a assured to

be the highest-density disjoint regions.

3.6.3 Lines of Local Maxima

The analysis of fractals by wavelet methods using the wavelet transform modulus

maxima (WTMM) method has proven remarkably successful since its introduction in

the early 1990’s. The key idea behind this method is the introduction of a variable

resolution “box”. In the case of the simplicial measure, these “boxes” are the maximal
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simplices at each resolution ε. Considering the suprema along a maxima line enables

a heterogeneous covering of the fractal by simplices of radius no greater than ε.

Figure 3.8: Graph structure showing the maxima lines for a Cantor set. The red
circles represent the location in the scale-space half-plane of the centroids of maximal
simplices. Only a small portion of the maxima lines “skeleton” is shown.

Consider Figure 3.8 showing a portion of the maxima lines “skeleton” constructed

using maximal simplices on the Cantor set. In practice, we construct a graph consist-

ing of nodes and edges. The nodes are situated at the centroids of maximal simplices.

The nodes are arranged vertically according to scale, in that each horizontal level con-

tains maximal simplices at a fixed resolution. Each horizontal layer of nodes consists

of the local maxima of the maximal simplices at that scale. The edges connect each

node at scale ε with its nearest neighbors in the spacial direction at the next smaller

scale ε′. For instance, in Figure 3.8 we see that this detects when the maxima lines

bifurcate at nodes at scale 2−4, with each node connecting to two node at scale 2−5.

In this way we create the maxima lines visible in Figure 3.8. The dyadic construction

of the Cantor set is clearly visible in graph.

Creating maxima graphs such as Figure 3.8 can be accomplished efficiently in

higher dimensions by creating layers of kd-trees [24] whose data is composed of the

local maxima of the maximal simplices. The power of this approach is that querying
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a node in a kd-tree at scale ε for its nearest neighbors at scale ε′ can be accomplished

in an algorithmically efficient manner.

The WTMM method works well for a subtle reason. When a wavelet’s width is

scaled by a factor of 2−j, its amplitude is scaled simultaneously my a factor 2j/2.

This enables the comparison of the wavelet transform of a function across scales,

since any loss of measure due to narrowing the “box” is compensated for in the

amplitude. We should mention that at this juncture the algorithms necessary to

utilize the maxima lines graph for the simplicial measure have proven effective only

on the Cantor set. One issue likely stems from the fact that in a structure without

an clear multiplicative structure, such as the Hénon attractor, the circumscribing

balls for the maximal simplices have a variable footprint. Hence, we find it difficult

to compare across scales in as uniform a manner as that afforded by the wavelet

transform.
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CHAPTER 4

APPLICATIONS

The analysis of dynamical systems using computational means is a non-trivial

endeavor. Simple examples that can be solved analytically are necessary to examine

the algorithms. In Chapter 3 we developed the computational algorithms necessary

to simplicial measure theory. In this chapter we apply the algorithms to a variety of

problems, from theoretical to real-world data

In Section 4.1 we show, using the Cantor set, that simplicial measure provide

impressive numerical approximations of the multifractal spectrum of attractors. A

traditional test piece for numerical methods applied to the study of dynamical systems

is the Henon map. Section 4.2 is devoted to a study of the fractal dimension of the

Henon map using simplicial measures.

In developing the computational methods in Chapter 3 the ultimate goal is to

apply them to data generated by mathematical models as well as data collected

from real sources. In Section 4.3, we demonstrate a mathematical model of a neural

network, first reported in [17], which generates a time series that shows the charac-

teristics of physiological systems using a couple of well-established metrics. Next, we

show in Section 4.3.8 that the multifractal spectrum, computed using the simplicial

measure, shows a range for the scaling exponent α close to that exhibited by healthy

physiological systems.

Lastly, in Section 4.5 we apply multifractal analysis to heartbeat data from healthy

and compromised subjects. In terms of the range of the scaling exponents, our results

results closely align with previous results of Ivanov, et al. [49].
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4.1 Cantor Set Results

Recall that the Cantor set is constructed by intersecting the images of an infinite

sequence of iterations of an iterated function system (IFS) acting on the unit interval.

The Cantor set can be approximated by a finite sequence of iterations the IFS. Sim-

ulating an attractor of a dynamical system which has the properties of a Cantor set

is accomplished by populating the finite set of intervals with various distributions of

points. By changing the distributions we obtain a spectrum of multifractal spectra,

an example of which is seen in Figure 4.3.

4.1.1 Approximation of the Attractor

We begin with a unit mass uniformly distributed across the unit interval E = [0, 1].

Thus µ(E) = 1. As in Equation 2.14 from Example 2.8, define the contractions of

the iterated function system as

S1 =
x

3
and S2 =

x

3
+

2

3
.

Let k ∈ N, and consider the approximation of the Cantor set, Fk. We approximate a

mass distribution on the Cantor set by studying the intermediate mass distribution

on Fk,

as in the example in Section 2.3 and as detailed in Falconer [36]. At the kth stage

in the construction of the Cantor set the subintervals consists of the union of all k-

length compositions of the contractions S1 and S2. The information about a particular

subinterval from this collection is recorded in the k-length vector (ii, . . . , ik), where

ij ∈ {1, 2}. Each subinterval is of the form Si1···ik(E) := Si1 ◦ · · · ◦ Sik(E), where

i1 · · · ik is shorthand for (ii, . . . , ik). Hence, we write Fk as the union of all of the
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subintervals,

Fk =
⋃
Ik

Si1···ik(E),

where Ik = {ii . . . ik | ij = 1, 2}.

As described in Section 2.3, we use the concept of a mass distribution in order

to introduce a multifractal measure on the Cantor set. Begin by choosing p1, p2 > 0

such that p1 + p2 = 1. For a fixed p1 and p2 the mass distribution for the first and

second levels are

µ(S1(E)) = p1 µ(S2(E)) = p2

µ(S2
1(E)) = p21 µ(S12(E)) = p1p2 µ(S21(E)) = p2p1 µ(S2

2(E)) = p22.

Let the number of subintervals be Lk = 2k. Enumerate the subintervals at the kth

level so that Fk =
⋃L=2k

i=0 Ei. Each subinterval Ei can be covered by a ball of diameter

3−k and has a mass of

µ(Ei) = pk1p
k−l
2 , (4.1)

where l denotes the number of 1’s in (i1, i2, . . . , ik).

4.1.2 Analysis of the Cantor Set

From the above framework we are able to analytically compute the multifractal

spectrum using the partition function methods described in Subsection 2.3.5.1 using

the measures of the subintervals from Equation 4.1. Recall the definition of the

partition function for a fixed resolution, or radius, r and the parameter q ∈ R:

Z(q, r) =
∑

B :µ(B)>0

µ(B)q.

In Figures 4.1(a) and 4.2(a), the numerous partition functions are plotted for values

the parameter q. Both figures show Z(q, r) for q ∈ {−2,−1, . . . , 10} in order from
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Figure 4.1: (a) Partition functions determined analytically for p = 0.5 and values of
q ∈ {−2,−1, . . . , 10}. The rate of change of the slopes between successive q values is
linear, as shown in Lemma 4.1. This observation implies that the β(q) curve is linear
with a slope of log 2

log 3
.

top to bottom. Recall that the slope of the linear regression curve to each partition

function yields a single value, β(q), which is plotted against q to obtain Figures 4.1(b)

and 4.2(b).

Note that when q = 0,

Z(0, r) =
∑

B :µ(B)>0

µ(B)0 = #{B : µ(B) > 0}, (4.2)

which simply counts the number of balls necessary to cover Fk. Thus, as previously

noted in Section 2.3, when the measure is excluded from the calculation and we obtain

the box-counting dimension of the Cantor set, which in both figures is log(2)
log(3)

. This

can be seen in both Figures 4.1(b) and 4.2(b) where β(0) = log(2)
log(3)

We are interested in the accuracy of our algorithms. We begin with the Cantor

set with p1 = p2 = 0.5. In this case we obtain the uniform Cantor set with no

complicated distribution of mass since µ(Si1···ik1(E)) = µ(Si1···ik2(E)) As can be seen
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Figure 4.2: (a) Spectrum of partition function curves determined analytically for
p1 = 0.2 and values of q ∈ {−2,−1, . . . , 10}. (b) The β(q) curve. For each q, the
slope of the linear regression curve to Z(q, r) is computed to give β(q). Note that for
q = 0 we get the box counting dimension of the set, log(2)/ log(3) ≈ 0.631.

in Figure 4.1(a), the slopes of the graphs of the − log(r) vs. log(Z(q, r)) change

linearly with q. This is a consequence of the following lemma.

Proposition 4.1. Let F be a Cantor set constructed with the contraction Si, where

i = 1, 2, . . . ,m and the contraction ratios are ci = c−1 for c > 1. Suppose that the

mass is distributed evenly such that µ(Si(I)) =
µ(I)

m
for each subinterval I. Then for

q ∈ R the slope of Z(q, r) can be determined by

β(q) = (1− q) logm

log c
.

Proof. Consider the kth level in the construction of F and let rk = ck be the radius

necessary to cover each subinterval by a ball Brk . Then µ(Brk) = 1
mk

since the mass

is distributed even amongst each subinterval at each level. Let x = 1
m

then the rate
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of change between rk and rk+1 is

log
(∑mk+1

i=0 x(k+1)q
)
− log

(∑mk

i=0 x
kq
)

− log(c−(k+1)) + log(c−k)
=

1

log c
log

(
mk+1(xkq+q)

mk(xkq)

)
(4.3)

=
log(mxq)

log c

=
log(m1−q)

log c

= (1− q) logm

log c
.

For the traditional, monofractal ternary Cantor set, m = 2 and c = 3−1. Thus,

using the linear regression slope at each q to approximate β(q) we obtain,

β(q) = (1− q) log 2

log 3
=

log 2

log 3
− q log 2

log 3
. (4.4)

This is exactly the line β(q) in Figure 4.1(b). This is indicative of the single scaling

exponent of log 2/log 3. In contrast to this single scaling exponent, when p1 = 0.2 and

p2 = 0.8 we obtain nonlinear changes between the slopes of the partition functions,

which yields the nonlinear β(q) curve in Figure 4.2(b).

Different values of p1 and p2 yield the “spectrum” of multifractal spectrum curves

in Figure 4.3(a). As p1 → 0.5, the corresponding β curves approach the linear curve

of the monofractal Cantor set. For values of q between 0 and 10, the fit of the

approximate β(q) curve to the analytically determined curve is excellent, as can be

seen in Figure 4.3. Yet, the approximation of the multifractal spectrum loses its tight

fit for q < 0. This is especially clear in Figure 4.3(b), and is a common problem

encountered in multifractal research. The issue is simple: When q < 0, the regions

with the least measure have a tendency to diverge [36]. To our knowledge, the method

that has proven most successful in accurately computing the multifractal spectrum
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for q < 0 is the wavelet transform modulus maxima method (see Section 2.4 or [2]).

Nevertheless, q < 0 falls outside of the the thermodynamic analogy, since physically

this implies a negative temperature.

0 5 10 15
q

10

5

0

5

β
(q

)

Analytic, p1 =0.2

Analytic, p1 =0.3

Analytic, p1 =0.5

Approx., p1 =0.2

Approx., p1 =0.3

Approx., p1 =0.5

(a) Analytic vs. Approximate Spectra
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Figure 4.3: (a) Analytic (solid lines) and approximate (markers) multifractal spectra
for Cantor sets with different mass distributions. (b) Curve correspond to error
between analytic and approximate curve for each p0 in (a). For 0 ≤ q ≤ 10 the
approximate curves are highly accurate compared to the analytic curves. For q < 0,
the error increases. Past research has encountered similar problems [6, 43].

It is useful for the sake of computational analysis to plot the β(q) curve for the

analytic and approximate cases. Yet, the ultimate goal of a multifractal analysis is

to understand the dimensions of the interwoven sets

Fα = {x : dimloc µ(x) = α}, (4.5)

over a range of α’s. Recall (Section 2.3.1) that

f(α) := dimH Fα.

We apply the simplicial measure to Equations (2.27) and (2.28) in order to compute

the f(α) spectrum for both mono- and multifractal measures on Cantor sets. For
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instance, the ternary Cantor set possesses a single scaling exponent, namely α∗ = log 2
log 3

.

This succinctly describes the fact that the measure is concentrated entirely on the

set Fα∗ = {x : dimµ(x) = α∗}. In addition, the dimension of Fα∗ is f(α∗) = log 2
log 3

.

Analytically this yields an f(α) spectrum that is a single point at (α∗, α∗). Given an

approximation of the ternary Cantor set, numerical inaccuracy due to the finite set

of points causes the graph of the f(α) spectrum in Figure 4.4(a) to spread a small

amount. Recall that (2.27) and (2.28) are implicit one-parameter functions of q.

When q = 0 we are simulating the box-counting method (Section 2.3.2 on page 14),

and expect that (α(0), f(0)) ≈ 0.631. This is indeed the case, as pointed out in

Figure 4.4(a). To obtain this plot we computed f and α for values of q between 0

and 10.

(a) p0 = 0.5 (b) p0 = 0.2

Figure 4.4: Approximation of the f(α) curve using Equations (2.27) and (2.28). (a)
A Cantor set with approximately 8000 points with p0 = 0.5. The fractal dimension
for q = 0 is approximately 0.631. (b) The approximation (red circles) of the f(α)
curve for a multifractal measure on the Cantor set, constructed with p0 = 0.2 and
approximately 12,000 points. The analytically-computed curve (blue line) is plotted
for comparison (−10 < q < 10). The values for q = 0 are marked. Both curves are
computed for positive values of q between 0 and 10.
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We next confirm that the simplicial measures detect the wider range of scaling

exponents present in a Cantor set supporting a multifractal measure. With p0 =

1 − p1 = 0.2 we obtain the f(α) spectrum (red circles) in Figure 4.4(b) for positive

q. (The approximate curve uses the same range for q as above.) We overlay this

onto this the f(α) curve plotted by analytically calculating the mass of each interval.

For this curve, value of negative q are stable and so we can fill out the other half of

the curve. We conclude from the results in this section that the simplicial measure

accurately captures the multifractal properties in the case of measures concentrated

on self-similar Cantor sets.

Notice that the dimension estimation is quite accurate. We find a small amount

of error in the values for α, especially when q is near zero (see Figure 4.4(b)). Recall

that the implicit value for α is actually obtain by computing the expected value 〈α〉.

This is a issue currently under investigation. We will encounter this again when we

extend these results to the more complex case of the Hénon attractor.

4.2 The Henon Map

The Henon map is a nonlinear map in two dimensions whose simple definition

belies its complexity. It is defined by

xn+1 = 1− ax2n + yn

yn+1 = bxn, (4.6)

for a, b ∈ R. Since its inception (see M. Hénon in [46]), it has provided an often-used

test bed example for both theoretical and computational multifractal techniques. For

certain parameter values the map is chaotic, including the canonical values a = 1.4

and b = 0.3 which are the most studied [6, 43]. Indeed, the parameter space itself
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Figure 4.5: Henon map with 5000 iterations with a = 1.4, b = 0.3.

yields an incredibly rich structure and has been a fruitful area of study [12, 14, 72].

Despite years of research, there is no analytic calculation of the multifractal spectrum

of the natural measure on the Hénon attractor.

We approximate the Hénon attractor by generating N iterates of (4.6). Though

we have effectively applied the simplicial measure and tidy cover algorithms to data

sets containing upwards of 50,000 points, we show results for N = 5000 and N = 8000.

The ranges of scales investigated are 2−10 ≤ ε ≤ 2−3 and 2−10 ≤ ε ≤ 2−4, respectively.

These approximations of the Hénon attractor consist of a relatively small number of

points. In fact, our results are impressive when compared to Arneodo’s [6], in which

one billion iterates were used. Arneodo, et al., obtain estimates of f(α(0)) ≈ 1.26,

whereas the Kaplan-Yorke estimate of the dimension of the Hénon attractor gives

f(α(0)) = 1.276±0.001 [11]. Using the implicit technique described in Section 2.3.5.2,

we compute an estimate of the f(α) spectra obtained using simplicial measures on

5000 and 8000 points and plot the result in Figure 4.6. We considered resolutions
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2−10 ≤ ε ≤ 2−4. For the case with 5000 points we clearly do not have the required

accuracy. Increasing the number of iterates to 8000 brings the estimate of the “ca-

pacity dimension”, when q = 0, to approximately 1.3, which is within 0.03 of the

Kaplan-Yorke estimate. These results agree well with past results [6, 43], while using

up to five order of magnitude fewer points. Of equal importance, the results show

the efficacy of using the simplicial measure to study the SBR measure on attractors

with scaling properties beyond those of “cookie cutter” sets such as the Cantor set.

0.95 1.00 1.05 1.10 1.15 1.20 1.25
α

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

f(
α
)

q=0, f(α)≈1.18

(a) N = 5000

0.9 1.0 1.1 1.2 1.3 1.4
α

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f
(α

)

q=0, f(α)≈1.3

(b) N = 8000

Figure 4.6: The f(α) singularity spectrum for an approximation of the SBR measure
on the Henon attractor.

An important issue to note is the range of smaller range of scaling exponents α

in the f(α) curve. In Figure 4.7 we have overlayed the f(α) curve from Figure 4.6(b)

(blue circles) with an image of the f(α) curve plotted in Arneodo [6] (black line).

(The two outer lines in the Arneodo plot are from various approximations. See [6] for

more details.) At the apex of the curve, we see that the dimension of the set for which

α(0) ≈ 1.3 is similar to that found by Arneodo, et al.. The range of α computed using

the simplicial measure on 8000 points, though, is not as great (does not extend as far
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to the left) as the range for α in Arneodo’s work. Nevertheless, the approximation

near the apex of the curve, for positive values of q near 0, is impressive.

4.3 Neural Networks

Much of the work presented in the previous chapters resulted from a desire to

analyze a certain mathematical model of a network of neurons and understand its

“robustness”. We describe the mathematical model as a proxy for a physiological

system below, as well as the motivations for studying it. The notion of a robust versus

a compromised system is inherent to this study. We touch on this first, then describe

various techniques that our collaborators have developed to study the robustness of

a physiological systems. These tools have proven effective at classifying real-world

dynamical systems. Nevertheless, they proved less than ideal for optimization of a

mathematical model. This led to exploration of new techniques, culminating in the

simplicial measure technique in Chapter 3. In the following subsections we describe

results obtained for mathematical models of neural networks, and discuss some of the

difficulties encountered when trying to extend these.

4.3.1 Motivation For studying Neural Networks

Measuring an output of a physiological system provides a window into its complex

multi-scale dynamics. The measurements are often spread over time and many tech-

niques of time series analysis have been used to gain an insight into the underlying

physiology. Some of the most intriguing observations indicate that the complexity of

the time series produced by a free-running physiological system, as measured by De-

trended Fluctuation Analysis (DFA), Multiscale Entropy (MSE) and other methods,

is correlated to the robustness and health of the physiological system. More precisely,
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Figure 4.7: Overlay of the f(α) spectrum from Figure 4.6(b) (blue circles) and the
f(α) spectrum from Arneodo, et al., “Fractal dimensions and f(α) spectrum of the
Henon attractor” [6] (solid black line). This is the result of 108 iterates of the Hénon
map and was obtained by computing the Legendre transform of the Dq spectrum (see
Section 2.3.5.1).

analysis of time series gathered from the measurement of cardiac inter-beat intervals,

oscillations of red blood cells, gait analysis, and other patterns observed in living

organisms suggests that healthy systems produce complex time series, while com-

promised systems produce either very simple periodic signals, or completely random

signals [26, 28, 41, 40, 66, 64].

The potential diagnostic and therapeutic consequences of this hypothesis demand

studies that go beyond passive analysis of existing data. What is needed is a model

which reproduces observed characteristics of physiological signals and thence can

be actively tested. Ideally, such a model would be based on our knowledge of a

complex system. However, it has proved challenging to construct a dynamical system-

based model that reproduces the statistical characteristics of physiological time series.

The only successful attempt was a discrete map with added noise which partially

reproduced some of these characteristics [65].
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The central aim of our work is to construct a deterministic FitzHugh-Nagumo-

based neural network model which exhibits the complex signatures measured by DFA

and MSE metrics in physiological signals. We study the dependence of these metrics

on the length of the computed time series and initial conditions used. Note that this

issue has relevance to the analysis of experimental time series. One tacitly assumes

that the analyzed series represents the steady response of the system, which does

not depend on initial data, or the time when the measurements started. The longer

the time series, the more time the system has for the initial data effect to “average

out”. While these assumptions are satisfied if the deterministic system is ergodic and

stationary, we can test them directly in our model.

The model consists of a network of five excitatory cells and five inhibitory cells.

The structure and dynamics of the network are based on the work of Terman [74]

modeling the structure of the hippocampus. Analyzing the time series of averages

from the excitatory cells’ voltage potential, we show that it matches the DFA and MSE

measurements of complexity for free-running physiological systems across a range of

time scales. These results do not depend on the initial conditions used. Furthermore,

we show that the range of complex behavior grows when we increase the length of the

time series from 15, 000 to 100, 000 (in arbitrary units), but does not grow further,

when we extend the length to 400, 000.

This indicates that the system has a certain capacity for complexity which does

not depend on initial conditions, and which is recovered from data of finite length.

4.3.2 Neural Network Model

We create a bipartite graph G = 〈VE, VI , A〉, where VE consists of excitatory

nodes, or cells, VI consists of inhibitory cells, and A is the set of directed edges which
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Figure 4.8: A neural network with ten cells. Inhibitory cells (I) are represented by
blue squares, excitatory cells (E) by red ellipses. The subgraph of I cells is completely
connected. E → I and I → E edges are created with probability lnN

N
. E → E edges

are not allowed.

consists of the following types of connections:

ej → ik, ik → ej, and ik → ik′ , k 6= k′,

where e denotes an excitatory cell and i denotes an inhibitory cell; j ∈ {1, . . . , n} and

k, k′ ∈ {1, . . . ,m},and n = |VE|, m = |VI |. Excitatory cells do not connect to other

excitatory cells in order to avoid the blow-up of the solutions due to runaway positive

feedback. The subgraph VI is complete. We construct the remaining connections

randomly by selecting the ej → ik and ik → ej edges with probability ρ = (lnN)/N ,

where N = n + m. Figure 4.8 shows a sample neural network. Edges are weighted

by a maximal conductance constant which depends on the type of connection. We

represent these weights by gIE, gEI , gII ∈ (0, 1), where the subscripts E and I

denote excitatory and inhibitory edges, respectively, and gxy specifies the weight for

the directed edge x→ y.
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4.3.3 FitzHugh-Nagumo Equations

The following system of coupled differential equations describes the behavior of each

cell in the graph defined above [74]. All units are arbitrary.

Inhibitory cells:

dv

dt
= v − v3

3
− w − gII(v − vI)

(∑
sk

)
− gEI(v − vE)

(∑
sj

)
+KI(t)

dw

dt
= ε(v − bw + c)

ds

dt
= αI(1− s)h(x, θx)− βIs

dx

dt
= ε[αx(1− x)h(v, θI)− βx x]. (4.7)

Excitatory cells:

dv

dt
= v − v3

3
− w − gIE(v − vI)

(∑
sk

)
+KE(t) (4.8)

dw

dt
= ε(v − bw + c)

ds

dt
= α(1− s)h(v, θ)− βs, (4.9)

In general, the coupling variable s represents the fraction of open synaptic channels.

The coupling sums,
∑
sk and

∑
sj, are limited to those cells connecting to the given

cell; sk is the input from an inhibitory cell, sj is the input from an excitatory cell.

A direct synapse is one in which the postsynaptic receivers are themselves ion

channels. In equations (4.9) an excitatory cell is modeled with a direct synapse. The

function h is a steep sigmoidal curve allowing for a very rapid, but still continuous,

activation of the synaptic processes. Once the voltage potential v crosses θ the synapse

activates (h turns on) and an impulse travels to connected cells.
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Figure 4.9: (a) Time series for a simulation run for 15000 “seconds” (units are ar-
bitrary). (b) The DFA curve exhibits two trends: at short scales we observe auto-
correlation effects due to deterministic ODE solver, at longer scales we find a scaling
exponent of β = 1.063, similar to physiological systems, though over a shorter range.
The relatively short time series produces more variability in the higher window sizes
since the number of data points used to calculate the DFA becomes small. (c) Sample
entropy SE(τ) = SE(m, δ,N, τ) is calculated for τ = 1, 5, . . . , 37, m = 7, and δ = 0.2.
The length, N , of the coarse-grained time series depends on τ . The MSE curve has
an average of SE = 0.35. The variance of V ar(SE) = 0.003 is larger than in longer
simulations. As in (b), this greater variability is due to the relatively small number
of data points in the original time series.

An indirect synapse, where the postsynaptic receivers are not ion channels, is

modeled by adding the delay variable x. All inhibitory synapses in our model are

indirect. The activation of the synaptic variable s relies on x, not v as in a direct

synapse. In the bottom equation of (4.7), v must first reach the threshold θI in order

to activate x. After this delay, x goes on to activate s. Each cell is assigned a unique

ε � 1. If the cell oscillates when disconnected from the other cells, ε is inversely

proportional to the period of this oscillation. The constants vE and vI are reversal
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potentials for excitatory and inhibitory cells, respectively. The maximal conductance

constants gIE, gEI , gII weight a cell’s input by multiplying the coupling terms.

The parameters α, αI , αx, β, βI , βx ∈ R are rates at which the synaptic variables,

s and x, turn on and off. The linear recovery term is specified by the parameters

b, c ∈ R. And the KE and KI terms represent external input to the system. In order

for cells to enter an excitatory state a small amount of input must be applied to the

system. For simplicity we use constant input. The complete set of parameters used

is listed in the Appendix.

4.3.4 In-Silico Neural Network

An in-silico neural network,N is constructed from the following constituent pieces.

The structure and behavior of the network is specified in a graph G composed of cells

whose behavior is described by (4.7) and (4.9). A parameter set P contains fixed

parameters for the FitzHugh-Nagumo equations. Thus, 〈G,P 〉 generate a unique

neural network N used for simulations.

1 2 3
log(w)

-1

0

1

2

lo
g 

F
(w

)

log F(w)
log F(w), ε/10 
Linear reg slope = 1.05
Linear reg slope = 1.43

Figure 4.10: DFA curve from an initial ε distribution (solid blue), and the DFA curve
obtained by dividing each ε by 10 (dashed purple).
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4.3.5 Time Series Analysis

Solving the above system of ODE’s with an adaptive step solver results in a set

of solutions for each cell. The voltage potentials, vj(t), from all excitatory cells are

averaged at each time step to give a time series g(t). The analysis techniques require

equally spaced time steps. Since an adaptive step algorithm returns irregularly spaced

time steps we construct a new time series by partitioning the time axis into bins and

averaging over these bins, giving a time series composed of the values

ḡ(n) =
1

κT

(n+1)(κT )∑
i=n(κT )

g(i), (4.10)

where n = 0, 1, . . . , L = bM
κT
c, M is the length of g(t), and κ is chosen so that each

bin contains a minimum number of points. Note that a small tail of the original time

series must be discarded. We apply the following techniques to series ḡ(n).

4.3.6 Detrended Fluctuation Analysis

Detrended fluctuation analysis is a statistical method developed to determine long

term trends in time series [63, 64]. Given a time series of length N , it is first integrated

at each point to give a function y(t) =
∫ t
0
g(s) ds. The time axis is then partitioned

into windows of length w. Next, a linear regression line, yw(t), is fit to the integrated

curve for each window. The root-mean-square of the detrended curve y(t) − yw(t) is

calculated, giving the detrended fluctuation value for a window size w:

F (w) =

√√√√ 1

N

N∑
k=1

(y(k)− yw(k))2 ,

where yw is understood to be the linear regression to y defined piecewise over each

window of length w. F is computed for a wide range of window sizes and typically
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Figure 4.11: (a) Time series from simulating N for 100000. (b) The region of phys-
iological complexity for the DFA curve extends from w = 101.3 to w = 103.5. For
windows larger than 103.5 we observe a new, flat trend indicating that the time series
generated by N is devoid of long range correlations for these larger windows. (c) The
MSE curve is relatively constant over a large number of scales indicating physiological
complexity in the time series. The average sample entropy for τ ≥ 5 is SE = 0.34,
with a variance of V ar(SE) = 0.0007.

increases monotonically. Power law scaling exists in the time series when a log-log

plot produces a linear relationship.

4.3.7 Multiscale Entropy

Multiscale entropy [27, 28] simulates the sequence of refinements in the definition

of Kolmogorov-Sinai (KS) entropy [52]. In the case of MSE, though, we are interested

in the evolution of the entropy across these refinements, and not their limit. Suppose

we obtain a time series g(t) by taking measurements of an experiment. This gives

a sequence of data points {g(0), g(1), . . . , g(N)}. MSE simulates the situation where
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we perform the identical experiment with less time accuracy. A time series for this

situation is constructed through coarse graining, or partitioning the time axis of the

original series into blocks of size τ ∈ N and averaging the data over these windows.

Thus, each coarse grained time series is composed of the points

gτ (n) =
1

τ

(n+1)τ∑
k=nτ

g(k),

where n = 0, 1, . . . , L = bN/τc.

The entropy of this new time series {gτ (0), gτ (1), . . . , gτ (L)} is estimated using

sample entropy [68]. Sample entropy views a time series as a sequence of random

variables and measures the creation of information by computing the correlation be-

tween delay vectors of length m and m+ 1.

In order to define sample entropy, fix τ and set gτ (i) = xi. Given m, let um(i) =

{xi, xi+1, . . . , xi+m} be a delay vector of length m, and define the number of vectors

close to um(i) as nmi (δ) = #{xm(j) : d(xm(i), xm(j)) < δ} where δ > 0 is some

tolerance and

d(um(i), um(j)) = max
0≤k<m

{| xm(i+ k)− xm(j + k) |}.

There are N(m) = L −m full length vectors um(j), excluding the possibility of self

matches. The probability of finding the vector um(j) within a distance δ of um(i) is

Cm
i (δ) =

nmi (δ)

N(m)
. (4.11)

For the parameter m the probability that any two vectors are within δ of each other

is

Cm(δ) =
1

N(m)

N(m)∑
i=0

Cm
i (δ) (4.12)
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The above correlation integral is used to define the sample entropy for the delay m,

tolerance δ, and time series length L as

SE(m, δ, L) = − ln
Cm+1

Cm
.

Cm+1/Cm is commonly thought of as the information gained as the trajectory moves

from time mτ to (m+ 1)τ . A larger difference between Cm and Cm+1 results in more

information, i.e., a higher value of SE. For a fixed value of m the graph of the sample

entropy over a range of τ ’s provides a measure of the amount of long range correlation

in the time series. A relatively constant amount of entropy across many values of τ

signifies correlations amongst data points over multiple time scales. For instance,

1/f noise which is highly correlated across time scales yields a constant MSE curve.

In contrast, white noise is monotonically decreasing since it possesses no long range

correlations.

4.3.8 Results

Consider an in-silico neural network N as defined in Section 4.3.4. We construct

the time series of voltage potentials ḡ(n) by choosing a set of initial conditions and

solving the system of differential equations over the time interval [0, N ], then per-

forming the binning procedure described in (4.10). The units of time are arbitrary.

Figure 4.9 shows the time series, DFA curve, and MSE curve for a simulation of

N run for N = 15000. In Figure 4.9(b), the scaling exponent β = 1.063 over the

range of window sizes w = 101.3 to w = 102.7. Thus, running N for a relatively short

simulation produces power law scaling similar to a physiological system over the range

(1.3, 2.7) for the total length of range 1.4. This range of scales where β ≈ 1 is shorter

than that typically seen in biological systems, where the range typically has length

greater than 3. The DFA curve extracted from our simulations has three distinct
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regions. In the first region, where w < 101.3, the linear regression deviates from the

power law β ≈ 1 due to autocorrelation effects on short scales, which are caused by

the deterministic ODE solver. These effects dominate at scales much smaller than

the highest frequency cellular oscillations, which can be estimated from the largest ε.

Figure 4.10 illustrates this effect; we compare the DFA curve in Figure 4.11(b) to the

curve obtained after dividing by 10 all of the ε’s used in generating Figure 4.11(b).

The deterministic portion extends to higher scales because the highest oscillation

frequency decreased by a factor of ten. This also illustrates the importance of the

choice of ε’s on the DFA curve. In order to avoid these deterministic effects we focus

(for the original set of ε’s listed in the Appendix) on power law scaling in the second

region, where w > 101.3.

In Figure 4.9(b) we see that N produces physiologically complex behavior in the

region w > 101.3, which ends at w = 102.7. By increasing the length of the time series

(Figure 4.11(b)) the second region extends past w = 102.7 to w = 103.5 showing that

N continues to introduce complexity into the time series past the scale limits imposed

by the short simulation in Figure 4.9. The second region terminates in Figure 4.11(b)
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Figure 4.12: The DFA curve after simulating N for N = 400000. The region of
complexity remains unchanged from that seen in Figure 4.11(b). This implies that
N has an inherent limit for generating long range correlations.
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Figure 4.13: (a) Time series resulting from choosing a different initial condition for
the excitatory cell e1 compared to Figure 4.11 and simulating N for N = 100000.
(b) The DFA curve exhibits a nearly identical scaling exponent β = 1.10 over the
middle region as the curve in Figure 4.11(b). Long range correlations are unaffected
by initial conditions. (c) The MSE curve has slightly different values at the various
scales, but the average entropy for τ ≥ 5 is SE = 0.34 which is identical to that
produced by N in Figure 4.11. The variance V ar(SE) = 0.0003 is similar as well.

at w = 103.5, where a third region with no long range correlation begins. Extending

the length of the simulation to N = 400000 yields the DFA curve in Figure 4.12,

where this third region extends to larger window sizes. Clearly the extension of the

time series fails to find longer range correlations in the time series. We conclude that

the system N has an upper limit w = 103.5 on the length of long range correlations

it can generate.

The longer time series yields an MSE curve that is relatively constant, mimicking

the behavior observed in simulation of 1/f -noise as well as free-running physiological

systems. It maintains an entropy level nearly identical to the MSE curve in Fig-
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ure 4.9(c). Indeed, the average entropies for τ ≥ 5 are SE = 0.34 and SE = 0.35,

respectively. region where the MSE curve is most nearly constant with the least

amount of variation.) The MSE curve in Figure 4.9(c) derived from the shorter time

series suffers larger variations due to coarse graining effects on the relatively low

number of data points in the original series. Nevertheless, as the comparison of the

averages shows the MSE and sample entropy measures for shorter simulations are

consistent with the results from longer simulations, and still provide good insight

into the complexity of the network.

Furthermore, the behavior of N does not depend on initial conditions as we con-

firm by choosing random initial conditions for excitatory cells uniformly in the interval

(−5, 5). To illustrate, we present a typical case in which we alter the initial condition

of one excitatory cell, e1. Figure 4.13 shows the time series and related analysis

obtained by using a random initial condition. Comparison of the time series in Fig-

ure 4.13(a) to the one in Figure 4.11(a) shows minor differences. Importantly, the scal-

ing exponent for the DFA curve in Figure 4.13(b) differs from that in Figure 4.11(b)

by less than 0.01. The mean value of the entropy for both MSE curves is SE = 0.34.

Figure 4.14 shows a comparison of the MSE curves from Figures 4.11(c) and 4.13(c).

In the MSE curve resulting from the random initial condition each SE(τ) value is

slightly perturbed from the original, but the general behavior of the MSE curve re-

mains unchanged. Thus, long range correlations and entropy are independent of the

initial condition used for simulating N .

The link between the complexity of a time series produced by a free-running

physiological system and that system’s robustness and health has potential applica-

tions in the diagnosis and treatment of physiological ailments. To make the leap to

clinical applications, this observed correlation must be put on a firmer footing by

understanding more precisely the causal link between the dynamics and structure of
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Figure 4.14: Comparison of MSE curves for the initial condition used in the simulation
in Figures 4.9 and 4.11 and a randomly chosen initial condition for the excitatory cell
e1. For τ ≥ 5, SE(τ) = 0.34 for both curves. The original initial condition is −0.5;
the randomly initial condition is 0.7957.

the system on one hand, and the time series structure on the other. Mathematical

models will play a decisive role in this process, since they allow for direct testing of

this connection.

It has proven quite challenging to construct such models. We report here on

a successful attempt, where we show that a randomly connected small network of

FitzHugh-Nagumo neurons can reproduce detrended fluctuations and multiscale en-

tropy observed in physiological time series. In analyzing this model, we have found

that when the length of the time series exceeds some critical length, the DFA and MSE

measurements from the time series remain relatively constant, and, in addition, they

do not depend on initial conditions. This confirms that the statistics computed from

the time series reflect properties of the underlying system, rather than the particulars

of the measurement process.

In addition, we have made two important observations. Firstly, given a neural

network N and simulations of various lengths, the intrinsic complexity of the signal

is maintained over a wide range of time series lengths. This is key for computations
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Figure 4.15: (a) The times series g(t) generated by the average excitatory voltage of
the network of neurons in Figure 4.8. (b) The multifractal spectrum for the density
of g(t) computed using the simplicial measure.

involving optimization of network topology and parameter sets. It allows us to run

large batches of simulations, each for a relatively short amount of time, confident

that physiological complexity seen in the resulting time series coincides with that of

a longer series.

Secondly, there exists a finite range of time scales over which the network displays

complex behavior. This shows that the network N has a distinct limit to its capacity

for complexity and is incapable of producing complexity at every time scale. This

result serves to clarify the boundaries of an in-silico neural network’s complex behav-

ior. Thus, we can determine the upper bound of complexity inherent to each network

and optimize with respect to this measurement as well. Future work will focus on

expanding this boundary by optimizing over network size and coupling strengths.

The ultimate test of our model, however, is its ability to match concrete exper-

imental physiological data. We are currently collaborating with a group that has

access to clinical data for both healthy and compromised individuals to see whether
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our model can simulate the statistics of physiological measurements obtained from

both of these groups.

4.4 Multifractal Analysis of Neural Networks

Physiological systems have been shown to exhibit a wide range of fractal behav-

iors [25, 37, 42, 49]. The results in 4.3 are aimed at developing a computational model

that reproduces this behavior, and that can be probed and studied. The long-term

goal in developing the simplicial measure and the computational techniques behind

them is to analyze real-world dynamical systems and mathematical models of those

systems. We have applied these techniques to the average excitatory voltage time

series from Section 4.3. Call this time series g(t).

(a) Healthy Individual (b) Compromised Individual

Figure 4.16: (a) and (b) show snapshots of inter-beat interval time series recorded for
a patient with congestive heart failure and a healthy individual, respectively.

A closeup of g(t) is shown in Figure 4.11(a). As mentioned above, we found that

the series exhibits physiological complexity when analyzed with the DFA and MSE

metrics (Figures 4.11(b) and 4.11(c)). Indeed, by using the simplicial measure to

compute the f(α) spectrum for g, we see a relatively wide range of scaling exponents,



100

which has been shown to be indicative of a healthy, free-running system. This confirms

the earlier results for the excitatory time series when analyzed using DFA and MSE.

The scaling range of α is not as wide as the physiological system investigated in [49],

but that is to be expected as the size of the system is far smaller.

4.5 Application to Physiological Data

We end this chapter with an analysis of human heart beat data. Recall that the

health of a free-running physiological system has been correlated to the complexity

of time series gathered from measuring the system. As noted in Section 4.3.1, many

studies of physiological system have bolstered this hypothesis [26, 28, 41, 40, 66, 64].

We obtained data from PhysioBank [41], a database containing thousands of recording

of numerous physiological processes. The following time series were studied:

i. RR intervals for a healthy, sleeping individual (Ironman contestants);

ii. RR intervals for an individual suffering from congestive heart failure.

The term “RR interval” refers to the the time interval, in milliseconds, between

heart beats when analyzed with a traditional electrocardiogram (ECG). These are the

gaps between the main peaks visible in an ECG. In what follows we have analyzed

the density of the inter-beat interval signal. Examples of inter-beat interval graphs

are plotted in Figures 4.16(b) and 4.16(a).

Recall from Section 2.4 on page 30 that the magnitude of the wavelet transform

applied to a discrete data set is proportional to the density of points in a small region

around the center of the wavelet. The modulus of the wavelet transform of a function

f at scale a is proportional to the difference quotient of f over an interval of length a

about the center of the wavelet. Thus, we can approximate this density of points in a
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Figure 4.17: Multifractal spectra for a distribution derived from the time series in
Figure 4.16 computed using the simplicial measure. The spectrum from a healthy in-
dividual (blue circles) produces a wider range of scaling exponents than the spectrum
for the CHF patient (green squares), indicating greater complexity in the time series.

small interval by computing the absolute value of the difference quotient of f across

this interval. In this way, we approximate a distribution.

For the individual reporting congestive heart failure, we compute the f(α) spec-

trum (green squares) in Figure 4.17, which clearly shows a very narrow scaling range.

The scaling exponents α range from approximately 0.74 to 0.78. This result agrees

with previous results for wavelets applied to inter-beat time series reported by Gold-

berger, et al. [42] and Ivanov [49]. Alternatively, the spectrum for the healthy indi-

vidual’s inter-beat recording in Figure 4.17 (blue circles), contains a far wider range

of scaling exponents. In this case, we find that α ranges from approximately 0.65 to

0.85. The width of the ranges for α found in both cases agree with the ranges seen

for Hölder exponents when using wavelet analysis in results of Ivanov, et al.. [49].



102

4.6 Summary of Results

We study dynamical systems of varying complexity in the sections above, utiliz-

ing the simplicial measure as the basis for approximating the SBR measure on the

attractor. In the case of measure concentrated on the Cantor set, the approximation

of the multifractal spectrum is nearly exact (for q > 0). For both the Cantor set and

Hénon attractor, the simplicial measure efficiently computes the fractal dimension of

the support of the SBR measure with a high degree of accuracy. In the case of the

Hénon attractor, we note two important points. First, there is a shift in the scaling

exponent. This is likely due to numerical error. Nevertheless, the computation of

the dimension of the attractor (f(q)) is still highly accurate–and our method uses

approximately five orders of magnitude fewer points to compute the f(α) spectrum

than previous experiments.

The long-term thrust of this work, though, is towards applications to mathematical

models as well as the analysis of real-world data. In Sections 4.4 and 4.5 we have

demonstrated that the simplicial measure can be used successfully to study these

more complex systems. Working with a neural network that has been shown to

produce time series that are physiologically complex, we are able to confirm these

physiological characteristics by studying the range of scaling exponents in the f(α)

curve. Bolstering these results are the analyses of heart beat time series. Again,

previous results have shown a marked decrease in the range of the scaling exponents

α in the computation of the f(α) curve for time series obtained from individuals with

compromised health. The comparison of the curves in Figure 4.17, computed using

our methods, shows definitively that we are able to differentiate time series from

healthy and compromised individuals based on multifractal analysis using simplicial

measures.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

Investigation of complex natural phenomena uses increasingly sophisticated math-

ematical tools. Numerous methods have been developed to understand and quantify

trends in data collected from complex, real-world systems, as well as dynamical sys-

tems modeling such systems. Often as important is an understanding of system’s

qualitative behavior. In this manuscript we have developed and applied a new tech-

nique to distinguish qualitative invariants of dynamical systems. We have concerned

ourselves with questions focusing on what can be learned from the observation of,

and the acquisition of data from, a dynamical system. In particular, we have studied

the Sinai-Bowen-Ruelle (SBR) measure on an attractor of a dynamical system.

The study of the SBR measure µ on an attractor A of a dynamical system f makes

use the ergodic averages,

µ = lim
N→∞

1

N

N−1∑
i=0

δf i(x),

discussed in Section 2.1. We have approached this problem from a new direction,

constructing approximations of the measure µ in a local manner. Specifically, given a

finite data set Y = {x, f(x), f 2(x), . . . , fN(x)} and a scale ε, we have approximated

the density of the mass distribution on A by constructing a neighborhood graphNε(Y )

on Y . We have shown that the extension of the neighborhood graph to a Vietoris-

Rips complex, Rε(Y ), contains within its maximal simplices an approximation of the

local density at scale ε. We termed this the simplicial measure ν.

We then demonstrated, for µ concentrated on a multiplicative set in one dimension,

that µ is approximated to arbitrary precision by ν. Hence, we can utilize the simplicial

measure to approximate the multifractal spectrum of µ. In addition, there is a rich

tradition of using wavelets to analyze fractal signals, and we have shown that the
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simplicial measure agrees with the Haar wavelet transform of µ on such multiplicative

sets.

The original purpose in developing the simplicial measure was to study complex

systems. In order to show the efficacy of the simplicial measure we used it to ap-

proximate the measure on a number of data sets. We first considered precisely con-

structed mathematical sets. In one dimension, these sets included approximations of

both mono- and multifractal measures supported on the Cantor set. The multifractal

spectrum computed using the simplicial measure was demonstrated to be impressively

accurate for non-negative values of q in the partition function.

In two dimensions we have studied the Hénon map, which is a common test

piece for computational methods in dynamical systems. Our methods do not exhibit

the same range as seen in previous work [6] of the scaling exponent α in the f(α)

multifractal spectrum. Nevertheless, we attain very good results for the range of

f(α), and an accurate approximation of the dimension of the support of the measure,

using at least four orders of magnitude fewer points.

Time series obtained from healthy versus compromised physiological systems have

previously been shown to exhibit qualitative differences. In [17], we produced by a

mathematical model of a neural network that showed characteristics of a healthy

physiological system, according to metrics utilized by specialists in the field [30, 42,

50, 64]. In Section 4.4 we studied the density distribution computed from the time

series of the average voltage potential of the excitatory cells. We found that the

range of scales for α, as well as the dimension for f(α), in the multifractal spectrum

is indicative of healthy physiological systems, using [50] as a comparison.

To apply our methods to real-world data, we chose to use RR intervals for heart

beats as explained in Section 4.5. As noted in [49, 50], the range of scales seen in

plots of the multifractal spectra vary greatly depending the health of the individual.
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Again studying the distribution determined from the time series, we applied the sim-

plicial measure technique to the computation of the multifractal spectra. Our results

showed a wide range of scaling exponents in the multifractal spectrum computed from

the time series of a healthy individual, while the compromised individuals showed a

markedly smaller range of scaling exponents. The size of the ranges for α agree with

those of Ivanov, et al. [50]. It should be noted, though, that the values for α computed

using wavelets in Ivanov, et al., are shifted from those computed in Chapter 4. This

area of research is still young, and we are currently investigating these questions.

5.1 Future Work

Finally, we would like to indicate paths that we plan to follow for further research.

The results that we obtained for the Hénon attractor, while impressive, left room for

improvement. We would like to investigate ways to bring the range of α closer to

the range seen in the earlier work of Arneodo, et al.. Also along this path, we would

like to guarantee that a comparably small number of points are used in extending the

range of α. This path is computational in nature, and will involve a refinement of

the current Vietoris-Rips construction algorithm.

The core of this dissertation, though, sits at the intersection of complex, phys-

ical systems and computational methods of dynamical systems. Thus, we plan to

study further the physiological results described in Section 4.5, as well as extend the

techniques to other complex systems, both in the real-world and modeled. After all,

questions about complex systems from a wide range of fields deserve our full attention

as scientists and mathematicians.
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PARAMETERS USED TO GENERATE RESULTS FOR NEURAL NETWORK

SIMULATIONS
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The network N used in Section 4.3.8 is generated by the 10-cell graph in Figure 4.8

with the parameter set P listed in the following tables.

Table A.1: Parameter set for neural network N , excluding ε’s
α αI αx β βI βx gEI gIE gII
4.0 4.0 1.0 0.1 0.1 4.0 0.4 0.4 0.4

vI vE θ θI θx b c KI KE

3.0 0.1 0.1 0.1 0.1 0.8 0.7 0.28 0.35

Table A.2: ε set for N

Excitatory

ε1 0.08456607
ε2 0.00043158
ε3 0.00068327
ε4 0.06293498
ε5 0.00537958

Inhibitory

ε1 0.00017724
ε2 0.03678080
ε3 0.05379177
ε4 0.00140943
ε5 0.00037465
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