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Abstract

Motivated by (continuous) facility location, we study the problem of dispers-
ing and grouping points on a set of segments (of streets) in the plane. In
the former problem, given a set of n disjoint line segments in the plane, we
investigate the problem of computing a point on each of the n segments such
that the minimum Euclidean distance between any two of these points is
maximized. We prove that this 2D dispersion problem is NP-hard, in fact, it
is NP-hard even if all the segments are parallel and are of unit length. This
is in contrast to the polynomial solvability of the corresponding 1D problem
by Li and Wang (2016), where the intervals are in 1D and are all disjoint.
With this result, we also show that the Independent Set problem on Colored
Linear Unit Disk Graph (meaning the convex hulls of points with the same
color form disjoint line segments) remains NP-hard, and the parameterized
version of it is in W[2]. In the latter problem, given a set of n disjoint line
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segments in the plane we study the problem of computing a point on each
of the n segments such that the maximum Euclidean distance between any
two of these points is minimized. We present a factor-1.1547 approximation
algorithm which runs in O(n log n) time. Our results can be generalized to
the Manhattan distance.

Keywords: Dispersion Problem, NP-hardness, FPT, Manhattan Distance,
Geometric Optimization

1. Introduction

Dispersion problems belong to the classic facility location problem and
have been extensively studied. The goal of such a problem is to build facilities
so that they are as far as possible. A typical example is to build a chain of
convenience stores such that they should be far from each other to cover more
customers. As a matter of fact, a series of research has been done, either over
a point set or over a weighted graph [2, 6, 7, 10, 18, 19, 20].

In [12, 13], Li and Wang studied an interesting variation of the problem,
where one is given a set of disjoint intervals in 1D and the objective is to
put one point on each interval such that the minimum distance between
any two of these computed points is maximized. Assuming the intervals are
sorted, an optimal linear time greedy algorithm was given (but the analysis
is non-trivial). The scenario corresponding to this problem can be considered
as constructing resting areas along a highway, where each interval is some
section suitable for constructing a resting area.

A natural question arises: what if we are given some disjoint (rectilin-
ear) segments (where each segment is part of a street)? (Here the objective
function is the same while the distance could be either Euclidean (L2) or
Manhattan (L1).) We show that this problem is NP-hard; in fact, NP-hard
even when all the segments are parallel (i.e., along one direction) and are of
a unit length. It turns out that this is related to the Independent Set (IS)
problem on a unit disk graph (UDG) [15, 4]; in fact, our NP-hardness proof
implies that the problem remains NP-hard even when the unit disk graph is
colored and linear (meaning the convex hulls of points of the same color form
disjoint line segments). We suspect that the parameterized version remains
to be W[1]-hard, though we are only able to show that it is in W[2] at this
point.

The symmetric problem of grouping points on a set of disjoint segments
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in the plane, i.e., selecting one point on each segment such that the max-
imum distance between the selected points is minimized, is motivated by
constructing commodity distribution centers within a road network. These
centers should be close to each other to reduce the distribution or transporta-
tion costs. It is not known whether the problem is NP-hard yet, though we
are able to show that this problem admits a factor-1.1547 approximation
running in O(n log n) time.

This paper is organized as follows. In Section 2, we give the preliminaries.
In Section 3, we prove that the 2D dispersion problem is NP-hard. In Section
4, we consider briefly the independent set problem on colored linear unit
disk graphs and prove its W[2] membership. In Section 5, we give a simple
polynomial time approximation algorithm for the 2D grouping problem. We
conclude the paper in Section 6.

2. Preliminaries

2.1. Definitions

Given two points a = (xa, ya), b = (xb, yb) in the plane (2D), the Euclidean
or L2 distance d(a, b) = d2(a, b) is defined as d(a, b) = ((xa − xb)

2 + (ya −
yb)

2)1/2. The Manhattan or L1 distance d1(a, b) is defined as d1(a, b) =
|xa − xb| + |ya − yb|. A line segment with endpoints a and b is denoted as
l = (a, b) or l = ab.

Finally, a planar unit disk graph is one where each vertex corresponds
to a given point of an input set of planar points, two vertices u, v share an
edge if two disks of radii R centered at u, v intersect each other. (Note that
the standard unit disk graph definitions require that R = 1/2, in our defini-
tion R could be more general as long as its value is fixed.) It is known that
while most NP-hard problems on general graphs remain NP-hard on unit
disk graphs [5, 8], there are exceptions (e.g., the maximum clique problem
is polynomially solvable [8]). Notably, the parameterized version of the in-
dependent set problem on unit disk graphs, parameterized by the size of the
solution, is known to be W[1]-hard [15]. The more restricted colored version,
parameterized by the number of colors, remains to be W[1]-hard [4].

2.2. Problems

The problems studied in this paper are defined as follows:
2D Dispersion Problem: Given a set of disjoint line segments L = {L1,

L2, ..., Ln} ⊂ R
2, the goal is to find n points V = {v1, v2, ..., vn} on the n line
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segments respectively such that the minimum value of the distances between
any two selected points in V is maximized, i.e.,

max
vi∈Li,i=1..n

min
vi,vj∈V

d(vi, vj).

2D Grouping Problem: Given a set of disjoint line segments L = {L1,
L2, ..., Ln} ⊂ R

2, the goal is to find n points V = {v1, v2, ..., vn} on the n line
segments respectively such that the maximum distance among two points in
V is minimized, i.e.,

min
vi∈Li,i=1..n

max
vi,vj∈V

d(vi, vj).

We show in the next section that the 2D dispersion problem is NP-hard.

3. NP-hardness for the 2D Dispersion Problem

We reduce the NP-complete planar rectilinear monotone 3-SAT problem
to the 2D Dispersion problem. The planar 3-SAT problem is a special case
of 3-SAT where the input is a conjunction of a set of disjunctive clauses,
each with three literals. Knuth and Raghunathan showed that the planar
rectilinear 3-SAT, where all the clauses can be embedded in a rectilinear
way below a line, is NP-complete [14]. More recently, de Berg and Khosravi
showed that even the planar rectilinear monotone 3-SAT, where all clauses
contain either all positive or all negated literals, is NP-complete [3]. In this
case, the 3-SAT instance can be embedded onto a rectilinear grid (with no
edge crossing) such that all the variables can be embedded on a horizontal line
L. The clauses with all literals positive can be embedded as a three-legged
grid point below L, connecting to the corresponding variable; symmetrically,
the clauses with all literals negated can be embedded as a three-legged grid
point above L, connecting to the negated variables. For example, we show
in Fig. 1 a layout of 5 clauses over 5 variables, e.g, C1 = (v̄1 ∨ v̄4 ∨ v̄5) and
C2 = (v1 ∨ v3 ∨ v5).

When we reduce planar rectilinear monotone 3-SAT to the 2D Dispersion
problem, all the constructed segments in a set U are of unit length and are
horizontal.

Theorem 1. The 2D Dispersion Problem is NP-hard.
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C1
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v1 v2 v3 v4 v5
L

Figure 1: The rectilinear planar graph G(φ) for the planar rectilinear monotone 3-SAT
instance φ with 5 clauses over 5 variables.

Proof. First, we embed the planar rectilinear monotone 3-SAT graph G(φ)
onto a rectilinear grid. For the ease of calculation, each grid has a horizon-
tal/vertical length of 1, e.g., in Fig. 2, d(a, b) = d(a, c) = 1 and d(a, d) =

√
2.

Each variable v on the line L is represented as a sequence of segment pairs
(e.g., (a, b) and (c, d)), placed at every other grid (Fig. 2). In Fig. 2, we label
the grids horizontally with red integers and vertically with blue integers. If
v appears in some clause C positively, we connect a leg of segment pairs
from v starting at an oddly numbered grid (e.g., the one starting at grid 5
in Fig. 2); and symmetrically, if v appears in some clause C negatively, we
connect a leg of segment pairs from v starting at an evenly numbered grid
(e.g., the one starting at grid 10 in Fig. 2). The white points are selected for
segments corresponding to v if v is assigned ‘True’; otherwise, black points
are selected.

We now describe the clause gadget in detail. We first illustrate a logical
construction in Fig. 3, where clause C is composed of three literals u, v
and w, and v connects C from L vertically while the other two horizontally
through some bending. The core of the clause is a horizontal segment (p, q)
of length 1, with a midpoint o. (Note that o is at a grid point while p and
q are not. Note also that the dashed segments in this gadget are only for
illustration purpose. In fact, they are only used to illustrate the distance
between the points.) The length of the dashed segments (a, p), (a, q), (o, f)
and (o, g) is ℓ =

√
2. The black points {a, f, g} are selected for the ‘False’

assignment of these literals. Clearly, in this case no matter what point r we
select for the segment pq, the minimum distance of d(r, a), d(r, f) and d(r, g)
would be less than ℓ =

√
2. On the other hand, if at least one of {a, f, g} is

not selected, then such an r can be easily selected. For example, if only b is
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selected (instead of a) for segment ab then we could select r = o such that
the minimum distance of d(r, b), d(r, f) and d(r, g) would be be

√
2.

variable v

10

4

5

7

6

5

1 2 3 4 6 7 8 9 11 12 13

2

1

3

a b

c d

v

v̄

Figure 2: The variable gadget. For convenience, we use red numbers to label the grids
horizontally and for vertical labeling we use blue numbers. Clearly, the leg of v starts at
an odd horizontal grid (e.g., 5), while v̄ starts at an even horizontal grid (e.g., 10).

clause C

literal u

literal v

literal w

a b
H1

H2

e f g h

op q

Figure 3: The (logical) clause gadget C = (u ∨ v ∨w). In this figure, we have H1 =
√
7/2

and H2 = 1.

However, it is clear that the clause we depict in Fig. 3 is not yet a valid
planar embedding. This is firstly because the vertical distance between ab
and pq, H1 =

√
7/2, is not an integral multiple of the unit grid length

1; moreover, since d(f, g) = 2 we cannot lead u or w directly from the
corresponding variable gadgets. It turns out that the latter can be easily
fixed with a (local) horizontal adjustment on w, as shown in Fig. 4. On the
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other hand, the vertical adjustment on v, sketched also in Fig. 4, needs more
details which is shown in Fig. 5.

Note that, from Fig. 4, the vertical distance between cd and pq is 6 = 4H+
H1 = 4H +

√
7/2. In other words, H = (6−

√
7/2)/4 ≈ 1.169. In Fig. 5, we

show how such a value of H can be implemented. We put a point t on cd with
d(d, t) > d(c, t). Recall that ℓ =

√
2. Then d(d, t) =

√
ℓ2 −H2 ≈ 0.7959,

and d(c, t) = 1− d(d, t) ≈ 0.2041. Therefore, with 8 segments which are not
on any grid line we successfully implement the (local) vertical adjustment
for variable v on clause C, with all exterior segments around C on the grids.
Note that when we select c for segment cd, it is possible that any point on
segment c1d1 within distance 0.2041 from t1 could be selected; on the other
hand, when d is selected for segment cd then c1 must be selected for segment
c1d1.

vertical
adjustment
gadget

1

variable u

32 4 5 6 7 8

variable v

9 10 11 12
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c d
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e f g h

op q

Figure 4: The clause gadget C = (u ∨ v ∨ w) with a horizontal adjustment on w and a
vertical adjustment on v. Note that H1 =

√
7/2. Again, we use red numbers to label the

grids horizontally and we use blue numbers for vertical labeling. Clearly, the legs of u, v
and w all start at odd horizontal grids (e.g., 5, 11 and 17 respectively).

Now we have finished showing a complete example of the construction for
the clause C = (u ∨ v ∨ w) in Fig. 4 and Fig. 5. Note that all the segments
connecting the variable and clause gadgets are horizontal and are of a unit
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length. A clause C ′ = (ū∨ v̄∨w̄) can be constructed symmetrically above the
line L. Due to the structure in Fig. 1, once G(φ) is given we could construct
the corresponding rectilinear embedding clause by clause, starting from the
innermost one from L, where the innermost clause is simply defined as the
one whose vertical distance to the line L is minimum. (For example, for the
clauses below L, C5 in Fig. 1 would be constructed first, then C3, and finally
C2.) The total number of segments is proportional to the size of G(φ), i.e.,
the construction can be done in linear time.

a b

c d

H

r st z

c1 d1 r1 s1t1 z1

ℓℓℓ

Figure 5: A (local) vertical adjustment on variable v.

Finally, we claim that the planar rectilinear monotone 3-SAT instance φ
has a valid truth assignment if and only if in the converted 2D Dispersion
instance the minimum distance of any two chosen points is equal to ℓ =

√
2.

‘If’ part: If the planar rectilinear monotone 3-SAT instance φ has a truth
assignment, then either all black points or all white points in all the variable
gadgets would be selected. The closest distance of two chosen points in the
variable gadgets is equal to ℓ. In the clause gadget, at least one variable needs
to be assigned ‘True’ (or, white points need to be selected) for the clause.
Hence, at least one black point {a, f, g} is not selected in the corresponding
clause gadget. The minimum distance of any two chosen points in the clause
gadget is ℓ (except possibly the points in the vertical adjustment gadget for
variable v in Fig. 4). Therefore, in the converted instance for 2D Dispersion,
the minimum distance of any two selected points is ℓ.

‘Only if’ part: Suppose that the converted instance for 2D Dispersion has
a minimum distance of ℓ between two selected points. Firstly, we note that
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in all the variable gadgets, if we want to maximize the minimum distance of
any two selected points, then either all white points or all black points must
be chosen. At this point the minimum distance of any two such selected
points is exactly ℓ. In the clause gadget, if the maximum of the minimum
distance of any two chosen points is at least ℓ, then at least one white point
x ∈ {b, e, h} needs to be selected. This implies that in the corresponding
clause, the corresponding variable vx is assigned ‘True’ if the clause contains
all positive literals; or, the corresponding literal v̄x is assigned ‘False’ if the
clause contains all negative literals. This implies that the corresponding
clause is evaluated ‘True’ for either cases. Therefore, if in the converted
2D dispersion instance the minimum distance of any two chosen points is at
least ℓ, the corresponding planar rectilinear monotone 3-SAT instance φ is
satisfied. �

Since the problem is NP-hard even when all the input segments are hor-
izontal and are of unit length, the general version of this problem is also
NP-hard. We comment that the NP-hardness holds even when the L1 (or
Manhattan) distance is used, with ℓ = 2 and minor modification on the local
vertical adjustment gadget.

4. Hardness for IS on Colored Linear Unit Disk Graphs

The NP-hardness result in the previous section has a direct implication
on the Independent Set (IS) problem on Colored Linear Unit Disk Graph,
which is a unit disk graph such that the convex hull of the points in the same
color form a line segment, no two such segments intersect and the problem
is to select one node (disk) in each color such that they form an independent
set. We briefly go through the implication in this section.

Before doing that, we note that finding k-multicolored clique or inde-
pendent set was initially motivated in proving the W[1]-hardness of some
graph problems [9]. For geometric intersection graphs (specifically, unit disk
graphs) Marx showed the the Independent Set problem is W[1]-hard, which
implies it is not possible to obtain an FPT (fixed-parameter tractable) algo-
rithm unless FPT=W[1] [15]. Moreover, the W[1]-hardness of the problem
implies that it is not possible to obtain an EPTAS (efficient PTAS, namely
the running time is f(ǫ) · nc, where n is the input size). Consequently the
PTAS by Hunt et al. (with running time O(n1ǫ)) [11] cannot be further
improved to have an EPTAS. Bereg et al. investigated the k-multicolored
independent set problem on unit disk graphs and proved its W[1]-hardness
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and with that, they proved that the Largest Closest Pair Color-Spanning Set
problem is W[1]-hard [4]. We now briefly sketch our results.

Theorem 2. The Independent Set problem on Colored Linear Unit Disk
Graph is NP-hard, even when all the segments are parallel and are of a unit
length.

Proof. We just use the reduction for Theorem 1. The two changes are: (1)
put 1/ǫ points evenly on each segment, (2) the corresponding unit disk graph
is formed by drawing an open disk centered at each point of each segment
with a radii ℓ/2 =

√
2/2; moreover, all the disks centered at the same segment

have the same color. Let U be the set of unit-length segments. Calling the
resulting unit disk graph GU , we clearly still have the following statement:
the planar rectilinear monotone 3-SAT instance φ is satisfiable if and only if
GU has an independent set of size |U |. The details are standard and omitted.

�

An immediate question is the FPT tractability of the parameterized ver-
sion of the problem, where the parameter k is the number of segments, or
the number of colors. Note that the general version, where the points of the
same color could be arbitrarily distributed, is W[1]-hard [4]. However, in the
current version the unit disk graph is more restricted. Nevertheless we show
below that it is in W[2].

Theorem 3. The Independent Set problem on Colored Linear Unit Disk
Graph, parameterized by the number of colors (e.g. segments), is in W[2].

Proof. Let the number of segments be k and let the set of linear points
on segment Li be ordered as Vi = 〈vi,1, ..., vi,j , ..., vi,P (i)〉. We need to decide
whether a value R exists such that the set S of points selected, one for each
segment (color), has the property that the closest pair has distance at least
R (or, equivalently, the unit disk graph with radii R/2 on all these points
has a colorful independent set, i.e., one for each color).

We construct a circuit C as follows: the inputs are variables corresponding
to all the points (for convenience, we still use vi,j’s as variables, with a
boolean value 1 assigned to vi,j meaning that point is selected). For all the
points on the same segment Li, we construct a large OR (∨) gate. Here,
’large’ means the input to the OR gate could be greater than 2; and to make
the OR gate output a true value, one of these points must be selected.
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For two points on two segments vi,i′ and vj,j′ , if their distance is shorter
than R then we cannot select both of them. This can be interpreted as
¬(vi,i′ ∧ vj,j′). In fact, as the distance function from point vi,i′ to all (sorted)
points on Lj (i.e., Vj) is unimodal, we could construct these nested ¬ and ∧
gates in one pass when vi,i′ and Vj are fixed.

Finally, we connect all these OR (∨)gates and NOT (¬) gates to a large
AND (∧) gate, which is the output of this circuit. It is easy to see that the IS
problem on Colored Linear Unit Disk Graph (with radii R/2) has a solution
if and only if k variables are selected to have a ‘True’ output. As from any
input gate to the final output we have at most two wefts (large gates), the
W[2] membership is hence shown. �

OR

OUTPUT

< R

OR

AND

NOT

AND

vi,1

vi,1

vi,i′

vi,i′

vi,P (i)
vi,P (i) vj,1

vj,1

vj,j′

vj,j′

vj,P (j)

vj,P (j)

Figure 6: The circuit for the IS problem on Colored Linear Unit Disk Graph.

We comment that this proof is similar to the one given for the Minimum
Diameter Color-Spanning Set problem by Pruente [17]. However, it is tan-
talizingly open whether this version of the IS problem on unit disk graphs is
W[1]-hard. We comment that the unimodality property between vi,i′ and Vj

might be used either to show its W[1]-hardness or its membership in FPT.

5. Approximation for the 2D Grouping Problem

In this section, we design a factor-1.1547 polynomial-time approximation
algorithm for the 2D grouping problem. It turns out that this problem is
also related to unit disk graph. Recall that the input to the problem is a
set of disjoint line segments L = {L1, L2, ..., Ln}. Assuming that we have
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an optimal solution V ∗ = {v1, v2, ..., vn} where each vi is selected from Li

and the maximum distance between vi, vj is d∗. Let Ci(r) be a closed disk
centered at vi with radius r. Then, using the so-called intersection model for
a unit disk graph, if we draw a disk Ci(

√
3d∗/3) at each vi, these disks would

have a common intersection. We prove this property formally as follows.

Property 1. Using the so-called intersection model for a unit disk graph,
the disks Ci(

√
3d∗/3) centered at every vi ∈ V ∗ respectively, where d∗ is the

maximum distance between vi, vj ∈ V ∗, would have a common intersection.

Proof. By definition, for any two points vi, vj ∈ V ∗, the distance d(vi, vj) ≤
d∗. Hence, there must exist a circle C(

√
3d∗/3) centered at some place which

contains all the points in V ∗ — the extreme case occurs when the convex hull
of V ∗ forms a regular triangle of edge length d∗. Therefore, if we draw the
circles Ci(

√
3d∗/3) at each vi ∈ V ∗, these circles have a common intersection.

�

5.1. The Minimum Intersecting Disk Problem
Based on this property, we define a related Minimum Intersecting Disk

problem:

Minimum Intersecting Disk (MID) Problem: Given a set of dis-
joint line segments L = {L1, L2, ..., Ln} ⊂ R2, compute a disk C(c, r) with
center c and radius r such that all Li’s intersect C(c, r) and r is minimized
(at r+).

We present a polynomial-time algorithm to solve the MID problem in
this subsection. We first obtain a simple decision procedure Decide(r) which
decides whether a disk of radius r exists that intersect all segments in L. Note
that a segment completely in C(c, r) is also considered being intersected by
C(c, r).

Algorithm 1 Decide(r): decides if there is a disk of radius r intersecting L

1: For each segment Li, compute the Minkowski sum of Li with a disk of
radius r, denoted as Li ⊕ C(r).

2: Compute the common intersection F (r) of all Li ⊕ C(r), i.e., F (r) =
∩i(Li ⊕ C(r)).

3: If F (r) is not empty then return YES and any point in F (r) as a witness
for the center of such a disk; otherwise, return NO.
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Note that all Li ⊕ C(r) are convex, so their common intersection can
be computed using a standard method in computational geometry, e.g., the
incremental construction method (i.e., maintain the current common inter-
section, insert the next one, and update to have the new common intersec-
tion). Due to convexity, each update takes O(log n) time. Hence, F (r) can
be computed in O(n log n) time.

To compute r+ by applying the above decision procedure Decide(r) using
binary search, we first need to compute all possible values of r+.

Claim 1. All possible values of r+ can be computed in O(n3) time.

Proof. We first notice that each possible value is decided by either two or
three segments, i.e., as long as the circle C(r+) intersects these two or three
segments it would intersect all the segments in L: (1) In the former case
the circle C(r+) touches two segments, each on a single point exactly, and
thus, r+ is half of the distance between the two closet points on these two
segments. (2) In the latter case r+ is the radius of the circle tangent to
three segments. With the above analysis, all possible values of r+ can be
obtained by computing all such distances. For the former case we compute
the distance between the two closest points on every pair of segments in L,
respective, and the combination of two distinct segments is O(n2). For the
latter case we compute the radius of the inscribed circle formed by three
segments in L, and the combination of three distinct segments is O(n3). All
in all, the total time to compute all possible values of r+ is O(n3). �

We can then obtain the following algorithm.

Algorithm 2 Solution for MID

1: Compute a sorted list L which contains all the possible values of the radii
r+ as shown in Claim 1.

2: Binary search in L using Decide(r) to compute the disk C(c+, r+) with
center c+ and with the minimum radius r+, which intersects all segments
by construction.

3: Return C(c+, r+).

We comment that binary search would find the optimal solution as its
value must be contained in L. Regarding the time complexity, we note that
|L| = O(n3), hence L can be constructed and then sorted in O(n3 log n) time.
Using the binary search, with D(r) as a subroutine, the cost is O(n log n)×
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O(log n3) = O(n log2 n). The total cost is thereforeO(n3 log n)+O(n log2 n) =
O(n3 log n). Note that this algorithm, though easy to implement, might be
too slow when n is large.

We could in fact use the farthest Voronoi diagram for line segments [1, 16]
to improve this time bound. The definition of the farthest line segment
Voronoi diagram is as follows.

Definition 1. Given n line segments L = {L1, ..., Ln} in the plane, the
farthest Voronoi region of a line segment Li ∈ L is freg(Li) = {x ∈
R

2|d(x, Li) ≥ d(x, Lj), ∀1 ≤ j ≤ n}, where d(x, Li) is the distance between a
point x with the closet point on Li, and the collection of all farthest Voronoi
regions, together with their bounding edges and vertices, constitute the far-
thest line segment Voronoi diagram of the n segments.

Then, we claim that computing such a farthest line segment Voronoi
diagram, the center of MID must lie either on a Voronoi edge or at a Voronoi
vertex.

Claim 2. The center of the minimum intersecting disk of n line segments
L = {L1, ..., Ln} lie either on a bounding edge or a bounding vertex of the
farthest line segment Voronoi diagram of the n line segments.

Proof. As stated in the proof of Claim 1, the radius of the MID is decided
by two or three segments, respectively. Thus, we assume w.l.o.g. that the
MID C(c, r+) touches segments Li and Lj exactly on one point, e.g., vi and
vj respectively. Then, d(c, vi) = d(c, vj) = r+, and any other point on Li or
Lj is of a farther distance to the center c; hence, d(c, Li) = d(c, Lj) = r+. On
the other hand, for any segment Lk ∈ L that is distinct from Li and Lj, the
MID intersects Lk on at least one point, assumed as vk, and d(c, vk) ≤ r+;
hence, d(c, Lk) ≤ r+. Therefore, the center c lies on the bounding edge of
the Voronoi regions of segments Li and Lj. Similarly, for the case where the
MID is decided by three segments, we can also show that the center c lies on
the common vertex of the Voronoi regions of these three segments. �

With Claim 2, a candidate intersecting disk can be computed in O(1)
time no matter when the center lies on a bounding vertex or a bounding
edge. We thus have the following theorem.

Theorem 4. The Minimum Intersecting Disk problem can be solved in O(n log n)
time.
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Proof. The farthest line-segment Voronoi diagram can be computed in
O(n log n) time with n input segments [1, 16]. Moreover, such a diagram
has a linear size (i.e., O(n) number of edges and vertices). Hence, with a
linear search we could identify O(n) candidate intersecting disks and return
the smallest one. Therefore, the MID problem can be solved in O(n log n)
time. �

5.2. Approximation Factor Analysis

Our approximation algorithm for the 2D Grouping problem is to com-
pute the minimum intersecting disk C+ = C(c+, r+) for L, and return the
maximum distance d(C+) between the two or three points defining this disk
C(c+, r+).

Let C∗ be the minimum radius disk, with radius r(C∗), enclosing all the
selected points of L in an optimal solution for the 2D grouping problem on L.
Let d(C∗) be the maximum distance between the two or three points defining
C∗. Let Opt be the the maximum distance between the selected points in
the optimal 2D grouping problem.

We have the following lemma.

Lemma 1. r(C∗) ≤ d(C∗)√
3
.

Proof. When C∗ is defined by two points, apparently we have r(C∗) = d(C∗)
2

.

When C∗ is defined by three points, we have r(C∗) ≤ d(C∗)
α

. This α is
minimized when the three defining points for C∗ form a regular triangle,
where we have α =

√
3. �

Since Opt is the maximum distance between the selected points on L
(which are inside the circle C∗) and d(C∗) is the maximum distance between
the two or three points defining C∗, we have d(C∗) ≤ Opt. Let App be the
solution of the approximation solution. We then combine all the arguments
together as follows.
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App = d(C+)

≤ 2 · r+
≤ 2 · r(C∗) (by the optimality of r+)

≤ 2√
3
· d(C∗) (by Lemma 1)

≤ 2√
3
·Opt (by the optimality of Opt)

≤ 1.1547 ·Opt.

Therefore, we have the following theorem.

Theorem 5. There is a factor-1.1547 approximation algorithm for the 2D
grouping problem which runs in O(n log n) time.

We comment that the algorithm would still work if L1 or Manhattan distance
is used, with the approximation factor increased by an additional

√
2 factor.

6. Concluding Remarks

We study a general version of the 2D dispersing problem, whose 1D coun-
terpart was recently studied by Li and Wang [12, 13]. We prove that the 2D
dispersion problem is NP-hard, in fact, NP-hard even when all segments are
parallel and are of unit length. The proof can be applied to show the maxi-
mum independent set problem on colored linear unit disk graph remains to
be NP-hard. We also consider the symmetric problem of grouping a set of
n points, one on each input segment, such that the maximum distance be-
tween any two selected ones is minimized. For the latter problem, we give a
factor-1.1547 approximation which runs in O(n log n) time.

We have several open problems related to this paper:

1. Does the 2D dispersion problem admit a constant factor approxima-
tion?

2. Is the Independent Set problem on Colored Linear Unit Disk Graph
W[1]-hard?

3. Is the 2D grouping problem polynomial-time solvable?
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