Chairperson, Graduate Committee: Lance McNewVold, Skyler ThomasLance B. McNew and Lorelle I. Berkeley were co-authors of the article, 'Effects of livestock grazing management on the ecology of grassland birds in a northern mixed-grass prairie ecosystem' submitted to the journal 'Rangeland ecology & management' which is contained within this thesis.Lance B. McNew and Lorelle I. Berkeley were co-authors of the article, 'Effects of livestock grazing management on the occupancy of mesocarnivores in a northern mixed-grass prairie ecosystem' submitted to the journal 'The journal of wildlife management' which is contained within this thesis.2018-10-122018-10-122018https://scholarworks.montana.edu/handle/1/14595Grassland birds have recently undergone substantial population declines throughout much of their historic ranges in North America. The majority of remaining grassland bird habitat is rangeland managed for livestock production, so grazing management has implications for grassland bird conservation efforts. Populations of mesocarnivores have recently seen range expansions and increased abundance as a result of anthropogenic extirpation of apex predators in grassland ecosystems. Mesocarnivores are often major predators of grassland birds and their nests, so considering the effects of management actions on mesocarnivore occupancy is important within grassland bird conservation efforts. I evaluated the relative effects of three livestock grazing systems on grassland bird abundance and mesocarnivore occupancy in a northern mixed-grass prairie ecosystem of eastern Montana, USA. During 2016-17, I conducted replicated point-count surveys at 150 locations on a 3,000-ha ranch managed with rest-rotation cattle grazing, and 155 locations on adjacent reference properties (4,300-ha) employing season-long or 2-pasture summer-rotational grazing systems to identify grazing management influences on grassland bird abundances. During 2016-17, I deployed remote cameras at 45 locations within rest-rotation grazing systems, and at 45 locations on reference properties to identity grazing management influences on mesocarnivore occupancy. Overall, there was no noticeable benefit of rest-rotation grazing on abundance or species diversity of grassland birds relative to season-long and summer-rotation grazing systems. Species-specific responses to livestock grazing system were found for each of three obligate grassland birds. Support for interactions between grazing system and local rangeland production potential were found, limiting the ability to recommend general livestock management practices for the benefit of grassland bird populations. Additionally, abundance of grasshopper sparrow (Ammodramus savannarum; beta = -0.10 + or = 0.03) and western meadowlark (Sturnella neglecta; beta = -0.09 + or = 0.03) showed a negative relationship with increasing stocking rate. Occupancy of mesocarnivores was highest in rest-rotation grazing systems, followed by season-long and summer-rotation systems, respectively, and showed a positive relationship with increasing stocking rate (beta = 1.64 + or = 1.10). Regional guidelines for livestock grazing management may be inappropriate in terms of grassland bird conservation efforts in the northern mixed-grass prairie.enBirdsLivestockGrazingPrairiesHabitat (Ecology)Predation (Biology)Effects of livestock grazing management on the ecology of grassland birds and their predators in a northern mixed-grass prairie ecosystemThesisCopyright 2018 by Skyler Thomas Vold