Gedeon, TomasCummins, G.Heys, Jeffrey J.2016-02-082016-02-082012-08T. Gedeon, G. Cummins, and J. J. Heys, “Effect of Model Selection on Prediction of Periodic Behavior in Gene Regulatory Networks,” Bull Math Biol, vol. 74, no. 8, pp. 1706–1726, May 2012.0092-8240https://scholarworks.montana.edu/handle/1/9543One of the current challenges for cell biology is understanding of the system level cellular behavior from the knowledge of a network of the individual subcellular agents. We address a question of how the model selection affects the predicted dynamic behavior of a gene network. In particular, for a fixed network structure, we compare protein-only models with models in which each transcriptional activation is represented both by mRNA and protein concentrations. We compare linear behavior near equilibria for both cyclic feedback systems and a general system. We show that, in general, explicit inclusion of the mRNA in the model weakens the stability of equilibria. We also study numerically dynamics of a particular gene network and show significant differences in global dynamics between the two types of models.Effect of model selection on prediction of periodic behavior in gene regulatory networksArticle