Fabich, H. T.Vogt, Sarah J.Sherick, Matthew L.Seymour, Joseph D.Brown, Jennifer R.Franklin, Michael J.Codd, Sarah L.2017-02-022017-02-022012-10Fabich HT, Vogt SJ, Sherick ML, Seymour JD, Brown JR, Franklin MJ, Codd SL, "Microbial and algal alginate gelation characterized by magnetic resonance," Journal of Biotechnology, October 2012 161(3):320–3270168-1656https://scholarworks.montana.edu/handle/1/12520Advanced magnetic resonance (MR) relaxation and diffusion correlation measurements and imaging provide a means to non-invasively monitor gelation for biotechnology applications. In this study, MR is used to characterize physical gelation of three alginates with distinct chemical structures; an algal alginate, which is not O-acetylated but contains poly guluronate (G) blocks, bacterial alginate from Pseudomonas aeruginosa, which does not have poly-G blocks, but is O-acetylated at the C2 and/or C3 of the mannuronate residues, and alginate from a P. aeruginosa mutant that lacks O-acetyl groups. The MR data indicate that diffusion-reaction front gelation with Ca2+ ions generates gels of different bulk homogeneities dependent on the alginate structure. Shorter spin–spin T2 magnetic relaxation times in the alginate gels that lack O-acetyl groups indicate stronger molecular interaction between the water and biopolymer. The data characterize gel differences over a hierarchy of scales from molecular to system size.Microbial and algal alginate gelation characterized by magnetic resonanceArticle