Cai, HeGrunwald, Eric W.Park, Sung YongLei, BenfangRichards, Mark P.2016-06-232016-06-232013-05Cai H, Grunwald EW, Park SY, Lei B, Richards MP. 2013. Lipid Oxidation in Trout Muscle Is Strongly Inhibited by a Protein That Specifically Binds Hemin Released from Hemoglobin. Journal of Agricultural and Food Chemistry. 61:4180-41870021-8561https://scholarworks.montana.edu/handle/1/9904The recombinant streptococcal protein apoShp can be used as a probe for hemoglobin (Hb) reactivity in fish muscle due to its specific affinity for hemin that is released from Hb at post-mortem pH values. Hemin affinity measurements indicated that apoShp binds hemin released from Hb but not myoglobin (Mb). Hemin affinity of holoShp was higher at pH 5.7 compared to pH 8.0. This may be attributed to enhanced electrostatic interaction of His58 with the heme-7-propionate at lower pH. ApoShp readily acquired hemin that was released from trout IV metHb in the presence of washed cod muscle during 2 °C storage at pH 6.3. This was based on increases in redness in the washed cod matrix, which occurs when apoShp binds hemin that is released from metHb. ApoShp prevented Hb-mediated lipid oxidation in washed cod muscle during 2 °C storage. The prevention of Hb-mediated lipid oxidation by apoShp was likely due to bis-methionyl coordination of hemin that dissociated from metHb. This hexacoordination of hemin appears to prevent peroxide-mediated redox reactions, and there is no component in the matrix capable of dissociating hemin from Shp. ApoShp was also added to minced muscle from rainbow trout (Oncorhynchus mykiss) to examine the degree to which Hb contributes to lipid oxidation in trout muscle. Addition of apoShp inhibited approximately 90% of the lipid oxidation that occurred in minced trout muscle during 9 days of 2 °C storage on the basis of lipid peroxide, hexanal, and thiobarituric acid reactive substances (TBARS) values. These results strongly suggest that Hb is the primary promoter of lipid oxidation in trout muscle.Lipid Oxidation in Trout Muscle Is Strongly Inhibited by a Protein That Specifically Binds Hemin Released from HemoglobinArticle