Chazal, FredericFasy, Brittany T.Lecci, FabrizioMichel, BertrandRinaldo, AlessandroWasserman, Lary2019-01-112019-01-112018-06Chazal, Frederic, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Lary Wasserman. "Robust Topological Inference: Distance To a Measure and Kernel Distance." Journal of Machine Learning Research 18 (June 2018).1532-4435https://scholarworks.montana.edu/handle/1/15130Let P be a distribution with support S. The salient features of S can be quantified with persistent homology, which summarizes topological features of the sublevel sets of the distance function (the distance of any point x to S). Given a sample from P we can infer the persistent homology using an empirical version of the distance function. However, the empirical distance function is highly non-robust to noise and outliers. Even one outlier is deadly. The distance-to-a-measure (DTM), introduced by Chazal et al. (2011), and the kernel distance, introduced by Phillips et al. (2014), are smooth functions that provide useful topological information but are robust to noise and outliers. Chazal et al. (2015) derived concentration bounds for DTM. Building on these results, we derive limiting distributions and confidence sets, and we propose a method for choosing tuning parameters.enCC BY, This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.https://creativecommons.org/licenses/by/4.0/legalcodeRobust Topological Inference: Distance To a Measure and Kernel DistanceArticle