Chairperson, Graduate Committee: C. John GravesFinkbohner, Sydney Aaron2023-07-312023-07-312022https://scholarworks.montana.edu/handle/1/17463The purpose of this study was to determine if student understanding and output on assessments would increase if visual representation, both teacher provided and student created, was used on a regular basis. A sub purpose of this study was to see if student attitudes and interest in the class increased when visual representation was used during the lessons. The same group of students went through a nontreatment unit and two treatment units in a conceptual chemistry course. The nontreatment unit, dimensional analysis, was taught in a more teacher centered way, using more lectures and traditional labs and little to no visual representation, while the treatment units, stoichiometry and solution: Molarity, were taught with daily visual representation, included demonstrations, manipulatives, hands on exploration labs, flow charts, and infographics. Pretest and post test scores for each unit were compared through normalized gains to see if there was an increase from the nontreatment unit to the two treatment units. Statistical testing indicated that students learned chemistry concepts better when visual representation were used during the learning process. The students had higher normalized gains on both treatment units compared to the non-treatment unit. Using visual representations on a regular basis also increased student interest and attitudes towards the content being taught. Students were more curious about the topics as well as had better attitudes about the class and what they were learning when they could see it visually and explore it though hands on explorations.enChemistryHigh school studentsVisual learningStudents--AttitudesThe effects of incorporating visual representation daily into the high school science classroomProfessional PaperCopyright 2022 by Sydney Aaron Finkbohner