Chairperson, Graduate Committee: David McWethyStahle, Daniel KentThis is a manuscript style paper that includes co-authored chapters.2024-02-022024-02-022022https://scholarworks.montana.edu/handle/1/18218Across the high alpine of the northern Rocky Mountains small vestiges of perennial ice have endured for thousands of years. These ice patches reside hundreds of meters above modern treeline, with some persisting through mid-Holocene warmth and others establishing at the onset of a cooler period that began around 5,000-5,500 years BP. Recent warming-driven melting at the margins of one ice patch high on the Beartooth Plateau of northern Wyoming exposed over 30 intact mature whitebark pine (Pinus albicaulis) tree boles, all > 25 cm in diameter. We extracted cross-sectional samples from the stems of 27 preserved logs, and radiocarbon dated annual growth rings from 11 of these trees, anchoring the chronology to a date range spanning 5,947 to 5,436 years BP + or - 51.3 years. From this fossil wood chronology, we developed estimates of warm-season, annual, and biennial average temperatures for upper-elevation treeline during the mid-Holocene. To identify the predominant climate-growth relationships of the subfossil trees, we sampled live whitebark pine trees growing at an adjacent treeline site approximately 120 m lower in elevation. Temperature was found to be the major driver of variability in tree growth at the modern treeline location, with trees producing narrower (wider) rings during periods of cooler (warmer) growing season temperatures. Using linear and non-linear transfer functions based upon the stable statistical relationship between modern tree growth and temperature, we reconstructed past temperature estimates from the ice patch subfossil ring-width chronology. Our results provide estimates of mid-Holocene warm-season (and biennial) average temperatures ranging from 5.7-6.5 °C (-0.44-0.26 °C) respectively. A multi-century regional cooling trend beginning around 5,650 years BP resulted in average temperatures declining below a warm-season (biennial) critical threshold of ~5.8 °C (-0.34 °C), likely leading to the eventual death of the whitebark pine stand and subsequent formation of the ice-patch. This high-quality paleo-ecological dataset reveals a major shift in the alpine and forest ecotone on the Beartooth Plateau following the mid-Holocene warm period and offers further insight on the thermal limits of whitebark pine trees in the Greater Yellowstone Ecosystem.enWhitebark pineIcePaleoecologyClimatic changesA forest entombed in ice: a unique record of mid-Holocene climate and ecosystem change in the northern Rocky Mountains, USAThesisCopyright 2022 by Daniel Kent Stahle