Chairperson, Graduate Committee: Richard WolffTidd, William Graves2013-06-252013-06-252011https://scholarworks.montana.edu/handle/1/2428This thesis proposes a design of a novel and innovative sequential beamspace (SBS) smart antenna system. The system is capable of accurate direction of arrival (DOA) estimation in beamspace and efficient beamforming. Moreover, the robust functionality of such a system includes high resolution radio frequency (RF) emitter DOA estimation and beamforming in a noisy environment in the presence of strong interference. Simulations for DOA estimation using beamspace MUSIC and beamspace Capon methods are presented in conjunction with Capon beamforming. These methods are compared and contrasted with proven element space DOA estimation techniques to demonstrate the validity and advantages of pursuing a SBS smart antenna for real-world applications. The beamspace DOA estimation accuracy, resolution, beamforming pattern, and output signal quality have been thoroughly studied and quantified. The algorithms have been tailored to utilize an 8 element uniform circular array (UCA) and an 8 channel analog beamformer (BF) operating at 5.8 GHz to gather lab-based experimental results. The simulations and experimental results show that the proposed system can achieve good performance once it is properly synchronized using a time delay correction filter. In addition, a significant decrease in hardware is realized when operating in beamspace versus element space.enAntennas (Electronics)BeamformingSequential beamspace smart antenna systemThesisCopyright 2011 by William Graves Tidd