Adam, Zachary R.Skidmore, Mark L.Mogk, David W.Butterfield, Nicholas J.2017-08-082017-08-082017-050091-7613https://scholarworks.montana.edu/handle/1/13457The oldest evidence of eukaryotes in the fossil record comes from a recurrent assemblage of morphologically differentiated late Paleoproterozoic to early Mesoproterozoic microfossils. Although widely distributed, the principal constituents of this Tappania-Dictyosphaera-Valeria assemblage have not hitherto been recognized on Laurentia. We have recovered all three taxa from a shallow-water shale succession in the early Mesoproterozoic Greyson Formation (Belt Supergroup, Montana, USA). An exceptionally preserved population of Tappania substantially expands the morphological range of this developmentally complex organism, suggesting phylogenetic placement within, or immediately adjacent to, crown-group eukaryotes. Correspondence with Tappania-bearing biotas from China, India, Australia, and Siberia demonstrates an open-ocean connection to the intracratonic Belt Basin and, along with broadly co-occurring macrofossils Grypania and Horodyskia, supports the recognition of a globally expressed biozone. The Greyson Formation, along with contiguous strata in Glacier National Park, is unique in preserving all currently confirmed taxa of early eukaryotic and macroscopic fossils.A Laurentian record of the earliest fossil eukaryotesArticle