Hoegh, Andrewvan Manen, Frank T.Haroldson, Mark2021-09-102021-09-102021-08Hoegh, A., van Manen, F.T. & Haroldson, M. Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching. Journal of Agricultural, Biological and Environmental Statistics (2021). https://doi.org/10.1007/s13253-021-00456-01085-7117https://scholarworks.montana.edu/handle/1/16435Animal movement is a complex phenomenon where individual movement patterns can be influenced by a variety of factors including the animal’s current activity, available terrain and habitat, and locations of other animals. Motivated by modeling grizzly bear movement in the Greater Yellowstone Ecosystem, this article presents an agent-based model represented in a state-space framework for collective animal movement. The novel contribution of this work is a collective animal movement model that captures interactions between animals that can trigger changes in movement patterns, such as when a dominant grizzly bear may cause another subordinate bear to temporarily leave an area. The modeling framework enables learning different movement patterns through a state-space representation with particle-MCMC methods for fully Bayesian model fitting and the prediction of future animal movement behaviors.Supplementary materials accompanying this paper appear online.en-USThis is a post-peer-review, pre-copyedit version of an article published in Journal of Agricultural, Biological and Environmental Statistics. The final authenticated version is available online at: https://doi.org/10.1007/s13253-020-00387-2. The following terms of use apply: https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use.Agent-Based Models for Collective Animal Movement: Proximity-Induced State SwitchingArticle