Paraelectric-antiferroelectric phase coexistence in the deuteron glass $\text{Rb0.5(ND4)0.5D2AsO4}$

Authors: S. Lanceros-Mendez, V.H. Schmidt, and S.M. Shapiro

This is an Accepted Manuscript of an article published in Ferroelectrics in 2004, available online: http://www.tandfonline.com/10.1080/00150190490443334.

S. Lanceros-Mendez, V.H. Schmidt, and S.M. Shapiro, “Paraelectric-antiferroelectric phase coexistence in the deuteron glass Rb0.5(ND4)0.5D2AsO4,” Ferroelectrics 300, 117-120 (2004). doi: 10.1080/00150190490443334.

Made available through Montana State University’s ScholarWorks scholarworks.montana.edu
Paraelectric-Antiferroelectric Phase Coexistence in the Deuteron Glass Rb_{0.5}(ND_4)_{0.5}D_2AsO_4*

S. LANCEROS-MENDEZ
Dept. de Fisica
Universidade do Minho
4710-057, Braga, Portugal

V. H. SCHMIDT
Dept. of Physics
Montana State University
Bozeman, MT 59717, USA

S. A. SHAPIRO
Brookhaven National Laboratory
Dept. of Physics
Upton, NY 11973, USA

Received in final form 15 December 2002

Neutron diffraction was used to study the paraelectric (PE) to antiferroelectric (AFE) phase transition in a deuteron glass crystal Rb_{0.5}(ND_4)_{0.5}D_2AsO_4 (DRADA-50). Coexistence of AFE and PE phases was proven in a temperature range 7-12 K wide.

Keywords Proton glass; coexistence; neutron diffraction; antiferroelectrics

PACS: 77.80.−e; 77.90.+k; 61.12.Ld; 72.80.Ng

Introduction
The mixed FE-AFE system A_{1−x}(ND_4)_xD_2BO_4 [A = Rb (or K, Cs) and B = As (or P)] has competition between ferroelectric (FE) and AFE ordering [1–5]. Random Rb and ND_4 distribution causes frustration that increases local structural competition and inhibits long-range electric order. Instead of a sharp FE or AFE phase transition, PE/FE and PE/AFE phase coexistence occur outside the composition region where no transition exists. Because translational invariance is destroyed, only microscopic techniques such as NMR, x-ray and neutron scattering can detect such features [3–4]. For example, PE/FE phase coexistence and incommensurate correlations were proven by neutron diffraction in Rb_{0.9}(ND_4)_{0.1}D_2AsO_4 [4].

In this paper we report the behavior of DRADA-50 that undergoes a PE/AFE phase transition on cooling.
Experimental

Single crystals of Rb$_{1-x}$(ND$_4$)$_x$D$_2$AsO$_4$ with $x = 0.50$ were grown from aqueous solution of RbD$_2$AsO$_4$ (DRDA) and ND$_4$D$_2$AsO$_4$ (DADA) by slow evaporation under argon. The ND$_4$ concentrations in solution and in crystal are related linearly within experimental error (±3%) [4]. Neutron diffraction was performed on the triple axis spectrometer at the Brookhaven High Flux Beam Reactor. Neutron parameters were $\lambda = 2.35$ Å = 14.7 meV and a collimation of 20'-20'-20'-40'. The crystals were cooled with an APD Cryogenics Inc., Model HC-2 closed cycle He refrigerator controlled by a Lakeshore DRC-93CA.

Results and Discussion

All scattering was done in the hk plane, perpendicular to the crystal c-axis. The PE phase is body-centered tetragonal, so all $(h+k) = \text{odd}$ reflections are missing. The AFE phase loses the body-center Bravais lattice point, so $(h+k) = \text{odd}$ spots appear. The four kinds of AFE domains have orthorhombic unit cells with axes parallel to the PE cell axes. Two have $a > b$ and two have $a < b$. A (h, ϕ, ϕ) spot should split into $(h + \delta, \phi, \phi)$ and $(h - \delta, 0, 0)$ spots, while a $(\phi, k, 0)$ spot should split into $(0, k + \delta, 0)$ and $(0, k - \delta, 0)$ spots. A $(h, k, 0)$ spot should split into $(h + \delta, k - \delta, 0)$ and $(h - \delta, k + \delta, 0)$ spots. At most, a spot can double, because two domains with the same direction of cell elongation give identical spots.

We used this information to monitor the progress with decreasing temperature of the PE/AFE transition. The peaks were fitted with Lorentzians.

Antiferroelectric Domains

Typical results for scans along $(2 + \xi, 2, 0)$ with ξ small are shown in Fig. 1. All wavevectors are expressed in reciprocal lattice units. At ~ 170 K the original PE peak splits into two satellite peaks. The wavevector temperature dependence is presented in Fig. 2 (right).

FIGURE 1 Neutron diffraction for scans along $(2 + \xi, 2, 0)$ at several temperatures.
New Peaks

The results for (0, 3 + η, 0) scans appear in Fig. 2 (left). This peak, not allowed in the PE phase, appears in the AFE phase.

Coexistence

PE/AFE phase coexistence is proven by gradual development of the (2 + ξ, 2, 0) and (0, 3 + η, 0) diffraction patterns (Figs. 1 and 2). Both exhibit a range from 7 K to 12 K wide in which an incompletely built up AFE phase coexists with the PE phase. After 7–12 K of coexistence, the PE component disappears and the intensity of the (2 + ξ, 2, 0) AFE peaks becomes constant. By comparing the intensities of the coexistence-region peaks with those in the AFE and PE phases, the crystal volume in a given phase can be calculated [6].

Conclusion

Neutron diffraction provides clear evidence for PE/AFE phase coexistence on the AFE side of the DRADA x-T phase diagram. With decreasing temperature the PE/AFE transition follows the sequence (PE ordering → PE/AFE phase coexistence → AFE ordering). This behavior is supported by gradual developments in temperature-dependent dielectric, NMR and light scattering results [1, 5].

A quantitative study of the fraction of each phase with temperature along the x-T phase diagram of DRADA will be presented soon, together with a study of the correlation lengths of the different phases [6].

Acknowledgements

Work supported in part by National Science Foundation Grant DMR-9520251 and by a BNL visitor’s grant.
References

4. S. Lanceros-Mendez, V. H. Schmidt, and S. A. Shapiro, Phase coexistence in the deuteron glass Rb$_{0.9}$(ND$_4$)$_{0.1}$D$_2$AsO$_4$ proven by neutron diffraction. *Ferroelectrics* **223**, 203–208 (1999).
6. S. Lanceros-Mendez, V. H. Schmidt, and S. A. Shapiro, to be published.